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Preserving Statistical Privacy
In Distributed Optimization
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Abstract—We present a distributed optimization proto-
col that preserves statistical privacy of agents’ local cost
functions against a passive adversary that corrupts some
agents in the network. The protocol is a composition of
a distributed “zero-sum” obfuscation protocol that obfus-
cates the agents’ local cost functions, and a standard non-
private distributed optimization method. We show that our
protocol protects the statistical privacy of the agents’ local
cost functions against a passive adversary that corrupts up
to t arbitrary agents as long as the communication network
has (t + 1)-vertex connectivity. The “zero-sum” obfusca-
tion protocol preserves the sum of the agents’ local cost
functions and therefore ensures accuracy of the computed
solution.

Index Terms—Statistical privacy, distributed
optimization, large-scale systems, sensor networks.

[. INTRODUCTION

ISTRIBUTED optimization in multi-agent peer-to-peer
D networks has gained significant attention in recent
years [1]. In this problem, each agent has a local cost function
and the goal for the agents is to collectively minimize sum of
their local cost functions. Specifically, we consider n agents,
where each agent i has a convex cost #; : R™ — R and a
convex, compact set X'. A distributed optimization algorithm
enables the agents to collectively compute a global minimum,

X e argmjnz:h,-(x). 6))
IEX i=1
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We consider a scenario when a passive adversary can cor-
rupt some of the agents in the network. The corrupted agents
follow the prescribed protocol correctly, but may try to learn
about the cost functions of other non-corrupted agents in
the network. In literature, a passive adversary is also com-
monly referred as honest-but-curious. Prior work has shown
that for certain distributed optimization algorithms, such as
the Distributed Gradient Descent (DGD) method, a passive
adversary may learn about all the agents’ cost functions by
corrupting only a subset of agents in the network [2]. This is
clearly undesirable in general, and especially in cases where
the cost functions may contain sensitive information [3].

In this letter, we consider the Function Sharing (FS)
protocol [4], wherein the agents obfuscate their local cost
functions with correlated random functions before executing
a (non-private) distributed optimization algorithm such as the
DGD method. The obfuscation strategy is aggregate invariant
by construction and therefore, the agents compute a mini-
mizer (1) accurately using solely their obfuscated local cost
functions [2, Th. 1]. The FS protocol was first proposed by
Gade and Vaidya [2]. However, as of yet, the FS protocol
lacks a formal privacy analysis. In this letter, we utilize the
statistical privacy definition developed by Gupta et al. [5], [6]
to present a privacy guarantee of the FS protocol.

In the past, distributed optimization protocols have been
proposed for preserving differential privacy of the agents’
local cost functions. However, these differetially private proto-
cols suffer inevitably from privacy-accuracy trade-offs [7], [8].
That is, the agents can only compute an approximation of a
global minimum x*, defined by (1). The FS protocol allows the
agents to compute a global minimum (1) accurately, and there-
fore, it obtains a weaker statistical privacy guarantee compared
to the differentially private protocols.

Homomorphic encryption-based privacy protocols implic-
itly rely on two pragmatic assumptions, (1) computational
intractability of hard mathematical problems, and (2) limited
computational power of a passive adversary [3], [9]-[11]. We
show that the FS protocol provides stafistical (or information-
theoretic [12]) privacy, which is valid regardless of the above
assumptions.

However, both the differetial privacy based protocols and
the homomorphic encryption based protocols can provide
privacy against eavesdroppers [3], [7]-[11]. The FS proto-
col, on the other hand, can only provide privacy against
honest-but-curious agents in the network.
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Summary of Our Contributions: We show that in the FS
protocol the passive adversary obtains limited information, in
a statistical sense, about the local cost functions of the non-
corrupted (or honest) agents, as long as the agents corrupted
by the passive adversary do not form a verfex cut in the under-
lying communication network topology. Thus, the FS protocol
protects the statistical privacy of the honest agents’ local cost
functions against any passive adversary that corrupts up to ¢
arbitrary agents in the system as long as the communication
network topology has (f + 1)-vertex connectivity.

It is of independent interest to note that a variant of the FS
protocol is known to preserve the perfect statistical privacy in
distributed average consensus problem [13]-[15].

[I. PROBLEM SETUP

We consider a passive adversary, denoted by .4, that corrupts
some agents in the network. The goal is to design distributed
optimization protocols that protect the privacy of the non-
corrupted (or honest) agents’ local cost functions against the
passive adversary, while allowing the agents to compute solu-
tion (1) accurately. The adversary is assumed passive and the
corrupted agents execute the prescribed protocol correctly. For
a distributed optimization protocol I1, we define view of A for
an execution of IT as follows.

Definition 1: For a protocol I1, the view of A constitutes
the information stored, transmitted and received by the agents
corrupted by A during the execution of II.

Privacy requires that the entire view of A does not leak
significant (or any) information about the local costs of the
honest agents. Note that, by definition, A inevitably learns
a point x* € argmin,cy Y 7 ; h;(x), assuming it corrupts at
least one agent. A perfectly private protocol would not reveal
any information about the honest agents’ cost functions to A
besides x*. However, such a perfect privacy is quite difficult
to guarantee. For now, we relax the privacy requirement, and
only consider privacy for the gjffine terms of the agents’ cost
functions. However, as elaborated in Section III-B, the FS
protocol can be extended easily for privacy of higher-order
polynomial terms. That is, we implicitly assume that the non-
affine terms of the agents’ cost functions are known a priori
to the passive adversary.

For each agent i, the cost function £;(x) can be decomposed
into two parts; the agffine term denoted by kl(])(x), and the
non-dffine term denoted by k;r(x). Specifically,

hix) =) +h (x), VxeR™ie{l,....n}. (2

As the name suggests, the affine terms are affine in x. That is,
for each i there exists a; € R™ and y; € R such that, klg])(x) =
aI-T X+ yi, Yx € R™, where ()T denotes the transpose. As the
constants y;’s do not affect the solution of the optimization
problem (1), the agents need not share these constants with
each other. Hence, the privacy of honest agents’ y;’s can be
trivially preserved. For a meaningful discussion of privacy we
will ignore these constants. Let,

A:[ala-"aaﬂ] (3)

be the m x n-dimensional matrix obtained by column-wise
stacking of the individual agents’ affine coefficients.

Let C denote the set of agents corrupted by the adversary A,
and let H denote the remaining non-corrupted (or honest)
agents. For privacy preservation, the protocol IT may intro-
duce some randomness in the system, in which case the view
of A is a random variable. Let,

« Viewg(A) denote the probability distribution of the view
of A for an execution of IT when the agents’ private cost
functions have affine coefficients A.

Our definition of privacy below is built on relative entropy,
which is also known as the Kullback-Leibler (KL) divergence.
For a continuous random variable &, let f (r) denote its prob-
ability distribution or probability density function (p.d.f.) at
r € R. The KL-divergence, denoted by Dg;z, quantifies the
difference between a certain probability distribution f; and
the reference probability distribution fi [16]. Specifically, the
KL-divergence of f; from fg is defined as

f
Dxz(fr. fr) = f’R, fR(s) log(f?’—g;)d&
R

Let ||.|| denote the Euclidean norm for vectors and the
Frobenius norm for matrices.

Definition 2: For € > 0, a distributed optimization pro-
tocol Il is said to be “(C,¢)-affine private” if for every

pair of agents’ affine coefficients A = [ay,...,a,] and
B =[B4i, ..., Bl subject to the constraints:
a;j =B, YieC, and Zﬂf:‘ = Zﬁf, “4)
ieH icH

the supports of Viewg(B) and Viewg(A) are identical, and
Dxz(Viewe(A), Viewc (B)) < €[|A — B|>. )

In other words, Definition 2 implies that if II is
(C, €)-affine private then an adversary A cannot unam-
biguously distinguish between two sets of agents’ affine
coefficients, A and B, that are identical for the corrupted
agents and have identical sum over all honest agents (i.e., sat-
isfy (4)). The value of € signifies the strength of the privacy
obtained. Smaller is the value of €, the more difficult it is for
A to distinguish between two sets of agents’ affine coefficients
satisfying (4), and hence stronger is the privacy.

[1l. PROPOSED PROTOCOL AND PRIVACY GUARANTEE

In this section, we present the Function Sharing (FS)
protocol and the formal privacy guarantee.

The notation used is as follows. The underlying communica-
tion network is modeled by an undirected graph G = (V, £),
where the set of nodes V = {1,...,n} denotes the agents
(indexed arbitrarily), and the set of edges £ denotes the com-
munication links between the agents. Being undirected, each
edge e € £ is represented by an unordered pair of agents. For
each i, the set N; = {j € V| {i,j} € £} denotes the neighbors
of agent i.

The FS protocol constitutes two phases as elaborated in
Algorithm 1. In phase I, each agent i uses a “zero-sum” obfus-
cation protocol to compute an “effective cost function” h;(x)
based on its private local cost function £;(x). In phase II, the
agents use the DGD algorithm on their effective local cost
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Algorithm 1 Function Sharing (FS) Protocol

Input: Each agent i has cost function 4;(x) and o € R.
Output: Minimizer, x* € argmin,cy Y 7 ; hi(x)
<> Phase 1: Masking of Cost Functions
Each agent i € V executes:
1: Draws vectors rjj ~ N(Om, 021,,) independently for j € NV;
and sends rj; to each agent j € N;.
2: Compute the mask u;

=y (rj—r; @®)
JjeN;

3: Compute the effective cost function 'I;,-(x),
R’(x) = h;(x) + u{x, Vx e R™. (9

<> Phase 2: Distributed Optimization
4: Agents execute_the DGD algorithm [18] on the local
effective costs {h;(x)};cp.

functions to solve for the effective optimization problem,

n
minimize }  7;(x). 6
nim ; i@) ©)

We now show that upon completion of phase II the agents
indeed obtain a common minimum of the original optimization
problem (1). As G is an undirected graph,

Z“i = Z Z(fﬁ —rij) =0.
i=1

i=1 jeN;
This implies that, for all x € R™,

Y h =) h@+Y uwx=)h@. (7
i=1 i=1 i=1 i=1

Equivalently, the masking in phase I preserves the sum of
the agents’ local cost functions. Therefore, a solution for
problem (6), obtained using the DGD algorithm in [17], is
a solution for the original optimization problem (1).

A. Privacy Guarantee

The privacy guarantee for the above FS protocol is
presented by Theorem 1 below. Recall that C denotes the set
of agents corrupted by the passive adversary. Let H =V \ C
denote the set of honest agents, and let Gy denote the resid-
ual graph obtained by removing the agents in C, and the edges
incident to them, from G. Let £y denote the graph-Laplacian
of Gy and pu(Ly) denote the second smallest eigenvalue of
L4;. The eigenvalue u(Ly) is also commonly known as the
algebraic connectivity of the graph [19].

Theorem 1: If C is not a vertex cut of G, and the affine
coefficients of the agents’ private cost functions are indepen-
dent of each other, then the FS protocol is (C, €)-affine private,
with € = 1/(do?p(Ly)).

Theorem 1 implies that C not being a vertex cut' of G is
sufficient for (C, €)-affine privacy. Note that, smaller the value

LA vertex cut is a set of vertices of a graph which, if removed — together
with any incident edges — disconnects the graph [19].

of e, stronger is the privacy. According to Theorem 1, € is
inversely proportional both to the variance 0% of the elements
of random vectors rj;’s used for masking of agents’ local costs,
and the algebraic connectivity of the residual network topol-
ogy Gy . Therefore, the agents can achieve stronger privac; by
using random vectors with larger variances (i.e., larger o°) in
phase I of the FS protocol. Additionally, FS protocol guaran-
tees stronger privacy if the residual honest graph Gy, is densely
connected.

We further note that the FS protocol can guarantee privacy
against any passive adversary that corrupts at most ¢ agents
in the network if the network has (f 4 1)-vertex connectivity.
Specifically, we have the following corollary of Theorem 1.

Corollary 1: If G has (f + 1)-vertex connectivity and the
affine coefficients of the agents’ private cost functions are
independent of each other, then for an arbitrary set C € V
with |C| < t the FS protocol is (C, €)-affine private with

1
€= max{ 4075 (Lr) H=V\C, [C|< I].

The above connectivity condition for privacy is indeed tight.
Specifically, the (f + 1)-vertex connectivity is necessary for
privacy against at most ¢ colluding honest-but-curious agents
in the consensus-based distributed gradient and subgradient
optimization algorithms [2], [20], [21].

B. Privacy of Higher-Degree Polynomial Terms

The FS protocol presented in Algorithm 1 only protects
the privacy of affine coefficients of local cost functions, as
formally stated in Theorem 1. In what follows, we show an
easy extension to protect privacy of higher degree polynomial
terms of agents’ private cost functions. Here, we assume the
agents’ cost functions to be univariate, i.e., x € R.

For each agent i, let al-(g) denote the f-th degree coeffi-
cient of its cost function h;(x). Similar to the definition of
(C, €)—affine privacy, we now define the privacy of the £-th
degree coefficients A®) = [ags), ..., aP] against a passive
adversary that corrupts a set of agents C. Let Viewc(A®)
denote the probability distribution of the view of adversary A
when £-th degree coefficients of agents’ private cost functions
are given by A®),

Privacy Definition: For € > 0, protocol Il is said to pre-
serve the (C, €)-privacy of £-th degree coefficients AW® if for
every other set of £-th degree coefficients B = [ﬁfg}, ey ,(,e)]
subject to the constraints:

B =a® viec, and Y Y=o,
ieH ieH
the support of Viewe(A®) & Viewe(B®) are identical, and
Drz (Viewe (™), Viewe B®)) < ela® — B2

When defining the distribution Viewc(A®), we implicitly
assume that the passive adversary A knows all the coefficients
of the honest agents’ costs, except the £-th coefficients
{aEE}, i € H}. Thus, the privacy analysis here is conservative.

Modified FS Protocol and Privacy Guarantee: In the first
phase, the agents mask the coefficients A®) in a similar man-
ner as the masking of the affine coefficients delineated in
Algorithm 1 to compute the effective cost functions.
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Note that in this case, due to the non-affine masking, the
effective cost functions A;(x)’s may become non-convex. The
sum of the effective cost functions, however, is still a convex
function (see (7)). As discussed in [17], the DGD algo-
rithm allows agents to minimize convex sum of their local
non-convex cost functions, provided that the local cost func-
tions’ gradients are Lipschitz continuous [2, Th. 1]. The DGD
can be substituted with other distributed optimization algo-
rithms, provided those algorithms also minimize convex sum
of non-convex functions (see [17] for details).

Now, Theorem 1 implies that if C does not form a vertex cut
of the network topology G then the FS protocol, modified as
above, preserves the (C, €)-privacy of £-th degree coefficients
A® for each £ = {1,...,d}, where, privacy parameter ¢ =
1/(402pu(Lyy))-

V. PROOF OF THEOREM 1

In this section, we present the formal proof for Theorem 1.
In principle, the proof is a generalization of the privacy analy-
sis presented in [5]. First, we state a few critical observations
in Lemmas 1 and 2 below.

Let £ denote the graph-Laplacian of the network topol-
ogy G. As G is undirected, £ is a diagonalizable matrix [19].
Specifically, there exists a unitary matrix M constitut-
ing the orthogonal eigenvectors of £ such that?, £ =
MDiag(p1, ..., pn)MT where py < puy < -+ < p, are
the eigenvalues of £. When G is connected, p; = 0 and
w12 > p1 [19]. We denote the generalized inverse of L by Cr.
Note that [22],

LY = M Diag(0, 1/uz, ..., 1/u)MT (10
For future usage, we denote the second smallest eigenvalue of
L, ie., s, by u(L). Let 0, and 1, denote the zero and the
one vectors, respectively, of dimension n. For a positive real
value ¢, NT(0,, c£) denotes the degenerate Gaussian distribu-
tion [23]. Specifically, if R ~ NT(0,, cL) and G is a connected
graph then,

1 _rTC*r) Ty _
fr() = { Jdet* (2rcL) exp( ), r'ly=0

0, otherwise

(an

where det*(2wcl) = (wc)*! [1i, pi. Henceforth, for a
vector v, vk denotes the k-th element of v unless otherwise
noted. For i € V, recall that u; is the mask (see (8)). Let,

vk =, ... u"]r, k=1,...

s Uy , m. (12)
be a n-dimensional vector comprising the k-th elements of the
masks computed by the agents in phase I of the FS protocol.
For a random vector R, we denote its mean by E(R) and its
covariance matrix by Cov(R). Note that Cov(R) = E(R —
ER)(R ~ER)".

Lemma I: If G is a connected graph then for each k e
{1,...,m}, U5 ~ N (0,, 262L).

Proof: Assign an arbitrary order to the set of edges, i.e., let
& = (e1,...,eg)). For each edge e; where I/ € {1,...,[E]},

2Diag@| ..... ¥Yn) is a diagonal matrix with diagonal entries yp, ..., Va-

we define a vector 6, of size n whose i-th element denoted
by 6,, is given as follows:

1 ife={ijlandi<j

0, =3 -1 ife={ijandi>j
0  otherwise.
Let ® = [0, .., 0] be an oriented incidence matrix of

graph G [19]. For each edge e = {i, j} with i < j,

Ce = Iji — Tij. (13)
Since the each random vector in {r;j, i,j € V} is identically
and indefendenlly distributed (i.i.d.) by a normal distribution
N(@Op, 0°1,,;), (13) implies that for each edge e; the random
vector ¢, is i.id. as N(0, 2621,,,). Therefore, for each k, the
random variable CEI has normal distribution of N(O, 20‘2). Let,
ck = [c" ck ... ck 17. For two distinct edges e and ¢/, the

e]? “ex? ) e|g| .
random vectors ¢, and ¢ are independent. Therefore,

E(C(CHT = 2070, (14)
where Ig| is |€| x |€] identity matrix. Moreover, from (8),
Uk = ©C, Vk ¢ {1,...,m}. As G is assumed connected,
the support of U* is the entire space orthogonal to 1,. Also,
E(U*) = OE(C*) = 0,. As £ = 067 [19], Cov(U") =
OECH(ICHNHOT = 2020607 = 202L. Thus, U has the
generalized Gaussian distribution NT(O,;, 262[.:). [ |

Using the above lemma, we show that the knowledge
of the effective cost functions does not provide significant
information about the affine coefficients of the agents’ private
cost functions.

Consider two possible executions E4 and Ep of the FS
protocol such that the affine coefficients of the agents’ effec-
tive cost functions in both executions are given by A =
[@1,...,%,]. In execution E4, the agents have local cost
functions with affine coefficients A = [aq,...,ay], and in
execution Ep, the agents have local cost functions with affine
coefficients B = [Bi, ..., Bal. Let fy and fyp denote the
conditional p.d.f.s of A given that the affine coefficients of
the agents’ private cost functions are A and B, respectively.
Recall that (L) denotes the second smallest eigenvalue of
the graph-Laplacian matrix £, i.e., u2.

Lemma 2: If G is connected, and ) -, a; = > ., fi, then
supports of fy 4 and f3p are identical, and

1
DKL(fEln:f‘Aw) = mllfl —BJ%. (15)

Proof: Let, A and A* denote the column vectors repre-
senting the k-th rows of the effective affine coefficeints A
and the actual affine coefficients A, respectively. That is,
AR = @, ..., @7  and AF = [oF,..., k17, The proof
comprises three parts.

Part I: Recall from (8), @ = of + uf for all i and k.
Therefore (see (12) for the notation Uk), Ak = Ak + Uk, As
U* is independent of AK for every k, we get,

Fope @, . &) = fi (Z" —A“). (16)
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: n  ~k n k
Therefore, from Lemma 1, if > 7, of =) 1, « then,
~k ~k
]AkIAk(O‘.'l, caay l‘.]'n)

1 (Ak — AT (K — Ak
= ———————cxp| — 3 a7
Jdet*(@mwo2l) 4o
Else if Y7, & #£ Y " | of then
Faoae @, ..., @) =0, (18)

From (17) and (18), it is easy to see that the supports of the
conditional p.d.f.s fz 4 and f3kp are identical.
Part II: From (17),

f“kw(ﬂ‘ls---’ &) A Ak

f“kwx(al, Lk

Let s = Ak —Ak, then we get, Dxz(Fyk 4. fxe gt) =
i
402 Jicmn
= 2:;—2(Ak ~BYILTRWUH) + ﬁm

_ B")TC*(ZZ" _
402

—Bk)

log

(AF — BT LT (25 + A% — BYf i (s)ds

k_ BT etk — B,

From Lemma 1, ]E(Uk) = 0,. Therefore,

1
Dﬁ(fj&mhﬁkwk) = S - B - BY.

As G is assumed connected, rank(£) =n—1 and L1, = 0,,.

Recall that 17 (A¥ —B¥) = 0,,. Thus, the vector A* —B¥ belongs

to the space orthogonal to the nullspace of £. Now, substituting

LF from (10) in (19) we obtain that

la* — B4?
4o (L)

(19)

Dn(ﬁw,ﬁw) < (20)

Part III: For k # |, U", Ul are independent of each
other. From (16), fij4 = [Ti—ifitax » and similarly, f3p =
[ Ti=1 fax)p- This, due to the KL-divergence property, implies
that

DKL(fmA,fzm) = Zm: DKL(fZHA* *f“Ale*)-
k=1

Substituting from (20) above concludes the proof. |
Theorem 1 can be now proved easily using Lemma 2.
Proof of Theorem I: Recall that C denotes the set of cor-

rupted agents and H = V\ C denotes the set of honest agents.

Let & denote set of edges incident to C and £y = £\ & be

the set of edges incident only to honest agents.

Let the agents’ true affine coefficients be given by an m x n-
dimensional matrix A = [«, ..., ay], as defined in (3). Recall
the definition of Viewg(A) from Section II. In this part, we
derive the p.d.f. of Viewg(A) for the FS protocol, assuming
the worst-case scenario where the effective cost functions of all
the agents are revealed to the corrupted agents in the second
phase. From Definition 1, note that the view of the adversary
A for the FS protocol comprises the following information:

1) The corrupted agents’ private and effective cost func-

tions, i.e., {h;(x), ; i(x), i eC}.

2) The set of random vectors R¢ = {rj, {i,j} € &}

3) The effective cost functions of the honest agents, i.e.,

{hi(x), i € H).

For each agent i € V, let @; denote the affine coefficient of
k(x) Let Ac = [a;, i € C] and AH = [a;, i € H] be the
collection of the effective affine coefficients of the corrupted
and the honest agents, respectively. Let f5, . r.ju denote the
conditional joint p.d.f. of Ay, A¢ and R¢ given the agents’ true
affine coefficients A. From above we obtain that

Viewg(A) :f(ﬁfuﬁc.ﬂc)kl . (21
For each agent i € V, let C; = N; N C. Note that, see (9),
G=ait+ Y (j—r)+ Y (g—r), Vi  (22)
JeNIGi jeCi
For each honest agent i € H, let
TG=ai+ Y (rj—rj) (23)

JeNICi

Let Z'H = [@;, i € H] be the collection of honest agents’ @;’s.
Recall that, for two agents i and j, the vectors rjj, rj; € Rc if
and only if i € C or j € C. Therefore, for each honest agent
i € H, the value of } ;¢ (r;j — rj;) is deterministic given Rc.
Thus,

F@nJec.rep = F@s Ko R (24)

As the agents’ affine coefficients are assumed independent of
each other, we have from (23), A'H_ is independent of AC
Moreover, (23) also implies that A is independent of Rec.
Therefore, fz,, %..repn = a5 uf(Ac. et~ Note that (i) Ac and
Rc are independent of the ﬁ onest agents’ affine coefficients
Ay = lai, i € H], and (ii) Ay is also independent of
the corrupled agents’ affine coefficients A¢ = [a;, i € C].

Thus, fz Ay Ac.Re =f . J@e.Re) K . Upon substituting this
in (24) and usmg (21), we obtain that

Jay f(E&RC)I'*C'

Now, consider an alternate scenario where the agents’ col-
lective affine coefficients are B = [Bi,..., Bs], such that
Bi = @i, Vi € C, and ) ;. Bi = D oy ;. Using similar
arguments as above, we will obtain that

Viewe(4) = (25)

Viewc (B) (26)

= I8y, J(Be.Re)lBe
where E'H, By, Ec and B are the counterparts of Z'H, AY,
Ac and Ac, respectively.

Using the additive property of KL-divergence [16],
from (25) and (26) we obtain that

Dxr(Viewe(A), Viewe(B)) = DXL(fEH[,;H,fHHIBH)

+ DKL(f(zC,RC)}qc Ji (ﬁc.Rc)IBc)' @D

As the affine coefficients Ac and B¢ are identical to each
other, we get from (22), the conditional probability distri-
butions f3. rejlae a0 f(B. roB. are equivalent. Therefore,

DKL(f(AC Rciﬁhc’f(ﬂc,Rc)IBc) = 0. Upon substituting this in (27)
we obtain that

Dxr.(Viewe (4), Viewe (B) = Diz (Fr,juny - fonley ) @9

Let Gy = (H, Ey) be the residual honest graph, and let Ly
denote the graph-Laplacian of Gy. As we assume that C is
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Fig. 1. The agents’ local errors from the optimizer (1) converges to zero.

=
o
&

mPrivate coefficients: A
mPrivate coefficients: B

=
=]
@

Probability density
g

6 -4 2 0 2 4 6 8 10
Effective coefficient value

Fig. 2. The p.d.f's of agent 1's affine coefficients generated numerically
for two different scenarios; (i) the agents’ private coefficients are A, and
(i1) the agents’ private coefficients are B.

not a vertex cut of G, Gy, is connected. Therefore, substituting
from Lemma 2 in (28) we obtain that

Dz (Viewe(A), Viewe (B)) < Ay — B>

402 (Ly)
As Ac = Be, we have [|[Ay — By||> = |A — B||* completing
the proof. u

V. NUMERICAL SIMULATION

In this section, we present a numerical simulation of the
FS protocol. We consider a network of 3 agents, {1,2, 3},
connected in a complete graph. The agents’ private local costs
are hi(x) = x> +x,p(x) = x> + 2x, and h3(x) = x> + 3x,
where x € [ — 100, 100]. Thus, A = [a;, a2, @3] = [1,2, 3].
For computing the effective cost functions, defined in (9), the
agents use o = 1 in phase L In phase II, we simulate the DGD
on the effective cost functions. The absolute differences of the
agents’ local estimates from the minimizer of the aggregate
cost is plotted in Fig. 1, for both the FS protocol and the
conventional DGD algorithm, to show convergence.

We assume agent 3 to be corrupted by a passive adver-
sary, i.e., C = {3} and H = {1,2}. We consider an
alternate scenario where agents’ affine coefficients are given
by B = [B1. B2, B3] = [2,1,3]. Note that w3 = B3 and
33,8 = Yi,a = 6. We simulate 100,000 execu-
tions of the FS protocol for both scenarios. The p.d.f’s of
agent 1’s effective affine coefficients generated in phase I
for both the scenarios are shown in Fig. 2. To compute
the value of Dgz(Viewe(A), Viewe(B)), we first numeri-
cally approximate ps and ppg, the respective conditional
p.dfs of the effective coefficients [@;,@,] and [By, B]
(defined by (23)) given the agents coefficients A and B,
using the MATLAB’s ‘fitdist’ function. Note that, owing
to (28), Dgz(Viewc(A), Viewe(B)) = Dkr(pa, pg). We obtain
that py and pp are Gaussian distributions with mean values
pa = [1.00,2.00] and pp = [2.00, 1.00], respectively, and an

identical covariance matrix ¥ = [2.00, —2.00; —2.00, 2.00].

Thus, Dxz.(pa.ps) = 0.5(ua — up) T’ (ua — pp)’ = 0.25.
This matches the theoretical bound computed by substituting
E(C’H) =2, 0=1,and ||A— B||2 =2 in Theorem 1.

VI. CONCLUDING REMARKS

We have presented a theoretical privacy analysis for the
Function Sharing or FS protocol, a distributed optimization
protocol proposed in [4] for protecting privacy of agents’ costs
against a passive adversary that corrupts some of the agents in
the network. We have shown that the FS protocol preserves the
statistical privacy of the polynomial terms of the honest agents’
costs if the corrupted agents do not constitute a vertex cut of
the network. Moreover, if the network has (f+ 1)-connectivity
then the derived statistical privacy guarantee of the FS proto-
col holds true against any passive adversary that corrupts at
most f agents.
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