
0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3119649, IEEE
Transactions on Power Systems

 

Abstract—To improve the topology observability in power 
distribution networks (PDNs), a two-stage topology identification 
framework is proposed to recognize the mixed topologies in a 
large set of historical data and predict the real-time topology 
based on the nodal measurements. A split expectation-
maximization (split-EM) method is proposed considering the 
measurement errors to deal with the topology identification 
problem on the historical batch data, in which the number of 
topology categories does not need to be given in advance. Based 
on the topology identification results of historical data, the 
number of topology categories is reduced. Then, feasible 
classifiers are trained using machine learning methods to predict 
the real-time topology efficiently. An error-correcting mechanism 
is proposed for the real-time identification involving the 
credibility analysis and the reidentification based on the Bayesian 
recursion model. Finally, via a practical example, the effectiveness 
of the proposed models is verified by efficiently identifying the 
PDN’s topologies in both the historical batch data with mixed 
topologies and real-time measurements. In addition, the partition-
based extension application solution of the topology identification 
models for large-scale PDNs is proposed without extra 
measurements to relieve the calculation burden and reduce the 
identification time notably while maintaining the accuracy as the 
non-partitioned scheme.  

Index Terms— Historical topology identification, real-time 
topology identification, resilience improvement, power 
distribution system, split-EM method, classifier training.  

I. INTRODUCTION 
he power distribution network (PDN) is different from the 
transmission grids where the topologies are regularly 
measured and verified. Topology information of distribution 

networks is inaccurate or even unavailable due to uninformed 
changes that happen from time to time, such as network 
reconfiguration, repairs, maintenance and load balancing [1]. 
Although topology sensors (such as Feeder Terminal Unit, FTU) 
are being utilized in PDNs, they are placed only at special 
locations due to budget constraints [2]. Topology identification 
in PDNs is critical due to its important roles in carrying out many 
tasks, including power flow analysis, real-time contingency 
analysis, resiliency enhancements against natural disasters or 
cyber-physical attacks, efficient integration of renewable energy 
sources (RES), and so on [3-6].  

The importance of topology identification to power grids is 
receiving growing attention, and some related research has been 
performed in the past few years based on the ongoing 
deployment of advanced metering infrastructures (AMI), micro-
phasor measurement unit (μPMU)-type sensors [7] and GPS 
timing devices [1] at the buses. The existing research on power 

grid topology identification problems can be classified into static 
models [1, 2, 8-10] and time-varying models [3, 11-16], 
depending on whether the grid topology is fixed or not during 
the computation. For the static models, reference [1] proposed an 
error-in-variables model to jointly estimate the line parameter 
and topology in a maximum-likelihood framework. Reference [2] 
proposed a mutual information-based topology identification 
model for the distribution grid with new data from sensor-
equipped DER devices. Reference [8] proposed a structure 
learning algorithm to solve the topology estimation problem in 
structurally meshed but operationally radial distribution 
networks. Reference [9] proposed a topology identification 
algorithm based on the measurements from a few line current 
sensors, and the problem was modeled as a mixed integer linear 
program (MILP). Reference [10] used the Markov Random Field 
algorithm to explore the nodal correlation, and a revised 
maximum likelihood method was devised to solve the model. 
Then for the time-varying models, the research is composed of 
real-time identification with single topology [3, 11-14, 16], and 
historical identification with multiple topologies [15]. For real-
time topology identification, the sparse-recovery methods were 
utilized in [3] and [11] to solve the smart grid topology 
identification problems, where the power network was regarded 
as an interconnected graph and the DC power flow model was 
considered. A “Learning-to-Infer” method was developed in [12] 
for identifying the line status of the power network efficiently in 
real time, and the line outage detector optimization was solved 
as a discriminative learning model. Reference [13] proposed a 
model for identifying network changes based on the Bayesian 
approach, and the model was tested on the 11 kV distribution 
networks of the U.K. Generic Distribution System (UKGDS). 
Reference [14] studied the parameters and topology estimation 
problem in a polyphase distribution network via the least 
absolute shrinkage and selection operator (LASSO) regression. 
Reference [16] proposed a distribution network dynamic 
topology awareness method that only requires the synchronized 
voltage amplitude measurements of a few nodes in the grid. In 
[15], the authors improved their previous static state framework 
for the single topology identification in [1], and a parameter and 
topology joint identification model was proposed. In addition to 
the topology identification, references [17, 18] also addressed 
the phase identification problem using a maximum marginal 
likelihood estimation and an MILP model, respectively.  

In general, the distribution network is structurally meshed but 
operationally radial. To overcome the drawbacks of the radial 
systems, prevent service interruptions, and reduce losses, the 
meshed configuration has been studied [19, 20]. In recent years, 
the large-scale integration of RES has also brought great changes 
to the distribution systems, and the conceptions such as 
microgrid and energy hub have also been implemented [21, 22].  
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Fig. 1.  The two-stage topology identification procedure.

Accordingly, the partially islanding operation mode will also be 
adopted in the distribution networks under some circumstances. 
Considering these changes, the topology identification tools for 
distribution networks should be applicable to diversified network 
topologies. Several models in the existing literature have 
considered the meshed configuration [1, 14], but the networks 
with islands have seldom been considered. In addition, most of 
the existing studies assumed that the collected data samples 
correspond to the same topology [23-26]. However, the network 
topology changes can happen rather frequently in the distribution 
system operation, as much as once every several hours [27]. 
These topology changes can be induced by the routine 
reconfiguration, manual maintenance, etc. [2], and it is not easy 
to determine when and how the topology changes. Thus, the 
number of topology categories for a set of historical 
measurement data is usually unknown in practice, and 
identifying the mixed topologies in a large set of historical data 
simultaneously is a challenging task. Moreover, as the historical 
and real-time topology identifications were realized separately in 
the existing literature, the historical topology information has not 
been fully exploited in the real-time topology prediction, and in 
some cases the labeled data has to be generated artificially. To 
date, an integrated framework involving both historical and real-
time topology identification has not been researched. In this 
context, this paper proposes a two-stage topology identification 
framework for PDNs to recognize the mixed topologies in 
historical batch data and predict the real-time topology based on 
the available nodal measurements. The measurements include 
nodal active/reactive power injections, voltage amplitudes and 
phase angles, where the voltage phase angles are measured by 
low-cost μPMUs [28], and other measurement are obtained 
from widely-used smart meters [29]. The main contributions of 
the paper are listed as follows: 

1) A modified EM algorithm named split-EM is proposed for 
historical batch data topology identification, where the number 
of topology categories in the historical data is not necessary. For 
a data sample including multiple records, the proposed model 
can simultaneously find all the topology categories and identify 
the topology each record belongs to. It is applicable to different 
types of topologies, including radial, meshed, and islanded 
networks; and different system models, such as three-phase 
balanced systems and unbalanced systems. Further, it is also 
applicable when the nodal voltage phase angles are not measured.   

2) A two-stage topology identification framework is proposed 

based on the split-EM historical identification, in which the 
number of the topology categories could be narrowed down. 
Then the classifiers are trained using machine learning methods 
and adopted in the real-time topology prediction more efficiently.  

3) An extension application solution of the topology 
identification models for large-scale networks is designed 
without any extra measurements. By partitioning the network 
into subsystems, the calculation burden is reduced. The overall 
topology information can be obtained dynamically and 
efficiently with the proposed solution.  

This rest of the paper is organized as follows. The overall two-
stage topology identification framework is introduced in section 
II. The historical and real-time topology identification models 
are proposed in section III. In section IV, the application solution 
of the proposed models for large-scale networks is designed. The 
case study is presented in section V. Lastly, the conclusions are 
drawn in section VI. 

II. TWO-STAGE TOPOLOGY IDENTIFICATION FRAMEWORK 
The two-stage topology identification framework is shown 

in Fig. 1. In stage I, for historical data identification, the 
unlabeled records can be divided into several smaller samples 
(each sample includes a number of records, and one record 
refers to the nodal measurements at a point in time), and the 
topology identification operations can be performed with the 
split-EM method in a parallel way to improve the efficiency. 
For each record [𝑠𝑠𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖], it is the nodal measurements of all 
nodes in the PDN at a point in time, and 𝑠𝑠𝑖𝑖𝑖𝑖  includes the 
voltage amplitudes and phase angles, while vector 𝑦𝑦𝑖𝑖𝑖𝑖 
includes the active and reactive power injections. The topology 
category 𝑇𝑇𝑖𝑖𝑖𝑖  is determined after the topology identification 
procedure is performed, which is added to the original record 
to generate the labeled data [𝑠𝑠𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑖𝑖].  

The machine-learning training will be carried out to generate 
several topology classifiers with all the historical labeled data. 
The inputs of the classifiers are the nodal measurements and 
the output is the corresponding topology categories. The 
trained classifiers will be used in stage II for real-time 
identification. The real-time measurement (similar to one 
record in the history data) can be labeled using the trained 
classifiers, and the credibility analysis is performed to prevent 
the rare occasions that the classifiers cannot correctly label 
some measurements under new topology parameters (which 
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may never appear in the historical data). Based on the result of 
the credibility analysis, the credible labeled data will be sent to 
the historical labeled database to update the machine-learning 
training of the classifier, while the unreliable data will be 
reidentified using the Bayesian recursion model, which will 
take a longer time than the classifier. 

III. HISTORICAL AND REAL-TIME TOPOLOGY IDENTIFICATION  
A. Historical Topology Identification 
1) The EM model 

When the topology information is unknown, the topology 
identification problem of the historical data can be regarded as 
an unsupervised classification problem. The unsupervised 
classification of historical data can further be considered as a 
parameter estimation problem with unknown mixture of 
topology categories. The historical data identification model 
should integrate topology estimation and category selection in  
one algorithm, and also be applicable when there is a great  
variety of topology categories in a large-scale network. The 
inputs of the model are the nodal historical measurements 
including the active and reactive power injections, voltage 
amplitudes and phase angles in the PDN, and the output is the 
corresponding topology categories for all the measurement 
records. The parameters in the historical topology 
identification problem can be represented as 𝜣𝜣 = {(𝑇𝑇𝑚𝑚,𝛼𝛼𝑚𝑚),
𝑚𝑚 ∈ [1,2, … ,𝑀𝑀]}, where M is the total number of the topology 
categories, and 𝛼𝛼𝑚𝑚 is the proportion of the records with the m-
th topology category in the sample, 𝑇𝑇𝑚𝑚  is the topology 
parameter vector of the m-th category, representing the states 
of the lines with unknown connectivity. 𝑇𝑇𝑚𝑚's dimension is the 
number of lines with unknown states. The element of 𝑇𝑇𝑚𝑚 is 
binary which equals 1 if the corresponding line is connected, 
and 0 otherwise. The logarithmic likelihood function of sample 
𝑿𝑿 (including N records [𝑥𝑥1, … , 𝑥𝑥𝑁𝑁]) under 𝜣𝜣 (i.e., 𝐋𝐋(𝑿𝑿;𝜣𝜣)) 
can be expressed as: 
          𝐋𝐋(𝑿𝑿;𝜣𝜣) = 𝐥𝐥𝐥𝐥𝐥𝐥∏ p(𝑥𝑥𝑖𝑖;𝜣𝜣)𝑵𝑵

𝒊𝒊=𝟏𝟏  
                                       = ∑ 𝐥𝐥𝐥𝐥𝐥𝐥�p(𝑥𝑥𝑖𝑖;𝜣𝜣)�𝑵𝑵

𝒊𝒊=𝟏𝟏     
                                       = ∑ 𝐥𝐥𝐥𝐥𝐥𝐥∑ p�𝑥𝑥𝑖𝑖 ,𝑇𝑇𝑗𝑗;𝜣𝜣�𝑴𝑴

𝒋𝒋=𝟏𝟏
𝑵𝑵
𝒊𝒊=𝟏𝟏          

= ∑ 𝐥𝐥𝐥𝐥𝐥𝐥∑ 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗 p�𝑥𝑥𝑖𝑖,𝑇𝑇𝑗𝑗;𝜣𝜣�

𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗

𝑴𝑴
𝒋𝒋=𝟏𝟏

𝑵𝑵
𝒊𝒊=𝟏𝟏            (1) 

   𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑸𝑸) = ∑ ∑ 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗𝐥𝐥𝐥𝐥𝐥𝐥

p�𝑥𝑥𝑖𝑖,𝑇𝑇𝑗𝑗;𝜣𝜣�

𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗
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𝒋𝒋=𝟏𝟏

𝑵𝑵
𝒊𝒊=𝟏𝟏        (2) 

   𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑸𝑸) ≤  𝐋𝐋(𝑿𝑿;𝜣𝜣)           (3) 
where 𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑸𝑸) can be regarded as the lower bound of the 
logarithmic likelihood function, and the inequality in 
expression (3) is derived from the Jensen-inequality [30]. It has 
been proved that 𝐋𝐋(𝑿𝑿;𝜣𝜣) = 𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑸𝑸) when 

 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗 = 𝛼𝛼𝑗𝑗p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑗𝑗;𝜣𝜣�

∑ 𝛼𝛼𝑗𝑗p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑗𝑗;𝜣𝜣�𝑀𝑀
𝑗𝑗=1

         (4) 

p(𝑥𝑥𝑖𝑖;𝜣𝜣)  is the probability of 𝑥𝑥𝑖𝑖  within parameter 𝜣𝜣 , 
p�𝑥𝑥𝑖𝑖 ,𝑇𝑇𝑗𝑗;𝜣𝜣� is the probability of 𝑥𝑥𝑖𝑖  belonging to 𝑇𝑇𝑗𝑗  within 
parameter 𝜣𝜣, and p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑗𝑗;𝜣𝜣� is the probability of 𝑥𝑥𝑖𝑖 given 
𝑇𝑇𝑗𝑗 within parameter 𝜣𝜣. 𝑄𝑄𝑥𝑥𝑖𝑖

𝑇𝑇𝑗𝑗 is also known as the conditional 
distribution of the j-th topology for the i-th record in the sample:     

∑ 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗𝑀𝑀

𝑗𝑗=1 = 1               (5) 
p�𝑥𝑥𝑖𝑖 ,𝑇𝑇𝑗𝑗;𝜣𝜣� = 𝛼𝛼𝑗𝑗p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑗𝑗;𝜣𝜣�          (6) 

The parameters of mixture models can be estimated using 
the expectation-maximization (EM) algorithm [31], which is an 
iterative method to find the maximum likelihood of parameter 
estimates in the statistical models depending on the unobserved 
latent variables (which are the states of the lines with unknown 
connectivity here). The EM iteration alternates between the 
expectation step (E-step) and maximization step (M-step). The 
E-step creates a function for the expectation of the log-
likelihood evaluated using the current parameter estimation 
results, and the M-step maximizes the expected log-likelihood 
function determined in the E-step. The E-step and M-step for 
estimating the parameters 𝛩𝛩 = {(𝛼𝛼𝑚𝑚,𝑇𝑇𝑚𝑚),𝑚𝑚 ∈ [1,𝑀𝑀]} are as 
follows: 
 The E-step calculates 𝑸𝑸(𝑡𝑡 + 1)  (with element 𝑄𝑄𝑥𝑥𝑖𝑖

𝑇𝑇𝑗𝑗(𝑡𝑡 +
1)  in the matrix) based on the current estimate of the 
parameters 𝜣𝜣(𝒕𝒕) . The conditional distribution 𝑄𝑄𝑥𝑥𝑖𝑖

𝑇𝑇𝑗𝑗(𝑡𝑡 + 1) 
can also be regarded as the posterior probability of the i-th 
record belonging to the j-th topology category. 

𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗(𝑡𝑡 + 1) =

𝛼𝛼𝑗𝑗(𝑡𝑡)p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑗𝑗(𝑡𝑡);𝜣𝜣(𝑡𝑡)�

∑ 𝛼𝛼𝑚𝑚(𝑡𝑡)p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑚𝑚(𝑡𝑡);𝜣𝜣(𝑡𝑡)�𝑀𝑀
𝑚𝑚=1

      (7) 

 The M-step maximizes 𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑸𝑸(𝑡𝑡 + 1)) to update the 
estimate of the parameter 𝜣𝜣(𝒕𝒕 + 𝟏𝟏): 

𝛼𝛼𝑚𝑚(𝑡𝑡 + 1) = ∑ 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑚𝑚(𝑡𝑡 + 1)𝑵𝑵

𝒊𝒊=𝟏𝟏 𝑵𝑵⁄          (8) 
𝜣𝜣(𝒕𝒕 + 𝟏𝟏) = argmax 𝐋𝐋∗�𝑿𝑿,𝜣𝜣;𝑸𝑸(𝑡𝑡 + 1)� 

   = argmax {∑ ∑ 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗(𝑡𝑡 + 1)𝐥𝐥𝐥𝐥𝐥𝐥

p(𝑥𝑥𝑖𝑖,𝑇𝑇𝑗𝑗;𝜣𝜣)

𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗(𝑡𝑡+1)

𝑴𝑴
𝒋𝒋=𝟏𝟏

𝑵𝑵
𝒊𝒊=𝟏𝟏 }  (9) 

The variables in the optimization problem (9) of the M-step 
are {(𝑇𝑇𝑚𝑚)},𝑚𝑚 ∈ [1,2, … ,𝑀𝑀] , and the evaluation of 
p(𝑥𝑥𝑖𝑖 ,𝑇𝑇𝑗𝑗;𝜣𝜣) is closely related to the power flow calculation, 
which will be introduced in detail in section III-B. Then the 
model in (9) is a nonlinear integer programming problem, 
which is also a non-convex problem.  

ΘmaxΘ0 Θ1 Θ2 Θ3
Θ

L(X,Θ)

L*(X,Θ;Q1)
L*(X,Θ;Q2)

L*(X,Θ;Q3)

L*(X,Θ;Qn)

 
Fig. 2.  Schematic diagram of the EM algorithm in topology identification. 

The convergence analysis for the EM algorithm can be 
referred to [32]. A common issue associated with the EM 
algorithm is the local optimum problem [33]. In other words, if 
the logarithmic likelihood function has multiple peaks, the EM 
process is easy to fall into a local optimal solution. In topology 
identification studies, it seems unlikely that two topologies 
have the same logarithmic likelihood values for certain records, 
which means multiple peaks are almost impossible in the 
topology identification problem (this statement will also be 
verified in the case study section). Then, it is assumed that 
𝐋𝐋(𝑿𝑿;𝜣𝜣) will not get the same value between all the possible 
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topology parameters 𝜣𝜣  in this paper. Regarding 𝜣𝜣  as the 
variable, the logarithmic likelihood function can be sorted in an 
ascending order, and the realization of the EM process can be 
depicted in Fig. 2.  

As shown in Fig. 2, the EM algorithm starts from a randomly 
given parameter vector 𝜣𝜣𝟎𝟎, then 𝑄𝑄1 can be determined using 
expression (7). Based on 𝑄𝑄1 , we can get function 
𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑄𝑄1) , and 𝜣𝜣𝟏𝟏  can be solved by optimizing 
𝐋𝐋∗(𝑿𝑿,𝜣𝜣;𝑄𝑄1). This process is repeated until 𝜣𝜣𝒎𝒎𝒎𝒎𝒎𝒎 is found. 
2) The split-EM model 

The EM-based topology identification model introduced 
above is suitable for the case with known number of topology 
categories. As mentioned in section I, the number of topology 
categories may not be available in practice when a group of 
historical data is given. To deal with this problem, we propose 
a modified EM algorithm named split-EM in this paper. The 
procedure of the proposed split-EM method is shown in Fig. 3. 

 
Fig. 3.  The realization procedure of the split-EM method.      

In the procedure, 𝑘𝑘 is the round number in the split-EM 
process, and 𝐺𝐺𝑘𝑘 is the number of the topology categories in 
the k-th round. The whole procedure will start from 
𝑘𝑘 = 1,𝐺𝐺𝑘𝑘 = 2. The aforementioned EM process is performed 
in the beginning of each round, and the estimated parameters 
{(𝑇𝑇𝑚𝑚,𝛼𝛼𝑚𝑚)},𝑚𝑚 ∈ [1, … ,𝐺𝐺𝑘𝑘]  are obtained. Then we judge 
whether two categories hold the same topology parameters, and 
if there exist any two categories i and j satisfying 𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖, 𝛼𝛼𝑖𝑖 
is set to be 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖, and 𝛼𝛼𝑖𝑖 is set to be 0. If no two categories 
hold the same topology parameters, we proceed to decide if 
there exists any category x with 𝛼𝛼𝑥𝑥 = 0 . If there exists a 
category with 𝛼𝛼𝑥𝑥 = 0, the split-EM process is ended, and the 
final parameter results are {(𝑇𝑇𝑚𝑚,𝛼𝛼𝑚𝑚)},𝑚𝑚 ∈ [1, … ,𝐺𝐺𝑘𝑘]  with 
the x-th category’s parameters removed. If there doesn’t exist 

any category x with 𝛼𝛼𝑥𝑥 = 0 , the process goes to the next 
round. A specified ks-th category is chosen to split in the next 
round based on a judgement index as expressed in expression 
(10), when the ks-th category holds the smallest Jindex among all 
the topology categories in the current round. The topologies’ 
parameters except the ks-th category are retained in the new 
round, which means {𝑇𝑇𝑚𝑚}\𝑇𝑇𝑘𝑘𝑘𝑘,𝑚𝑚 ∈ [1, … ,𝐺𝐺𝑘𝑘] is fixed in the 
new round of the EM process, while {𝛼𝛼𝑚𝑚},𝑚𝑚 ∈ [1, … ,𝐺𝐺𝑘𝑘+1] 
still need to be estimated. The split-EM is continued until the 
termination condition is satisfied. The judgement index of the 
j-th group is expressed as follows to reflect the credibility of 
𝑇𝑇𝑖𝑖. 

𝑱𝑱𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢_𝒋𝒋 =
∑ 𝑄𝑄𝑥𝑥𝑖𝑖

𝑇𝑇𝑗𝑗log(p(𝑥𝑥𝑖𝑖|𝑇𝑇𝑗𝑗;𝜣𝜣))𝑵𝑵
𝒊𝒊=𝟏𝟏

∑ 𝑄𝑄𝑥𝑥𝑖𝑖
𝑇𝑇𝑗𝑗𝑵𝑵

𝒊𝒊=𝟏𝟏

           (10) 

Remark: Comparison between the split-EM and EM 
algorithms 

The computational complexity of the EM algorithm is O(NM) 
for every iteration [34], where N is the number of the records 
and M is the number of the topology categories. For the split-
EM process, 2 topology categories need to be identified in each 
round as other topology categories are determined according to 
the results of the previous round. Then the computational 
complexity for one iteration of all the rounds can be expressed 
as O(2NM) (the number of rounds is equal to the total number 
of topology categories M). In the traditional EM algorithm, if 
we try from 2 topology categories to (M+1) topology 
categories, the computational complexity for one iteration of 
all the rounds can be expressed as O(2N+3N+…+(M+1)N)= 
O(N𝑀𝑀(𝑀𝑀 + 3)/2), which is greater than or equal to O(2NM) 
in the split-EM method when M ≥ 2. The gap between the 
split-EM and traditional EM will be more obvious when M is 
larger.  
B. Probability Density Calculation   

This section mainly focuses on how to determine the 
probability of a data record belonging to a specified topology 
category, which is an important element in the split-EM 
process.  
1) Three-phase balanced system 

For the three-phase balanced power system, we usually use 
one single phase to represent the overall system. Then the AC 
power flow equations with the line states are expressed as 
follows [1]:  

𝑝𝑝𝑖𝑖 = � 𝑔𝑔𝑖𝑖�𝑙𝑙𝑖𝑖𝑗𝑗� �𝑣𝑣𝑖𝑖2 − 𝑣𝑣𝑢𝑢𝑗𝑗1𝑣𝑣𝑢𝑢𝑗𝑗2cos �𝑙𝑙𝑖𝑖𝑗𝑗 �𝜃𝜃𝑢𝑢𝑗𝑗1 − 𝜃𝜃𝑢𝑢𝑗𝑗2���
𝑚𝑚𝑒𝑒 

𝑖𝑖=1
 

  −𝑏𝑏𝑖𝑖�𝑙𝑙𝑖𝑖𝑗𝑗�𝑣𝑣𝑢𝑢𝑗𝑗1𝑣𝑣𝑢𝑢𝑗𝑗2sin �𝑙𝑙𝑖𝑖𝑗𝑗 �𝜃𝜃𝑢𝑢𝑗𝑗1 − 𝜃𝜃𝑢𝑢𝑗𝑗2��           (11) 

𝑞𝑞𝑖𝑖 = � 𝑏𝑏𝑖𝑖�𝑙𝑙𝑖𝑖𝑗𝑗� �𝑣𝑣𝑢𝑢𝑗𝑗1𝑣𝑣𝑢𝑢𝑗𝑗2cos �𝑙𝑙𝑖𝑖𝑗𝑗 �𝜃𝜃𝑢𝑢𝑗𝑗1 − 𝜃𝜃𝑢𝑢𝑗𝑗2�� − 𝑣𝑣𝑖𝑖2�
𝑚𝑚𝑒𝑒 

𝑖𝑖=1
 

 −𝑔𝑔𝑖𝑖�𝑙𝑙𝑖𝑖𝑗𝑗�𝑣𝑣𝑢𝑢𝑗𝑗1𝑣𝑣𝑢𝑢𝑗𝑗2sin(𝑙𝑙𝑖𝑖𝑗𝑗(𝜃𝜃𝑢𝑢𝑗𝑗1 − 𝜃𝜃𝑢𝑢𝑗𝑗2))          (12) 
where 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 are the active and reactive power injections 
at the i-th node, 𝑔𝑔𝑖𝑖  and 𝑏𝑏𝑖𝑖  are the conductance and 
susceptance on the j-th line, 𝑣𝑣𝑖𝑖  and 𝜃𝜃𝑖𝑖  are the voltage 
amplitude and phase angle at the i-th node, 𝑚𝑚𝑒𝑒  is the total 
number of lines. 𝑙𝑙𝑖𝑖𝑗𝑗 is the element in the incidence matrix L of 
PDN, 𝑙𝑙𝑖𝑖𝑗𝑗 ∈ {1,−1,0}  represents the j-th line leaves from, 
enters, or separates from the i-th node, respectively. 
𝑢𝑢𝑖𝑖1,𝑢𝑢𝑖𝑖2 are the elements in the incidence matrix u of PDN, 
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where 𝑢𝑢𝑖𝑖1 and 𝑢𝑢𝑖𝑖2 represent “from” and “to” node numbers 
of the j-th line. The power flow equations for all the nodes can 
also be expressed as the following: 

[𝒑𝒑,𝒒𝒒] = 𝒉𝒉(𝒗𝒗,𝜽𝜽)                (13) 
where the power flow function 𝒉𝒉 corresponds to a specified 
topology.  

In expression (2), p�𝑥𝑥𝑖𝑖�𝑇𝑇𝑖𝑖;𝜣𝜣�  is a multi-dimensional 
density model corresponding to the j-th topology category. 𝑇𝑇𝑖𝑖  
represents the topology parameters in the j-th category (the line 
parameters such as length and impedance are known, only the 
connection states will be considered here). We use p�𝑥𝑥𝑖𝑖�𝑇𝑇𝑖𝑖� to 
replace p�𝑥𝑥𝑖𝑖�𝑇𝑇𝑖𝑖;𝜣𝜣�  for simplicity in the following section. 
p�𝑥𝑥𝑖𝑖|𝑇𝑇𝑖𝑖�  is the same as p�[𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖]�𝑇𝑇𝑖𝑖� , and can also be 
expressed as p�[𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖′,𝑦𝑦𝑖𝑖′]�𝑇𝑇𝑖𝑖�, where [𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖] denotes one 
measurement record, and [𝑠𝑠𝑖𝑖′,𝑦𝑦𝑖𝑖′] are the corresponding real 
values. p�[𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖′,𝑦𝑦𝑖𝑖′]�𝑇𝑇𝑖𝑖� can be calculated based on the 
specified error distributions’ probability density function [1, 
13], when errors are obtained using [𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖]  and [𝑠𝑠𝑖𝑖′,𝑦𝑦𝑖𝑖′] . 
However, it is not easy to obtain [𝑠𝑠𝑖𝑖′,𝑦𝑦𝑖𝑖′] accurately in practice. 
Here, a probability density calculation method only relying on 
nodal measurements will be used. It is supposed that the 
measurement errors 𝜀𝜀𝑠𝑠 and 𝜀𝜀𝑦𝑦 follow the Gauss distributions 
as: 𝜀𝜀𝑠𝑠~Ν(0,𝜎𝜎𝑠𝑠2), 𝜀𝜀𝑦𝑦~Ν�0,𝜎𝜎𝑦𝑦2�. Then the real values and 𝑇𝑇𝑖𝑖 
satisfy the following expressions: 

𝑦𝑦𝑖𝑖′ = ℎ𝑖𝑖(𝑠𝑠𝑖𝑖′)               (14) 
𝑠𝑠𝑖𝑖′ = 𝑠𝑠𝑖𝑖 − 𝜀𝜀𝑠𝑠, 𝑦𝑦𝑖𝑖′ = 𝑦𝑦𝑖𝑖 − 𝜀𝜀𝑦𝑦           (15) 

Using the first order Taylor expansion [35], we have: 
𝑦𝑦𝑖𝑖 − 𝜀𝜀𝑦𝑦 = ℎ𝑖𝑖(𝑠𝑠𝑖𝑖 − 𝜀𝜀𝑠𝑠) ≈ ℎ𝑖𝑖(𝑠𝑠𝑖𝑖) − 𝜀𝜀𝑠𝑠ℎ𝑖𝑖′(𝑠𝑠𝑖𝑖)     (16) 
𝐸𝐸𝑖𝑖 = 𝑦𝑦𝑖𝑖 − ℎ𝑖𝑖(𝑠𝑠𝑖𝑖) ≈ −𝜀𝜀𝑠𝑠ℎ𝑖𝑖′(𝑠𝑠𝑖𝑖) + 𝜀𝜀𝑦𝑦        (17) 

According to the above expressions, 𝑦𝑦𝑖𝑖 − ℎ𝑖𝑖(𝑠𝑠𝑖𝑖)~𝛮𝛮�0,𝛴𝛴𝑖𝑖�, 
where 𝛴𝛴𝑖𝑖 = �ℎ𝑖𝑖′(𝑆𝑆)𝜎𝜎𝑠𝑠�

2 + 𝜎𝜎𝑦𝑦2 . Then p�[𝑠𝑠𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑠𝑠𝑖𝑖′,𝑦𝑦𝑖𝑖′]�𝑇𝑇𝑖𝑖�  can 
be replaced by p�𝑦𝑦𝑖𝑖 − ℎ𝑖𝑖(𝑠𝑠𝑖𝑖)�𝑇𝑇𝑖𝑖�, and the latter only contains 
measurement values and can be represented as: 
     p�𝑥𝑥𝑖𝑖�𝑇𝑇𝑖𝑖� = p�𝐸𝐸𝑖𝑖�𝑇𝑇𝑖𝑖� = p�𝑦𝑦𝑖𝑖 − ℎ𝑖𝑖(𝑠𝑠𝑖𝑖)�𝑇𝑇𝑖𝑖� 

         = 1

�(2𝜋𝜋)𝑛𝑛∙�Σ𝑗𝑗�
exp �− 1

2
𝐸𝐸𝑖𝑖T�𝛴𝛴𝑖𝑖�

−1𝐸𝐸𝑖𝑖�        (18) 

where 𝑛𝑛 = 2 × 𝑛𝑛𝑒𝑒 (𝑛𝑛𝑒𝑒 is the total number of nodes), and the 
standard deviation σ  in the covariance matrix Σ𝑖𝑖  can be 
determined based on the relative error of the measurement 
(error%). For the measured value with a given mean 𝜇𝜇, 𝜇𝜇 ±
3 ∙ 𝜎𝜎 can cover more than 99.7% area of the Gaussian curve. 
For any measured value 𝛷𝛷 , 𝜎𝜎  can be calculated as follows 
[13]: 

𝜎𝜎 = 𝛷𝛷×error%
3×100

                (19) 

2) The Model for Three-phase Unbalanced Systems 
For the three-phase unbalanced power systems, the AC 

power flow equations in [36] are reformulated with the line 
states as follows:  
𝑝𝑝𝑖𝑖𝛼𝛼 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖

𝛼𝛼𝛼𝛼 �𝑣𝑣𝑖𝑖𝛼𝛼𝑣𝑣𝑖𝑖
𝛽𝛽cos�𝜃𝜃𝑖𝑖𝛼𝛼 − 𝜃𝜃𝑖𝑖

𝛽𝛽� −𝛽𝛽=a,b,c
𝑛𝑛𝑒𝑒 
𝑖𝑖=1

           𝑣𝑣𝑖𝑖𝛼𝛼𝑣𝑣𝑖𝑖
𝛽𝛽cos�𝜃𝜃𝑖𝑖𝛼𝛼 − 𝜃𝜃𝑖𝑖

𝛽𝛽��−𝐵𝐵𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼𝑣𝑣𝑖𝑖𝛼𝛼𝑣𝑣𝑖𝑖

𝛽𝛽sin�𝜃𝜃𝑖𝑖𝛼𝛼 − 𝜃𝜃𝑖𝑖
𝛽𝛽� (20) 

𝑞𝑞𝑖𝑖𝛼𝛼 = ∑ ∑ 𝐵𝐵𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼 �𝑣𝑣𝑖𝑖𝛼𝛼𝑣𝑣𝑖𝑖

𝛽𝛽cos�𝜃𝜃𝑖𝑖𝛼𝛼 − 𝜃𝜃𝑖𝑖
𝛽𝛽� −𝛽𝛽=a,b,c

𝑛𝑛𝑒𝑒 
𝑖𝑖=1

           𝑣𝑣𝑖𝑖𝛼𝛼𝑣𝑣𝑖𝑖
𝛽𝛽cos�𝜃𝜃𝑖𝑖𝛼𝛼 − 𝜃𝜃𝑖𝑖

𝛽𝛽��−𝐵𝐵𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼𝑣𝑣𝑖𝑖𝛼𝛼𝑣𝑣𝑖𝑖

𝛽𝛽sin�𝜃𝜃𝑖𝑖𝛼𝛼 − 𝜃𝜃𝑖𝑖
𝛽𝛽� (21) 

where 𝐵𝐵𝑖𝑖𝑖𝑖 denotes the state of the line from the i-th node to 
the j-th node, and  

�
𝐵𝐵𝑖𝑖𝑖𝑖 = 1,   connected
𝐵𝐵𝑖𝑖𝑖𝑖 = 0,   disconnected;         (22) 

𝛼𝛼 and 𝛽𝛽 are phase indexes; 𝑝𝑝𝑖𝑖𝛼𝛼  and 𝑞𝑞𝑖𝑖𝛼𝛼  are the active and 
reactive power injections of phase 𝛼𝛼 at the i-th node; 𝑣𝑣𝑖𝑖𝛼𝛼 and 
𝜃𝜃𝑖𝑖𝛼𝛼 are the voltage amplitude and phase angle of phase 𝛼𝛼 at 
the i-th node; 𝑔𝑔𝑖𝑖𝑖𝑖

𝛼𝛼𝛼𝛼  and 𝑏𝑏𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼  are the conductance and 

susceptance between phase 𝛼𝛼 and 𝛽𝛽 on the line from the i-th 
node to the j-th node. Similar to the model for the single-phase 
case, the power flow equations for all the nodes in the network 
can also be expressed as follows: 

[𝒑𝒑𝑢𝑢,𝒒𝒒𝑢𝑢] = 𝒉𝒉u(𝒗𝒗𝒖𝒖,𝜽𝜽𝒖𝒖)            (23) 
where 𝒑𝒑𝑢𝑢 = {𝑝𝑝𝑖𝑖𝛼𝛼}, 𝛼𝛼 = a, b, c, 𝑖𝑖 ∈ [1, … ,𝑛𝑛𝑒𝑒]; the definitions 
for 𝒒𝒒𝑢𝑢, 𝒗𝒗𝒖𝒖, and 𝜽𝜽𝒖𝒖 are similar to that of 𝒑𝒑𝑢𝑢; the power flow 
function 𝒉𝒉u corresponds to a specified topology in a three-
phase unbalanced system. p𝑢𝑢�𝑥𝑥𝑖𝑖|𝑇𝑇𝑖𝑖;𝜣𝜣� is used to denote the 
probability of 𝑥𝑥𝑖𝑖  given 𝑇𝑇𝑖𝑖  within parameter 𝜣𝜣 in a three-
phase unbalanced system, and the calculation process can be 
realized as that for p�𝑥𝑥𝑖𝑖�𝑇𝑇𝑖𝑖;𝜣𝜣�  in balanced systems, i.e., 
expressions (14)~(18).  
C. Real-Time Topology Identification  

Based on the split-EM identification model, a large amount 
of historical data can be labeled. Then the classifiers for the 
real-time topology identification can be generated based on the 
labeled historical data using a series of machine learning 
methods. For each real-time measurement, its topology 
category will be labeled using the trained classifiers. The 
longer the collection time of the historical data is, the better the 
performance of trained classifiers will be, since more complete 
topology scenarios can be used in the training process.  
1) Credibility analysis of the labels 

The identification result of the classifier should be further 
analyzed as the classifier is not applicable to the records with 
topologies that did not exist in the historical data samples and 
a classifier may also have error by itself. The credibility 
analysis can be performed based on the logarithm of the 
probability (expression (18)) to determine if the label is 
credible, because the logarithm probability of a record 
belonging to the correct topology category is generally much 
larger than that belonging to a wrong one (more details will be 
presented in the case study section). Based on the result of the 
credibility analysis, the unreliable labeled data will be 
reidentified using the Bayesian recursion model.  
2) The Bayesian recursion based reidentification for unreliable 
labels 

The Bayesian recursion model can be utilized to reidentify 
the real-time measurement with unreliable label [13]. All the 
possible topology categories should be given in advance in the 
Bayesian recursion model. For a specified record, the iteration 
process can be expressed as follows: 

p�𝑇𝑇𝑖𝑖�𝜺𝜺�
𝑘𝑘 =

p�𝐸𝐸𝑖𝑖�𝑇𝑇𝑖𝑖�p�𝑇𝑇𝑖𝑖�𝜺𝜺�
𝑘𝑘−1

∑ p�𝐸𝐸𝑚𝑚�𝑇𝑇𝑚𝑚�p�𝑇𝑇𝑚𝑚�𝜺𝜺�𝑘𝑘−1𝑀𝑀
𝑚𝑚=1

       (24) 

where k is the iteration number, 𝜺𝜺 = [𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑀𝑀]  is the 
error vector and can be calculated using expression (17), and 
the original probability p�𝑇𝑇𝑖𝑖�𝜺𝜺�

1, 𝑗𝑗 ∈ [1,2, … ,𝑀𝑀]  are all 
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preset to 1/M. After enough iterations are performed, the 
estimation will converge to one topology category, then this 
category will be chosen as the final topology category.   

The labels of the real-time measurements passed the 
credibility analysis and error correction will be added to the 
historical labeled data, which will be utilized to update the 
classifiers training at a specific frequency to make the 
classifiers more accurate.  

IV. EXTENSION APPLICATION IN LARGE-SCALE NETWORK 
A. The Overall Application Process  

As mentioned in section III-A, the calculation complexity of 
the split-EM method is closely related to the number of 
topology categories involved in the historical data. Then, for a 
large-scale network, an extension application solution can be 
employed through partitioning the network into several 
subsystems to reduce the calculation burden. The flowchart of 
the overall process is shown in Fig. 4.   

 
Fig. 4.  The overall process of the application in large-scale system. 

Step1: The whole PDN is divided into Ns subsystems 
through the optimization model for subsystem formation 
(presented in subsection IV-B). The subsystem formulation can 
be decoupled from each other by exchanging the nodal voltage 
amplitudes and phase angles at the nodes of the connecting 
lines between subsystems, as the power flow equations for each 
subsystem can be expressed in the following:  

[𝒑𝒑𝟏𝟏,𝒒𝒒𝟏𝟏] = 𝒉𝒉𝟏𝟏�𝒗𝒗𝟏𝟏,𝜽𝜽𝟏𝟏,𝒗𝒗𝐜𝐜_𝟏𝟏,𝜽𝜽𝐜𝐜_𝟏𝟏�
⋮

[𝒑𝒑𝒊𝒊,𝒒𝒒𝒊𝒊] = 𝒉𝒉𝒊𝒊�𝒗𝒗𝒊𝒊,𝜽𝜽𝒊𝒊,𝒗𝒗𝐜𝐜_𝒊𝒊,𝜽𝜽𝐜𝐜_𝒊𝒊�
⋮

�𝒑𝒑𝐍𝐍𝒔𝒔 ,𝒒𝒒𝐍𝐍𝒔𝒔� = 𝒉𝒉𝐍𝐍𝒔𝒔�𝒗𝒗𝐍𝐍𝒔𝒔 ,𝜽𝜽𝐍𝐍𝒔𝒔 ,𝒗𝒗𝐜𝐜_𝐍𝐍𝒔𝒔 ,𝜽𝜽𝐜𝐜_𝐍𝐍𝒔𝒔�

     (25) 

where 𝒉𝒉𝒊𝒊 is the power flow function for the i-th subsystem; 
𝒑𝒑𝒊𝒊,𝒒𝒒𝒊𝒊,𝒗𝒗𝒊𝒊,𝜽𝜽𝒊𝒊 are the active power vector, reactive power vector, 
voltage amplitude vector, and voltage phase angle vector at the 
nodes within the i-th subsystem, respectively; 𝒗𝒗𝐜𝐜_𝒊𝒊,𝜽𝜽𝐜𝐜_𝒊𝒊 are the 
voltage amplitude vector, and voltage phase angle vector at the 
nodes on the other side of the connecting lines between the i-th 
subsystem and other subsystems.  

Step2: The topology identification process, including data 
processing, performing split-EM algorithm for historical data, 
training the classifers, and predicting the real-time topologies, 
is performed in each subsystem. The identification process is 
similar to that in Fig. 1. 

Step3: The historical and realtime topology identification 
results in each subsystem are transmitted to the distribution 
system operator (DSO) directly and combined together based 
on the time stamps. For the real-time identification, only the 
subsystem undergoing the topology change needs to update its 
real-time toplogy information, making the overall performance 

of the framework more efficient.  
The advantage of this application solution in terms of the 

calculation complexity will be analyzed here. For a data sample 
consisting of N records, assuming that the number of the 
topology categories within the i-th subsystem is 𝑀𝑀𝑖𝑖, then the 
largest number of the topology categories of the whole 
distribution network is ∏ 𝑀𝑀𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖=1 . If the topology identification 

is performed in the whole distribution network, the calculation 
complexity in each iteration can be up to O(2N ∏ 𝑀𝑀𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖=1 ). While 

the total calculation complexity in each iteration can be 
expressed as O(2N∑ 𝑀𝑀𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖=1 ) if the topology identification is 

performed in each subsystem. Based on the topology 
identification results of the subsystems and the acquisition time 
of the measurement, the topology information for the whole 
distribution network can be obtained by combining the results 
of the subsystems together. In most cases, O(2N∑ 𝑀𝑀𝑖𝑖

𝑁𝑁𝑠𝑠
𝑖𝑖=1 ) is 

much less than O(2N ∏ 𝑀𝑀𝑖𝑖
𝑁𝑁𝑠𝑠
𝑖𝑖=1 ), which means that the 

partitioning scheme adopted here can drastically reduce the 
calculation burden.   
B. The Optimization of Subsystem Formation 

For a simple system, we may evenly divide it into several 
subsystems artificially considering the estimated identification 
time in each subsystem for step1 in Fig. 4. However, it may not 
be easy to divide a complex system with a mass of nodes and 
loops. In this case, the formation of the subsystems are 
important for the overall application process. Too many 
subsystems will lead to the increase of information interaction 
between subsystems, and over large subsystems caused by 
uneven partition or too few subsystems will limit the reduction 
in the identification time for the whole area. Therefore, an 
optimization of the subsystem formation is nessesary to further 
improve the performance of the whole application process in 
Fig. 4. The optimization for the subsystem formation is 
modeled as follows: 

min  � 𝐶𝐶𝑖𝑖
𝑚𝑚𝑒𝑒 

𝑖𝑖=1
  

s. t.        𝑁𝑁𝑖𝑖+𝑁𝑁c_𝑖𝑖 ≤ 𝑁𝑁limit 
𝑁𝑁s_𝑖𝑖 ≤ 𝑁𝑁s_limit             (26) 

where the objective in the optimization is to minimize the total 
number of connecting lines (also reflecting minimizing the 
number of subsystems), and 𝐶𝐶𝑖𝑖  is the connecting line indicator. 
𝐶𝐶𝑖𝑖 = 1 means the i-the line is a connecting line, 𝐶𝐶𝑖𝑖 = 0 means 
not. The interconnected subsystems can be formed supposing 
that all connecting lines are removed, and two constraints are 
considered in each subsystem: the number of nodes in the j-th 
subsystem (𝑁𝑁𝑖𝑖+𝑁𝑁c_𝑖𝑖 ) is less than 𝑁𝑁limit , and the number of 
unknown states in the j-th subsystem (𝑁𝑁s_𝑖𝑖) is less than 𝑁𝑁s_limit. 
To be noticed, the number of nodes on the other sides of the 
connecting lines (𝑁𝑁c_𝑖𝑖) for the j-th subsystem is also considered 
for the calculation of the j-th subsystem, and the lines with 
unknown states are not used as the connecting lines here. 
𝑁𝑁limit  and 𝑁𝑁s_limit  can be determined according to the 
empirical topology identification time with different system 
scales and unknown state numbers (more details can be found 
in Section V). The optimization model can be solved based on 
graph related algorithms and intelligent optimization 
algorithms.  
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TABLE I  THE RESULTS OF SPLIT-EM PROCESS FOR IEEE 33-BUS SYSTEM 

Round 
Scenario 1: with all nodal voltage phase angles measured Scenario 2: With all nodal voltage phase angles unmeasured and set as 0 

T* 𝜶𝜶 Jindex Logarithmic likelihood T* 𝜶𝜶 Jindex Logarithmic likelihood 

k=1 [1110110000; 
1111100000] 

[0.325; 
0.675] 

[-529.8;  
 -215.9] 974.8 [1110110000; 

1111100000] 
[0.325; 
0.675] 

[-315.7;  
 -155.1] -2.14*104 

k=2 
[1110110000; 
1111100000; 
0111100100] 

[0.30; 
0.65; 
0.05] 

[40.7;  
 13.9;  
 39.5] 

2242.2 
[1110110000; 
1111100000; 
0111100100] 

[0.30; 
0.65; 
0.05] 

[-264.1;  
 -171.2;  
 -41.7] 

-1.93*104 

k=3 

[1110110000; 
1111100000; 
0111100100; 
1011101000]  

[0.30; 
0.50; 
0.05; 
0.15] 

[40.7;  
 35.2;  
 39.5;  
 40.0] 

3665.0 

[1110110000; 
1111100000; 
0111100100; 
1011101000]  

[0.30; 
0.50; 
0.05; 
0.15] 

[-264.1;  
 -152.2;  
 -41.7;  

 -146.7] 

-1.81*104 

k=4 

[1110110000; 
1111100000; 
0111100100; 
1011101000; 
1110111011]   

[0.30; 
0.50; 
0.05; 
0.15; 

0] 

—— 3665.0 

[1110110000; 
1111100000; 
0111100100; 
1011101000; 
1111100000]   

[0.30; 
0.25; 
0.05; 
0.15; 
0.25] 

—— -1.81*104 

V. CASE STUDIES 
A. Historical Topology Identification in IEEE 33-bus System  

In the actual operation of PDNs, the basic topology 
information can be obtained through the GIS (Geographic 
Information System), and the states of unmonitored switches 
need to be identified. The verification of the topology 
identification mainly focuses on the identification of the states 
of unmonitored switches in this section. The proposed topology 
identification model is applied in the IEEE 33-bus system as 
shown in Fig. 5. In this paper, it is assumed the following lines’ 
connection states are unknown (i.e., the lines with unmonitored 
switches): line 11-12, line 14-15, line 15-16, line 2-19, line 28-
29, line 8-21, line 9-15, line 12-22, line 18-33, line 25-29 (the 
numbers are the end-nodes’ serial numbers of the lines), and 
the lines with unknown connectivity are shown as dotted lines 
and numbered from 1 to 10 as shown in Fig. 5. There are 
210=1024 possible topologies in this test system.  

①

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25 26 27 28 29 30 32

20 21 2219

31 33

② ③

⑤

④
⑦

⑥

⑧

⑨

⑩

 
Fig. 5.  The structure of IEEE 33-bus test system. 

The voltage of bus 1 in the PDN is 12.66 kV. Except for the 
first bus, the nodal active/reactive power injections in the PDN 
are randomly generated within predefined ranges, and the 
average values for the active and reactive power are 120 kW 
and 80 kVar respectively. The nodal voltage amplitudes and 
phase angles (except for the first bus) and the first bus’s power 
injections in the PDN are generated using the Matpower 
toolbox in MATLAB [37, 38]. Measurement errors are 
randomly generated and added to the above generated data. 
According to the American National Standard Institute (ANSI) 
C12.20 Standard [39], the standard deviations of errors (in 
terms of p, q, v, θ) are all set to be 0.1% of the measurements 
(we use 0.1% in the text below for simplicity), and the error of 
each measurement is generated based on its error standard 
deviation and limited by three times of the standard deviation 

(i.e., 𝜀𝜀 ≤ ±3 ∙ 𝜎𝜎). In this case, error% is 0.3%, which satisfies 
the accuracy standard in [39]. The error settings are also 
applicable to other parts in the case study except for the 
sensitivity analysis of the measurement errors. The MATLAB 
software package is employed to solve the split-EM model and 
generate classifiers based on the labeled historical data.  
1) The application in different topology types    
• The application in radial networks 
Here the topology identification is performed for a data 

sample including 100 records. There are 4 topology categories 
(all of them are radial networks) in this data sample, i.e., T1, 
T2, T3, T4, corresponding to records 1~50, 51~80, 81~95, and 
96~100, respectively. The ralated information of the sample are 
listed in Table II. 
TABLE II  TESTING DATA FOR THE CASE CONSISTING OF RADIAL NETWORKS  

Topology 
category 

The sequential states of 
the switches* 

Record 
numbers 

Record 
proportion 

T1 [1111100000] 1~50 50% 
T2 [1110110000] 51~80 30% 
T3 [1011101000] 81~95 15% 
T4 [0111100100] 96~100 5% 

* For the state of the switch, “1” means the switch is closed, while “0” 
indicates it is open.  

The OPTI toolbox and NOMAD solver [40, 41] are used to 
solve the non-convex optimization in the split-EM solving 
process. The initial states of switches are all set to 1, and this 
setting is also used in other cases in the case study section. The 
results of the split-EM process for the above mentioned case 
are shown in Table I. The scenarios with and without nodal 
voltage phase angles are both verified (denoted as Scenario 1 
and Scenario 2, respectively). As shown in Table I, the 
topology identification in both scenarios experiences 4 rounds 
in the split-EM processes, and the split-EM processes can 
efficiently identify all the topologies in the historical records, 
even for category T4 with only 5 records. In each round, the 
topology category with smallest Jindex is chosen to be split in 
the next round, while the other topology categories remain the 
same. As there is a zero element in 𝜶𝜶 within Scenario 1 and 
two repeated topology categories in T* within Scenario 2 when 
k=4, the split-EM processes stop according to the realization 
procedure in Fig. 3. The logarithmic likelihood values increase 
with the split-EM processes in both scenarios, as more correct 
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topologies are recognized. Although the logarithmic likelihood 
values in Scenario 2 are much smaller than those in Scenario 1, 
the topology categories and which category each record 
belongs to can also be identified correctly. 
• The application in the network with meshes 
In this section, a data sample including the meshed topology 

is verified. Each record in the data sample is generated using 
the same process as described previously, but different 
topologies are used when calculating power flows using the 
Matpower toolbox in MATLAB. The data sample generation 
in the network with islands in the following section is also 
similar. There are 2 topology categories in this data sample, i.e., 
T1 (1111100000) and T2 (1111110001, with mesh), 
corresponding to records 1~50 and 51~80 respectively, and the 
identification results are listed in Table III. The split-EM 
process is similar with that in Table I), and the identification 
results are all correct in this case.  

TABLE III  THE RESULTS IN SPLIT-EM PROCESS FOR THE CASE WITH MESH 

Round T 𝜶𝜶 Jindex Logarithmic likelihood 

k=1 [1111100000; 
1111110001] 

[0.625;  
0.375] 

[34.4; 
 29.1] 2538.3 

k=2 
[1111100000; 
0100000010; 
1111110001] 

[0.625; 
 0;  

0.375] 
—— 2538.3 

• The application in the network with islands 
In this section, a data sample including topology with island 

is verified. T1 (1111100000) and T2 (0111000010, with island) 
correspond to records 1~50 and 51~80 respectively, and the 
identification results are listed in Table IV. The topology 
identification results are also all correct in this case.  
TABLE IV  THE RESULTS IN SPLIT-EM PROCESS FOR THE CASE WITH ISLAND 

Round T 𝜶𝜶 Jindex Logarithmic likelihood 

k=1 [0111000010; 
1111100000] 

[0.375; 
0.625] 

[33.4; 
 32.4] 2566.8 

k=2 
[0111000010; 
0111111100; 
1111100000] 

[0.375; 
0; 

0.625] 
—— 2566.8 

2) Sensitivity analysis of line parameters and measurement 
errors 

In this section, we test 400 records corresponding to 4 
topology categories ([1111100000], [1011101000], [01111 
00100], [1111000001], and 100 records for each topology) to 
analyze the sensitivities of the line parameters and 
measurement errors by adjusting the amplitudes of the 
parameter variations and the standard deviations of the errors. 
As the accuracy of the split-EM method mainly depends on 
whether the logarithmic probability of a record within the 
correct topology is the largest, 𝑆𝑆index  in expression (27) is 
designed and utilized to reflect the sensitivity of the line 
parameters and measurement errors.  

𝑆𝑆index = 1
𝐾𝐾
∑ �1

𝑁𝑁
∑ 𝑆𝑆𝑖𝑖𝑘𝑘𝑁𝑁
𝑖𝑖=1 �𝐾𝐾

𝑘𝑘=1            (27) 

𝑆𝑆𝑖𝑖𝑘𝑘 = �
1, p(𝑥𝑥𝑖𝑖𝑘𝑘(𝑇𝑇c)|𝑇𝑇c) = max

𝑖𝑖∈[1,…,𝑀𝑀]
p(𝑥𝑥𝑖𝑖𝑘𝑘(𝑇𝑇c)|𝑇𝑇𝑖𝑖)

0, p(𝑥𝑥𝑖𝑖𝑘𝑘(𝑇𝑇c)|𝑇𝑇c) ≠ max
𝑖𝑖∈[1,…,𝑀𝑀]

p(𝑥𝑥𝑖𝑖𝑘𝑘(𝑇𝑇c)|𝑇𝑇𝑖𝑖)    (28) 

where N is the number of the records, K is the number of 
parameter error sets or measurement error sets; 𝑥𝑥𝑖𝑖𝑘𝑘(𝑇𝑇c) is the 
record corresponding to topology 𝑇𝑇c, while 𝑇𝑇𝑖𝑖 corresponds to 
the j-th topology category among all the topology categories.  

   In this study, 20 cases of error standard deviations and 23 
cases of parameter variation ranges are considered, and 100 
parameter error sets or measurement error sets are randomly 
generated for each case of the error standard deviation or 
parameter variation range. The sensitivity analyzing results are 
shown in Fig. 6. According to Fig. 6, 𝑆𝑆index is more sensitive 
to the standard deviations of the measurement errors compared 
with the parameter errors of the lines in the PDN. It is also 
found that no two topology categories have the same 
probability for a specified record in the calculation process. It 
means there is only one maximum value of the logarithmic 
probability among all the topology categories. When the 
standard deviation of the measurement errors is within 0.1% 
[39], 𝑆𝑆index corresponding to each standard deviation case is 
nearly equal to 1, indicating the results of the split-EM method 
are authentic with the practical measurement errors.  
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Fig. 6.  Sensitivity analysis results of standard deviation and line parameters. 
B. Real-time Identification in IEEE 33-bus System 
1) The real-time identification based on the classifiers 

It is assumed that 24 topology categories are involved in the 
historical data in this case. 1000 records of each topology 
category (24000 in total) are used to be trained, and 1000 
records are used in the testing process. Among the 1000 testing 
records, the topology of 20 records is not included in the 
historical data (the 20 records belong to one topology, 
[1101100010]). The Classification Learner and Neural Net 
Pattern Recognition toolboxes in MATLAB are adopted here 
to generate the trained classifiers. Among all the classification 
learner models, the Fine Tree, Linear SVM, Quadratic SVM, 
and Neural Network (using the Neural Net Pattern Recognition 
toolbox), etc., perform much better than the others in the 
toolbox, and the training/testing accuracy and prediction time 
of these models for a single record are listed in Table V. 

TABLE V  THE COMPARISON BETWEEN CLASSIFIERS IN  
THE REAL-TIME PREDICTION 

Trained classifier Training 
accuracy 

Testing 
accuracy 

Prediction 
time (sec) 

Fine Tree 99.10% 97.20% 0.03 
Linear SVM 99.99% 97.80% 0.26 

Quadratic SVM 99.99% 97.90% 0.32 
Cubic SVM 99.90% 97.80% 0.35 

Medium Gaussian SVM 98.80% 97.50% 0.31 
Coarse Gaussian SVM 99.50% 97.20% 0.33 

Bagged Trees 98.30% 97.30% 0.10 
Subspace Discriminant 99.80% 97.60% 0.09 

Neural Network 99.96% 98.00% 0.01 

2) Credibility analysis and error corrections 
In this section, taking Quadratic SVM as an example, the 

prediction results will be analyzed and corrected. The 
logarithmic probability of each record with the topology 
category identified by the Quadratic SVM is shown in Fig. 7 
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(a). As the topology category for the records from the 381st to 
the 400th doesn’t exist in the historical data, their logarithmic 
probabilities are much smaller than other records. Thus, we can 
obtain a threshold value of the logarithmic probability based on 
a mass of data considering the correct topology and wrong 
topologies. The threshold value can be used to determine 
whether an unreliable topology is assigned to a data record. 
Here we set the threshold as -50, and the records from the 381st 
to the 400th are regarded as unreliable ones and are reidentified 
using the Bayesian recursion model, which involves all 
possible topology categories (the number is 210=1024). The 
Bayesian method costs 6.09 sec for each record, and the 
topology identification results are all correct for these 20 data 
records, as shown in Fig. 7 (b). After the error correction 
process, the accuracy has been improved from 97.9% to 99.9%, 
which is accurate enough for industrial applications.  
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Fig. 7.  The logarithmic probabilities of the testing records 

3) Sensitivity analysis of the number of topology categories 
The sensitivity of the number of topology categories in the 

training process is analyzed in this section. In Table VI, 100 
records for each topology are used in the training process, and 
1000 records are used in the testing process.  

TABLE VI  COMPARISON BETWEEN DIFFERENT NUMBERS OF TOPOLOGIES  
Number of   

topologies in training 
Training 

time (sec) 
Training  
accuracy 

Testing  
accuracy 

Prediction 
time (sec) 

20 15.8 99.20% 99.40% 0.11 
40 96.8 99.30% 99.00% 0.28 
60 292.5 96.00% 97.70% 0.71 
80 652.4 93.10% 94.40% 1.25 
100 1269.9 93.20% 95.00% 2.02 
120 2275.4 93.60% 94.60% 2.91 

  Note: the results are based on Quadratic SVM. 

As shown in Table VI, with the number of the topology 
categories in training increasing, the training/prediction time 
tends to increase, while the training/testing accuracy decreases. 
Then the historical identification process not only provides 
useful topology information for the DSO to support the optimal 
operation and planning of the distribution network, but also 
reduces the number of the topology categories, which could 
shorten the prediction time and improve the prediction 
accuracy in the real-time topology identification. It is 
reasonably assumed that most topology categories have 
appeared in historical data for the distribution networks that are 
in operation for a long time. The topologies that were never 
occurred can be identified through the credibility analysis and 
error correction process, which is also helpful for the proposed 
models to be deployed in distribution networks which have 
been in operation for a short time. 
C. Application in a Three-phase Unbalanced System 

The proposed topology identification model for three-phase 
unbalanced networks is applied in a pratical distribution system 
as shown in Fig. 8. The states of the switches/lines directly 
connected to the transformer stations are monitored in practice 
and need not to be identifed. The lines with unknown 
connection states are marked using circled numbers in Fig. 8. 
As the topology identification focuses on the medium-voltage 
networks, the measurement points are set at the incoming lines 
of distribution transformers, which can be regarded as 
aggregated load points in the PDN model. The nodal currents, 
voltages and power-factor angles of each phase are measured 
and used in this test case, and active and reactive power 
injections are calculated before the topology identification. It 
can be noticed that the loads are unbalanced between the three 
phases at each node, and the nodal voltage phase angles of each 
phase are not necessary in this actual case.  

②

①

③

④ ⑤

⑥

⑦

 
Fig. 8.  The structure of an actual three-phase unbalanced system.  

1) The historical topology identification 
The topology identification is performed on a data sample 

including 30 records. There are 2 topology categories (both of 
them are radial networks) in this data sample, i.e., T1 
(0000001), T2 (1000000), corresponding to records 1~15 and 
16~30, respectively. The identification results are listed in 
Table VII, and the identification results are all correct.  

TABLE VII  THE RESULTS IN SPLIT-EM PROCESS FOR THE ACTUAL CASE 

Round T 𝜶𝜶 Jindex Logarithmic likelihood 

k=1 [0000001; 
1000000] 

[0.5;  
0.5] 

[-462.3; 
  -475.3] -2.07*104 

k=2 
[0000001; 
1000000; 
0000001] 

[0.5; 
 0.5;  

0] 
—— -2.07*104 

2) The real-time topology identification 
TABLE VIII  THE COMPARISON BETWEEN CLASSIFIERS IN  

THE REAL-TIME PREDICTION FOR THREE-PHASE UNBALANCED SYSTEM 

Trained classifier Training 
accuracy 

Testing 
accuracy 

Prediction 
time (sec) 

Fine Tree 97.50% 97.50% 0.02 
Boosted Tree 97.90% 96.25% 0.03 

Quadratic SVM 99.40% 98.33% 0.04 
Cubic SVM 99.20% 99.17% 0.03 
Fine KNN 96.80% 97.50% 0.02 

Weighted KNN 98.00% 97.50% 0.02 

It is assumed that 6 topology categories are involved in the 
historical data in this case. 200 records of each topology 
category (1200 in total) are used to be trained, and 240 records 
are used in the testing process. The Classification Learner 
toolbox in MATLAB are adopted to generate the trained 
classifiers. Among all the classification learner models, the 
models with better performances are listed in Table VIII, as 
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javascript:;
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well as the training/testing accuracy and prediction time (per 
record) of these models. 
D. Application of the Large-scale Network  

The proposed topology identification method is also tested 
on the modified 135-bus test system [42, 43] as shown in Fig. 
9. It is assumed that the historical identification is conducted in 
the end of the day in this case, and the data are collected every 
15 minutes, which means there are about one hundred data 
records for a day. Considering different settings of number of 
nodes and number of unknown states in the system, Table IX 
shows time consumption of the empirical historical topology 
identification with a data sample involving 100 records and two 
topologies (assuming that the cases with one or two topologies 
are the most likely scenarios within a data sample of a day). It 
can be observed that the historical topology identification time 
is affected by both the number of nodes and the number of 
unknown states in the system. More nodes and more unknown 
states will both increase the identification time.  
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Fig. 9.  The 135-bus test system.  

TABLE IX  TOPOLOGY IDENTIFICATION TIME WITHIN DIFFERENT SYSTEM 
SCALE AND UNKNOWN STATES (SECONDS) 

Number of nodes Number of unknown states 
2 4 6 8 10 … 

30 3  32 144 213 307 

… 
40 5 80 290 463 472 
50 14 150 824 1619 1764 
60 20 179 1255 1956 1847 
70 34 253 1469 2373 2816 
… … 

For the test system in Fig. 9, it is assumed that the historical 
identification is required to be finished within 5 minutes. 
Therefore, 𝑁𝑁limit and 𝑁𝑁s_limit are set as 60 and 4 according 
to Table IX, and the subsystems are highlighted by different 
background colors in Fig. 9. The proposed topology 
identification model can be used directly in each subsystem 
based on the power flow equations in (25). Taking subsystem 
A1 (highlighted in blue color) as an example, nodes 2~50 are 
within subsystem A1, and nodes 1, 60, and 99 are the nodes on 
the other side of the connecting lines of subsystem A1. The 
nodal active/reactive power injections at nodes 2~50, and the 
nodal voltage amplitudes/phase angles at nodes [1~50, 60, 99] 
are measured. In this way, the subsystems are decoupled from 
each other, and the proposed split-EM process and real-time 
prediction can be adopted in each subsystem. The split-EM 
process and real-time prediction are tested for the whole area 
and the subsystems. The results are presented and compared as 

follows. 
1) The historical topology identification 
   The testing data for the 135-bus system are shown in Table 
X. There are 12 lines in the entire system whose connection 
states are unknown, and each subsystem holds 4 of them. It is 
assumed that each subsystem has 2 topology categories and the 
whole area has 5 topology categories within the testing data, 
which includes 100 records. The states of the switches of each 
topology category, and the topology category of each record 
are presented in Table X and Fig. 10.  

TABLE X  TESTING DATA FOR THE LARGE-SCALE NETWORK 

Area range Serial numbers of 
the switches 

The states of the switches 
in each topology category 

A1 ①②③④ T11:[1000];  T12:[0100] 
A2 ⑤⑥⑦⑧ T21:[0010];  T22:[1000] 
A3 ⑨⑩⑪⑫ T31:[1001];  T32:[0110] 

Whole area ①②③④⑤⑥ 
⑦⑧⑨⑩⑪⑫ 

T1:[T11,T21,T31]; T2:[T11,T21,T32]; 
T3:[T11,T22,T32]; T4:[T12,T22,T31]; 

T5:[T12,T22,T32] 

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

A1 A2 A3 Whole Area

Number of record

T11
T12

T21
T22

T31
T32 T31

T32

T1
T2

T3
T4

T5

 
Fig. 10.  The distribution of the testing data in the large-scale network.   

The split-EM procedure in Fig. 3 is utilized in the whole area 
and all the subsystems, respectively. The corresponding split-
EM processes are shown in Fig. 11 and Fig. 12. Although the 
results are correct in both scenarios, the split-EM process for 
the entire system needs 5 rounds and the average calculation 
time of each round is about 2000 seconds, while it only takes 2 
rounds in each subsystem and the total calculation time of each 
subsystem is just about 150 seconds on average.  
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(a) Subsystem A1  
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(b) Subsystem A2 
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(c) Subsystem A3 

Fig. 11.  The results of split-EM process for each subsystem.  
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Fig. 12.  The results of split-EM process for the whole area.  
2) The real-time topology identification 

In this section, the real-time identification processes of the 
whole area and the subsystems will be compared. We consider 
4 topology categories in each subsystem and 12 topology 
categories in the whole area involved in the historical data in 
this testing. 12000 records are used in the training process for 
the whole area and each subsystem, and 1200 records are used 
in the testing process. The comparison results are shown in 
Table XI. 

TABLE XI  THE COMPARISON OF REAL-TIME RESULTS OF 135-BUS SYSTEM  

Area range Training 
time (sec) 

Training  
Accuracy 

Testing  
Accuracy 

Prediction 
time (sec) 

Whole area 97.3 99.50% 98.00% 0.10 

A1 23.9 99.60% 98.20% 0.01 

A2 18.8 99.20% 98.90% 0.01 

A3 13.1 99.80% 99.40% 0.01 

As shown in Table XI, the training/prediction time of the 
whole area is longer than those of the subsystems. The training 
accuracy difference between each subsystem and the whole 
area is within ± 0.5%, and the testing accuracy of subsystems 
are a bit higher than that of the whole area.   

In conclusion, the performance of both the historical and 
real-time identification in the subsystems is as good as that in 
the whole area in terms of accuracy, and better in terms of 
identification time. After the topology identification of each 
subsystem is done, the topology information of the whole area 
can be obtained by combining the results of the subsystems 
based on the acquisition time of the measurements. 
3) Subsystem optimization in the 874-bus system 

 
Fig. 13.  Subsystem optimization result of the 874-bus system. 

Asides from the 135-bus system, an 874-bus system (as 
shown in Fig. 13) is used to validate the model in subsection 
V-B. GA and graph related toolbox [44, 45] are utilized in the 
Matlab environment to realize the optimization of the 
subsystems of the 874-bus system, and 𝑁𝑁limit  and 𝑁𝑁s_limit 
are set as 80 and 5. The optimized subsystem formation result 
is shown in Fig. 13, and 15 subsystems are formed according 
to the optimization. The optimized subsystems are marked with 
different colors, and the edge with two terminal nodes in 
different colors are the connecting lines between the 
subsystems. The topology identification tasks in each 
subsystem are performed similarly to those in the 135-bus 
system, and will not be presented due to limitation of space.  

VI. CONCLUSION  
To improve the topology observability in the PDN, a two-

stage topology identification framework is designed to 
recognize the mixed topologies in the historical batch data and 
predict the real-time topology. A split expectation-
maximization (EM) method is proposed to deal with the 
topology identification problem of a large set of historical data 
in which the number of topology categories is unknown. The 
calculation complexities are compared between the split-EM 
and traditional EM methods, proving that the proposed split-
EM method consumes less calculation resources in most cases. 
To predict the real-time topology efficiently, the topology 
classifiers are trained based on the labeled historical records 
through machine learning methods. An error-correcting 
mechanism consisting of the credibility analysis and 
reidentification process based on the Bayesian recursion model 
is also proposed for the real-time identification to improve its 
performance. The effectiveness of the models is verified in a 
test system. The proposed split-EM can identify the topology 
categories correctly in the cases for radial network and the 
networks with meshes and islands, and it also works well when 
the nodal phase angles are not measured. The split-EM model 
is also extended to adapt to the three-phase unbalanced systems. 
For the real-time topology identification, several highly-
accurate classifiers are generated using the Classification 
Learner and Neural Net Pattern Recognition toolboxes in 
MATLAB, and their prediction time for a single case is all less 
than 0.4 sec. Taking the classifier based on the Quadratic SVM 
model as an example, the error-correcting mechanism is 
verified in terms of improving the real-time prediction 
accuracy from 97.9% to 99.9%. The sensitivity of the topology 
categories is also analyzed, and the results show that reducing 
the number of topology categories in the historical 
identification will benefit real-time identification in terms of 
reducing prediction time and improving prediction accuracy. In 
addition, the application solution of the topology identification 
models in large-scale PDNs is proposed without extra 
measurements, which can update the overall topology 
information dynamically and efficiently with less calculation 
burden. The application in the 135-bus system has verified the 
advantages of the proposed extension framework both in 
historical and real-time identification. In the future, the 
proposed models in the paper can be further expanded to 
address other related issues, such as the real-time topology 
identification combined with fault detection and localization. 
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