This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3119649, IEEE

Transactions on Power Systems

Topology Identification of Distribution Networks Using
A Split-EM based Data-Driven Approach

Li Ma, Member, IEEE, Lingfeng Wang, Senior Member, IEEE, and Zhaoxi Liu, Member, IEEE

Abstract—To improve the topology observability in power
distribution networks (PDNs), a two-stage topology identification
framework is proposed to recognize the mixed topologies in a
large set of historical data and predict the real-time topology
based on the nodal measurements. A split expectation-
maximization (split-EM) method is proposed considering the
measurement errors to deal with the topology identification
problem on the historical batch data, in which the number of
topology categories does not need to be given in advance. Based
on the topology identification results of historical data, the
number of topology categories is reduced. Then, feasible
classifiers are trained using machine learning methods to predict
the real-time topology efficiently. An error-correcting mechanism
is proposed for the real-time identification involving the
credibility analysis and the reidentification based on the Bayesian
recursion model. Finally, via a practical example, the effectiveness
of the proposed models is verified by efficiently identifying the
PDN’s topologies in both the historical batch data with mixed
topologies and real-time measurements. In addition, the partition-
based extension application solution of the topology identification
models for large-scale PDNs is proposed without extra
measurements to relieve the calculation burden and reduce the
identification time notably while maintaining the accuracy as the
non-partitioned scheme.

Index Terms— Historical topology identification, real-time
topology identification, resilience improvement, power
distribution system, split-EM method, classifier training.

I. INTRODUCTION

he power distribution network (PDN) is different from the

transmission grids where the topologies are regularly

measured and verified. Topology information of distribution
networks is inaccurate or even unavailable due to uninformed
changes that happen from time to time, such as network
reconfiguration, repairs, maintenance and load balancing [1].
Although topology sensors (such as Feeder Terminal Unit, FTU)
are being utilized in PDNSs, they are placed only at special
locations due to budget constraints [2]. Topology identification
in PDNs is critical due to its important roles in carrying out many
tasks, including power flow analysis, real-time contingency
analysis, resiliency enhancements against natural disasters or
cyber-physical attacks, efficient integration of renewable energy
sources (RES), and so on [3-6].

The importance of topology identification to power grids is
receiving growing attention, and some related research has been
performed in the past few years based on the ongoing
deployment of advanced metering infrastructures (AMI), micro-
phasor measurement unit (uWPMU)-type sensors [7] and GPS
timing devices [1] at the buses. The existing research on power
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grid topology identification problems can be classified into static
models [1, 2, 8-10] and time-varying models [3, 11-16],
depending on whether the grid topology is fixed or not during
the computation. For the static models, reference [1] proposed an
error-in-variables model to jointly estimate the line parameter
and topology in a maximum-likelihood framework. Reference [2]
proposed a mutual information-based topology identification
model for the distribution grid with new data from sensor-
equipped DER devices. Reference [8] proposed a structure
learning algorithm to solve the topology estimation problem in
structurally meshed but operationally radial distribution
networks. Reference [9] proposed a topology identification
algorithm based on the measurements from a few line current
sensors, and the problem was modeled as a mixed integer linear
program (MILP). Reference [ 10] used the Markov Random Field
algorithm to explore the nodal correlation, and a revised
maximum likelihood method was devised to solve the model.
Then for the time-varying models, the research is composed of
real-time identification with single topology [3, 11-14, 16], and
historical identification with multiple topologies [15]. For real-
time topology identification, the sparse-recovery methods were
utilized in [3] and [11] to solve the smart grid topology
identification problems, where the power network was regarded
as an interconnected graph and the DC power flow model was
considered. A “Learning-to-Infer” method was developed in [12]
for identifying the line status of the power network efficiently in
real time, and the line outage detector optimization was solved
as a discriminative learning model. Reference [13] proposed a
model for identifying network changes based on the Bayesian
approach, and the model was tested on the 11 kV distribution
networks of the U.K. Generic Distribution System (UKGDS).
Reference [14] studied the parameters and topology estimation
problem in a polyphase distribution network via the least
absolute shrinkage and selection operator (LASSO) regression.
Reference [16] proposed a distribution network dynamic
topology awareness method that only requires the synchronized
voltage amplitude measurements of a few nodes in the grid. In
[15], the authors improved their previous static state framework
for the single topology identification in [1], and a parameter and
topology joint identification model was proposed. In addition to
the topology identification, references [17, 18] also addressed
the phase identification problem using a maximum marginal
likelihood estimation and an MILP model, respectively.

In general, the distribution network is structurally meshed but
operationally radial. To overcome the drawbacks of the radial
systems, prevent service interruptions, and reduce losses, the
meshed configuration has been studied [19, 20]. In recent years,
the large-scale integration of RES has also brought great changes
to the distribution systems, and the conceptions such as
microgrid and energy hub have also been implemented [21, 22].
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Accordingly, the partially islanding operation mode will also be
adopted in the distribution networks under some circumstances.
Considering these changes, the topology identification tools for
distribution networks should be applicable to diversified network
topologies. Several models in the existing literature have
considered the meshed configuration [1, 14], but the networks
with islands have seldom been considered. In addition, most of
the existing studies assumed that the collected data samples
correspond to the same topology [23-26]. However, the network
topology changes can happen rather frequently in the distribution
system operation, as much as once every several hours [27].
These topology changes can be induced by the routine
reconfiguration, manual maintenance, etc. [2], and it is not easy
to determine when and how the topology changes. Thus, the
number of topology categories for a set of historical
measurement data is usually unknown in practice, and
identifying the mixed topologies in a large set of historical data
simultaneously is a challenging task. Moreover, as the historical
and real-time topology identifications were realized separately in
the existing literature, the historical topology information has not
been fully exploited in the real-time topology prediction, and in
some cases the labeled data has to be generated artificially. To
date, an integrated framework involving both historical and real-
time topology identification has not been researched. In this
context, this paper proposes a two-stage topology identification
framework for PDNs to recognize the mixed topologies in
historical batch data and predict the real-time topology based on
the available nodal measurements. The measurements include
nodal active/reactive power injections, voltage amplitudes and
phase angles, where the voltage phase angles are measured by
low-cost uPMUs [28], and other measurement are obtained
from widely-used smart meters [29]. The main contributions of
the paper are listed as follows:

1) A modified EM algorithm named split-EM is proposed for
historical batch data topology identification, where the number
of topology categories in the historical data is not necessary. For
a data sample including multiple records, the proposed model
can simultaneously find all the topology categories and identify
the topology each record belongs to. It is applicable to different
types of topologies, including radial, meshed, and islanded
networks; and different system models, such as three-phase
balanced systems and unbalanced systems. Further, it is also

The two-stage topology identification procedure.

applicable when the nodal voltage phase angles are not measured.

2) A two-stage topology identification framework is proposed

based on the split-EM historical identification, in which the
number of the topology categories could be narrowed down.
Then the classifiers are trained using machine learning methods
and adopted in the real-time topology prediction more efficiently.

3) An extension application solution of the topology
identification models for large-scale networks is designed
without any extra measurements. By partitioning the network
into subsystems, the calculation burden is reduced. The overall
topology information can be obtained dynamically and
efficiently with the proposed solution.

This rest of the paper is organized as follows. The overall two-
stage topology identification framework is introduced in section
II. The historical and real-time topology identification models
are proposed in section III. In section IV, the application solution
of the proposed models for large-scale networks is designed. The
case study is presented in section V. Lastly, the conclusions are
drawn in section VL.

II. TwWO-STAGE TOPOLOGY IDENTIFICATION FRAMEWORK

The two-stage topology identification framework is shown
in Fig. 1. In stage I, for historical data identification, the
unlabeled records can be divided into several smaller samples
(each sample includes a number of records, and one record
refers to the nodal measurements at a point in time), and the
topology identification operations can be performed with the
split-EM method in a parallel way to improve the efficiency.
For each record [s;;, y;;], it is the nodal measurements of all
nodes in the PDN at a point in time, and s;; includes the
voltage amplitudes and phase angles, while vector y;;
includes the active and reactive power injections. The topology
category T;; is determined after the topology identification
procedure is performed, which is added to the original record
to generate the labeled data [s;;, y;;, T;;].

The machine-learning training will be carried out to generate
several topology classifiers with all the historical labeled data.
The inputs of the classifiers are the nodal measurements and
the output is the corresponding topology categories. The
trained classifiers will be used in stage II for real-time
identification. The real-time measurement (similar to one
record in the history data) can be labeled using the trained
classifiers, and the credibility analysis is performed to prevent
the rare occasions that the classifiers cannot correctly label
some measurements under new topology parameters (which
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may never appear in the historical data). Based on the result of
the credibility analysis, the credible labeled data will be sent to
the historical labeled database to update the machine-learning
training of the classifier, while the unreliable data will be
reidentified using the Bayesian recursion model, which will
take a longer time than the classifier.

III. HISTORICAL AND REAL-TIME TOPOLOGY IDENTIFICATION

A. Historical Topology Identification
1) The EM model

When the topology information is unknown, the topology
identification problem of the historical data can be regarded as
an unsupervised classification problem. The unsupervised
classification of historical data can further be considered as a
parameter estimation problem with unknown mixture of
topology categories. The historical data identification model
should integrate topology estimation and category selection in
one algorithm, and also be applicable when there is a great
variety of topology categories in a large-scale network. The
inputs of the model are the nodal historical measurements
including the active and reactive power injections, voltage
amplitudes and phase angles in the PDN, and the output is the
corresponding topology categories for all the measurement
records. The parameters in the historical topology
identification problem can be represented as @ = {(T,,, @),
m € [1,2, ..., M]}, where M is the total number of the topology
categories, and «a,, is the proportion of the records with the m-
th topology category in the sample, T, is the topology
parameter vector of the m-th category, representing the states
of the lines with unknown connectivity. T,,'s dimension is the
number of lines with unknown states. The element of T, is
binary which equals 1 if the corresponding line is connected,
and 0 otherwise. The logarithmic likelihood function of sample

X (including N records [xy, ...,xy]) under @ (ie., L(X;0))
can be expressed as:
L(X;0) = IOgH =1p(x;; @)
l=1 log(p(xu @))
1'v=1 lOg Z]IZ1 p(xu ]; @)
T LT 0
= ¥X log ¥}, o) X (1)
T; oT;:0
L'(X,0;Q) = $X, 31 0.l u @

L'(X,0;Q) < L(X; 0) A3)
where L*(X, @; Q) can be regarded as the lower bound of the
logarithmic likelihood function, and the inequality in
expression (3) is derived from the Jensen-inequality [30]. It has
been proved that L(X; @) = L*(X, 0; Q) when

Tj _ ajp(xi|Tj;@)

O Ty ajp(xilT}:8) )
p(x;; @) is the probability of x; within parameter @ ,
p(xl-,T]-; @) is the probability of x; belonging to T; within
parameter @, and p(xi|T-; 9) is the probability of x; given

o Tj . o
T; within parameter @. Qxi] is also known as the conditional

distribution of the j-th topology for the i-th record in the sample:

10 =1 5)
p(xi,7};6) = a;p(xlT;; ©) (©)

The parameters of mixture models can be estimated using
the expectation-maximization (EM) algorithm [31], which is an
iterative method to find the maximum likelihood of parameter
estimates in the statistical models depending on the unobserved
latent variables (which are the states of the lines with unknown
connectivity here). The EM iteration alternates between the
expectation step (E-step) and maximization step (M-step). The
E-step creates a function for the expectation of the log-
likelihood evaluated using the current parameter estimation
results, and the M-step maximizes the expected log-likelihood
function determined in the E-step. The E-step and M-step for
estimating the parameters 0 = {(a,, Ty), m € [1,M]} are as
follows:

» The E-step calculates Q(t + 1) (with element Q;l’ (t+
1) in the matrix) based on the current estimate of the
parameters @(t). The conditional distribution Q;’ (t+1)

can also be regarded as the posterior probability of the i-th
record belonging to the j-th topology category.
T _ a;©op(xiT(:000)
Qs t+1)= Tm=1am(©p(xi|Tm (£);0(0)) )
» The M-step maximizes L*(X,0; Q(t + 1)) to update the
estimate of the parameter @(t + 1):
ty(t+1) = ZN, Qi (t + 1)/N ®)
0(t + 1) = argmax L' (X, 0; Q(t + 1))

= argmax (£, Iff, 0/ (¢ + Dlog®

p(x LT] 0)

31
1

The variables in the optimization problem (9) of the M-step
are {(T,)}me[L12,..,M] , and the evaluation of
p(x;, Tj; @) is closely related to the power flow calculation,
which will be introduced in detail in section III-B. Then the
model in (9) is a nonlinear integer programming problem,
which is also a non-convex problem.

4 LX,09)

< N
~ N N LAX030y)
X <
N LHX,0:0:)
L%(X,0501)

o, 0,0, o, O @

Fig. 2.

The convergence analysis for the EM algorithm can be
referred to [32]. A common issue associated with the EM
algorithm is the local optimum problem [33]. In other words, if
the logarithmic likelihood function has multiple peaks, the EM
process is easy to fall into a local optimal solution. In topology
identification studies, it seems unlikely that two topologies
have the same logarithmic likelihood values for certain records,
which means multiple peaks are almost impossible in the
topology identification problem (this statement will also be
verified in the case study section). Then, it is assumed that
L(X; @) will not get the same value between all the possible

Schematic diagram of the EM algorithm in topology identification.
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topology parameters @ in this paper. Regarding @ as the
variable, the logarithmic likelihood function can be sorted in an
ascending order, and the realization of the EM process can be
depicted in Fig. 2.

As shown in Fig. 2, the EM algorithm starts from a randomly
given parameter vector @, then Q; can be determined using
expression (7). Based on @Q; , we can get function
L'(X,0;Q,) , and 0@, can be solved by optimizing
L"(X, @; Q,). This process is repeated until @,,,, is found.

2) The split-EM model

The EM-based topology identification model introduced
above is suitable for the case with known number of topology
categories. As mentioned in section I, the number of topology
categories may not be available in practice when a group of
historical data is given. To deal with this problem, we propose
a modified EM algorithm named split-EM in this paper. The
procedure of the proposed split-EM method is shown in Fig. 3.

k=1, Gx=2

EM process
with Gy groups

\ 4 -
Save {T,,, ) Fix {Tuj\Tks;
m=[1,*,Gi] ket 1;

Gi=Gpt1
A

Find the ks-th
group with the

smallest Jigex.
A

Yes

Remove the x-th group from
{Tm,0n}> and save the other
groups as the final result

End

Fig. 3. The realization procedure of the split-EM method.

In the procedure, k is the round number in the split-EM
process, and G, is the number of the topology categories in
the k-th round. The whole procedure will start from
k =1, Gy = 2. The aforementioned EM process is performed
in the beginning of each round, and the estimated parameters
{(T, @)}, m € [1,...,G,] are obtained. Then we judge
whether two categories hold the same topology parameters, and
if there exist any two categories i and j satisfying T; = T},
is setto be a; + @;, and «; is set to be 0. If no two categorles
hold the same topology parameters, we proceed to decide if
there exists any category x with a, = 0. If there exists a
category with a, = 0, the split-EM process is ended, and the
final parameter results are {(Ty,, @)}, m € [1,...,Gy] with
the x-th category’s parameters removed. If there doesn t exist

any category x with a, = 0, the process goes to the next
round. A specified ks-th category is chosen to split in the next
round based on a judgement index as expressed in expression
(10), when the ks-th category holds the smallest Jingex among all
the topology categories in the current round. The topologies’
parameters except the ks-th category are retained in the new
round, which means {T;,,\Tyxs,m € [1, ..., G;] is fixed in the
new round of the EM process, while {am} me[1,..,Gy]
still need to be estimated. The split-EM is continued untll the
termination condition is satisfied. The judgement index of the
J-th group is expressed as follows to reflect the credibility of
T;.
sS4 0, 10g(p(xIT;:6))

— (10)

Yi=10Qx;

Remark: Comparison between the split-EM and EM
algorithms

The computational complexity of the EM algorithm is O(NM)
for every iteration [34], where N is the number of the records
and M is the number of the topology categories. For the split-
EM process, 2 topology categories need to be identified in each
round as other topology categories are determined according to
the results of the previous round. Then the computational
complexity for one iteration of all the rounds can be expressed
as O(2NM) (the number of rounds is equal to the total number
of topology categories M). In the traditional EM algorithm, if
we try from 2 topology categories to (M+1) topology
categories, the computational complexity for one iteration of
all the rounds can be expressed as O2N~+3N+ ---+(M+1)N)=
O(NM (M + 3)/2), which is greater than or equal to O(2NM)
in the split-EM method when M = 2. The gap between the
split-EM and traditional EM will be more obvious when M is
larger.

B. Probability Density Calculation
This section mainly focuses on how to determine the
probability of a data record belonging to a specified topology

category, which is an important element in the split-EM
process.

]index_j =

1) Three-phase balanced system

For the three-phase balanced power system, we usually use
one single phase to represent the overall system. Then the AC
power flow equations with the line states are expressed as
follows [1]:

bi = Zj g]l | ( vujlvujzcos (lji (guj1 - eujz))>

—b,-|lji|17u,-117u,-25m (lji (Gu,-1 - Bujz)) (11)
me
q; = Z,—=1 by 1| (Uunvujzcos (lf" (9“1'1 B 9“1'2)) B 1712)
—g]-|lji|vuj1vujzsin(lj,-(Hu],1 —6y;,)) (12)

where p; and q; are the active and reactive power injections
at the i-th node, g; and b; are the conductance and
susceptance on the j-th line, v; and 6; are the voltage
amplitude and phase angle at the i-th node, m, is the total
number of lines. [;; is the element in the incidence matrix L of
PDN, [; € {1,—1,0} represents the j-th line leaves from,
enters, or separates from the i-th node, respectively.
Ujq, Uj, are the elements in the incidence matrix # of PDN,
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where u;; and u;, represent “from” and “to” node numbers
of the j-th line. The power flow equations for all the nodes can
also be expressed as the following:

[p.q] = h(v,0) (13)
where the power flow function h corresponds to a specified
topology.

In expression (2), p(xl-|T- ; @) is a multi-dimensional
density model corresponding to the j-th topology category. T;
represents the topology parameters in the j-th category (the line
parameters such as length and impedance are known, only the
connection states will be considered here). We use p(xi |T]) to
replace p(xl-lTj;@) for simplicity in the following section.
p(xl-lTj) is the same as p([si,yi]m) , and can also be
expressed as p([si, vi,Sihvi'l |T]), where [s;,y;] denotes one
measurement record, and [s;’, ;'] are the corresponding real
values. p([s;, y;,si',¥:']|Tj) can be calculated based on the
specified error distributions’ probability density function [,
13], when errors are obtained using [s;,¥;] and [s;’,y;].
However, it is not easy to obtain [s;’, y;'] accurately in practice.
Here, a probability density calculation method only relying on
nodal measurements will be used. It is supposed that the
measurement errors & and &, follow the Gauss distributions
as: £,~N(0,0,2), £y~N(0, ayz). Then the real values and T;
satisfy the following expressions:

yi' = hi(si) (14)
Si'=si—& yi'=yi—¢& (15)

Using the first order Taylor expansion [35], we have:

Vi — & = hj(s; — &) = hj(sy) — &h;(s;) (16)
Ej =y; — hi(sp) = —&hi(s) + ¢, (17)

According to the above expressions, y; — h;(s;)~N (o, Zj),
where ;= (h]'-(S)O'S)Z +0,2. Then p([s; vy s/, v:'1|T;) can
be replaced by p(yl- — h;(sy) |T]), and the latter only contains
measurement values and can be represented as:

p(x|Ty) = p(E|T;) = p(v: — hj(s)]T;)

1 1.T -1
Jmexp( 2E"(5)'E) (18)
where n = 2 X n, (n, is the total number of nodes), and the
standard deviation o in the covariance matrix X; can be
determined based on the relative error of the measurement
(error%). For the measured value with a given mean pu, u +
3 -0 can cover more than 99.7% area of the Gaussian curve.
For any measured value @, o can be calculated as follows
[13]:

__ Dxerror%

T 3x100
2) The Model for Three-phase Unbalanced Systems

For the three-phase unbalanced power systems, the AC
power flow equations in [36] are reformulated with the line
states as follows:

pfx = Z;'lil Zﬁ:a,b,c Bi}'g;xjﬁ (viavi COS(G{X - elﬁ) -
@ a_ ngBYY_p. 2B a, B a_phB
vy cos(6f — 6) ) =By viv; sin(6f — 6;') (20)
i = %}, Bpmanc Bybi) (vivf cos(er - 6f) -

vEvfcos(0F - 0F)) ~By g vivfsin(oF — 6F) 21)

(19)

where B;j denotes the state of the line from the i-th node to
the j-th node, and
B;j =1, connected
{ . ; 22)
B;j =0, disconnected
a and B are phase indexes; p{* and g{* are the active and
reactive power injections of phase @ at the i-th node; v{* and

0F are the voltage amplitude and phase angle of phase «a at
the i-th node; gfjﬁ and blfzjﬁ are the conductance and

susceptance between phase « and f on the line from the i-th
node to the j-th node. Similar to the model for the single-phase
case, the power flow equations for all the nodes in the network
can also be expressed as follows:

[p%,q*] = h*(v", 6%) (23)
where p* = {p{}, @ = a,b,c, i € [1,...,n,]; the definitions
for q%, v*, and B% are similar to that of p*; the power flow
function h" corresponds to a specified topology in a three-
phase unbalanced system. p* (xilT- ; 0) is used to denote the
probability of x; given T; within parameter @ in a three-
phase unbalanced system, and the calculation process can be
realized as that for p(xl-|T- ; 0) in balanced systems, i.e.,
expressions (14)~(18).

C. Real-Time Topology Identification

Based on the split-EM identification model, a large amount
of historical data can be labeled. Then the classifiers for the
real-time topology identification can be generated based on the
labeled historical data using a series of machine learning
methods. For each real-time measurement, its topology
category will be labeled using the trained classifiers. The
longer the collection time of the historical data is, the better the
performance of trained classifiers will be, since more complete
topology scenarios can be used in the training process.

1) Credibility analysis of the labels

The identification result of the classifier should be further
analyzed as the classifier is not applicable to the records with
topologies that did not exist in the historical data samples and
a classifier may also have error by itself. The credibility
analysis can be performed based on the logarithm of the
probability (expression (18)) to determine if the label is
credible, because the logarithm probability of a record
belonging to the correct topology category is generally much
larger than that belonging to a wrong one (more details will be
presented in the case study section). Based on the result of the
credibility analysis, the unreliable labeled data will be
reidentified using the Bayesian recursion model.

2) The Bayesian recursion based reidentification for unreliable
labels

The Bayesian recursion model can be utilized to reidentify
the real-time measurement with unreliable label [13]. All the
possible topology categories should be given in advance in the
Bayesian recursion model. For a specified record, the iteration
process can be expressed as follows:

k-1
p(T-|£)k _ p(Ej[T))o(T; €) ;
-1
’ S h=1(Em| Ton)p(Tom|€)
where k is the iteration number, & = [Ey, E,, ..., Ey] is the
error vector and can be calculated using expression (17), and

the original probability p(Tj|£)1, jE[1,2,..,M] are all

24
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preset to 1/M. After enough iterations are performed, the
estimation will converge to one topology category, then this
category will be chosen as the final topology category.

The labels of the real-time measurements passed the
credibility analysis and error correction will be added to the
historical labeled data, which will be utilized to update the
classifiers training at a specific frequency to make the
classifiers more accurate.

IV. EXTENSION APPLICATION IN LARGE-SCALE NETWORK
A. The Overall Application Process

As mentioned in section III-A, the calculation complexity of
the split-EM method is closely related to the number of
topology categories involved in the historical data. Then, for a
large-scale network, an extension application solution can be
employed through partitioning the network into several
subsystems to reduce the calculation burden. The flowchart of
the overall process is shown in Fig. 4.

Subsystem1 ~ ...... Subsystem Ns

Step 2:
Identification

Step 3:
Combination

Step 1:
Partition & decouple

Whole System

Fig. 4. The overall process of the application in large-scale system.

Stepl: The whole PDN is divided into Ns subsystems
through the optimization model for subsystem formation
(presented in subsection IV-B). The subsystem formulation can
be decoupled from each other by exchanging the nodal voltage
amplitudes and phase angles at the nodes of the connecting
lines between subsystems, as the power flow equations for each
subsystem can be expressed in the following:

[P1,q1] = h1(v1;91,vc_1,9c_1)
[P qi] = hi(v;, 0, v, 0.;) (25)

[pNs’ qNs] = th (st’ eNs’ vC_Ns’ GC—NS)

where h; is the power flow function for the i-th subsystem;
Pi q:V;, 0; are the active power vector, reactive power vector,
voltage amplitude vector, and voltage phase angle vector at the
nodes within the i-th subsystem, respectively; v ;, 0. ; arethe
voltage amplitude vector, and voltage phase angle vector at the
nodes on the other side of the connecting lines between the i-th
subsystem and other subsystems.

Step2: The topology identification process, including data
processing, performing split-EM algorithm for historical data,
training the classifers, and predicting the real-time topologies,
is performed in each subsystem. The identification process is
similar to that in Fig. 1.

Step3: The historical and realtime topology identification
results in each subsystem are transmitted to the distribution
system operator (DSO) directly and combined together based
on the time stamps. For the real-time identification, only the
subsystem undergoing the topology change needs to update its
real-time toplogy information, making the overall performance

of the framework more efficient.

The advantage of this application solution in terms of the
calculation complexity will be analyzed here. For a data sample
consisting of N records, assuming that the number of the
topology categories within the i-th subsystem is M;, then the
largest number of the topology categories of the whole
distribution network is ]—I?Izs1 M;. If the topology identification
is performed in the whole distribution network, the calculation
complexity in each iteration can be up to O2N ]‘[?’zs1 M;). While
the total calculation complexity in each iteration can be
expressed as O(2NZ?I=S1 M;) if the topology identification is
performed in each subsystem. Based on the topology
identification results of the subsystems and the acquisition time
of the measurement, the topology information for the whole
distribution network can be obtained by combining the results
of the subsystems together. In most cases, 0(2]\TZ?I=S1 M;) is

much less than OQ2N l_[livzs1 M; ), which means that the
partitioning scheme adopted here can drastically reduce the
calculation burden.

B. The Optimization of Subsystem Formation

For a simple system, we may evenly divide it into several
subsystems artificially considering the estimated identification
time in each subsystem for step1 in Fig. 4. However, it may not
be easy to divide a complex system with a mass of nodes and
loops. In this case, the formation of the subsystems are
important for the overall application process. Too many
subsystems will lead to the increase of information interaction
between subsystems, and over large subsystems caused by
uneven partition or too few subsystems will limit the reduction
in the identification time for the whole area. Therefore, an
optimization of the subsystem formation is nessesary to further
improve the performance of the whole application process in
Fig. 4. The optimization for the subsystem formation is

modeled as follows:
me

min C;
i=1
s.t IVj—I—NC_j < Nlimit

Ns_j < Ns_limit (26)
where the objective in the optimization is to minimize the total
number of connecting lines (also reflecting minimizing the
number of subsystems), and C; is the connecting line indicator.
C; = 1 means the i-the line is a connecting line, C; = 0 means
not. The interconnected subsystems can be formed supposing
that all connecting lines are removed, and two constraints are
considered in each subsystem: the number of nodes in the j-th
subsystem (N;+N ;) is less than Njjpic, and the number of
unknown states in the j-th subsystem (N ;) is less than Ny jpmit.
To be noticed, the number of nodes on the other sides of the
connecting lines (N, ;) for the j-th subsystem is also considered
for the calculation of the j-th subsystem, and the lines with
unknown states are not used as the connecting lines here.
Nimit and  Ng i can be determined according to the
empirical topology identification time with different system
scales and unknown state numbers (more details can be found
in Section V). The optimization model can be solved based on
graph related algorithms and intelligent optimization
algorithms.
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TABLEI THE RESULTS OF SPLIT-EM PROCESS FOR IEEE 33-BUS SYSTEM

Round Scenario 1: with all nodal voltage phase angles measured Scenario 2: With all nodal voltage phase angles unmeasured and set as 0
T* a Jindex Logarithmic likelihood T* a Jindex Logarithmic likelihood
-1 [1110110000; | [0.325; [-529.8; 974.8 [1110110000; [0.325; [-315.7; 14%10*
1111100000] 0.675] -215.9] ) 1111100000] 0.675] -155.1] )
[1110110000; [0.30; [40.7; [1110110000; [0.30; [-264.1;
=2 1111100000, 0.65; 13.9; 2242.2 1111100000 0.65; -171.2; -1.93*10*
0111100100] 0.05] 39.5] 0111100100] 0.05] -41.7]
[1110110000; | [0.30; [40.7; [1110110000; [0.30; [-264.1;
_ 1111100000 0.50; 35.2; 1111100000; 0.50; -152.2; B 1nd
k=31 o111100100: | 0.0s: 39,5, 3665.0 0111100100; 0.05; -41.7; 181710
1011101000] 0.15] 40.0] 1011101000] 0.15] -146.7]
[1110110000; [0.30; [1110110000; [0.30;
1111100000; 0.50; 1111100000; 0.25;
=4 0111100100; 0.05; — 3665.0 0111100100; 0.05; —_— -1.81*10*
1011101000, 0.15; 1011101000; 0.15;
1110111011] 0] 1111100000] 0.25]

V. CASE STUDIES
A. Historical Topology Identification in IEEE 33-bus System

In the actual operation of PDNs, the basic topology
information can be obtained through the GIS (Geographic
Information System), and the states of unmonitored switches
need to be identified. The verification of the topology
identification mainly focuses on the identification of the states
of unmonitored switches in this section. The proposed topology
identification model is applied in the IEEE 33-bus system as
shown in Fig. 5. In this paper, it is assumed the following lines’
connection states are unknown (i.e., the lines with unmonitored
switches): line 11-12, line 14-15, line 15-16, line 2-19, line 28-
29, line 8-21, line 9-15, line 12-22, line 18-33, line 25-29 (the
numbers are the end-nodes’ serial numbers of the lines), and
the lines with unknown connectivity are shown as dotted lines
and numbered from 1 to 10 as shown in Fig. 5. There are
219=1024 possible topologies in this test system.

Fig. 5.

The voltage of bus 1 in the PDN is 12.66 kV. Except for the
first bus, the nodal active/reactive power injections in the PDN
are randomly generated within predefined ranges, and the
average values for the active and reactive power are 120 kW
and 80 kVar respectively. The nodal voltage amplitudes and
phase angles (except for the first bus) and the first bus’s power
injections in the PDN are generated using the Matpower
toolbox in MATLAB [37, 38]. Measurement errors are
randomly generated and added to the above generated data.
According to the American National Standard Institute (ANSI)
C12.20 Standard [39], the standard deviations of errors (in
terms of p, g, v, 6) are all set to be 0.1% of the measurements
(we use 0.1% in the text below for simplicity), and the error of
each measurement is generated based on its error standard
deviation and limited by three times of the standard deviation

The structure of IEEE 33-bus test system.

(i.e., € £ 13- 0). In this case, error% is 0.3%, which satisfies
the accuracy standard in [39]. The error settings are also
applicable to other parts in the case study except for the
sensitivity analysis of the measurement errors. The MATLAB
software package is employed to solve the split-EM model and
generate classifiers based on the labeled historical data.

1) The application in different topology types

® The application in radial networks

Here the topology identification is performed for a data
sample including 100 records. There are 4 topology categories
(all of them are radial networks) in this data sample, i.e., T1,
T2, T3, T4, corresponding to records 1~50, 51~80, 81~95, and
96~100, respectively. The ralated information of the sample are
listed in Table II.

TABLE II TESTING DATA FOR THE CASE CONSISTING OF RADIAL NETWORKS

Topology The sequential states of Record Record
category the switches* numbers proportion
T1 [1111100000] 1~50 50%
T2 [1110110000] 51~80 30%
T3 [1011101000] 81~95 15%
T4 [0111100100] 96~100 5%

* For the state of the switch, “1” means the switch is closed, while “0”
indicates it is open.

The OPTI toolbox and NOMAD solver [40, 41] are used to
solve the non-convex optimization in the split-EM solving
process. The initial states of switches are all set to 1, and this
setting is also used in other cases in the case study section. The
results of the split-EM process for the above mentioned case
are shown in Table 1. The scenarios with and without nodal
voltage phase angles are both verified (denoted as Scenario 1
and Scenario 2, respectively). As shown in Table I, the
topology identification in both scenarios experiences 4 rounds
in the split-EM processes, and the split-EM processes can
efficiently identify all the topologies in the historical records,
even for category T4 with only 5 records. In each round, the
topology category with smallest Jindex 18 chosen to be split in
the next round, while the other topology categories remain the
same. As there is a zero element in a within Scenario 1 and
two repeated topology categories in T* within Scenario 2 when
k=4, the split-EM processes stop according to the realization
procedure in Fig. 3. The logarithmic likelihood values increase
with the split-EM processes in both scenarios, as more correct
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topologies are recognized. Although the logarithmic likelihood
values in Scenario 2 are much smaller than those in Scenario 1,
the topology categories and which category each record
belongs to can also be identified correctly.

® The application in the network with meshes

In this section, a data sample including the meshed topology
is verified. Each record in the data sample is generated using
the same process as described previously, but different
topologies are used when calculating power flows using the
Matpower toolbox in MATLAB. The data sample generation
in the network with islands in the following section is also
similar. There are 2 topology categories in this data sample, i.e.,
T1 (1111100000) and T2 (1111110001, with mesh),
corresponding to records 1~50 and 51~80 respectively, and the
identification results are listed in Table III. The split-EM
process is similar with that in Table I), and the identification
results are all correct in this case.

TABLE Il THE RESULTS IN SPLIT-EM PROCESS FOR THE CASE WITH MESH

Round T a Jindex Logarithmic likelihood
[1111100000; | [0.625; [34.4;
k=1 11111100017 | 0.375] 29.1] 25383
[1111100000; | [0.625;
k=2 0100000010; 0; —_— 2538.3
11111100017 | 0.375]

® The application in the network with islands

In this section, a data sample including topology with island
is verified. T1(1111100000) and T2 (0111000010, with island)
correspond to records 1~50 and 51~80 respectively, and the
identification results are listed in Table IV. The topology
identification results are also all correct in this case.
TABLE IV THE RESULTS IN SPLIT-EM PROCESS FOR THE CASE WITH ISLAND

Round T a Jindex Logarithmic likelihood
_ [0111000010;| [0.375; [33.4;
k=1 1111100000] | 0.625] 324] 2366.8
[0111000010; | [0.375;
k=2 0111111100, 0; — 2566.8
1111100000 | 0.625]

2) Sensitivity analysis of line parameters and measurement
errors

In this section, we test 400 records corresponding to 4
topology categories ([1111100000], [1011101000], [01111
001007, [1111000001], and 100 records for each topology) to
analyze the sensitivities of the line parameters and
measurement errors by adjusting the amplitudes of the
parameter variations and the standard deviations of the errors.
As the accuracy of the split-EM method mainly depends on
whether the logarithmic probability of a record within the
correct topology is the largest, Singex 1IN expression (27) is
designed and utilized to reflect the sensitivity of the line

parameters and measurement errors.

1 1
Sindex = = 2K (S 2L, S ) @7)

L pCrae(TlTe) = max pCxue(Te)T;)
0 PGk (TOIT) # | max p Qe (TIT))

where N is the number of the records, K is the number of
parameter error sets or measurement error sets; X, (T.) is the
record corresponding to topology T, while T} corresponds to
the j-th topology category among all the topology categories.

Sik (28)

In this study, 20 cases of error standard deviations and 23
cases of parameter variation ranges are considered, and 100
parameter error sets or measurement error sets are randomly
generated for each case of the error standard deviation or
parameter variation range. The sensitivity analyzing results are
shown in Fig. 6. According to Fig. 6, Sj,qex 1S more sensitive
to the standard deviations of the measurement errors compared
with the parameter errors of the lines in the PDN. It is also
found that no two topology categories have the same
probability for a specified record in the calculation process. It
means there is only one maximum value of the logarithmic
probability among all the topology categories. When the
standard deviation of the measurement errors is within 0.1%
[39], Singex corresponding to each standard deviation case is
nearly equal to 1, indicating the results of the split-EM method
are authentic with the practical measurement errors.

1.0 sesesessoggy FESSS0ERRERRBREOESOS —3 & 8
g ' i“!‘l
e} NS
2 \\f\\.\_
S0. 9- MR
E N
g —=— T1:1111100000 —=— T1:1111100000
o —&— 12:1011101000 —*— 12:1011101000
=087 4 1300111100100 [ —A— I8:0111100100
= ~v— T4:1111000001 ~v— T4:1111000001
. . . . . . . .
0 0.05% 0.1% 0.15%  0.2% 0 £1%  £2%  £3% 4% 8% 12% £ 16%
Standard deviation of the measurement errors Variation range of the line parameters
Fig. 6. Sensitivity analysis results of standard deviation and line parameters.

B. Real-time Identification in IEEE 33-bus System
1) The real-time identification based on the classifiers

It is assumed that 24 topology categories are involved in the
historical data in this case. 1000 records of each topology
category (24000 in total) are used to be trained, and 1000
records are used in the testing process. Among the 1000 testing
records, the topology of 20 records is not included in the
historical data (the 20 records belong to one topology,
[1101100010]). The Classification Learner and Neural Net
Pattern Recognition toolboxes in MATLAB are adopted here
to generate the trained classifiers. Among all the classification
learner models, the Fine Tree, Linear SVM, Quadratic SVM,
and Neural Network (using the Neural Net Pattern Recognition
toolbox), etc., perform much better than the others in the
toolbox, and the training/testing accuracy and prediction time
of these models for a single record are listed in Table V.

TABLEV THE COMPARISON BETWEEN CLASSIFIERS IN
THE REAL-TIME PREDICTION

Trained classifier Training Testing Rrediction

accuracy accuracy time (sec)
Fine Tree 99.10% 97.20% 0.03
Linear SVM 99.99% 97.80% 0.26
Quadratic SVM 99.99% 97.90% 0.32
Cubic SVM 99.90% 97.80% 0.35
Medium Gaussian SVM 98.80% 97.50% 0.31
Coarse Gaussian SVM 99.50% 97.20% 0.33
Bagged Trees 98.30% 97.30% 0.10
Subspace Discriminant 99.80% 97.60% 0.09
Neural Network 99.96% 98.00% 0.01

2) Credibility analysis and error corrections

In this section, taking Quadratic SVM as an example, the
prediction results will be analyzed and corrected. The
logarithmic probability of each record with the topology
category identified by the Quadratic SVM is shown in Fig. 7
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(a). As the topology category for the records from the 381st to
the 400th doesn’t exist in the historical data, their logarithmic
probabilities are much smaller than other records. Thus, we can
obtain a threshold value of the logarithmic probability based on
a mass of data considering the correct topology and wrong
topologies. The threshold value can be used to determine
whether an unreliable topology is assigned to a data record.
Here we set the threshold as -50, and the records from the 381st
to the 400th are regarded as unreliable ones and are reidentified
using the Bayesian recursion model, which involves all
possible topology categories (the number is 2!°=1024). The
Bayesian method costs 6.09 sec for each record, and the
topology identification results are all correct for these 20 data
records, as shown in Fig. 7 (b). After the error correction
process, the accuracy has been improved from 97.9% to 99.9%,
which is accurate enough for industrial applications.

100 - —
WWWW‘WWWWW'W ik B VU R T
-200F
[
=)
=}
—
-500F r
8000200 400 _ 600 800 10000 200 400 _ 600 _ 800 1000
Number of record Number of record
(a) Before error correction (b) After error correction
Fig. 7. The logarithmic probabilities of the testing records

3) Sensitivity analysis of the number of topology categories

The sensitivity of the number of topology categories in the
training process is analyzed in this section. In Table VI, 100
records for each topology are used in the training process, and
1000 records are used in the testing process.

TABLE VI COMPARISON BETWEEN DIFFERENT NUMBERS OF TOPOLOGIES

The proposed topology identification model for three-phase
unbalanced networks is applied in a pratical distribution system
as shown in Fig. 8. The states of the switches/lines directly
connected to the transformer stations are monitored in practice
and need not to be identifed. The lines with unknown
connection states are marked using circled numbers in Fig. 8.
As the topology identification focuses on the medium-voltage
networks, the measurement points are set at the incoming lines
of distribution transformers, which can be regarded as
aggregated load points in the PDN model. The nodal currents,
voltages and power-factor angles of each phase are measured
and used in this test case, and active and reactive power
injections are calculated before the topology identification. It
can be noticed that the loads are unbalanced between the three
phases at each node, and the nodal voltage phase angles of each
phase are not necessary in this actual case.

® / N \~ £ 2
y ‘ [ /_—T\‘
o 4 Y . e
S o
Substation 10kV Lines [1] Load Point Switch

Fig. 8.
1) The historical topology identification

The structure of an actual three-phase unbalanced system.

The topology identification is performed on a data sample
including 30 records. There are 2 topology categories (both of
them are radial networks) in this data sample, i.e., Tl
(0000001), T2 (1000000), corresponding to records 1~15 and
16~30, respectively. The identification results are listed in

Number of Training | Training Testing | Prediction Table VII, and the identification results are all correct.

topologies in training | time (sec) | accuracy | accuracy | time (sec) TABLE VII THE RESULTS IN SPLIT-EM PROCESS FOR THE ACTUAL CASE

20 15.8 99.20% 99.40% 0.11

20 96.8 99 30% 99.00% 028 Round T a Jindex Logarithmic likelihood

60 292.5 96.00% | 97.70% 0.71 k=1 [fgggggg]; [09:55]; ['26725§3;] -2.07*10*

80 6524 | 9310% | 94.40% 125 10000001, | [0.5:

100 1269.9 93.20% 95.00% 2.02 k=2 1000000; 0.5; e -2.07*10*

120 2275.4 93.60% 94.60% 291 0000001] 0]

Note: the results are based on Quadratic SVM.

As shown in Table VI, with the number of the topology
categories in training increasing, the training/prediction time
tends to increase, while the training/testing accuracy decreases.
Then the historical identification process not only provides
useful topology information for the DSO to support the optimal
operation and planning of the distribution network, but also
reduces the number of the topology categories, which could
shorten the prediction time and improve the prediction
accuracy in the real-time topology identification. It is
reasonably assumed that most topology categories have
appeared in historical data for the distribution networks that are
in operation for a long time. The topologies that were never
occurred can be identified through the credibility analysis and
error correction process, which is also helpful for the proposed
models to be deployed in distribution networks which have
been in operation for a short time.

C. Application in a Three-phase Unbalanced System

2) The real-time topology identification

TABLE VIII THE COMPARISON BETWEEN CLASSIFIERS IN
THE REAL-TIME PREDICTION FOR THREE-PHASE UNBALANCED SYSTEM

Trained classifier Training Testing Rrediction

accuracy accuracy time (sec)
Fine Tree 97.50% 97.50% 0.02
Boosted Tree 97.90% 96.25% 0.03
Quadratic SVM 99.40% 98.33% 0.04
Cubic SVM 99.20% 99.17% 0.03
Fine KNN 96.80% 97.50% 0.02
Weighted KNN 98.00% 97.50% 0.02

It is assumed that 6 topology categories are involved in the
historical data in this case. 200 records of each topology
category (1200 in total) are used to be trained, and 240 records
are used in the testing process. The Classification Learner
toolbox in MATLAB are adopted to generate the trained
classifiers. Among all the classification learner models, the
models with better performances are listed in Table VIII, as
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well as the training/testing accuracy and prediction time (per
record) of these models.

D. Application of the Large-scale Network

The proposed topology identification method is also tested
on the modified 135-bus test system [42, 43] as shown in Fig.
9. It is assumed that the historical identification is conducted in
the end of the day in this case, and the data are collected every
15 minutes, which means there are about one hundred data
records for a day. Considering different settings of number of
nodes and number of unknown states in the system, Table IX
shows time consumption of the empirical historical topology
identification with a data sample involving 100 records and two
topologies (assuming that the cases with one or two topologies
are the most likely scenarios within a data sample of a day). It
can be observed that the historical topology identification time
is affected by both the number of nodes and the number of
unknown states in the system. More nodes and more unknown
states will both increase the identification time.

A2

&P s 2 s 80

136 135 134 133 132
| 64
Il Il

I

L

T T T T
131 130 128126 124 123 122

114 113 112 111|108 107 106

A3
118 117 110 109 115 116

Fig. 9. The 135-bus test system.

TABLE IX TOPOLOGY IDENTIFICATION TIME WITHIN DIFFERENT SYSTEM
SCALE AND UNKNOWN STATES (SECONDS)

Number of unknown states
Number of nodes 3 2 3 3 10
30 3 32 144 213 307
40 5 80 290 463 472
50 14 150 824 1619 1764
60 20 179 1255 1956 1847
70 34 253 1469 2373 2816

For the test system in Fig. 9, it is assumed that the historical
identification is required to be finished within 5 minutes.
Therefore, Njjmir and Ny jimic are set as 60 and 4 according
to Table IX, and the subsystems are highlighted by different
background colors in Fig. 9. The proposed topology
identification model can be used directly in each subsystem
based on the power flow equations in (25). Taking subsystem
Al (highlighted in blue color) as an example, nodes 2~50 are
within subsystem A1, and nodes 1, 60, and 99 are the nodes on
the other side of the connecting lines of subsystem Al. The
nodal active/reactive power injections at nodes 2~50, and the
nodal voltage amplitudes/phase angles at nodes [1~50, 60, 99]
are measured. In this way, the subsystems are decoupled from
each other, and the proposed split-EM process and real-time
prediction can be adopted in each subsystem. The split-EM
process and real-time prediction are tested for the whole area
and the subsystems. The results are presented and compared as

follows.
1) The historical topology identification

The testing data for the 135-bus system are shown in Table
X. There are 12 lines in the entire system whose connection
states are unknown, and each subsystem holds 4 of them. It is
assumed that each subsystem has 2 topology categories and the
whole area has 5 topology categories within the testing data,
which includes 100 records. The states of the switches of each
topology category, and the topology category of each record
are presented in Table X and Fig. 10.

TABLE X TESTING DATA FOR THE LARGE-SCALE NETWORK

Area range Serial numbers of The states of the switches
g the switches in each topology category
Al D@ Ti1:[1000]; Ti2:[0100]
A2 ©WE) T>1:[0010]; T22:[1000]
A3 QLW® T51:[1001]; T32:[0110]
000060) T13[T11,T21,T31]§ Tzf[Tn,Tzl,Tzz]%
Whole area 2EOOH® T3:[T11,T22,T32]; Ta:[T12,T22,T31];
Ts:[T12,T2,T32]
—e— Al A2 A3 Whole Area
T
1, T T I
Ty, Lt Ty, RE

T,

147 101316 1922 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Number of record

Fig. 10. The distribution of the testing data in the large-scale network.

The split-EM procedure in Fig. 3 is utilized in the whole area
and all the subsystems, respectively. The corresponding split-
EM processes are shown in Fig. 11 and Fig. 12. Although the
results are correct in both scenarios, the split-EM process for
the entire system needs 5 rounds and the average calculation
time of each round is about 2000 seconds, while it only takes 2
rounds in each subsystem and the total calculation time of each
subsystem is just about 150 seconds on average.

Calculation
time

k=2 I . 118
T 7
k=1 T, 38
147 101316 19 2225 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 §5 85 91 94 97 100
Number of record
(a) Subsystem Al
Calculation
time
T
2 T, & 395
. T,
) 2% s
=t 24 s
147 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 8 61 64 67 70 73 76 79 82 §5 85 91 94 97 100
Number of record
(b) Subsystem A2
Calculation
time
Ty, Ta 2
k=2 T, - T, . 125
Ts Ty
- T, 2 Ty, 76s
147 1011316 19,22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 85 91 94 97 100
Number of record
(c) Subsystem A3

Fig. 11. The results of split-EM process for each subsystem.
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Fig. 12. The results of split-EM process for the whole area.
2) The real-time topology identification

In this section, the real-time identification processes of the
whole area and the subsystems will be compared. We consider
4 topology categories in each subsystem and 12 topology
categories in the whole area involved in the historical data in
this testing. 12000 records are used in the training process for
the whole area and each subsystem, and 1200 records are used
in the testing process. The comparison results are shown in
Table XI.

TABLE XI THE COMPARISON OF REAL-TIME RESULTS OF 135-BUS SYSTEM

Area range Training Training Testing P'rediction
time (sec) Accuracy Accuracy time (sec)
Whole area 97.3 99.50% 98.00% 0.10
Al 239 99.60% 98.20% 0.01
A2 18.8 99.20% 98.90% 0.01
A3 13.1 99.80% 99.40% 0.01

As shown in Table XI, the training/prediction time of the
whole area is longer than those of the subsystems. The training
accuracy difference between each subsystem and the whole
area is within + 0.5%, and the testing accuracy of subsystems
are a bit higher than that of the whole area.

In conclusion, the performance of both the historical and
real-time identification in the subsystems is as good as that in
the whole area in terms of accuracy, and better in terms of
identification time. After the topology identification of each
subsystem is done, the topology information of the whole area
can be obtained by combining the results of the subsystems
based on the acquisition time of the measurements.

3) Subsystem optimization in the 874-bus system

Fig. 13. Subsystem optimization result of the 874-bus system.

Asides from the 135-bus system, an 874-bus system (as
shown in Fig. 13) is used to validate the model in subsection
V-B. GA and graph related toolbox [44, 45] are utilized in the
Matlab environment to realize the optimization of the
subsystems of the 874-bus system, and Njjp;r and N jimit
are set as 80 and 5. The optimized subsystem formation result
is shown in Fig. 13, and 15 subsystems are formed according
to the optimization. The optimized subsystems are marked with
different colors, and the edge with two terminal nodes in
different colors are the connecting lines between the
subsystems. The topology identification tasks in each
subsystem are performed similarly to those in the 135-bus
system, and will not be presented due to limitation of space.

VI. CONCLUSION

To improve the topology observability in the PDN, a two-
stage topology identification framework is designed to
recognize the mixed topologies in the historical batch data and
predict the real-time topology. A split expectation-
maximization (EM) method is proposed to deal with the
topology identification problem of a large set of historical data
in which the number of topology categories is unknown. The
calculation complexities are compared between the split-EM
and traditional EM methods, proving that the proposed split-
EM method consumes less calculation resources in most cases.
To predict the real-time topology efficiently, the topology
classifiers are trained based on the labeled historical records
through machine learning methods. An error-correcting
mechanism consisting of the credibility analysis and
reidentification process based on the Bayesian recursion model
is also proposed for the real-time identification to improve its
performance. The effectiveness of the models is verified in a
test system. The proposed split-EM can identify the topology
categories correctly in the cases for radial network and the
networks with meshes and islands, and it also works well when
the nodal phase angles are not measured. The split-EM model
is also extended to adapt to the three-phase unbalanced systems.
For the real-time topology identification, several highly-
accurate classifiers are generated using the Classification
Learner and Neural Net Pattern Recognition toolboxes in
MATLAB, and their prediction time for a single case is all less
than 0.4 sec. Taking the classifier based on the Quadratic SVM
model as an example, the error-correcting mechanism is
verified in terms of improving the real-time prediction
accuracy from 97.9% to 99.9%. The sensitivity of the topology
categories is also analyzed, and the results show that reducing
the number of topology categories in the historical
identification will benefit real-time identification in terms of
reducing prediction time and improving prediction accuracy. In
addition, the application solution of the topology identification
models in large-scale PDNs is proposed without extra
measurements, which can update the overall topology
information dynamically and efficiently with less calculation
burden. The application in the 135-bus system has verified the
advantages of the proposed extension framework both in
historical and real-time identification. In the future, the
proposed models in the paper can be further expanded to
address other related issues, such as the real-time topology
identification combined with fault detection and localization.
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