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1. Introduction

The goal of this paper is to introduce a novel methodology for non-parametric inference allows
incorporating the adverse impact of out-of-sample scenarios. We call the procedure Sample Out-
of-Sample (SOS)) inference. Our method is general, and we discuss several applications, including
Distributionally Robust Optimization (DRO), semi-supervised learning, and a novel stress-testing
framework. We use the DRO framework in the introduction to put our contributions in perspective.
We elaborate on semi-supervised learning and stress-testing applications in Section 2.

A data-driven DRO problem takes the form

min max FEp[L(0,X)], (1)

0eR PEUs(Pn)

where £ :R%! — [0,00) is a cost (or loss) function, X € R! is a random element, and 6 € R? is
a decision. Often, L (-,x) is assumed to be strictly convex and smooth (e.g. twice differentiable)
and we will assume this throughout our motivating discussion. The notation Ep (-) denotes the
expectation operator associated to the probability measure P. We use P, to denote the empirical
measure corresponding to {X;},_, independent identical distributed (i.i.d.) observations that follow
the distribution P,. The set Us (P,) is the distributional uncertainty set. The parameter ¢ > 0 is
called the “size of the distributional uncertainty” so that the family of sets (Us; (P,):d >0) is
increasing (in the sense of inclusion) as a § > 0 increases and so that for 6 =0, Uy (P,) = {P.}.
Therefore, intuitively, P, is the “center” of the distributional uncertainty region and § > 0 can be
thought of as its “radius.”

Ideally, one would like to compute 0, = argmin Ep, [£ (0, X)], but P, is unknown. Therefore, the
intuition behind formulation (1) is that one is interested in choosing a decision 6, which performs
well uniformly over a range of models that constitute reasonable (or plausible) variations of the
data (encoded by P,).

We are interested in variations of the empirical distribution P, (the elements in Us (P,)) that

systematically explore the impact of out-of-sample scenarios in the loss function £ (-). Therefore,
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P € U5 (P,) should not be supported only on the underlying data set. Instead, we are interested in
a framework that admits models in P € Us (P,) that may be supported outside the sample { X} ;.
Because of this out-of-sample exploration feature, we choose Us (P,) based on the Wasserstein
distance of order 2, which is explained in Section 3. We shall also discuss different alternative norms
that are supported by our analysis and discuss how these can be calibrated in a data-driven way.

Distributionally robust optimization formulations such as (1) based on the Wasserstein distances
have been studied recently in a wide range of settings, especially in applications to machine learning
and artificial intelligence, see for example, Shafieezadeh-Abadeh et al. (2015), Mohajerin Esfahani
and Kuhn (2018), Zhao and Guan (2018), Blanchet and Murthy (2019), Gao and Kleywegt (2016),
Blanchet et al. (2019b), Yang (2017), Sinha et al. (2018), Gao et al. (2018), Volpi et al. (2018),
Chen et al. (2018), Blanchet et al. (2019e,c).

All of these studies focus on the setting in which the support of the distributions inside Us (P,)
is R?. Moreover, within the current literature, only Blanchet et al. (2019b) studies the optimal
selection of the parameter J by defining a natural optimization criterion. The work of Blanchet
et al. (2019b) also shows that such criterion recovers choices that have been argued to be effective
for recovery in machine learning settings for which a DRO representation can be posed.

In contrast, compared to Blanchet et al. (2019b), our work is the first one that studies the
statistical implications of choosing the support of the members of the distributional uncertainty
P eUs(P,) in a data-driven way. One of our main contributions of this paper consists in providing
a comprehensive study of an optimal data-driven choice of uncertainty size, §, when the support
of the members in U; (P,) is obtained from an arbitrary random sample whose size is increasing
with n.

More generally, our contributions can be viewed in the lens of a novel inference framework that
we call SOS inference, based on the analysis of the so-called SOS profile function for estimating
equations.

In the DRO framework, we consider enriching the empirical data set &, = {X;}!", (which is

assumed to be i.i.d.) by including a set of scenarios {Y;}, (which is also assumed to be i.i.d.), with
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m = [kn] for some k € [0,00). The Y;’s and the X;’s are not assumed share the same distribution.
In order to unify the notation we write Z; = X; for i=1,....n, Z,,,, =Y, for k=1,...,m and set
Zoim =12, }}Lil’”. (We use P to denote the probability measure supporting the infinite sequences
{X;}i>1 and {Y;};>1, where the support of P is dense in the support of the underlying sampling
distribution.)

In order to emphasize the difference between the analysis in Blanchet et al. (2019b) and our
analysis here, we write Us (P,;R'™) to denote the full support case (studied in Blanchet et al.
(2019b)) and Us (P,,; Z,+m) for the uncertainty set considered in our current setting.

Let us describe the optimality criterion introduced in Blanchet et al. (2019b) for choosing §.
Here we restrict the support on the observed sequence and we would expect larger § due to the
extra constraint. Since the set U; (P,) is interpreted as the set of plausible variations of the data,

then the set

As (P,)={0:0=argmin Ep[L (0, X)] for PeU; (Pn; Z,1m)} (2)

corresponds to the set of plausible decisions, those that are compatible with the distributional
uncertainty region. Note that As(FP,) is a random set that can be interpreted as a confidence

region. The criterion that we utilize is the following
min{é: P (0, € As (P,)) > o}, (3)

where « is a desired confidence level.

To analyze (3), we first argue that

{0. € As (Po)} ={R) (0.) <4}, (4)

for a suitable function, RY (-), which we call the Sample-out-of-Sample (SOS) profile function.
In simple words, R (.) can be computed directly in terms of the shortest Wasserstein distance
between P, and the set of probability models P € Us (P,,; Z,,+m) for which Ep[V,L (0.,2)]=0.

As a consequence of (4), the optimal ¢ solving (3) is simply the a-quantile of RY (6.).



Blanchet and Kang: Sample Out-of-Sample Inference
Article submitted to Operations Research; manuscript no. OPRE-2016-05-283.R3 5

In general, we can use our methodology to test the hypothesis that 0. satisfies Ep, (h (6.,z)) =0,
simply replacing VoL (0,2) by h(0,z) in the definition of the SOS profile function. The hypothesis
is rejected for high values of the statistics RY (6,). Thus, it is important to compute the asymptotic
distribution R}Y (6.).

Our contributions are then stated at this level of generality (i.e., asymptotic analysis of RY (6.,)
for the purpose of hypothesis testing). In the end, this paper involves two main methodological
contributions:

A) First, we characterize the asymptotic distribution of R! (6,) as n — oo; see Theorem 1,
Theorem 2, and Theorem 3. We explain how to compute the asymptotic limiting distributions in
Section 4.1.2.

B) Second, we discuss various extensions that we believe are natural to study in order to define
DRO optimal transport cost functions. These include implicit DRO formulations and plug-in esti-
mators. We illustrate the extensions in the empirical result section (Section 5). For example, writing
0. = (7«,v.) we develop the asymptotic distribution of R (., v, ), where 9, is a suitable consistent
plug-in estimator for v, as n — oo ; see Corollary 2. The construction of ¥,, may be based on stan-
dard empirical estimators. This extension may be used in the context of stochastic optimization
with constraints, as illustrated in Section 5.

The theory that we develop in this paper parallels the main fundamental results obtained in
the context of Empirical Likelihood (EL), introduced by Art Owen in Owen (1988, 1990, 2001). In
fact, the construction of the function R (-) borrows a great deal of inspiration from the empirical
likelihood profile function and its extensions based on divergence criteria, rather than the likelihood
function (see Owen (2001)), and also see Bayraksan and Love (2015) for a comprehensive review
of divergence-based distributional uncertainty sets in optimization, many of which are amenable
to EL-based analysis. There are, however, several important features of our framework that, we
believe, add significant value to the non-parametric inference literature.

Before we discuss these features, we want to emphasize that our motivation is not to disprove the
appropriateness of divergence approaches. The DRO community is actively investigating the advan-

tages of various choices of uncertainty sets. Our discussion should be seen as a step in this direction.
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The most likely picture to eventually emerge is that divergence and Wasserstein approaches com-
plement each other depending on issues such as convenience and tractability. For the purpose of
using out-of-sample scenarios to inform the uncertainty set, we believe the Wasserstein distance is
a natural choice, as we shall explain.

First, using divergence-based criteria (as it is typically done in standard EL settings) carries
implicit support assumptions that seem unnatural in our setting as the sample size increases. For
example, it is not difficult to see that a divergence-based distance between the empirical measure
based on n ii.d. samples and that of m = [kn] i.i.d. samples (both from the same distribution)
may not converge to zero. In our setting, this suggests that under divergence-type constructions, it
requires a large uncertainty set to include distributions that one may reasonably and intuitively see
as relatively small perturbation of the data. So, choosing a large-sized uncertainty to accommodate
these small perturbations may inflate the estimates artificially, just because the populations are
large but unbalanced. Alternatively, if the size of uncertainty is small (which is expected under the
null hypothesis as the sample size increases), the proportion of mass allocated outside the support
of the empirical measure decreases to zero, so the overwhelming proportion of the mass in the
models contained in the uncertainty set is concentrated in the support of the baseline model. Hence,
we believe that the direct use of the EL framework may not be suitable in our setting. Additional
out-of-sample issues that arise from using divergence criteria for data-driven distributional robust
optimization (closely related to EL) are noted in the stochastic optimization literature (see Esfahani
and Kuhn (2018)), and see also Wang et al. (2009), Ben-Tal et al. (2013) for related work.

Second, from a methodological standpoint, the mathematical techniques needed to understand
the asymptotic behavior of R (6,) are qualitatively different from those arising typically in the
context of EL. We will show that if [ > 3, then the following weak convergence limit holds (under

suitable assumptions on L (+)),
n1/2+3/(2l+2)RW (0*) =R (0*) ,

as n — 0o. Note that the scaling depends on the dimension of the random vector X in a very

particular way. In contrast, the Empirical Likelihood Profile function is always scaled linearly in
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n and the asymptotic limiting distribution is generally a chi-squared distribution with appropriate
degrees of freedom and a constant scaling factor.

In our case, R (6.) can be explicitly characterized, depending on the dimension in a non-trivial
way, but it is no longer a suitably scaled chi-squared distribution. When [ =1, we obtain a similar
limiting distribution as in the EL case. The intuition here is that a sample of order O(n) provides
enough coverage of the space since the optimal transport plan will displace points at distance
O(1/n'/?). The case | = 2, interestingly, requires a special analysis. In this case, the scaling remains
linear in n (as in the case [ = 1), although the limiting distribution is not exactly chi-squared, but
a suitable quadratic form of a multivariate Gaussian random vector. For the case [ > 3 the limiting
distribution is not a quadratic transformation of a multivariate Gaussian, but a more complex (yet
still explicit) polynomial function depending on the dimension.

At a high level, some of the qualitative distinctions in the methodology arise because of the linear
programming formulation underlying the SOS function, which will typically lead to corner solutions
(i.e., basic feasible solutions in the language of linear programming). The high level intuition of
the scaling is associated with the interplay between the linear programming formulation and the
coverage of a sample of size n in a space in [ dimension. A high-level intuition is given in more detail
in Section 7.1. In contrast to the analysis of the SOS function, in the EL analysis of the profile
function, the optimal solutions are amenable to a smooth perturbation analysis as n — 0o using
a Taylor expansion of second (and higher) order terms. The lack of a continuously differentiable
derivative (of the optimal solution as a function of @) requires a different type of analysis relative
to the approach (traced back to the classical Wilks’ theorem as in Wilks (1938)), which lies at the
core of EL analysis.

The high-level intuition developed in Section 7.1 also underscores the distinction between our
development here and the analysis in Blanchet et al. (2019b). In contrast to our development here,
the scaling in Blanchet et al. (2019b) is always dimension independent. This is because the issue

involving the coverage of the random scenarios in the support of the alternative distributions is
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not a feature that needs to be considered. Moreover, the current setting introduces a correlation
structure in the optimal transportation map, which is not present in the analysis of Blanchet et al.
(2019b). This is because the feasible transportation locations are now given by a random sample.
To this end, we take advantage of recent sample-path martingale inequalities. The use of these
inequalities is showcased in the technical Section 7.2.7 and we believe that these techniques may
be applicable more broadly in non-parametric statistical analysis.

The rest of the paper is organized as follows. In Section 2 we discuss semi-supervised learning and
stress-testing applications that motivate the formulation in which the support of P € Us (P,; Z,41m)
is data-driven. Basic definitions, including a review of the Wasserstein distance, are given in Section
3. Our main technical results are described in Section 4. We include applications of our results to
settings such as stochastic optimization, risk analysis, and semi-supervised learning in Section 5.
A short section including conclusions and additional discussions is given in Section 6. Finally, our
technical development is given in Section 7, starting with a high-level intuition of the nature of our

results and scaling in Section 7.1.

2. Motivating Settings
2.1. Semi-supervised Learning Applications

The setting of semi-supervised learning can be used to illustrate our framework. Consider a classifi-
cation problem that takes the form D,, = {(X,,Y;)},_, and Y; € {—1,1} is the i-th response variable
and X, € R is the i-th predictor. For concreteness, let us consider the logistic regression setting in

which

exp(YZﬂ*TXi)
PY,=1\X;) = =1—-P(Y,=-1|X,).
(= 11X0) = T (¥; = =1X))

Suppose that we have access to an unlabeled data set {X/}" and we are interested in using this
data in a meaningful way for estimating (.. This is the semi-supervised learning setting arising in
cases in which obtaining responses or labels for every individual may be costly.

If the predictive variables are contained inside a lower-dimensional manifold embedded in the

underlying ambient space, our intuition is that unlabeled data can be used as a proxy to profile
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Unlabeled Data
@ labeled Data

Figure 1 An illustrative example showing that the unlabeled observations (with green dots) can be used to
provide a proxy for the underlying manifold (the yellow surface) in which the the predictive variables

lie; whereas the labeled data points (red dots) are not sufficient to provide such information.

precisely such a lower dimensional manifold. Thus it is natural to impose a DRO formulation that
enhances statistical performance by quantifying the impact of out-of-sample scenarios that lay
in the relevant lower-dimensional manifold. This intuition is illustrated in Figure 1. The work of
Blanchet and Kang (2018) proposes combining both the labeled and unlabeled data by forming
the set X, ,, =D, U({X/}.", x {-1,1})")) (i.e., the original data set is enriched by considering the
unlabeled data with all the possible responses recorded by the labeled data).

Then, Blanchet and Kang (2018) considers a DRO formulation for estimating /. in which the
distributional uncertainty region is defined in terms of the Wasserstein distance. The DRO formu-

lation proposed in Blanchet and Kang (2018) is equivalent to the problem

min  max Ep[L(X,Y,B)], (5)

B Us(PnsXn,m)
which corresponds to (1).
The formulation of Blanchet and Kang (2018) (i.e. (5)) is of significant interest because it is a
natural semi-supervised learning extension version of regularized linear regression, which is a highly

popular supervised machine learning estimator (see Hastie et al. (2005)). In particular, it is shown in
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Blanchet et al. (2019b), see also Shafieezadeh-Abadeh et al. (2015), that replacing Us (P,; X, ,,,) by
Us (P,;R") in (5) one recovers exactly regularized logistic regression and ¢ corresponds exactly to the
regularization parameter. This connection between Wasserstein DRO and mainstream supervised
learning estimators has been established for a large class of methods, including square-root Lasso
(Blanchet et al. (2019b)), support vector machines (Blanchet et al. (2019b)), group Lasso (Blanchet
and Kang (2017)), adaptive Lasso (Blanchet et al. (2019e)), etc.

The methods developed in this paper provide the theoretical underpinning for the choice of the
uncertainty size ¢ in the context of (5), which yields regularized estimators that are informed by

the unlabeled data in a meaningful way.

2.2. Novel Stress-testing Framework

Consider the following stress-testing exercise. An insurance company wishes to estimate a certain
expectation of interest, say Ep«(L(X)), where X might represent one or several risk factors, L (X)
is the corresponding financial loss and P*(-) is the underlying probability measure which may be
unknown.

The insurance company may estimate E* (L(X)) based on n i.i.d. empirical samples X1, ..., X,, €
R'. However, the regulator (or auditor) is also interested in quantifying the potential financial loss
based on stress scenarios, say an i.i.d. sample Yi,...,Y,, € R!, where m = [kn]| with & € [0,00). Tt
may be natural to choose Kk =1 so that the amount of information provided by the regulator and
the company is balanced, but this is not necessary.

The scenarios provided by the regulator may or may not come from the same distribution as
the X,’s. In fact, typically they will come from a different distribution. The regulator’s beliefs are
captured by the distribution of the Y;’s. These beliefs may, in turn, be informed by the knowledge
that is accessible only by the regulator and not by the insurance company. The regulator may
not necessarily question the fact that the historical data from the X;’s follows distribution P, (-),
but the regulator might be concerned that the insurance company lacks additional information to

assess the overall risk exposure better.
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On the one hand, the insurance company clearly knows well its idiosyncratic risk exposures,
so the data represented by the X,’s, arising from a model with such idiosyncratic information
is meaningful and should be considered carefully. On the other hand, it is also correct that the
regulator possesses additional information that should be considered in evaluating the potential
impact of scenarios that may not be appropriately captured by the data of the insurance company.

How does one incorporate both the X;’s and the Y;’s in a meaningful way for the purposes of
evaluating the risk of the company?

The methodology developed in this paper allows incorporating both the empirical data of the
insurance company and the stress scenarios provided by the regulator into a Distributionally Robust
Performance Analysis (DRPA) formulation (closely related to Distributionally Robust Optimiza-
tion — DRO) as we describe next.

Define Z;, = X, for k=1,...,n and Z,;, =Y} for k=1,...,m (i.e., merge both the empirical
samples and the stress scenarios into a set 2,4, ={Z1,..., Znim}). We let

P,(dz)=n""! i dix,y (dx)
k=1
be the empirical distribution of the data generated by the insurance company. A natural estimate

for E* (L(X)) based on the insurance company’s data is given by

Ep, (L(X))=n""Y L(Xy).

Now, let P (Z,1,,) be the set of all probability distributions with support on Z,,,,. Our DRPA
approach consists in providing estimates for Ep (L(X)) via
0_(0),0, ()= min, max Ep(L(X)). (6)
PeUs(PniZn,m )
We believe that the DRPA formulation (6) provides a reasonable approach for combining both
the insurance company’s information and the regulator’s beliefs. We do not disregard the data

coming from the insurance company (in fact, the empirical distribution P, is placed at the center
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of the uncertainty set), but we also capture the potential impact of out-of-sample scenarios based
on the regulator’s beliefs.

Formulation (6) is closely related to (1) and the methodology that we present in this paper can
be used to find an optimal choice for §. In particular, an equivalent way of representing the range
[0_(8),0, (0)] is in terms of a suitably defined SOS profile function (or “SOS function”), R (-),

as we shall see, so that
min{6: RY (0) <6}, max{f: RY (0) <&} =[0_(0),0 (9)]. (7)

Therefore, the study of the function RY (-) is a key in the analysis of (6) and the selection of § based
on statistical principles, and this leads us to our contributions A)-B) described in the Introduction.

We emphasize, however, that our choice of § is purely statistical. That is, we operate under the
blanket assumption that the risk is correctly computed solely with the bank’s internal data as the
sample size grows to infinity. Under this assumption there is less and less need for scenarios as
the sample size of the internal data increases. In practice, the sample size is always finite and,
in the end, the choice of regulatory capital is the result of an informed negotiation between the
regulator and the bank. We provide a tool that helps to inform this discussion because it statistically
combines both elements (internal data and external scenarios) in a way that is consistent with the
guidelines described in of Governors Federal Reserve System (2019) for generating stress scenarios.
However, non-statistical criteria (e.g., social cost based) may also be used to choose §, leading to,
for instance, hybrid methods that would build on our current development. However, these types
of hybrid choices would require additional modeling elements that are beyond the scope of our

statistical treatment.

3. Basic Definitions

Throughout our development we adopt the convention that all vectors we consider are expressed
as columns, so, for example, 7 = (z1,...,2;) is a row vector in R! (here we use 27 to denote the
transpose of x). Also, given a random variable W € R? so that E(W)=0 and E <||W||;) < 00, we

use Var (W) =E(WWT) to denote the covariance matrix of W.
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3.1. On Wasserstein Distance and Distributional Uncertainty

As we mentioned in the introduction, we utilize the Wasserstein distance of order 2 to describe the
distributional uncertainty region. We consider two closed subsets of R!, namely X and Z. We use
the notation P (X x Z) to denote all the Borel probability measures 7 with support on X x Z. Any
m € P (X x Z) can be thought of as the joint distribution of a pair of random vectors (X, Z). We
use the notation wx to denote the marginal distribution of X under 7; similarly, 7 is the marginal
distribution of Z under .

The Wasserstein distance (of order 2) between the Borel probability measures p and v, supported

on X and Z, respectively, is defined as /D (u,v), where

D(M,U):inf{//||$—z”§7'('(dx,dz)IWEP(XXZ),TI’XZM,WZ:U}.

In simple words, the square of the Wasserstein distance of order 2 (under the Euclidean metric) is
defined as the minimum cost of transporting the mass encoded by p into the mass encoded by v;
computing the unitary-cost-per-transportation of a unit of mass from x to y as the square of the
Euclidean distance between the source (x) and destination (y).

Our results can be directly adapted to the situation in which the Euclidean metric is replaced
by the so-called Mahalanobis distance, namely, ||z — y||, = (z —y)" A (z —y) for any positive def-
inite matrix A. The use of this distance and procedures to fit A for classification tasks based on
manifold learning tools are studied in Blanchet et al. (2019¢). In order to simplify the notation
and the exposition we continue with the standard Euclidean metric throughout our development,
corresponding to A= 1.

In the sequel, X and Z are finite cardinality sets. Therefore, in this case, the evaluation of D (u,v)
is a finite dimensional linear programming problem and so, conceptually, computing D (u,v) is
straightforward. The Wasserstein distance is defined in great generality (for arbitrary metric spaces)
as the solution of the Monge-Kantorovich problem with the cost-per-transportation defined in

terms of the underlying metric. We refer the reader to Villani (2008) for more information on
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Wasserstein distances. Because we focus on the finite-cardinality case, it is enough with elementary
notions of finite dimensional linear programming to understand the definition we use in this paper.
The distributional uncertainty set, Us (F,), mentioned in the Introduction to motivate our con-

tributions can then be defined by choosing X =&, and Z = Z,,,,, and letting
Us (P,)=U5(P,; Z,4m)={P:D(P,,P)<d}.

3.2. The SOS Profile Function

To motivate the definition of the SOS Profile function, once again, we return to the DRO framework

defined in the Introduction. We note from (2) that
As (P))={8: Ep[h(X,0)] =0 for Pelis(P,)},

where h (X,0) = VoL (X,0). So (by convexity) we have that 6, € A; (P,) if and only if there exists
P € Us (P,) such that

Ep[h(X,0,)]=0. (8)

Let RY (6.) be the smallest transportation cost (measured by D (P,,P)) between P, and any
member P € P(Z,,,,) for which (8) is true. It is easy to reason that RY (6.) <¢ if and only if

0. € As (P,). Formally, we have the following definition for the SOS profile function R} (#), namely
RY (6) = min{D (P,, P): Ep [1(X,0)] = 0}. (9)

The goal of this paper is to study the behavior of R (,) under the estimating equation assump-
tion

Ep, [h(X,0.)] =0, (10)

and the {X;};", being an ii.d. sample from P.. We will formulate our results in terms of the
estimating equation (10) for general h(-) (not necessarily arising from an optimization problem).

We consider this more general framework because we believe that our results may be applicable
to inference settings other than DRO, for instance, the stress-testing framework described earlier.

In fact, we now return to such setting to explain how to use the SOS profile function in this case.
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3.2.1. The SOS Profile function for stress-testing setting In the stress-testing setting
described earlier, we wish to select § just as large to guarantee that 6, := Ep« (L(X)) € [0_ () ,0 (J)]
with a certain degree of confidence, which we shall denote by «.

Therefore, because of equation (7), we are interested in choosing the smallest ¢ so that
P{0. €10-(3),0+ (0)]} =P{R (0.) <0} =a. (11)
In other words, ¢ is chosen to be the a-quantile of the random variable
RY (0,) =min{D (P,,P): Ep[L(X)—0,]=0}.

Note that this formulation is a particular case of the one introduced in (10) by letting h(0,z) =
L (z) — 6. For pedagogical reasons, we will present our results first for the SOS profile function for

means (i.e., assuming that L () =) and later we move to more general estimating equations.

4. Main Results
4.1. SOS Function for Means

We state the following underlying assumptions throughout this subsection.

A1): Let us write X, = {X},..., X,,} C R’ to denote an i.i.d. sample from a continuous distribu-
tion. Therefore, the cardinality of the set &, is n.

A2): We also consider an independent i.i.d. sample ),, = {Y7,...,¥,,} C R' from a continuous
distribution. Throughout our discussion we shall assume that m = [kn] with x € [0, 00).

A3): Assume that E|| X, ][>+ E ||V;]]2 < cc.

A4): If | = 1 we assume that X; and Y; have positive densities fx (-) and fy (-). If I > 2 we assume
that X; and Y; have differentiable positive densities fx (-) and fy (-), with bounded gradients.

Define Z,, .., ={Z1,.... Zpnsm} = X UV, with Z, = X, for k=1,...,n, and Z,; =Y for j =
1,...,m. For any closed set C let us write P (C) to denote the set of probability measures supported

on C. Therefore, in particular, a typical element v,, € P (Z,,,,) takes the form

n+m

v, (dz) = v (k) bz, (dz),

k=1
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where ¢, (dz) is a Dirac measure centered at Z;. Now, we shall use y, € P (X)) to denote the

empirical measure associated to X, that is,

fn () = S x, ().

Given any m € P (X, X Z,1.n) we write mx € P (X)) to denote the marginal distribution with

respect to the first coordinate, namely 7y (dx) = f 7 (dx,dz) and, likewise, we define 75 €

Zezn+m
P (Zn) as Tz (dZ) — j;L'EXn W(dx,dZ)

We have the following formal definition of the SOS function for estimating means.

DEFINITION 1. The SOS function, RY (-), to estimate 6, = E (X) is defined as

RY (0*):inf{//Hx—zH;W(daj,dz): (12)
st. TE€P (X X Zpm) , T = fn, Tz :vn,/zvn (dz)=0.},

:inf{// e — 2|27 (da, d2)

st. T€P (X X Zim),Tx = un,/zwz (dz)=0.} .

(Here and throughout the paper, s.t. is an abbreviation for “subject to.”)
We now state the following asymptotic distributional result for the SOS function.

THEOREM 1 (SOS Profile Function Analysis for Means). In addition to Assumptions Al)-
A}), suppose that the covariance matriz of X, Var (X), exists. The following asymptotic result

follows
o Whenl=1,

nRY (0.) = o*x}

where 0* =Var (X).

o When l=2, define Z ~ N (0,Var (X)) R, then

ny (0.)=0(2) (2-3(2)0(2))|
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where p:=p (Z) s the unique solution to the equation

; =4(nZ),
and §:R' = R is a deterministic function defined as

§(@) =P ((0) < Jlal13)
where T is a random variable satisfying
P (7 >1) =Efexp (= (fx (X1) + £fy (X1)) 7t)].
And the function 7: R! = R is a deterministic function given as
i (@) = E |max (1= 7(0)/|l2]13,0)] -

o When >3,

1
1+m

2 +2 HZ ,

n'/* R (0,) = 1+2 T
(B [t (x (0 ety (X10)])

where Z ~ N (0,Var (X)) € RL

4.1.1. More on the limiting distribution The limiting distributions that we obtain are
explicitly characterized. They depend on parameters that are meaningful in the application settings
that we shall discuss. For example, the distribution from which stress scenarios are generated or
the distribution of the predictors of the unlabeled data clearly play a key role in the limiting
distribution. These parameters dictate the “spread”of the distribution and, consequently, the size
of quantiles. So, the parameters that appear in our limit theorems readily affect the uncertainty
size in a quantifiable way.

In order to make this point relatively more tangible, consider the following example based on
simulated data.

Our asymptotic theorem gives different asymptotic distributions for different degrees of freedom

(d.f.) in the Student-t distribution. If we select the 95% quantile for the construction of our robust
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risk valuation interval, we can see that the higher the d.f., the smaller the quantile, as we show in
Figure 4.1.1. So, an increase in the likelihood of more extreme scenarios provided by the regulator
translates directly into a larger confidence region for the risk or a larger size in the uncertainty

region, in a precisely quantifiable way thanks to our results. The SOS profile function is the distance

Comparision of the asymptotic distribution of SoS profile with different out-of-sample data
Dimension | = 3 and k=10

o o
o =
3 @

v
©
&

v
@
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@
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95% quantile of the asymptotic distribution
n
o
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w
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e

0 pa) 50 s 100 125 150 175 200
Degree of freedome for Student-T distribution for the out-of-sample data

Figure 2 95% quantile for the SOS profile function asymptotic distribution (dimension being 3 and the xk = 10)
with different degree of freedom for the Student-t distribution in stress scenarios. The in-sample data
is standard Gaussian. The red dashed line illustrates the situation in which stress scenarios are also

chosen to be standard Gaussian.

between the empirical distribution and the manifold determined by the estimating equation(s). If
the in-sample data and the stress-scenario data are more similar, we would expect smaller quantiles
(this corresponds to the setting in which the d.f. is large for the Student-t distribution), and we
will observe larger quantiles when the two distributions are different from each other (this is the

setting in which the d.f. is small for Student-t).

4.1.2. Evaluating the Limiting Distribution In Theorem 1 and in the rest of our results,
the limiting distribution depends on parameters that might be unknown. For example, take the

case [ > 3 in Theorem 1. We obtain that

<t

2 +2 ’Z , 3
[+2 (co)l/(l“)’ (13)

n1/2+ﬁRZV (0*)
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where
7.[.l/2
co=FE|—+—— X))+ rfy (X

and Z ~ N (0, Var (X)). This situation is quite standard when developing asymptotic distributions
for hypothesis testing and the remedy is to simply use any consistent plug-in estimator to estimate

the unknown quantities. For instance, we can use

n

1 T
X = > (X;—Ep, (X)) (X; - Ep, (X))
j=1
instead of ¥ = Var (X). We can also use any consistent estimator (converging on compact sets
and with rapid decay at infinity) for the densities of fx (-) and fy (-), say f)((") (-) and fx(,") (+),

respectively, and estimate ¢y via

y

0 (1) = En, | 57y (P 00+ (00)]
which is consistent as n — co. Because the asymptotic distribution in (13) is continuous in ¢, and
¥, it follows that estimating quantiles based on the plug-in estimators ¢y (n) and ¥, in place of
co and X leads to asymptotically equivalent specifications for the asymptotic quantiles of R} (6.,).
These quantiles, in turn, can be estimated by Monte Carlo using the asymptotic limits, with the
plug-in estimators in place. A completely analogous approach can be followed for the asymptotic

distributions obtained in the developments that we discuss next.

4.2. SOS Function for Estimating Equations

Throughout this subsection we assume that A1) and A2) are in force. Let us assume that h :
R x R' — R? and ¢ < d. We also impose the following assumptions.
B1) Assume 6, € R? satisfies
E(h(0.,X))=0.
B2) Furthermore, suppose that

E |7 (6., X)||2 < oo, and E||h(6,,Y)]> < cc.

Our goal is to estimate 6, under two reasonable SOS function formulations, which we shall
discuss. These are “implicit” or “indirect” and “explicit” or “direct” formulations, we will explain

their nature next.
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4.2.1. Implicit SOS Formulation for Estimating Equations The first SOS function form
for estimating equations is the following; we call it Implicit SOS or Indirect SOS function because
the Wasserstein distance is applied to h (60, X;) and h(0,Z;) and thus it implicitly or indirectly

induces a notion of proximity among the samples.

DEFINITION 2 (IMPLICIT SOS PROFILE FUNCTION FOR ESTIMATING EQUATIONS). Let us write

XM (0.)={h(0,,X,): X, € X,} and 2", (0,) = {h(0.,Z) : Zx € Zuym} then

RY(0,) = inf{// 1 (6ur) = h (0., 2) |2 7 (da, d2) - (14)

st weP (XM (0.) x 2k, (0.)) 7 = un,/h(e*,z)wz (d2) =0} .

The Implicit SOS formulation might lead to dimension reductions if [ ( the dimension of the
ambient space of X) is large. In addition, the presence of h (-) in the distance evaluation allows the
procedure to use the available information in a more efficient way. For instance, if h (0,x) = |z| -6,
then the sign of x is irrelevant for the estimation problem and this will have the effect of increasing
the power of the Implicit SOS function relative to the explicit counterpart.

The analysis of the Implicit SOS function follows as a direct consequence of Theorem 1; just
redefine X; < h (0., X;), Zy < h(0.,Z;), and apply Theorem 1 directly. Thus the proof of the next

result is omitted.

THEOREM 2 (Implicit SOS Profile Function Analysis). Let us denote gx(-) as the density
for h(6.,X;) € R? and gy (-) for the density of h(0.,Y;) € R1. Then, the Wasserstein profile function
defined in Equation (14) has the following asymptotic results:

o When qg=1,

nRY(0,) = Var (h (6., X)) X2

o When q=2, if Z~N (0,Var (h(0,,X))) € R? then

2

’
2

nRY(0.)=p(2)[2-n(2)r(2)]

k
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where p <Z) 1 the unique solution to the equation
; =3(nZ),
and g :R?— R is a deterministic function defined as
§(2) =P (Jlall3 2 7(0)).
where T is a random variable satisfying
P[r >t] =E[exp (= [gx (h (0., X1)) + kgy (h (0., X1))] 7t)].
And the function 7: R? — R is a deterministic continuous function given as
i (@) = E [max (1= 7(0)/|2I13,0)] -

o When q> 3,

1
Mg

p

2q+2
q+2 (

2

n'/FrEERY (0.) = :

E {% (9x (h(0.,X1)) + Kgy (h(e*’Xl)))Dﬁ

where Z ~ N (0,Var (h(6,,X))) € R,

4.2.2. Explicit SOS Formulation for Estimating Equations The second SOS function
form we call Explicit SOS function because the Wasserstein distance is explicitly or directly applied

to the samples and the scenarios.

DEFINITION 3 (ExprICIT SOS PROFILE FUNCTION FOR ESTIMATING EQUATIONS).

RY(6.) :inf{// |z — 2|37 (dz, dz) : (15)
st T EP (X X Zupm)) s = ,un,/h(ﬁ*,z)wz (d2) =0} .
Both the implicit and explicit SOS formulations have their merits. We have discussed the merit

of the implicit SOS formulation. For the Explicit SOS formulation, consider the stress-testing

application discussed in Section 2.2. The interest of an auditor or a regulator might be on the impact
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of scenarios on a specific performance measure of interest. One might think that the regulator
applies the same stress scenarios to different insurance companies or banks, and therefore the
function h(-) is unique to each insurance company. The regulator is interested in the impact of
stress-testing scenarios on the structure of the bank (modeled by & (-)). In this setting, the Explicit
SOS formulation appears more appropriate.

While the analysis of the Explicit SOS formulation is also largely based on the techniques devel-
oped for Theorem 1, it does require some additional assumptions that are not immediately clear
without examining the proof of Theorem 1. In particular, in addition to A1), A2), B1) and B2),
here we impose the following assumptions.

BE1) Assume that the derivative of h(.,z) with respect to (w.r.t.) @, D h(6,,-): R' — R,
is continuous function of  and the second derivative w.r.t. z is bounded, i.e., ||[D2h (6,,-)|| < K for
all z.

BE2) Define V; = D,h(0,,X,) - D,h(0,,X;)" € R™% and assume that T = E(V;) is strictly
positive definite.

We provide the proof of the next result in our technical Section 7.3.

THEOREM 3 (Explicit SOS Profile Function Analysis). Under assumptions A1)-A2), B1)-
B2) and BE1)-BE2), we have that (15) satisfies
o Whenl=1,

nRY(0,)= Z"Y"'Z

where Z ~ N (0,Var (h(6,,X))) € R.
o Assume that | =2. Let Z ~ N (0,Var (h(6.,X))) € RY. It is possible to uniquely define deter-

ministic continuous mapping, E:Rq — RY, such that E(z) 1s defined via

2=-E Vil (r <7 (:) W (2) ] C(2),
where T s independent of Vi satisfying

P (r>1) =E(exp (= [fx (X1) + £fy (X1)] 7).
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Then, we have that,
R (9.) =227 (2) - (T (2) G (0(2))(2).

where G : R? — RY%9 45 g deterministic continuous mapping defined as

G()=E [Vl max (1 — T/(CT%C),O)] .

e Suppose that | > 3. It is possible to uniquely define deterministic continuous mapping E:Rq —

RY, such that

T2 (fx (X1) +wfy (X1)) ~T - i
o= g [T By, (7 v a) ] o,

(note that Vi is a function of Xy, so these are correlated). Moreover,
W R (0,) = 2278 (7) - 156 (2),

where Z ~ N (0,Var (h(6,,X))) €R? and G : R? — R is a deterministic continuous function defined

as

_ .

—E | (fx (X X)) (¢TVie) P
We should observe that unlike the implicit formulation, the rate of convergence will only depend

on the dimension of data X; € R!, but the shape of asymptotic distribution is determined by the

estimating functions h (6., X;) € R9.

4.3. Plug-in Estimators for SOS Functions

In many situations, for example in the context of stochastic optimization, we are interested in a
specific parameter 6, = (v.,v,) € R¥? such that E [k (., v., X)] =0, where v, € RP is the nuisance
parameter (for example Lagrange multipliers in the setting of constrained optimization).

We shall discuss a method that allows us to deal with the nuisance parameter using a plug-in
estimator, while taking advantage of the SOS framework for the estimation of ~,. After we state
our assumptions we will provide the results in this section, and the proofs, which follow closely

those of Theorem 2 and Theorem 3, will be given in Section 7.
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Throughout this subsection, let us suppose that h(y,v,z) € R?. In addition, we impose the
following assumptions.

C1) Given 7, there is a unique v, € RP such that
E[h(ye,v, X)] =0 (16)
and, given v,, we also assume that -, satisfies
Eh (v, v, X)] =0. (17)
C2) We have access to a suitable estimator v,, such that the sequence
{n1/2 (v, — 1/*)}20:1 is tight,

and
Li:h('y Uy X;) = 2
VS
for some random variable Z’, as n — co.
C3) Assume that h(7,-,x) is continuously differentiable a.e. (almost everywhere with respect to
the Lebesgue measure) in some neighborhood V around v,.

C4) Suppose that there is a function M (-) : R' — (0, 00) satisfying that

Ik (v, v, 2)||5 < M (z) for ae. vEV,

| D] (7., v, @) ||5 < M () for ae. vEV,

and E (M (X;)) <oo and E (M (V1)) < cc.
4.3.1. Plug-in Estimators for Implicit SOS Functions We are interested in studying the
plug-in implicit SOS function (or implicit pseudo-SOS profile function) given by
RY Gy=int{ [ [ I (rs00,2) = b (0,937 (d ) (18)

s.t. WGP(X,? (Vey V) XZT’LZrm (’y*,vn)),WX:un,/h('y*,vn,z)wz (dz) =0},
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where

Xr}: (7*7Un) = {h ('7*77)7173:) B AS Xn}v Z;Zer (’Y*’Un) = {h (’Y*vvmz) HEAS Z(n-i—m)}'

We typically will use (16) to find a plug-in estimator v,. Under suitable assumptions on the
consistency and convergence rate of the plug-in estimator, we have an asymptotic result for (18),

as we indicate next.
COROLLARY 1 (Plug-in for Implicit SOS Formulation). Assume A1)-A2) and C1)-C4)
hold. Moreover, suppose we denote gx(-) as the density for h(v.,v.,X;) € R? and gy(-) for the
density of h(7,,v,,Y;) € R1. We notice Z' € R? is defined in C2). We obtain that (18) has following
asymptotic behavior:
o When qg=1,
nR) (v.) = (Z’)2.
o When q=2,
o= o(2) (7)o (7)) |2

where p <Z’> s the unique solution to the equation

1 -
~=g(02).
0

and §:R?—= R is a deterministic continuous function defined as

2
2

g(@) =P (23> 7).
The function 71: R? = R is a deterministic continuous function defined as
i(z)=E [max (1 —T/”xug,o)} .
Moreover, T satisfies
Pr>t] = Efexp (= [gx (b (s, v, X1)) + Kgy (h (7, v, X1))] 7t)].

o When q> 3,

1
g

2q+2 HZ
q+2 (

n1/2+2q%RZV( *):> 2

1 -

w1/ aFT
E [ (9x (h (us v X2)) + gy ( (s, X)) )7
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4.3.2. Plug-in Estimators for Explicit SOS Functions We can also analyze plug-in esti-
mators for Explicit SOS profile functions. We now define the explicit plug-in (or pseudo) SOS

function based on (15) as simply plugging in the nuisance parameter:

RZV(%):inf{//Hx—zH;W(dx,dz): (19)
s.t. WGP(Xn XZ(n+m)) aWX:Nna/h(’y*avnvz)ﬂ-Z (dZ):O}

In addition to C1) to C4) introduced at the beginning of this subsection, we shall impose the
following additional assumptions:

C5) Define V; (v,) = Dyh (7., 10, X;) - Doh (7,,v4, X;)" and assume that T =E (V;) is strictly
positive definite.

C6) The function M () from condition C4) also satisfies

Dok (e, v, @) ||2 < M () for ace. ve V.

D, Doh (Ve v, x)||2 < M(x) for ae. veV.

C7) The second derivative w.r.t. = exist and bounded, i.e., |[D2h (v, ,v,z)|| < K for a.e. v €V

and all z.

COROLLARY 2 (Plug-in for Explicit SOS Formulation). Let X; € R', h(y,v,z) € R?, and
assume that A1)-A2) and C1)-C7) hold. We notice Z' is defined in C2). Then, the SOS profile
function defined in Equation (19) has the following asymptotic properties:
o Whenl=1,
WRY (7.) = ZTT-1 7"
e Suppose that | = 2. It is possible to uniquely define deterministic continuous mapping ézRq —
RY, such that

e=—E Vil (r<{" () (=) | (2,

where T is independent of Vi and it satisfies

P (7 >1) =E (exp (= [fx (X1) + £fy (X1)] 7).
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Furthermore,
R (v) = 2T (2) 2= (2) G (¢(2)) (7)),
where G : R? — R4 45 g deterministic continuous mapping defined as

G (¢) =E [Vymax (1 — r/(CTVi¢),0)].

o Assume thatl> 3. A deterministic and continuous mapping ¢ : R1 — R can be defined uniquely

so that

_ 72 (fx (X)) +6fy (X)) e (20, o 70 N\ =
o= | T BNy (e nie) | ¢

(note that Vi is a function of X,). Moreover,

W ) = -2 (7) 7 - 156 (7))

where G :RY — R is a deterministic continuous function defined as

- /2

G(¢)= m(fx (X1) +rfy (X1)) (CTWC)UHI] :

5. Application to Stochastic Optimization and Stress Testing

We will provide an application of the SOS inference framework to quantify model uncertainty in the
context of stochastic programming. Motivating applications include the evaluation of Conditional
Value at Risk (C-VaR) and semi-supervised learning settings, as we shall discuss in the examples
below.

We are interested in the value function of a stochastic programming problem formulation via

C*:mgin E[m(0,X)] (20)
s.t. E[p(0, X)] <O0.
We assume that the objective function (0) = E[m(6,X)] is a convex function in 6; while the

constraints E[¢(6, X )] <0 specify a convex region in 6; for example we shall assume that ¢(-,z) is

a convex function for any z.
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Following Blanchet and Murthy (2019), the goal is to estimate the optimal value function using
the SOS formulation and we will apply a plug-in estimator for 6, (which is treated as a nuisance
parameter). Subsequently, when introducing the Lagrangian relaxation of (20) we will be able to
also introduce a plug-in estimator for the associated Lagrange multiplier. Therefore, for simplicity,
we shall focus on the unconstrained minimization problem C, =min, {E [m(0, X)]}.

The authors in Lam and Zhou (2015, 2017) provide a discussion for some potential approaches
to derive nonparametric confidence interval (including Empirical Likelihood, a Bayesian approach,
bootstrap and the delta method). In Lam and Zhou (2015, 2017) it is argued that the Empirical
Likelihood method tends to have superior finite sample performance, and Blanchet et al. (2019a)
provides an optimal (in certain sense) specification for the Empirical Likelihood approach. More
importantly, in Blanchet et al. (2019a) an approach combining Empirical Likelihood and a plug-in
estimator for the optimizer is introduced, which avoids solving a non-convex optimization problem
introduced in the discussion of Lam and Zhou (2015).

Our goal in this section is to derive a plug-in estimator based on the SOS inference approach
introduced in Section 4. The approach that we introduce next is the analog of the plug-in strategy
discussed in Blanchet et al. (2019a) in order to find a robustified confidence interval for C..

The following corollary plays the key role in specifying confidence interval for C,. The result is
a direct extension of Corollary 1 and Corollary 2, provided the following assumptions are in place.

We define M (0) =E [m(0, X)], and the assumptions are

D1): Assume m(-) is convex differentiable in 6, then M () is also convex differentiable. We
assume there is a unique optimizer 6,n for M ().

D2): Assume that m (-) is strongly convex at 6., that is, there exist § > 0, such that for every 6
M (6) > M (0.)+ 5|6 — 0.5

COROLLARY 3. Let wus consider stochastic programming problem C, = mingM () =
ming E [m(0, X)]. Assume that D1)-D2) hold. We consider the estimating equations to be the

derivative condition and value function condition

E[m(0.,X)—C.]=0, and E[Dym (0., X)]=0.
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T
For simplicity, let us denote h(6.,C.,x) = (m(ﬂ*,x) fC*,ng(H*,x)T) . We are interested in

C. only and consider a sample average approzimation (SAA) estimator for 6, to be Osan. For

h(-,C.,x) we assume C1)-C7) hold. Let us denote U ~ N (0, Var(m (0.,X))) € R and U(0) =

(U, 6>T € R, Recalling the implicit and explicit formulations for general estimating equation

SOS function defined in Definition 2 and Definition 3, we have the following asymptotic results.
For the implicit SOS formulation, we have

o When d=1 (estimating equation dimension is d+1=2)
nRy(C.)=p(U) 2= (U)p(U)U*
where p (U) is the unique solution to
/1) =g(pU),
and §:R—R is a deterministic continuous function defined as
g(z)=P[z*>7].

7 (x) is also a deterministic function, defined as

n(z)=E [max (1 — T/l’z,O)] ,
and T satisfies

Plr>t] = E (exp (= (9x (h (6., Co; X1) + Rgy (h (6., Cs, X1))) 7)) -

o When d> 2,

_1
2d+4 U], ™

d+3 T
E | 2 (9x (h (0., C.. X0)) + gy (h (6.,C.. X)) |7

nV/?t5dr RV (C,) =

For the explicit formulation, we have the following asymptotic results (we use (q) to denote the

first element of vector ¢)
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o Whenl=1,
nRZV(C*) = ’U171U2,

where vy 1 is the (1,1) element of matriz T~
e Suppose that I = 2. It is possible to uniquely define deterministic continuous mapping E:Rq —

RY, such that
e=—E [l (r < (=)Wl ()] L 2),

where T is independent of U satisfying

P(r>1) =E (exp (= [fx (X1) + £fy (X1)] 7).

Furthermore,

nRY (C.) = =20y = ¢ (U(0) G (CU ) S W),

where G : R? — RY9 45 g deterministic continuous mapping defined as

G()=E [Vlmax (1—<T‘71C,0>} )

and U is independent with Vi and T.

o Assume that 1 > 3. A continuous function E:Rq — R? can be defined uniquely so that

= [T O el Ky (e v o)) | 62

(note that Vi is a function of X, ). Moreover,
/24535 pWw U Conr — 2 A7
n'? a2 RY (CL) = 20y — 175G (C0(0).

where G :R? = R is a deterministic function given as

- l/2

G ()= | gy U X0+ wf (30 (¢7720) .

and U and X; are independent.
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As indicated earlier, the corollary is a special case of Corollary 1 and Corollary 2, so the proof is
omitted. The estimating equations correspond to the first order optimality condition (i.e., the first
derivative equal to zero) and the corresponding optimal value equation. We use sample average
approximation estimator as the underlying plug-in estimator.

We notice that for sample average approximation, under assumptions D1)-D2), it has been shown
in Ruszczynski and Shapiro (2003), Shapiro and Dentcheva (2014) that the optimizer 544 and

the optimal value function %Z?:l m (éSAA,X¢> satisfy

éSAA — 9* =0 (1/n1/2)
1« N
- Z Vom (95AA,X11> =0,
n <
\FZ ( (93,4,4, ) —C’*> = N (0, Var (m (0,,X))).
Therefore, Corollary 2 and Corollary 1 apply.
Similar to the derivation in Blanchet et al. (2019a) in the setting of Empirical Likeli-
hood, for the plug-in estimator derived from sample average approximation, if we denote

n1/2+3/(2d+4)RZV(implicit)(C*) - Réimplicit) and n1/2+3/(2l+2)RZV(ezpucit)(C ):> R(emplwzt , We can spec-

ify a robust 95% confidence interval for C. under both explicit and implicit formulation by:

o (c)={cer

RO (C) < R (95%) }

where a depends on the formulation and dimension as in Corollary 3 and R’ (95%) is the upper
95% quantile for RS (or R{™""“"). The upper/lower bound of confidence interval (cQ)/ c)

can be found by solving the linear programming problem

n

C()/C()—ma)§ / nEnn){ 7(i,7)m(Osan, X;)
(4. w5

- - —~ .. RS (95%
s.t. (i, j) >0 Zw(z,]) =1/n; Z (i, 7) || Xs —XjH; < O;Q)}
j=1 i,j=1

Next, we are going to provide a numerical example in quantifying C-VaR using the methodology

we developed above.
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EXAMPLE 1 (QUANTIFY THE UNCERTAINTY OF CONDITIONAL VALUE AT RisK (C-VAR)). In
this example we would like to find an SOS-based 95% confidence interval for conditional value at
risk with 90% level. The conditional value at risk with a—level is given as solving the stochastic

programming problem:

+
C-VaR(a) = 1nf 9—{—71!3 (ZX(I“) )

We shall test our method using simulated data under different distributional assumptions. We
sample i.i.d. observations {X;},_, C R". We will apply the SOS inference procedure to provide a
non-parametric confidence interval for C-VaR(90%). In order to verify the coverage probability we
use data simulated from normal distribution and Laplace (double exponential) distributions. We
consider the case [ =4. For the normal distribution setting we assume X; ~ N (0, I4x4), while for
Laplace distribution we consider for each k=1, ...,4, X* ~ Laplace(0,1) and all of these random
variables are independent. For these two cases, we can calculate the solution in closed form; for the
normal setting the optimizer is 0* = 2.5632 and optimal value function is C-VaR(0.9) = 3.510; for
Laplace setting the optimizer is * = 3.497 with optimal value function equal to C-VaR(0.9) = 5.066.

In this example, we have three approaches in which our SOS procedure can be applied: 1) implicit
SOS formulation (ISOS); 2) explicit SOS formulation assuming data being of dimension [ (ESOS-
0), ie. X; = (Xi(l),...,Xi(l))T € RY; 3) explicit formulation assuming data being of dimension 1
(ESOS-C), ie. X; =X +...+ X" € R. We compare our methods with empirical likelihood
method (EL) in Blanchet et al. (2019a), nonparametric bootstrap method (BT), and central limit
theorem-based Delta method (CLT) discussed in Theorem 5.7 Shapiro and Dentcheva (2014). We
consider four settings n = 20, 50,100 and 500. For each setting, we repeat the experiment N = 1000
times, and note down the empirical coverage probability, mean of upper and lower bounds, and the
mean and standard deviation of the interval width for each method. The results are summarized
in Table 1 for Normal distribution and Table 1 for Laplace distribution below.

We can observe that the three SOS-based approaches seem to have comparable coverage prob-

abilities in most cases, for both generating distributions, in comparison to the EL, bootstrap,
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and delta method. However, for small sample situations (n =20) EL and all of the SOS-based
approaches appear to perform better than the rest. It is discussed in Lam and Zhou (2015) that
EL has better finite sample performance compared to delta method and bootstrap. We can also
notice that all empirical SOS methods tend to have smaller variance compared to others, especially
for relatively large sample sizes (n = 100,500). Between the three SOS methods, we can see that
explicit formulations work better compared to implicit, which follows our discussion after Definition
3. For the two explicit-formulation methods, since we know the data affects the objective function
in the form X" 4+ ...+ X we would expect better performance if we combined the data into a

single dimension. The numerical results validate our intuition.

Coverage Mean Lower Mean Upper Mean Interval S.D. of
n | Method Probab%lity Bound Bound bp Length Length
ESOS-C [ 79.8% 2.59 4.68 2.09 0.79
ESOS-0 | 73.4% 2.55 4.65 2.10 1.21
20 | ISOS 70.8% 2.34 4.87 2.53 0.82
EL 71.7% 2.61 5.18 2.57 1.92
BT 55.6% 1.76 3.88 2.12 1.23
CLT 71.8% 2.01 4.52 2.51 1.87
ESOS-C [93.3% 2.67 4.57 1.90 0.30
ESOS-0 | 91.0% 2.63 4.54 1.91 0.57
50 | ISOS 87.3% 2.70 4.75 2.05 0.56
EL 89.2% 2.81 4.78 1.96 0.83
BT 82.7% 2.30 4.25 1.95 0.77
CLT 86.6% 2.47 4.44 1.97 0.78
ESOS-C [92.8% 2.84 4.20 1.36 0.08
ESOS-0 | 92.4% 2.80 4.22 1.42 0.23
100 | ISOS 91.3% 2.89 4.32 1.53 0.25
EL 91.4% 2.94 4.46 1.52 0.43
BT 90.1% 2.67 4.16 1.49 0.41
CLT 90.4% 2.75 4.17 1.42 0.39
ESOS-C [ 95.3% 3.16 3.85 0.69 0.01
ESOS-0 | 94.9% 3.14 3.77 0.63 0.05
500 | ISOS 91.2% 3.19 3.88 0.79 0.03
EL 93.9% 3.20 3.93 0.73 0.08
BT 94.2% 3.16 3.84 0.68 0.07
CLT 94.7% 3.17 3.84 0.67 0.08

Table 1 a =0.9—Conditional Value at Risk with Gaussian Data. The data X is simulated from 4-dim
standard Gaussian distribution, while each dimension is independent. We consider sample size
n = 20,50,100, and 500. We repeat the experiments N = 1000 times and record the coverage probability for the
confidence interval (CI), the average upper and lower bound for CI, also the average length and standard deviation
for CI. ESOS-C is the explicit formulation of SOS with combined data, ESOS-O stands for explicit-SOS with
original data, ISOS is the implicit SOS, EL stands for empirical likelihood, BT is short for nonparametric

bootstrap, and CLT is the asymptotic CI method.
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Coverage Mean Lower Mean Upper Mean Interval S.D. of

n | Method Probab%lity Bound Bound PP Length Length
ESOS-C [ 78.2% 3.57 6.89 3.32 1.10
ESOS-0 | 73.8% 3.48 7.10 3.62 1.91

20 | ISOS 73.1% 3.87 7.55 3.68 1.16
EL 72.3% 3.56 8.00 4.44 3.30
BT 58.1% 2.40 6.01 3.61 2.40
CLT 70.5% 2.53 6.90 4.37 3.24
ESOS-C [89.4% 3.78 6.64 2.86 0.42
ESOS-0O | 89.3% 3.69 6.78 3.09 0.89

50 | ISOS 80.1% 4.21 7.17 2.96 0.63
EL 86.2% 3.89 7.43 3.53 1.66
BT 80.5% 3.15 6.58 3.43 1.54
CLT 83.6% 3.29 6.64 3.35 1.54
ESOS-C [ 91.9% 3.93 6.22 2.29 0.14
ESOS-0 | 90.8% 3.88 6.30 2.42 0.43

100 | IISOS 86.6% 4.30 6.78 2.44 0.36
EL 89.9% 4.10 6.66 2.56 0.86
BT 86.2% 3.71 6.16 2.45 0.81
CLT 87.6% 3.76 6.17 2.41 0.79
ESOS-C [ 94.7% 4.53 5.62 1.09 0.06
ESOS-0 | 94.3% 4.46 5.59 1.13 0.08

500 | ISOS 92.1% 4.43 5.61 1.17 0.13
EL 94.0% 4.53 5.78 1.25 0.18
BT 92.2% 4.46 5.58 1.12 0.16
CLT 93.1% 4.45 5.48 1.13 0.15

Table 2 a =0.9—Conditional Value at Risk with Laplace Data. The data X is simulated from 4-dim

standard Laplace distribution, while each dimension is independent. We consider sample size

n = 20,50,100, and 500. We repeat the experiments N = 1000 times and record the coverage probability for the

confidence interval (CI), the average upper and lower bound for CI, also the average length and standard deviation

for CI. ESOS-C is the explicit formulation of SOS with combined data, ESOS-O stands for explicit-SOS with

original data, ISOS is the implicit SOS, EL stands for empirical likelihood, BT is short for nonparametric

bootstrap, and CLT is the asymptotic CI method.

In addition, we report the computational time for our calculation in Table 5. The different for-

mulations of SOS-based methods share the same computation cost, thus we only report the case

for implicit SOS. We report the average calculating time in seconds with thousands of experi-

ments, where the experiments are implemented in Python with Scipy optimizers and our machine

is equipped with an Intel i7 3.5Ghz processor and 16GB memory. Our SOS based method requires

solving the C-VaR optimization problem once, then solve the linear programming. The EL based

method is similar, with solving the C-VaR optimization problem once, it then solves a convex opti-

mization problem. Finally, the bootstrap based method requires solving the C-VaR optimization

repetitively. We can observe that for the example we consider, our SOS-based method does not

face computational challenges compared with other methods.
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20 50 100 500

ISOS [ 0.042 0.108 0.613 14.069
EL ]0.018 0.069 0.401 7.272

BT ]0.099 1.038 2.085 18.023

Table 3  Computational Cost for Our C-VaR examples. The average computational time in seconds for

different algorithms with different sample sizes.

EXAMPLE 2 (SEMI-SUPERVISED LEARNING). We consider the DRO formulation for Semi-
supervised Learning (SSL) as suggested in Blanchet and Kang (2018). We formulate the data-driven
DRO problem and compare the results for choosing the distributional uncertainty size with the
above asymptotic results of SOS function as suggested in Corollary 3. We consider the MiniBooNE
data set from UCI machine learning data base Blake and Merz (1998). We consider logistic regres-
sion as our baseline model and form SSL-DRO formulation. For each iteration, we randomly split
the data into labeled training set with size n = 30, unlabeled training set with size N —n = 5000,
and testing set with size n = 125034. We compare the choice of the uncertainty size using 5-fold
cross-validation and SoS asymptotic results. We also include the results for logistic regression and
regularized logistic regression as reference. We report the average training error and testing error
as log-exponential loss and testing accuracy as accurate classification rate. The mean and standard
deviation of the training error, testing error, and testing accuracy are evaluated via 500 independent

experiments. The details are included in Table 4.

Training Error Testing Error Testing Accuracy
Logistic Regression 0+£0 18.24+10.0 678 £.059
LRL1 with CV 401 £+.167 910+ .131 717 +£.041
DRO-SSL with CV | .287+£.047 .609 £ .054 7104 .032
DRO-SSL with SoS | .304 4+.045 .682 4 .048 .709 £ .028

Table 4 Numerical Results for Semi-supervised Learning.
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6. Conclusions and Discussion

This paper introduces a methodology inspired by Empirical Likelihood, but in which the likelihood
ratio function is replaced by a Wasserstein distance. The method that we propose is motivated
by the problem of systematically finding estimators that incorporate out-of-sample performance in
their design.

In turn, as a motivation for the need to find these types of estimators we discussed applications
to stress testing and semi-supervised learning, which have been discussed in the body of this paper.
Another way in which we can justify our framework is as an approximation approach to solving
the problem

min  max Ep[L(X,0)].
0ER! Petts(PniRY)

It turns out that in great generality (see Esfahani and Kuhn (2018))

max  Ep[L (X,60)] =min{\6 + Ep, [f (X,6:\)]},

Peuts(PoiR?)

where f (x,60;)\) is defined as the solution of an optimization problem involving a parameter y € R?
which we refer to as the “inner optimization problem.” The inner optimization problem is typically
not convex and therefore it is challenging to solve. There are cases in which the inner optimization
problem can be solved in closed form, however, and many of those cases have been documented
in the literature in Esfahani and Kuhn (2018). Our results can be used to suitably calibrate an
alternative formulation that may be more tractable given that y € R? is replaced by y € Z,, ..

There are a number of structural properties in our procedure that are worth investigating and
that we plan to explore in future work. For instance, we believe the choice of a particular cost
in optimal transport distance deserves substantial analysis. In this paper we have chosen the Ly
Wasserstein metric to illustrate our results. The methodology that we propose can be extended to
cover other Wasserstein metrics, so on the technical side our work provides the foundations for such
extensions. However, it is the impact of such selection that appears to also bring about interesting

connections. This already is made evident from our work Blanchet et al. (2019b) in which we see
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that the connections that we mentioned earlier in this discussion (to LASSO and SVM) are made
after carefully choosing a natural Wasserstein metric.

In addition, given the parallel philosophy underpinning the method that we proposed (based on
Empirical Likelihood), the results described in this paper open up a significant amount of research
opportunities that are parallel to the substantial literature produced in the area of Empirical
Likelihood during the last three decades. We mention, in particular, applications to regression
problems (see Owen (1991), Chen (1993), Wang and Rao (2001), Zhao and Wang (2008), Chen and
Keilegom (2009), Murphy (1995), Li et al. (1996), Hollander and McKeague (1997), Li et al. (1997),
Einmahl and McKeague (1999), Wang et al. (2009), Zhou (2015)), machine learning (see Duchi
et al. (2016), Hu et al. (2018), Duchi and Namkoong (2018), Blanchet et al. (2019d)), econometrics
(see Newey and Smith (2004), Bravo (2004), Kitamura (2006), Antoine et al. (2007), Guggenberger
(2008), Imbens (2012)), and additional recent work on stochastic optimization (see Lam and Zhou
(2015, 2017), Blanchet et al. (2019a)). The methodology we propose could be extended to the
above applications by simply replacing the Empirical Likelihood function by the SOS function and

by applying asymptotic theorems developed in this paper (or natural extensions).

7. Methodological Development

We shall analyze the limiting distribution of the SOS profile function for means first. In order to
gain some intuition let us perform some basic manipulations. First, without loss of generality we

assume 0, =0, otherwise, we can let X, =X,—0, and apply the analysis to the X.’s.

7.1. The Dual Problem and High-Level Understanding of Results

The Dual Problem Let us revisit the definition of (12) and write it as a linear programming

problem,
n m+n
RY (0= min 3 > w(0,5) X~ 2l (21)
i=1 j=1

SN a(i, §) = 1/n, for all i

S (o w (i) Z; =0

s.t.
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We know with probability one when n — oo, 0 is in the convex hull of Z i, thus the original linear
programming problem is feasible for all n large enough with probability one. Applying the strong
duality theorem for linear programming problem, see for example, Luenberger (1973), we can write

(21) in the dual formulation as

st. A+|1Xi—Z,ll5—ATZ;>0 for all 4,3

Let us define v; =4; — AT Z;. By the constraint in the above optimization problem, if we take i = j,
we have 4; > AT Z;, which is equivalent to «; > 0. Then, we can write the optimization problem in

v;’s as

_ 1 <
w _ _\T S .
R, (6.) _f%?é%{ A X = _El %}
st = N'X; =, < -MZ, + || X, — Z,||2, for all 4, 5.

We can further simplify the constraints by minimizing over j, while keeping i fixed, therefore

arriving to the simplified dual formulation

_ 1 <
Y x) = - TXn_* %
R, (0,) max{ A n;’y} (22)

A7 20

.. —)\TXi—fyiginf{—)\TijLHXi—ZjH;}, for all 4.
J

High-Level Intuitive Analysis At this point we can perform a high-level analysis which can
help us guide our intuition about our result. First, consider an approximation performed by freeing
the Z; in the constraints of (22), in this portion the reader can appreciate that the assumption

that X; has a density yields
. 2 .
inf {112, - (Xi 4+ M/2)[3} = 0 (). (23)

where error €, (7) is small as n — oo and it will be discussed momentarily. Equation (23) is equivalent

to

inf {<ATZ; 41X = Z4ll} } = =X = A3 /44 en ().
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Hence, the i-th constraint in (22) takes the form
XX = < NG = A /4 (),
and thus (22) can ultimately be written as

RY(0.) = — min {)\TX'n + % zn:%} (24)

A7 20
’ i=1

s.t.7; > (1 — e, (1)) || A5 /4 for all 4.

Now, observe that if Z; was free, then the optimal choice in (23) would be a. (i) = X; + \/2.

Consider the case [ =1, in this case it is not difficult to convince ourselves (because of the
existence of a density) that €, (i) = O, (1/n) as n — oo (basically with a probability which is
bounded away from zero there will be a point in the sample {Z,..., Z,,+,}\X; which is within

O, (1/n) distance of a, (7)). Then it is intuitive to expect the approximation
RY(0,) = —min {AX, +(14+0,(1/n))N\?/4},

which formally yields an optimal selection

X _  ov n3/2
M=t o, Ay X O (1),

and therefore we expect, due to the Central Limit Theorem (CLT), that
nRY (0.) =nX2+n0, (1/n*?) = Var (X) xi, (25)

as n — oo. This analysis will be made rigorous in the next subsection.

Let us continue our discussion in order to elucidate why the rate of convergence in the asymptotic
distribution of R (6,) depends on the dimension. Such dependence arises due to the presence of the
error term ¢, (i). Note that in dimension [ =2, we expect €, (i) = O, (1/n'/?); this time, with pos-
itive probability (uniformly as n — 0o) we must have that a point in the sample {71, ..., Z,,., ]\ X;
is within O, (1/n'/?) distance of a, (i) (because the probability that X; lies inside a ball of size

1/n*/? around a point a is of order O (1/n'/?)). Therefore, in the case | =2 we formally have
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A (n) ==X, + O, (n™'/?), but we know from the CLT that X,, = O, (n™'/?) so this time contri-
bution of ¢; (n) is non-negligible.

Similarly, when [ > 3 this simple analysis allows us to conclude that the contribution of €; (n) =
0O (n_l/ l) will actually dominate the behavior of A, (n) and this explains why the rate of convergence
depends on the dimension of the vector X;, namely, [. The specific rate depends on a delicate
analysis of the error being ¢; (n) which is performed in the next sub-section. A key technical device
introduced in our proof technique is a Poisson point process which approximates the number of
points in {Z1,..., Z,4n}\X; which are within a distance of size O (nfl/l) from the free optimizer
a. (i) arising in (23).

The introduction of this point process, which in turn is required to analyze €; (n), makes the proof
of our result substantially different from the standard approach used in the theory of Empirical

Likelihood (see Owen (1988, 1990), Qin and Lawless (1994)), which builds on Wilks (1938).

7.2. Proof of Theorem 1

The proof of Theorem 1 is divided in several steps which we will carefully record so that we can

build from these steps in order to prove the remaining results in the paper.

7.2.1. Step 1 (Dual Formulation and Lower Bound): Using the same transformations
introduced in (21) we can obtain the dual formulation of the SOS profile function (12), which is a

natural adaptation of (22), namely
RY(0.) = max { —AX —li’y-
AT NRi20 tonse
st. —ATX, —; <inf {—)\TZj X — Zjug} , for all i.
J

Observe that the following lower bound applies by optimizing over a € R' instead of a = Z; € Z,,,

therefore obtaining the lower bound
inf{—)\TZj X - Zjug} > inf{—)\Ta—i— 1X; —aui}
J a
= —ATXG — |IA) /4,

with the optimizer a, (X;,\) = X; + \/2.
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7.2.2. Step 2 (Auxiliary Poisson Point Processes): Then, for each i let us define a point

process,

NOWN =#{2;: 112, = a. (X N </ 2, £ X}
(recall that Z; € R"). Observe that, actually, we have
NS, = NP (8,0, 1) + NO(t,A,2),
where

NP (E0,1) = #{ X5 11X, — a0 (X N < #7/n X, # X

NO(tA,2) = # {511V = an (X, N3 < 2/ 2/

For any X; with j # 4, conditional on X;, due to the assumption of density and the formula for

the volume of [-dimensional ball (Rudin (1964)), we have,

P [1X; — a. (X;, M} < £/ /n?!

i)

7l/2 7l/2
= (0 (X)) gy 0t/ = P (X 0/2) s - ot/
Similarly,
IP[HYv—a (X, )12 < 2/ /! X} = f (X-+A/2)L/23+o (t/n)
J * 19 2 = il —JY i F(l/2+1)n p .

Since we have i.i.d. structure for the data points, thus we know, N9 (¢, \,1) and N (¢, \,2) con-

ditional on X; follow binomial distributions,

N{(t, A\, 1)|X; ~ Bin (fx (X +2/2) F(d}r;/il); +o,(t/n),n— 1) ,
_ /2
NP (t,,2)|X; ~ Bin (fy (Xi+A/2) F(l/2+1)rtz +o,(t/n), M) :

N (£, 0) = N (8,2, 1) + N (2, ), 2).

Moreover, we have as n — o0,

/2 t /2
T % (n—1) = fx (X, +1/2) Fﬁit.

(1/2+1)n
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Thus, by Poisson approximation to the binomial distribution, we have the weak convergence result

1/2
N@ (.. X.1)|X; = Poi X+ A/2)— .
n(? b )’ 71: OISSOn<fX( 1+ /)F(Z/Q—’—l))’

in DI[0,00).

So we have that N (-, \,1), conditional on X;, is asymptotically a time homogeneous Poisson
process with rate fx (X;+ \/2)7%?/T(d/2 + 1). Similar considerations apply to N(V(-,),2)|X;
which yield that

NO(-,A)|X; = Poi (A (X, A) ),

where
/2

AN = [ (Xt A/2) 4wy (X4 M2 sy

Let us write T; (n,\) to denote the first arrival time of NV (-, \), that is,
T; (n,A\) =inf {t > 0: N (t,\) > 1}
Then, we can specify the survival function for T} (n) to be:
P[T; (n,A) >t | X;]=P[ND(t, ) =0 | X;] =exp(—A (X;,\)t) (1+0 (1/n'")),  (26)

uniformly on ¢t over compact sets. The error rate O (1 /nt/ l) is obtained by a simple Taylor expansion
of the exponential function applied to the middle term in the previous string of equalities. Motivated

by the form in the right hand side of (26) we define 7; (X;, A) to be a random variable such that

and we drop the dependence on X; and the subindex ¢ when we refer to the unconditional version
of 7, (X;, ), namely

Plr(\)>t] =E[exp (—A (X1, \)1)].

We finish Step 2 with the statement of two technical lemmas. The first provides a rate of

convergence for the Glivenko-Cantelli theorem associated to the sequence {T; (n,A\)}1 .
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><oo,

n11/2 Z (max (t2 —Ti(n?)\)o‘,O) —E [max (t2 — Ti(n,)\)a,O)D') < 00.

i=1

LEMMA 1. For any T € (0,00) (deterministic) and o € (0,2], we have that

n

#Z(I(Ti (n,A) <t) =P[T; (n, ) <t])

i=1

lim,, . E ( sup

te[0,T]

and

t€[0,T]

lim,, ,..E ( sup

The second technical lemma deals with local properties of the distribution of T; (n, ). The proofs

of both of these technical results are given at the end of the proof of Theorem 1, in Section 7.2.7.
LEMMA 2. For X; € R! and any finite t, we have the Poisson approzimation to binomial as:
P[Ti (n,A) <t] =P[r(\) <t] =0 "' /n'/"),
and
P[T; (n,\) <t] =P[r(\) <t]=P[r > O (1/n").

7.2.3. Step 3 (Closest Point and SOS Function Simplification): Note that the i-th
constraint, namely,

1 SNXi+inf { X2+ |1 X - 2,3}
can be written as
—<int { X2, - X0 + X - 21
=~ IAI3 /4-+inf {112, - (/2 + X5 |
= — |2 /4 + T (n, \) /0.
However, since ~; > 0 we must have that
— < = A /44 min (T2 (n, ) /02 ] /4)

Therefore, the SOS profile function takes the form

_ 1 e~ . Tf/l n, A
RZV(G*)ZngX{—ATXn—!/\||§/4+an“1<ng/l);H/\Hi/‘i .

=1
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To simplify the notation, let us redefine A\ +— 2\ then we have that the simplified SOS profile

function becomes:

_ 1 < Tf/l n,A
R, (6.) = max {—QATXn - > max <||)\H§ — ng/l),o) } : (27)

=1
7.2.4. Step 4 (Case [ =1): When [ =1, let us denote v/nX, = Z, and /n\ = (, where by

CLT we can show Z,, = Z ~ N(0,02), where when [ = 1 we have 02 = X. Then, as n — oo, we have:
nRY (0,) = max {—ZCZn - % imax (¢ =17 (n,¢/v/n)n™",0) }
i=1
= max {-2¢Z, —E [max (¢* = T} (n,¢/v/n) n™",0)] } +0,(1)
=max {-2¢Z, —E [max (¢* =T} (n,0)n"",0)] } + 0,(1)
The second equation follows the estimate in (Lemma 1). Using the bonded derivative for the density
condition and first order Taylor expansion, we can prove that E[T? (n,0)] —E[T? (n,(/v/n)] — 0 as

n — oo for any fixed (. Since max function is Lipschitz continuous function with constant 1, and

using the Dominating Convergence Theorem, the third equation above could be derived as

E [max (¢* = 77 (n,0)n",0)] — E [max (¢* = I} (n,¢/vn) n=",0)]

<E|

T? (n,¢/v/n)n™" = T7 (n,0)n~"[] = 0,(1). (28)

We know the objective function as a function of ¢ is a strictly convex function. Since as ( = b|Z,|
with b — oo implies that the objective function will tend to —oo, we conclude that the sequence
of global optimizers is compact and each optimizer (i.e. for each n) could be characterized by the
first order optimality condition almost surely. To make the analysis more clear, let us denote the

expectation in the maximization problem to be g ((,n), as a function of ¢, i.e.
G (¢,n) = E [max (¢ — T2 (n,0)n",0)]

which is a deterministic function of ¢ and for any n it is convex. Moreover, the derivative of G (¢, n)
is,

g(¢,n)=V:G(¢,n) =2CP (T} (n,0) <n¢?).
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We need to notice that while taking the derivative we require exchanging the derivative and expec-

tation, this can be done true hereby the Dominated Convergence Theorem since

57" (€ +0)" =772 (n,0)n™,0) —max (¢ = 72 (0, 0) | < 2[¢,

for all § > 0. We can take the derivative with respect to ¢ in —2(Z, — G ({,n) and set it to zero,

as n — 0o we obtain
Zp=—CP (T (n,0) <n¢?) = —CP (7%(0) <n¢?) + 0,(1) = —C + 0,(1).

This estimate follows the second result of Lemma 2. Therefore, the optimizer (’, satisfies ¥ =
—Zy, 4 0,(1), as n — oco. Then, we plug it into the objective function to obtain that the scaled SOS

profile function satisfies
nRY(0,) =222 -G (Z,,n)+o0,(1) as n— oco.

We should notice G (Z,,n) is a function defined via expectation and evaluated at Z,, thus it is
a random variable that depends on Z,. By definition and E[|X|] = fo [|X|>t]dt, we know as

n — 00,

42
= [ Prr o <n (@) a+on)
:/C 1dt +o(1) = ¢* 4+ o(1),

where the second equality is derived from the second argument of Lemma 2. Then for the SOS

profile function, it becomes,
nRY(0.) =222~ Z2+0,(1) = Z> +0,(1) as n — oo.
Applying the continuous mapping theorem and the Central Limit Theorem for Z,,, we have

nRY (0.) = o*x3.
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7.2.5. Step 5 (Case [ =2): Once again we introduce the substitution ¢ = /n\ and /nX,, =

Z,, into (27). Then, scaling the profile function by n, as n — oo we have
I 2
nBY (6.) =mas {—2<Tzn = o (17 ./ ,o)}
:mcax{—2§TZn —E {max (HCH; —T; (n,¢(/v/n) ,0)] } +0,(1)
— max {—QCTZn _E [max (HCH? ~ T} (n,0) o)] } +o,(1), (29)

where the second equality is by applying Lemma 1 (the error is obtained by localizing ¢ on a
compact set, which is valid because the sequence of global optimizers is easily seen to be tight),
and the third equality is applying similar derivation as in (28),The objective function is strictly
convex as a function of ( and we know when ||(||, — oo the objective function tends to —oo, thus
each global maximizer (for each n) can be characterized by the first order optimality condition

almost surely. Similar as Case [ =1, let us denote
G (¢.m) =E [max (|[¢]}; - 7: (n,0),0) |.
It is a continuous differentiable and convex function in ¢ and with derivative equals
9(¢m) = VG (¢,n) = 2€P IS} = T (n, 0)] = 2¢P [ ICIl3 = (0)| +0(1) as n— oo,

where the first equality requires applying the Dominated Convergence Theorem, as in the case [ =1
and the second estimate follows the first argument in Lemma 2. Combining the above estimation,

we have the first order optimality condition becomes
Zo=—CPII€]; 2 7(0)] +0,(1) = =C3(C) +0,(1) as n— oc, (30)

where g (¢(0)) =P [HC [= T} is a deterministic function of . Using equation (30), we conclude that
the optimizer (}, satisfies (¢ = —pZ,, + 0, (1), for some p. In turn, plugging in this representation

into equation (30), as n — co we have

1621129 (G +0p(1) = [ 2]l -
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Sending n — oo, we conclude that p is the unique solution to
1 B -
—=g (pZ) . (31)

Since the objective function is strictly convex and the above equation is derived from first order
optimality condition, we know the solution exists and is unique (alternatively we can use the conti-
nuity and monotonicity of left and right hand side of (31), to argue the existence and uniqueness).
Let us plug in the optimizer back to the objective function and we can see the scaled SOS profile

function becomes
112
arl 09 =2 (|}2]) 12,13 - G (G2 + 0,0

For a positive random variable Y, we have: E[Y] = fooo P[Y > t]dt. Therefore, for ¢ in a compact

set, as n — oo we have the following estimate

G (Gn)= / e [IC15 =T (n.0) = ] at
- / i [1C113 = 7(0) = ¢] dt + (1)
= ICIE [ 1= 0)/161E 2 ] ds ot
= 1¢I5 & [max (1= (0)/11¢]5,0) | +o(1)

=¢34 () +o(1),

where we define 77 () =E [max (1 —7(0)/]1I1Z, Oﬂ is a deterministic continuous function of ¢. The
second equation follows the first result of Lemma 2. Finally combine G ({,n) and the first term,
using the CLT and continuous mapping theorem, where we denote Z, = Z ~ N(0,Var(X)), as

n — oo we have:

nBY (0.) =20 (2) 12,02~ (2) 1(Z) 12,1+ 0,(1)

-0 (2)2(2)

=2 (2)|2 7|

2
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7.2.6. Step 6 (Case [ >3): For simplicity, let us write /nX, = Z, and navE )\ = ¢, then as

n — 0o we have

n'/*t e RY (6.)

n 2
= —9¢T (1/24535-3) L ¢ _ 2/l 3
max{ 2C" Z,—n M2 1 n;max< ey T; <n,(/n2z+2>,0
2
:InaX{—2CTZn n(2+ 75 -1)E [max( (5_1) — T (n,C/n2l3+2),O> }+op(1)
n\2+2 1 2
¢ 2
:max{—ZCTZn n(/2+ 2z - R [max( =y —Tf/l(n,O),0> }—i—op(l).
n 2

The estimate in second equation the previous display is due to an application of Lemma 1, and the

third equation follows the similar derivation as in (28). Similar as for the lower dimensional case,

max (

being a deterministic function continuous and differentiable as a function of (. As we discussed for

let us denote

2

¢

nlez—1)

G(¢n)= n(V2am -1

Y

- T12/l (TL, 0) ; O)

2

the case [ = 2 case, the objective function is strictly convex in (, the global optimizers are not only
tight, but each optimizer is also characterized by first order optimality conditions almost surely.
We can apply the Dominated Convergence Theorem, as we discussed for [ =1 and the gradient of
G (¢,n) has the following estimate as n — oo,

l

|

9(¢in) = VG (¢n) =2n (>4t Tcp {T (n,0) < |[¢n~ (a2~ H)

=ont/+mikaH) e [T(m < [[en(at=)]

} +o(1).

2

The second equality estimate is considering ¢ within a compact set and the derivation follows the
first argument in Lemma 2. Then the first order optimality condition for the SOS profile function

becomes,

7, = —n(1/2+z-1)cp [T (0) < Hgn(zz‘iz})m +0(1) as n — .
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For notation simplicity, let us define

1
. (31 .
We can observe for ¢ in a compact set, ||[(n (1) ’ = ||/£n||l2 — 0, as n — oo, then we can write
2

ol

P[7(0) < mally] =1=P[r(0)> lully]| =1~ E[P |7 (0) > |Isall;

e (LD )

/2
=E [F(l/2+1)

= [kl + 0, (n~(32 V).

[Fx (X0) + £ fy (X0) ||mé] + 0, (n)

where we denote

y

C = WE [fx (X1) +sfy (X1)].

Plug it back into the optimizer, and as n — oo we have:
Zy=—Cn > 2otz )l 4+ 0,(1) = =CC €+ 0, (1).

We know that within the objective function, the second term is only based on the L, norm of ,
thus to maximize the objective function we will asymptotically select (¥ = —c.Z, (1+0(1)), where

¢, > 0 is suitably chosen, thus, we conclude that the optimizer takes the form,
Gi==2)12,5 Y jer 4 0,1).
Plugging-in the optimizer back into the objective function, as n — cowe have:
n'/* e RW(0,) = 202 T Z, — G (Cn) + 0,(1).

Let us focus on the analysis of G (¢,n) in a compact set. By definition, we can notice that inside

2
¢ B 2

——= = ||k

n(wiz’*%) 9 H n||2,

the previous expectation there is a positive random variable bounded by

thus as n — oo we have the following estimate for the expectation as.

E [max (||mn||§ — T (n,0) 0)} - [E [max (HﬁnH; — T (n,0) ,o) ‘ X1H
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Kkn
/2
_E / B[ 1) (n,0) < (s~ 1)"
0

| Xl} dt}
_E /OMHHEP[T(O)g (Hﬁnng—t)l/z ‘Xl} +O(1/n—1/2+1/l)dt]

R O e e )

+0 (1/n 12tk
< 1+2

= +0 (1fn 200
n(ziz—1)

[+2

=C

The estimate in third equation follows by applying the first argument in Lemma 2. The final

2
— 0 as n — o0. Then, owing to the previous
2

equality estimate is due to ||k, | = HQ{(T‘L*%)

results, as n — oo we have estimate for G ((,n) as

G<c,n>=—l2f;”(”z“l“ Dn(HE2) 015 + (1)
_ 2
=~ 2l +o(1).

Finally, we can know that, as n — oo, by the CLT we have Z, = Z, then using continuous mapping

theorem, we have that the scaled SOS profile function has the asymptotic distribution given by

5
n1/2+4l+2 RW(

)
1)

2 121 2 | Zfs" T
2 nll2
:2”ZnH2 1 - 1 +Op(1)
Ot +2  ont
L P 4y
2l 217, 1 20+ 2
s2)z, w2,
142 Cl+1 l+2 o

7.2.7. Proofs of Technical Lemmas in Step 2
[ Proof of Lemma 1]We shall introduce some notation which will be convenient throughout

our development. Define for ¢ > 0,
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Therefore, we are interested in studying

E,(t)—1= nll/Q > (I (Ti(n,A) <t) = F, (1)).

i=1

We will start by studying

First, we define

1/2°

(R +IR)0)

where, for a given function {g(¢):t € [0,7]}, we define

9" (t) =sup{g (s) : s € [0,]},

9] (1) = / (dg (5))”.

In addition, [¢] (¢) is defined as the quadratic variational process, i.e.,

f <t>:ggrr;oil () - ((_1”)]

In particular,

S|

We invoke Theorem 1.2 of Beiglbck and Siorpaes (2015) and conclude that

sup B, (t) < 6y/[F.] (T) +2 /0 " (0 dF, (1),

0<t<T

Now we analyze the integral in the right hand side of the previous display. Observe that

n

E </0Thn (t)dF, (t)> = n11/2 ZE </0Thn (t)dD; (t)>

i=1

—nl2E ( /0 " () dD, (t)> . (32)
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Let us write
1y () =F, (t) = Dy () /n'7,
that is, we simply remove the last term in the sum defining F, (t). We have that

E, (t_)+ Dy (t_) /n'/?

(Fi (-7 +WB] () + (D) /n)

moreover,

W (t)— Fr(t)| <1/n'/?.
We then can write

hn (t): IFn (t*)‘}'Dl (757)/n1/2 (33)

(P2 0P +LF )+ D ) o)

_ 1F () L, (t-)
(0 + 1B ) (5

where we can select a deterministic constant ¢ € (0,00) such that |L, ()] < ¢ for j =0 and 1
assuming n > 4 (this constrain in n is imposed so that a Taylor expansion for the function 1/(1—z)

can be developed for € (0,1)). We now insert (33) into (32) and conclude that if we define

it suffices to verify that
T
nl/2E ( / o (1) dD, (t)) < 0.
0

Define h,, (t) to be a copy of h, (t), independent of X; and T} (n). In particular, h,, (t) is constructed
by using all of the X;’s except for X, which might be replaced by an independent copy, X7, of X.
Observe that the number of processes {D; (t) : t < T} that depend on T} (n) and X, is smaller than
N, (T, A\, 1). Therefore, similarly as we obtained from the analysis leading to the definition of h,, (-),
we have that a random variable I_/Nn(T,,\’l) can be defined so that |l_an(T,>\,1)| <c(l+ N, (T, )\ 1))

for some (deterministic) ¢ >0 and n >4 and satisfying

E </OT h,, (t)dD, (t)>
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=E (i (T, () I (T; (1) < T)) ~ E (R (Ty () I (T () < T)

=& (R (T ) (T () <T)) ~ E (R (r (X)) T (1, (X) < T))
+E (I_an(T,m)/nl/Q)

— ]E ([_/Nn(T’)\’l)/nl/Q) .
We have that
[E (L, ronny /n?) | < [E (14 N, (TAD)] /2 = O (1/n'7?)
Consequently, we conclude that
T —
n'/*E </ h., (t) dD, (t)> =0(1),
0

as n — 00, as required. Thus we proved that the first part of the lemma holds. For the second part,

we observe that

lim,, . E ( sup

t€[0,T)

LD (max (£ = T3, A)°,0) — E [mas _z(n,A)a,o)])D

> (2 (T7 (n, ) < t7) = 2tP[T7 (n, A) < £°]) ) dt
) < 0.

Hence, applying the result for the first part of the lemma, we conclude the second part as well.

=lim, ,..E ( sup

t€[0,T]

T
< Tim, o / E( sup
0 t€[0,T]

< 27°%lim,,_, . E ( sup

t n
/ # Z (28I (T7 (n, ) < %) = 2sP[T7 (n, \) < 57]) ds
0 i=1

n

nl/2

> (I (Ti(n,A) <t) = P[T: (n,A) <))

=1

1e[0.T] nl/2

[/ Proof of Lemma 2]

P (T, (n,\) <t] =P (Bin (P (|X; — a(X;, N, <t"/'/n"") ,n—1) > 1)

=1- (1=P(|X: —a (X, V], <t/'/n")".
Then, as n — oo and ¢ — 0™

P (|| X; —a(Xi, M|, <t/ /) =cot/n+ert/n -t/ /0! 4o ($T T

I
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Therefore by the Poisson approximation to the Binomial distribution we know:

P[T; (n,\) <t]=1—exp(—cot) + O (' /'t

Plr(\) <t]=1—exp(—cot).
Thus we proved the first claim:
P[T; (n,\) <t]—P[r(A) <t]=0 (" /n'/").
The second claim follows the definition of 7 and equation (26), where as n — oo we have

P[T; (n,\) <] — P[r(\) <t] = P[T} (n,\) > t] — P[r(\) > 1]
— Elexp (—A (A, X1))] (140 (1/n')) = Efexp (—A (A, X1))]

=P[r(\)>t]O(1/n').

7.3. Proofs of Additional Theorems

In this subsection, we are going to provide the proofs of the remaining theorems and corollaries
(Theorem 2, Theorem 3, Corollary 1 and Corollary 2). We are going to follow closely the proof of

Theorem 1 and discuss the differences inside each of its steps.

7.3.1. Proofs of SOS Theorems for General Estimation We will first prove the cor-
responding theorems for general estimating equations. As we discussed before, Theorem 2 is the
direct generalization of Theorem 1 and we are going to only discuss the proof of Theorem 3 in this
part.

[ Proof of Theorem 3]Let us first denote k, (§) = 1 3"  h(6,X;). The analogue of Step 1,

namely, the dual formulation takes the form
RY(6,) =max<{ —\"h, (0 )—1zn:max{)\Th(9 Z;)—A"h(0 X-)—HX-—Z-HQ}Jr
n * s n * n - p *y &g *9 <2 2 a2 :

Step 2 and Step 3 are given as follows, for [ =1 and | = 2, let us denote \/nh, (6,) = Z, and

VA =2(, we can scale the SOS profile function by n, arriving to

T T

1 <& *
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For each i, let us consider the maximization problem

¢’ CT 2
mjax{ 0, 2,) =2 h (0, X0) - ||Xi_zju2}. (34)

Similar as Step 1 of the proof for Theorem 1, we would like to solve the maximization problem (34)
by first minimizing over z (as a free variable), instead of over j and then quantify the gap. Observe
that the uniform bound ||D2h (6,,-)|| < K stated in BE1) implies that for all n large enough (in

particular, n'/? > 2K ||¢||) implies that

AN L
{2 0,2) =22 (6., ~ 1%, 213 3

has an optimizer in the interior. Therefore, by the differentiability assumption stated in BE1) we

know that any global minimizer, a. (X;,(), of the problem (35) satisfies

_ _ ¢
0. (X0,0) = X+ D (0,8 (X0 ) 5
L o ——
= X+ Do (0,X)" 2+ 0 (2 DA (0. (X, Q) | (36)
Moreover, owing to BE1), we obtain that
<1l

HDzh(e*va* (X17C)) D h(e*aX)||2<K

nl/2’

Consequently, if we define

¢

nl/2’

a, (X:,¢) =X, +D,h(0,,X;)"

we obtain due to (36) and (37) that

Ja. (X,,€) ~ . (X0l = (”Cn”"’(\\Dmh<e*,xi>\12+l§95))-

Then, after performing a Taylor expansion and applying inequality (37) we obtain that

jﬁhw*,X) jﬁhw*,a*mownx—a*o@,c)nz
e Ny

h(e*’X) h(g*’a* (X17C))+HX — Oy (XwC)HZ

~m 0
¢ D,h (0., X3) 15 ¢
+O<l392>+0(1 - X)) u)_
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In turn, a direct calculation gives that, as n — oo

¢vic ¢t g 2

2 3
o (HDIhw*,X»H ¢l )

n3/2
Similarly as in Step 2 of the proof of Theorem 1 we can define the point process N@ (¢,¢) and

T; (n,\). We know the gap between freeing the variable z and restricting the maximization over

the Z;’s (i.e. the difference between (35) and (34)) is

max{lcTV»C—(2CTh(9 Z)—Qih(e X»)—||X-—Z<|]2>}
J n 7 \/ﬁ *y &y \/ﬁ * 9 7 7 712

2 3
o <||Dmh<0*,xi>u Il )

n3/2

By the definition of T} (n, \), we can write the profile function for [ =1 as

nR,) (0.)

1 T2 (n,\) 1D,k (0., X)) <)l
. _oTrr 7} : Ty —i D72 il i
= m?)({ 2( Zn n 2 max << %C n +0 ( /2 ,0 .

Note that the sequence of global optimizers is tight as n — oo because E (V;) is assumed to be

strictly positive definite with probability one. In turn, from the previous expression we obtain,
following a similar derivation as in the proof of Theorem 1 (invoking Lemma 1) and using the fact

that ¢ can be restricted to compact sets, that as n — oo
T? (n, A
nRY(0,) = max {—QQTZn —-E [max <CTV1C - 1(:’)>} } +o0,(1).

Then, for [ =2, as n — oo we have estimate for the profile function as
nRY (6.) = max {-2¢"Z, — E [max (("Vi¢ = T% (n,\))] } + 0, (1).

When [ > 3, let us denote /nh, (8,) = Z, and na¥z)\ = 2(, we can scale profile function by

1, 3 ..
n27T2+2 and write it as

n2+2 n2+2

1 1,3 T < *
= max —2CTZn—n;n2+2l+2m§1x{2Sh(e*,Zj)—QSh(e*,Xi)—HXi—Zjﬂg} .
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By applying same derivation as for [ =1 and 2 above, we can define a point process N (¢,() and
T; (n) as in the proof of Theorem 1. As n — oo, we have the estimate for profile function becomes
nttaE RY(0.)
1 n
= max {—QCTZn —ndta 123 max <n—(ﬁ—%)gTVig — T (n, \) ,0) } +o,(1)
n
=1
2
[

= mcax{—ZCTZn —pitam iR [max (n_(ﬁ_ )CTV1C — T2 (n, ) ,0) }] +0,(1).

The final estimation follows as in the proof for Theorem 1 (i.e. applying Lemma 1).

In Step 4 for [ =1, as n — oo the objective function is
T2 (n, A
nRY (6.) = max {—QCTZn (0.) —E [max <(TV1C - 1(:;’),0>] } +0,(1).
Let us denote G : R! — R to be a deterministic continuous function, defined as

G(¢,n)=E [max (qulg - Tf(ﬂ"”o)] .

We know Y = E[V;] is symmetric strictly positive definite matrix, then the objective function is
strictly convex and differentiable in (. Thus the (unique) global maximizer is characterized by
the first order optimality condition almost surely. We take derivative w.r.t. ¢ and set it to be 0,

applying the same estimation in the original proof the first order optimality condition becomes
Z,=-="(+0,(1) as n — 0. (38)

Since Y is invertible, for any n we can solve optimal ¢ = —-T"'Z, + 0,(1). Plugging ¢’ in the

objective function, as n — oo we have
nRY (0.)=2ZIY""Z, — G (=Y""Z,,n) + 0,(1).
As n— oo, we can apply the same estimation in the proof of Theorem 1, it becomes
nRY(60.)= Z"Y"'Z.

Thus we proof the claim for [ =1.
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In Step 5 for [ =2, as n — oo the objective function has estimate
nRY(0,) = mCaX{—Q(TZn (6.) — E [max (¢"Vi¢ — T1 (n, A),0)] } +0,(1).
Still, we denote G (¢,n) to be a deterministic function given as,
G((,n)=E [max (CTV1C -1 (n,)\),O)] .

Same as discussed in for [ =1, the objective function is strictly convex and differentiable in ¢, thus
the (unique) global maximizer could be characterized via first order optimality condition almost
surely. We take derivative w.r.t. ¢ and set it to be 0, applying same estimation in the proof of

Theorem 1 the first order optimality condition becomes
Z, = —F [1/11(T(O)SCTV1<)} C+0,(1) as n— oo, (39)

We know the objective function is strictly convex differentiable, then for fixed Z,, there is a unique
¢ that satisfies the first order optimality condition (39). We plug in the optimizer and the objective
function becomes

nRY (0.)=—2ZTC — G (¢,n) +0,(1) as n — oo.

As n— oo, we can apply the same estimation in the proof of Theorem 1, we have
nRY (0.) = —22"C- (TG Q) €,

where G :R? — RY x RY is a deterministic continuous mapping defined as,

G (¢)=E [Vimax (1—7(0)/(¢"Vi(),0)],

and C:=( (Z ) is the unique solution to
7= —(E [1/11(

T(0>§<Tv1<)} :

Then we proved the claim for [ = 2.
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Finally, in Step 6 for [ > 3, as n — 0o the objective function is

n!EERY (0.)

= mcax{—2(TZn (2t t)E [max (n_(Ti?_%)CTVlg — Tf/l (n,\) ,0)} } +0,(1).
We denote G ((,n) to be a deterministic function defined as,
G((,n)= n(1/2 2t )R [max (nf(Zl%f%)CTVlC — T2 (n, ) ,0)} .

Follows the same discussion above for [ =1 and 2, we know the objective function is strictly convex
differentiable in ¢ and the global maximizer is characterized by first order optimality condition
almost surely. We take derivative of the objective function w.r.t. ¢ and set it to be 0. We apply the

same technique as in the proof of Theorem 1, the first order optimality condition becomes

T2 (fx (X1) + K fy (X1))
r'{/2+1)

Z,=-E |V, Vi (¢"Vi0)'| ¢+ 0p(1). as n— o0 (40)

The objective condition is strictly convex differentiable and for fixed Z, there is a unique (

satisfying the first optimality condition (40). We plug ¢ into the objective function and it becomes
n“HﬁRZV(G*) =-2ZTC —G(¢,n)+0,(1) as n — oo.
As n — 0o, we can apply same estimate in the proof of Theorem 1, we have
w2 RY (0,) = 227~ =G (0.
" [+2

where G : R? — R is a deterministic continuous function given as,

72 (fx(X1) + kfy (X1)) (CT‘GC)Z/QH] 7

G(C):E[ T(/2+1)

and {N:: 5 (Z) is the unique solution to

72 (fx (X1) + kfy (X1))
NOEESY

5—_E [vl " (<Tv1<)l} .

We proved the claim for [ > 3 and finish the proof for Theorem 3.
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7.3.2. Proofs of SOS Theorems for General Estimation with Plug-In The proofs of
the plug-in version of SOS theorems for general estimation equation also mainly follows the proof
of Theorem 1, we are going to discuss the different steps here.

[/ Proof of Corollary 1|For implicit formulation, as we discussed for Theorem 2, we can
redefine X; < h (Vs Vn, Xi), Zi < h(Vey Vny Z1), Xi(%) < h(Vs, v, X;) and Zy (%) < h (s, Vs, Xi).
Then the proof for the implicit formulation with plug-in goes as follows.

In Step 1, the dual formulation is similar given as
RY (y,) = max ¢ —A\X,, — li’y
R W tone
s.t. —~ < min {)\TXi ~ATZ+ |1 X, - Zj||§} , for all 4.
J

We can apply first order Taylor expansion to h (7., v,,X;) w.r.t. v, then we have

D,h (Y, Un, X
h(v*,un,xn=h<v*,y*,xi>+o,,(' (7.7 >u>’

ni/2
where 7, is a point between v, and v,. By our change of notation for X;, X;(x), Z, and Z; () and

the above Taylor expansion, we can observe
Zk = Zk(*) + €n (Zk) y

where €, (Z;) =0, (||Dl,h (Vas Ty Zi) || /n1/2).
In Step 2 we can define a point process NV (t,\) and T; (n) as in the proof of Theorem 1, but

the rate becomes

1/2

A(Xi, N) =[fx (Xi+ 224 6 (X0)) + 5fy (Xi+A/2+ €, (X3))] m

As n — 00, same as in the proof of Theorem 1 and Theorem 3 we can argue A — 0. Then we can

define 7(0) same as in the proof of Theorem 1 and has the with same distribution

PIr(0) 2 1)~ & [exp (— (7 () + v (X)) g ) |

Then the rest of the proof in Step 3, 4, 5 and 6 stay the same as that of Theorem 1, but replacing

the CLT for Z, by the asymptotic distribution given in C2).



Blanchet and Kang: Sample Out-of-Sample Inference
Article submitted to Operations Research; manuscript no. OPRE-2016-05-283.R3 61

[ Proof of Corollary 2]For explicit formulation, the proof follows more closely the proof of
Theorem 3 and we are discussing the differences as follows.
In Step 1, the dual formulation takes the form
R, (6.)
_ 1< . 0+
—max  ~AThy (e,vn) = = S max {ATh (12,0 Z5) = TR (eyvm, X) = |1 Xi = Z 13} ¢
A n =1 J

Step 2 and Step 3 Follows the same as for the proof of Theorem 3 however we need to notice

that difference is the definition of a, (X;,(), for =1 and 2 we have

. (X0 Q) = Xot Db (32,0 (X,0)) -5 (a1)
_x ) S oIl . (X,
—X1+th(7*7yn7Xz)'n1/2 +O n HDIh(’Y*al/’naa*( zaC))”z
v IS 9] o (X
_x+Dmmw%xymp+o n|mmww%m(uom

Lo (”4”2 1 = vy 1D (e st (X )Ly | D0 Dt (3 s (Xi,o)HQ) C(42)

nl/2

where 7, is a point between v, and v,. By assumption C5)-C7) we can notice the rest of step
2 and 3 stay the same as in the proof of Theorem 3. In Step 4, 5 and 6 we use Z, =

7 2y h(Yes vy Xi) = Z' given in C2).
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