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Abstract— In this paper, we study integrated estimation and
control of soft robots. A significant challenge in deploying
closed loop controllers is reliable proprioception via
integrated sensing in soft robots. Despite the considerable
advances accomplished in fabrication, modelling, and
model-based control of soft robots, integrated sensing and
estimation is still in its infancy. To that end, this paper
introduces a new method of estimating the degree of
curvature of a soft robot using a stretchable sensing skin. The
skin is a spray-coated piezoresistive sensing layer on a latex
membrane. The mapping from the strain signal to the degree
of curvature is estimated by using a recurrent neural
network. We investigate uni-directional bending as well as
bi-directional bending of a single-segment soft robot.
Moreover, an adaptive controller is developed to track the
degree of curvature of the soft robot in the presence of
dynamic uncertainties. Subsequently, using the integrated soft
sensing skin, we experimentally demonstrate successful
curvature tracking control of the soft robot.

I. INTRODUCTION

Soft robots are defined as systems fabricated from
materials that have low elastic moduli, in the range of
those of biological materials (104–109Pa) [1] or of
elastomers. The compliance and dexterity of soft robots can
be utilized for effective manipulation in unstructured
environments. The robust and agile environmental
manipulation by animals, such as the octopus’s varied use
of tentacles and elephant’s dexterous trunk [2], [3], have
also inspired the development of soft robots. Several
applications ranging from underwater and space operations
to minimally invasive surgeries have been identified for soft
robots [3], [4].

An important recent focus of the soft robotics
community has been the development of integrated sensors
for soft robotic perception (e.g., [5], [6]). Integrated sensing
would potentially enable a soft robot to perceive the world
without external sensors. The sensory signals acquired from
integrated sensors can then be utilized for state estimation
and in closed loop control. Several methods have been
proposed for developing integrated sensors for soft robots
[5], [7]. However, only a few sensing technologies have
been demonstrated that are readily amenable to closed loop
dynamic control for a wide range of soft robots [6].
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Fig. 1. The soft sensing skins (a) and the soft robot retrofitted with the
sensors (b)

In this paper, we investigate adaptive tracking control of
a planar soft robot with a simple sensing skin that can be
easily retrofitted to estimate the degree of curvature. While
this study considered a planar single-segment soft robot
capable of bi-directional bending with a constant curvature
along the length of the segment, the proposed advances
could also be utilized for multi-segment 3D soft robots.
The sensing skin consisted of a piezoresistive sensing layer
spray coated onto a latex membrane [8], [9]. A strip-shaped
sensing area was created, and electrical leads were attached
at either end. The sensing skin and the soft robot retrofitted
with the sensors are shown in Fig.1. A data driven model,
namely a long short term memory (LSTM) network, a
special recurrent neural network (RNN), was used to
determine the relationship between the sensor signals and
the degree of curvature. The main advantage of using an
RNN is that it can capture non-linearities and other
un-modeled effects, such as hysteresis, due its ability to
learn temporal information. Both uni-directional bending
and bi-directional bending were investigated. We
successfully demonstrate the utilization of the proposed
integrated sensing strategy in an adaptive control
framework [10] for dynamic tracking control of soft robots
in experiments. The adaptive controller was developed to
track the degree of curvature of the soft robot assuming
uncertainty in the dynamic parameters of the soft robot.

The rest of the paper is organized as follows. Related
work is discussed in Sec.II. The dynamic model of the soft
robot and the adaptive tracking control framework are
discussed in Sec.III. Sec.IV introduces the soft sensing skin
and the soft robot, and discusses degree of curvature
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estimation using integrated sensing skins. The experimental
results for curvature tracking control using the integrated
sensing are presented in Sec.V and the results are discussed
in Sec.VI. Finally, Sec.VII summarizes the paper and
outlines potential future directions.

II. RELATED WORK

Over the past decade, a considerable amount of work on
developing embedded sensing for soft robots has emerged.
Some studies demonstrated the use of commercially
available flex sensors embedded in a soft robot to measure
the bending of the body. In one study [11], the integration
of commercial flex sensors within a soft bending module
actuated by pressure-driven fluidic actuators was attempted.
Commercial flex sensors were used in another study [12] to
estimate bending angle through a data-driven approach, in
which the bending angle control was achieved by utilizing
the predicted angle in a classical PID controller
(heuristically tuned, rather than model-based). Flex sensors
were also used in soft elastomer composite actuators for
bending angle estimation [13], [14] . The estimates were
then utilized in learning based control frameworks. In
another work [15], a flex sensor was used for bending
angle estimation, which was then employed in a
back-stepping control algorithm for bending angle tracking.
More recently, a data driven model was proposed to
estimate the bending angle from a commercially available
flex sensor as well as the pressure data [16]. The paper
demonstrated the use of the estimates in a model-free static
controller for bending angle control.

One drawback of the commercial flex sensors is that
they stiffen the soft bodies since the flex sensors are not as
soft as the soft robot body [5], [17]. Specifically, the flex
sensors bend but they do not stretch. Therefore, they are
embedded in the non-stretching region at the center of the
robot segment [18]. Flex sensors could not be used in
extensible soft robots because of their lack of stretchability.
Thus, some groups have focused on developing soft
embedded sensors that do not impact the mechanical
compliance of the soft robots. Such embedded sensors for
estimating soft robot position, actuation pressure, and force
sensing have been fabricated recently [17], [18], [19]. A
method to fabricate soft somatosensitive actuators by
embedding 3D printed ionically conductive gels was
proposed in [7]. In [20] a McKibben-type actuator with an
embedded soft sensor was fabricated using a
self-coagulating conductive Pickering emulsion and was
used in closed loop control for slow movements with
considerable error. In [21], a differential sensing method
for the application of soft robot angle sensing using an
embedded coiled conductive polymer fiber was proposed. A
closed-loop multidimensional angle control system based
on PID control using the differential sensing method was
then developed to verify the sensing performance. The
review paper [22] discusses soft pneumatic actuators
fabricated entirely with additive manufacturing methods

and suggests learning based control for soft robots with
self-sensing capability.

Recent efforts in embedded sensing technology have
used polydimethylsiloxane (PDMS) filled with carbon
nanotubes (cPDMS) [5], [23]. The resistance of these
polymers increases with strain [24]. By embedding
cPDMSs in the soft robot body and measuring the
resistance of these areas, the bending of the soft body
could be estimated. In [5], the authors discussed a strategy
for data-driven multi-modal sensing, namely the robot tip
position and exerted force at the tip, using a cPDMS
embedded sensor. The fabrication of cPDMS soft skins and
their use for tactile sensing for haptic visualization was
discussed in [23] .

The authors in [6] used off-the-shelf conductive silicone
elastomer sheets laser cut into Kirigami patters and bonded
to the soft robot skin as soft piezoresistive silicone sensors.
Using these sensors, the steady state 3D configuration of
the soft robot was predicted using a trained RNN. This
strategy has been used for developing data–driven
disturbance observers for estimating external forces on soft
robots [25].

III. SOFT ROBOT CONTROL FRAMEWORK

In this section we introduce the nonlinear dynamic model
of the soft robot assuming the piecewise constant curvature
(PCC) hypothesis [26]. Subsequently, the adaptive control
framework for curvature tracking will be developed.

A. Soft robot model

While the sensing skin and the experimental results are
developed for a single segment soft robot, the approach is
scalable. The general multi-segment dynamics and control
strategy is introduced here, however due to space
constraints, the interested reader is referred to [26] for a
complete derivation.

The dynamics of the soft robot are formulated as a
Lagrangian system through a dynamically consistent
Augmented Formulation using the methods introduced in
[26]. We consider a PCC soft robot with n inextensible
constant curvature (CC) segments with masses mi and
lengths Li. Using the Augmented Formulation, the soft
robot is modeled as a sequence of revolute and prismatic
(R and P) joints, matching the kinematic and dynamic
properties of the soft robot to an approximated rigid robot
system.

Following [26], in the absence of external wrenches the
complete dynamics of the soft robot are represented as an
approximated rigid robot evolving on the degree of curvature
space qs(t) ∈ Rn:

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Dsq̇s +Ksqs +Gs(qs) = τs,
(1)

where Ms(qs) ∈ Rn×n is the equivalent inertial matrix,
Cs(qs, q̇s)q̇s ∈ Rn represents the equivalent centrifugal and
Coriolis terms, Gs(qs) ∈ Rn is the equivalent gravitational
torque vector, and τs ∈ Rn is the generalized command
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torque vector. Here, damping and stiffness matrices,
Ds,Ks ∈ Rn×n respectively, are introduced to incorporate
the compliance of the soft robot.

B. Adaptive controller design

The motivation for developing an adaptive controller is
that the estimated model for the soft robot in the form of a
PCC segment based rigid robot manipulator is not exact.
Also the parameters of the model are not known precisely.
Therefore a control mechanism that adapts the parameters
as the soft robot operates would be beneficial for good
performance. It should be noted that the main objective of
the controller is to track the desired curvature. If the PCC
model (1) is viewed as a rigid manipulator model, we can
apply classical methods developed for rigid robots as
shown in [10] to develop the adaptive tracking controller.

Following [10], we briefly discuss the adaptive controller
development. Define the degree of curvature error vector as
q̃s(t) = qs(t) − qd(t) where qd(t) is the desired curvature.
Define the virtual reference trajectory q̇r(t) = q̇d(t)−λq̃s(t)
and let s(t) = ˙̃qs(t)− λq̃s(t), where λ is a positive definite
parameter matrix which needs to be tuned.

Denote the equivalent parameter vector of the model as
Θs, whose elements are combinations of the variables mi,
Li, Ks, and Ds. Note that the Ks and Ds terms will be
explicitly included in Θs. Using the properties of
Lagrangian systems, define the regressor (Ys (qs, q̇s, q̇r, q̈r))

and parameter (Θs) vector pair for the augmented soft
robot model [27],

YsΘs = Msq̈r + (Cs +Ds)q̇r +Ksqs +Gs.

The estimated equivalent parameter vector is denoted by Θ̂s,
and hence the estimation error is defined as Θ̃s = Θ̂s −Θs.
Now we propose the control law

τs = YsΘ̂s −KDs, (2)

where KD is a gain term that needs to be tuned. The
adaptation law with the positive definite adaptation gain
matrix Γ is

˙̂
Θs = −ΓY T

s s. (3)

The stability of the designed controller (2)-(3) can be
demonstrated using Lyapunov analysis [10], [27].

IV. INTEGRATED SENSING

In this section we discuss the proposed method for
degree of curvature estimation using soft sensing skins
retrofitted onto a soft robot. First, the soft sensing skin [8],
[9] is described and the soft robot is characterized. Then
the experimental setup is introduced and the approach for
degree of curvature estimation is then discussed.

A. Soft sensing skin

The soft sensors used in this work were fabricated by
spray coating a stretchable piezoresistive sensing layer in
the shape of a strip onto a latex membrane (ELE
International, rubber membrane 25–7621, 0.3 mm
thickness), as previously described in detail [8], [9]. The

(a) (b)

Fig. 2. Soft robot retrofitted with the stretchable sensing skins. The
compartments of the soft robot and the sensing skins are labeled in panel
(a). Panel (b) shows the degree of curvature and the markers placed for the
motion capture (MoCap) system.

coating consisted of a latex host filled with exfoliated
graphite (EG). Electromechanical connections to the
sensing layer were made using carbon fiber yarn attached
with the same latex/EG solution serving as a “glue”. A top
coating of latex was added to protect the sensing layer
from mechanical damage. Further, adhesive tape was used
at the ends of the sensor strips to protect the
electromechanical connections of the sensor. The carbon
fiber yarn was joined to a copper wire by winding the
copper wire around the carbon fiber yarn and then using a
heat-shrink tubing to secure the joint. Upon stretching the
sensor, the resistance of the film increases. The sensors
were thoroughly characterized in [28]. The response of
these sensors is substantially linear up to 23% strain under
uniaxial loading, and the gauge factor (GF), or sensitivity,
is on the order of 10 (∆R/R = GF*ε, where ∆R is the
change in resistance, R is the original resistance, and ε is
the strain). The sensing skin (modulus 2 MPa) was easily
stretched by the soft segments.

Two stretchable sensing skins were retrofitted over the
soft robot, one on each side, to measure strain when the
segment was bending. Fig. 1 (a) shows an image of the soft
sensing skins. Fig. 1 (b) shows the skins over the outer
surface of an actuated segment, mechanically held in place
using rectangular rings around the un-actuated ends of the
segment; these rings are typically used to hold the markers
for the motion capture system, and here served both
functions. Two voltage divider circuits were used to
measure the resistance of the sensing skins, and an Arduino
board serially transmitted these as analog signals, which
are referred to as “raw strain signals”.

B. The soft robot

The soft robot used in this work is a planar bi-directional
pleated type soft segment which was fabricated following
the methods outlined in [29]. The same soft robot in [30]
by the authors was utilized, except that only the distal
segment was actuated. The base of this distal segment was
fixed and the segment was constrained to move on a
horizontal table. We refer to this actuated single-segment as
the soft robot for this study. Ball transfers were used
underneath, near the robot tip, to reduce friction when
bending. The segment had two compartments, named A
and B as shown in Fig. 2, that were individually actuated
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pneumatically, and were assumed to deform with a constant
curvature along the length of the segment under the applied
pressure. The middle layer of the segment (the joint
between the two chambers) was inextensible due to the
restrained material layer.

The segment length along the inextensible middle layer
was measured to be L1 = 124 mm. The segment mass m1

is uncertain due to the retrofitting the soft sensing skin on
the original design, for which the segment mass 0.110 kg
was measured prior to joining the segments together.

The soft robot was actuated using a pneumatic controller
unit based on an open source hardware platform [31]. Here
the control action is equivalent to a torque applied at the
posterior of the segment [26]. An external compressor
supplied compressed air to the actuation unit at a constant
pressure of 20 psi. The air pressure in the soft segment was
regulated by a pulse-width modulation (PWM) at 100 Hz.
The actuation signals, converted using the torque-to-PWM
mapping explained subsequently, were serially transmitted
to the control board (Arduino Mega). At a given time
instance, depending on the sign of the torque, only one
compartment out of the two in the segment was actuated. A
positive torque commanded compartment A of the segment,
while a negative torque commanded compartment B.

The torque-to-PWM signal mapping was identified by a
curve fitting process for each of the two compartments.
Considering the dynamic model of the soft robot (1), a step
input of τs = τpwm resulted in a steady state represented by
τpwm = Ks θpwm. Here θpwm is the steady state degree of
curvature of the segment and Ks is the torsional stiffness.
Sending commands to only one compartment of the
segment, the steady state degree of curvatures (θpwm) was
recorded for different PWM signal values. Then the applied
equivalent torque, τpwm, was calculated using the torsional
stiffness of the segment Ks = 1 Nm/rad which was
identified using system identification. Finally, polynomial
curve fits ranging from 1st order to 5th order were
performed using this data for each compartment of the
segment to obtain the mapping from torque to PWM signal.
Our model selection process, which chose the model with
the least error, resulted in selection of the third order
polynomial fit. The nominal value of the torsional damping
of the segment was identified to be Ds = 0.2 Nms/rad.

C. The experimental setup

The experimental setup, shown in Fig. 3, consisted of the
single-segment soft robot retrofitted with the sensing skin,
the pneumatic actuation unit, an Arduino board to acquire
the sensor skin strain signal, an OptiTrack motion capture
system for ground truth measurements, and an i7 16GM
RAM Windows 10 laptop to train the neural networks and
run the control algorithm on MATLAB 2019a. The motion
capture data was also collected on MATLAB via a software
development kit (SDK). Before each experiment, either
data collection or control, two cycles of inflating and
deflating each compartment for 5 s intervals were carried
out to eliminate first cycle effects in the elastomers.

Fig. 3. The experimental setup

We discuss the degree of curvature estimation for two
cases. First, uni-directional bending of the soft robot with
the utilization of a single soft sensing skin on one side.
Second, bi-directional bending utilizing both skins on two
sides. We assume that the soft robot segment has the same
curvature along its length. A data driven approach was
used to identify the relationship between the strain signals
from the sensors and the degree of curvature. Specifically,
we utilized a Recurrent Neural Network (RNN) named
Long Short Term Memory (LSTM) network [32] to learn
the time series mapping.

For both the scenarios the same network architecture
designed using the MATLAB Deep Learning Toolbox was
used. We used a dropout layer with a rate of 0.1 after the
input layer to prevent over-fitting and make predictions
more robust to noise. Next, an LSTM layer was used. The
number of hidden units for the this layer was selected to be
as small as possible to prevent overfitting via a validation
set. Then a fully connected layer was added to compute the
outputs.

For the uni-directional bending case, the actuator signal
(PWM signal) for the actuated compartment A and the raw
strain signal from the soft sensing skin A were the inputs
to the network. For the bi-directional bending case, the
actuator signals for both compartments and the raw strain
signals from the two sensing skins were the inputs. We
used the actuator signals as inputs in addition to the strain
signals since we observed that omitting actuator signals
resulted in poor curvature estimation. One plausible reason
may be that having actuator signals as inputs to the
network may compensate for the potential sensor drift [5].

The networks’ output was the degree of curvature. The
degree of curvature measured using the motion capture
(MoCap) system was used as the ground truth when
training the networks. Both the networks were trained
using the Adam optimizer. L2 regularization with the
default value (0.0001) was used. Further, two separate
validation sets were used: an α-validation set with a
frequency of 25 and patience of 5 to minimize over-fitting
by early stopping, and a β-validation set for selecting the
number of hidden units for the LSTM layer by manually
inspecting the root mean squared error (RMSE) value for
the β-validation set after the training had stopped.
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Fig. 4. Learned model test set performance: Uni-directional bending

1) Uni-directional bending: For testing the uni-
directional bending, only the compartment A of the soft
robot was actuated, and the strain signals from the soft
sensing skin retrofitted on the compartment A were used.
Eight experiments were conducted to collect data for
training. A random actuation pattern was generated at a
rate of approximately 1 Hz to actuate the soft robot and
each experiment was run for a period of 2− 3 minutes. For
each experiment, the actuation signal, the strain signal, and
the actual degree of curvature were recorded at a rate of 85
Hz. The collected data were joined together later to
constitute the total data set, which consisted of 115, 410
data points. This data set was then divided into a training
set of 80, 786 points and two validation sets,
α, β-validation sets, of 17, 312 points each, from which the
network was trained. The optimum number of hidden units
for the LSTM layer was 30.

Once the RNN was learned, the degree of curvature
estimation performance was evaluated in real time for a
random actuation pattern. The predicted degree of curvature
by the LSTM network superimposed with the actual values
for this experiment are illustrated in Fig.4 along with the
raw strain signals and the actuation signals. The RMSE for
this test experiment was 0.86◦.

2) Bi-directional bending: For this case both
compartments A and B were actuated, and the strain signals
from both the sensing skins were used. Note that at a given
time only one compartment was actuated. The training data
set was collected at a rate of 60 Hz by conducting seven
experiments using randomly generated actuation patterns at
a varying rate of 1 − 4 Hz. The cumulative length of the
experiments was 30 mins, resulting in a total data set that
consisted of 107, 090 data points. This data set was then
divided into a training set of 74, 962 points and two
validation sets, α, β-validation sets, of 16, 064 points each,
from which the network was trained. The optimum number
of hidden units for the LSTM layer was 30.

The degree of curvature estimation performance of the
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(c) Test set prediction from learned model

Fig. 5. Learned model test set performance: Bi-directional bending

learned model was evaluated in real time for a random
actuation pattern. The predicted degree of curvature by the
LSTM network superimposed with the actual values for
this experiment are illustrated in Fig.5 along with the raw
strain signals and the actuation signals. The RMSE for this
test experiment was 1.95◦.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the efficacy of the integrated
sensing strategy for dynamic tracking control of soft robots
using the adaptive control framework (2)-(3) for degree of
curvature tracking. We report the results for both
uni-directional and bi-directional bending. The tracking
errors are computed and related to the degree of curvature
ground truth measured by the MoCap system.

Uncertainty was assumed in the segment mass, torsional
stiffness and torsional damping. Thus the parameter vector
was chosen as Θs =

[
m1L2

1, Ks, Ds

]>
. The initial

parameter estimates Θ̂s(0) = [0.6, 0.1, 0.1]
> were set

different from the measured nominal values. By using the
adaptive controller, we demonstrated that the uncertainty in
the parameters was handled by the controller to achieve
satisfactory performance. The control gains were constant
throughout the experiments and were set to Γ = 1.2,
λ = 3.2, KD = 0.8.

1) Uni-directional bending: Here only the sensor strain
signals from the skin retrofitted onto compartment A and
the actuator signals for compartment A were used for
degree of curvature estimation via the learned model,
although both the compartments were allowed to be
actuated. Two experiments were conducted, one with a low
frequency target trajectory, and the other with a relatively
high frequency target trajectory. For the low frequency
target, the desired degree of curvature was set to
qd(t) = (π/8) − (π/9) cos (πt/12). The results are shown
in Fig.6 wherein the tracking RMSE was 4.35◦, and the
estimation RMSE was 2.78◦. The results for the high
frequency trajectory tracking are shown in Fig.7, where
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Fig. 6. Uni-directional low frequency target trajectory tracking
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Fig. 7. Uni-directional high frequency target trajectory tracking

qd(t) = (π/8) − (π/9) cos (πt/3). In this case the tracking
and estimation RMSE was found to be 4.09◦ and 2.27◦

respectively.
2) Bi-directional bending: Here both compartments

were actuated, and strain signals from both the sensing
skins were used for degree of curvature estimation via the
learned model for bi-directional bending. Two experiments
were conducted, one with a low frequency target trajectory
and one with a relatively high frequency target trajectory.
For the low frequency target, the desired degree of
curvature was set to qd(t) = (π/6) sin (πt/6). The results
are shown in Fig.8, in which the tracking and estimation
RMSE was found to be 5.05◦ and 3.79◦ respectively. The
results for the high frequency trajectory tracking are shown
in Fig.9, where qd(t) = (π/6) sin (πt/4). Here the tracking
RMSE was 5.10◦ and the estimation RMSE was 3.73◦.

VI. DISCUSSION

The experimental results exhibit the successful utilization
of the retrofitted soft sensing skin for the degree of
curvature estimation for adaptive tracking control of a
desired curvature trajectory. The uni-directional bending
illustrates the use of a single soft sensing skin for degree of
curvature estimation when the soft robot only bends in a
certain direction. This capability is useful for sensing and
estimation of soft segments, such as in wearable robots,
that have only a single compartment and only bend in a
one direction. The bi-directional experiments demonstrate
the use of two sensing skins retrofitted on the two
compartments of the soft robot for curvature estimation.
The bi-directional bending is especially important in soft
robot manipulation.

Considering both the uni-directional and bi-directional
bending, the capability of the integrated sensing skins to
estimate the curvature for slow as well as fast
manipulations are shown, and the fast response of the
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Fig. 8. Bi-directional low frequency target trajectory tracking
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Fig. 9. Bi-directional high frequency target trajectory tracking

sensors are reflected in the satisfactory tracking of the
target trajectory. In the starting of the experiments the
higher tracking error maybe due to uncertain parameters
which in time gets better due to parameter adaptation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the use of integrated
sensing for dynamic control of soft robots under the
piecewise constant curvature modeling hypothesis. The soft
sensing skins proposed in this work could be retrofitted to
many soft robots, and the degree of curvature estimation
can be learned using an LSTM network, only requiring the
strain signals from the sensing skin and the actuator inputs.
Moreover, an adaptive controller was designed to track a
desired degree of curvature trajectory. The satisfactory
degree of curvature tracking using the adaptive controller
for low and high frequency target trajectories demonstrates
that the proposed soft skins are capable of estimating the
degree of curvature robustly for inclusion in a dynamic
control framework.

The current work was only focused on free bending of
a planar piecewise constant curvature soft robot. Subsequent
work will be on developing and using the stretchable sensors
for 3D soft robots under external wrenches while relaxing
the piecewise constant curvature assumption. This can be
potentially done by utilizing a distributed sensing approach
to estimate the curvature of the soft robot along its body
at different points, and by using recently developed models,
such as polynomial curvature models [33] and Cosserat rod
models [34], for modelling and control design.
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