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We present a novel inference approach that we call Sample Out-of-Sample (or SOS) inference. The approach

can be used widely, ranging from semi-supervised learning to stress testing, and it is fundamental in the

application of data-driven Distributionally Robust Optimization (DRO). Our method enables measuring the

impact of plausible out-of-sample scenarios in a given performance measure of interest, such as a financial

loss. The methodology is inspired by Empirical Likelihood (EL), but we optimize the empirical Wasserstein

distance (instead of the empirical likelihood) induced by observations. From a methodological standpoint,

our analysis of the asymptotic behavior of the induced Wasserstein-distance profile function shows dramatic

qualitative differences relative to EL. For instance, in contrast to EL, which typically yields chi-squared weak

convergence limits, our asymptotic distributions are often not chi-squared. Also, the rates of convergence

that we obtain have some dependence on the dimension in a non-trivial way but remain controlled as the

dimension increases.
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1. Introduction

The goal of this paper is to introduce a novel methodology for non-parametric inference allows

incorporating the adverse impact of out-of-sample scenarios. We call the procedure Sample Out-

of-Sample (SOS)) inference. Our method is general, and we discuss several applications, including

Distributionally Robust Optimization (DRO), semi-supervised learning, and a novel stress-testing

framework. We use the DRO framework in the introduction to put our contributions in perspective.

We elaborate on semi-supervised learning and stress-testing applications in Section 2.

A data-driven DRO problem takes the form

min
θ∈Rd

max
P∈Uδ(Pn)

EP [L (θ,X)], (1)

where L : Rd×l → [0,∞) is a cost (or loss) function, X ∈ Rl is a random element, and θ ∈ Rd is

a decision. Often, L (·, x) is assumed to be strictly convex and smooth (e.g. twice differentiable)

and we will assume this throughout our motivating discussion. The notation EP (·) denotes the

expectation operator associated to the probability measure P . We use Pn to denote the empirical

measure corresponding to {Xi}ni=1 independent identical distributed (i.i.d.) observations that follow

the distribution P∗. The set Uδ (Pn) is the distributional uncertainty set. The parameter δ > 0 is

called the “size of the distributional uncertainty” so that the family of sets (Uδ (Pn) : δ ≥ 0) is

increasing (in the sense of inclusion) as a δ > 0 increases and so that for δ = 0, U0 (Pn) = {Pn}.

Therefore, intuitively, Pn is the “center” of the distributional uncertainty region and δ > 0 can be

thought of as its “radius.”

Ideally, one would like to compute θ∗ = arg minEP∗ [L (θ,X)], but P∗ is unknown. Therefore, the

intuition behind formulation (1) is that one is interested in choosing a decision θ, which performs

well uniformly over a range of models that constitute reasonable (or plausible) variations of the

data (encoded by Pn).

We are interested in variations of the empirical distribution Pn (the elements in Uδ (Pn)) that

systematically explore the impact of out-of-sample scenarios in the loss function L (·). Therefore,
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P ∈ Uδ (Pn) should not be supported only on the underlying data set. Instead, we are interested in

a framework that admits models in P ∈ Uδ (Pn) that may be supported outside the sample {Xi}ni=1.

Because of this out-of-sample exploration feature, we choose Uδ (Pn) based on the Wasserstein

distance of order 2, which is explained in Section 3. We shall also discuss different alternative norms

that are supported by our analysis and discuss how these can be calibrated in a data-driven way.

Distributionally robust optimization formulations such as (1) based on the Wasserstein distances

have been studied recently in a wide range of settings, especially in applications to machine learning

and artificial intelligence, see for example, Shafieezadeh-Abadeh et al. (2015), Mohajerin Esfahani

and Kuhn (2018), Zhao and Guan (2018), Blanchet and Murthy (2019), Gao and Kleywegt (2016),

Blanchet et al. (2019b), Yang (2017), Sinha et al. (2018), Gao et al. (2018), Volpi et al. (2018),

Chen et al. (2018), Blanchet et al. (2019e,c).

All of these studies focus on the setting in which the support of the distributions inside Uδ (Pn)

is Rd. Moreover, within the current literature, only Blanchet et al. (2019b) studies the optimal

selection of the parameter δ by defining a natural optimization criterion. The work of Blanchet

et al. (2019b) also shows that such criterion recovers choices that have been argued to be effective

for recovery in machine learning settings for which a DRO representation can be posed.

In contrast, compared to Blanchet et al. (2019b), our work is the first one that studies the

statistical implications of choosing the support of the members of the distributional uncertainty

P ∈Uδ (Pn) in a data-driven way. One of our main contributions of this paper consists in providing

a comprehensive study of an optimal data-driven choice of uncertainty size, δ, when the support

of the members in Uδ (Pn) is obtained from an arbitrary random sample whose size is increasing

with n.

More generally, our contributions can be viewed in the lens of a novel inference framework that

we call SOS inference, based on the analysis of the so-called SOS profile function for estimating

equations.

In the DRO framework, we consider enriching the empirical data set Xn = {Xi}ni=1 (which is

assumed to be i.i.d.) by including a set of scenarios {Yi}mi=1 (which is also assumed to be i.i.d.), with
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m= [κn] for some κ ∈ [0,∞). The Yi’s and the Xi’s are not assumed share the same distribution.

In order to unify the notation we write Zi =Xi for i= 1, ..., n, Zn+k = Yk for k = 1, ...,m and set

Zn+m = {Zj}n+m
j=1 . (We use P to denote the probability measure supporting the infinite sequences

{Xi}i≥1 and {Yi}i≥1, where the support of P is dense in the support of the underlying sampling

distribution.)

In order to emphasize the difference between the analysis in Blanchet et al. (2019b) and our

analysis here, we write Uδ (Pn;Rl+1) to denote the full support case (studied in Blanchet et al.

(2019b)) and Uδ (Pn;Zn+m) for the uncertainty set considered in our current setting.

Let us describe the optimality criterion introduced in Blanchet et al. (2019b) for choosing δ.

Here we restrict the support on the observed sequence and we would expect larger δ due to the

extra constraint. Since the set Uδ (Pn) is interpreted as the set of plausible variations of the data,

then the set

Λδ (Pn) = {θ : θ= arg minEP [L (θ,X)] for P ∈ Uδ (Pn;Zn+m)} (2)

corresponds to the set of plausible decisions, those that are compatible with the distributional

uncertainty region. Note that Λδ (Pn) is a random set that can be interpreted as a confidence

region. The criterion that we utilize is the following

min{δ : P (θ∗ ∈Λδ (Pn))≥ α}, (3)

where α is a desired confidence level.

To analyze (3), we first argue that

{θ∗ ∈Λδ (Pn)}= {RW
n (θ∗)≤ δ}, (4)

for a suitable function, RW
n (·), which we call the Sample-out-of-Sample (SOS) profile function.

In simple words, RW
n (θ∗) can be computed directly in terms of the shortest Wasserstein distance

between Pn and the set of probability models P ∈ Uδ (Pn;Zn+m) for which EP [∇θL (θ∗, x)] = 0.

As a consequence of (4), the optimal δ solving (3) is simply the α-quantile of RW
n (θ∗).
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In general, we can use our methodology to test the hypothesis that θ∗ satisfies EP∗ (h (θ∗, x)) = 0,

simply replacing ∇θL (θ,x) by h (θ,x) in the definition of the SOS profile function. The hypothesis

is rejected for high values of the statistics RW
n (θ∗). Thus, it is important to compute the asymptotic

distribution RW
n (θ∗).

Our contributions are then stated at this level of generality (i.e., asymptotic analysis of RW
n (θ∗)

for the purpose of hypothesis testing). In the end, this paper involves two main methodological

contributions:

A) First, we characterize the asymptotic distribution of RW
n (θ∗) as n→∞; see Theorem 1,

Theorem 2, and Theorem 3. We explain how to compute the asymptotic limiting distributions in

Section 4.1.2.

B) Second, we discuss various extensions that we believe are natural to study in order to define

DRO optimal transport cost functions. These include implicit DRO formulations and plug-in esti-

mators. We illustrate the extensions in the empirical result section (Section 5). For example, writing

θ∗ = (γ∗, v∗) we develop the asymptotic distribution of RW
n (γ∗, v̄n), where v̄n is a suitable consistent

plug-in estimator for v∗ as n→∞ ; see Corollary 2. The construction of v̄n may be based on stan-

dard empirical estimators. This extension may be used in the context of stochastic optimization

with constraints, as illustrated in Section 5.

The theory that we develop in this paper parallels the main fundamental results obtained in

the context of Empirical Likelihood (EL), introduced by Art Owen in Owen (1988, 1990, 2001). In

fact, the construction of the function RW
n (·) borrows a great deal of inspiration from the empirical

likelihood profile function and its extensions based on divergence criteria, rather than the likelihood

function (see Owen (2001)), and also see Bayraksan and Love (2015) for a comprehensive review

of divergence-based distributional uncertainty sets in optimization, many of which are amenable

to EL-based analysis. There are, however, several important features of our framework that, we

believe, add significant value to the non-parametric inference literature.

Before we discuss these features, we want to emphasize that our motivation is not to disprove the

appropriateness of divergence approaches. The DRO community is actively investigating the advan-

tages of various choices of uncertainty sets. Our discussion should be seen as a step in this direction.
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The most likely picture to eventually emerge is that divergence and Wasserstein approaches com-

plement each other depending on issues such as convenience and tractability. For the purpose of

using out-of-sample scenarios to inform the uncertainty set, we believe the Wasserstein distance is

a natural choice, as we shall explain.

First, using divergence-based criteria (as it is typically done in standard EL settings) carries

implicit support assumptions that seem unnatural in our setting as the sample size increases. For

example, it is not difficult to see that a divergence-based distance between the empirical measure

based on n i.i.d. samples and that of m = [κn] i.i.d. samples (both from the same distribution)

may not converge to zero. In our setting, this suggests that under divergence-type constructions, it

requires a large uncertainty set to include distributions that one may reasonably and intuitively see

as relatively small perturbation of the data. So, choosing a large-sized uncertainty to accommodate

these small perturbations may inflate the estimates artificially, just because the populations are

large but unbalanced. Alternatively, if the size of uncertainty is small (which is expected under the

null hypothesis as the sample size increases), the proportion of mass allocated outside the support

of the empirical measure decreases to zero, so the overwhelming proportion of the mass in the

models contained in the uncertainty set is concentrated in the support of the baseline model. Hence,

we believe that the direct use of the EL framework may not be suitable in our setting. Additional

out-of-sample issues that arise from using divergence criteria for data-driven distributional robust

optimization (closely related to EL) are noted in the stochastic optimization literature (see Esfahani

and Kuhn (2018)), and see also Wang et al. (2009), Ben-Tal et al. (2013) for related work.

Second, from a methodological standpoint, the mathematical techniques needed to understand

the asymptotic behavior of RW
n (θ∗) are qualitatively different from those arising typically in the

context of EL. We will show that if l≥ 3, then the following weak convergence limit holds (under

suitable assumptions on L (·)),

n1/2+3/(2l+2)RW
n (θ∗)⇒R (θ∗) ,

as n→∞. Note that the scaling depends on the dimension of the random vector X in a very

particular way. In contrast, the Empirical Likelihood Profile function is always scaled linearly in
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n and the asymptotic limiting distribution is generally a chi-squared distribution with appropriate

degrees of freedom and a constant scaling factor.

In our case, R (θ∗) can be explicitly characterized, depending on the dimension in a non-trivial

way, but it is no longer a suitably scaled chi-squared distribution. When l= 1, we obtain a similar

limiting distribution as in the EL case. The intuition here is that a sample of order O(n) provides

enough coverage of the space since the optimal transport plan will displace points at distance

O(1/n1/2). The case l= 2, interestingly, requires a special analysis. In this case, the scaling remains

linear in n (as in the case l= 1), although the limiting distribution is not exactly chi-squared, but

a suitable quadratic form of a multivariate Gaussian random vector. For the case l≥ 3 the limiting

distribution is not a quadratic transformation of a multivariate Gaussian, but a more complex (yet

still explicit) polynomial function depending on the dimension.

At a high level, some of the qualitative distinctions in the methodology arise because of the linear

programming formulation underlying the SOS function, which will typically lead to corner solutions

(i.e., basic feasible solutions in the language of linear programming). The high level intuition of

the scaling is associated with the interplay between the linear programming formulation and the

coverage of a sample of size n in a space in l dimension. A high-level intuition is given in more detail

in Section 7.1. In contrast to the analysis of the SOS function, in the EL analysis of the profile

function, the optimal solutions are amenable to a smooth perturbation analysis as n→∞ using

a Taylor expansion of second (and higher) order terms. The lack of a continuously differentiable

derivative (of the optimal solution as a function of θ) requires a different type of analysis relative

to the approach (traced back to the classical Wilks’ theorem as in Wilks (1938)), which lies at the

core of EL analysis.

The high-level intuition developed in Section 7.1 also underscores the distinction between our

development here and the analysis in Blanchet et al. (2019b). In contrast to our development here,

the scaling in Blanchet et al. (2019b) is always dimension independent. This is because the issue

involving the coverage of the random scenarios in the support of the alternative distributions is
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not a feature that needs to be considered. Moreover, the current setting introduces a correlation

structure in the optimal transportation map, which is not present in the analysis of Blanchet et al.

(2019b). This is because the feasible transportation locations are now given by a random sample.

To this end, we take advantage of recent sample-path martingale inequalities. The use of these

inequalities is showcased in the technical Section 7.2.7 and we believe that these techniques may

be applicable more broadly in non-parametric statistical analysis.

The rest of the paper is organized as follows. In Section 2 we discuss semi-supervised learning and

stress-testing applications that motivate the formulation in which the support of P ∈ Uδ (Pn;Zn+m)

is data-driven. Basic definitions, including a review of the Wasserstein distance, are given in Section

3. Our main technical results are described in Section 4. We include applications of our results to

settings such as stochastic optimization, risk analysis, and semi-supervised learning in Section 5.

A short section including conclusions and additional discussions is given in Section 6. Finally, our

technical development is given in Section 7, starting with a high-level intuition of the nature of our

results and scaling in Section 7.1.

2. Motivating Settings

2.1. Semi-supervised Learning Applications

The setting of semi-supervised learning can be used to illustrate our framework. Consider a classifi-

cation problem that takes the form Dn = {(Xi, Yi)}ni=1 and Yi ∈ {−1,1} is the i-th response variable

and Xi ∈Rl is the i-th predictor. For concreteness, let us consider the logistic regression setting in

which

P (Yi = 1|Xi) =
exp (Yiβ

T
∗ Xi)

1 + exp (YiβT∗ Xi)
= 1−P (Yi =−1|Xi).

Suppose that we have access to an unlabeled data set {X ′i}
m

i=1 and we are interested in using this

data in a meaningful way for estimating β∗. This is the semi-supervised learning setting arising in

cases in which obtaining responses or labels for every individual may be costly.

If the predictive variables are contained inside a lower-dimensional manifold embedded in the

underlying ambient space, our intuition is that unlabeled data can be used as a proxy to profile
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Figure 1 An illustrative example showing that the unlabeled observations (with green dots) can be used to

provide a proxy for the underlying manifold (the yellow surface) in which the the predictive variables

lie; whereas the labeled data points (red dots) are not sufficient to provide such information.

precisely such a lower dimensional manifold. Thus it is natural to impose a DRO formulation that

enhances statistical performance by quantifying the impact of out-of-sample scenarios that lay

in the relevant lower-dimensional manifold. This intuition is illustrated in Figure 1. The work of

Blanchet and Kang (2018) proposes combining both the labeled and unlabeled data by forming

the set Xn,m =Dn∪ ({X ′i}
m

i=1×{−1,1}ni=1) (i.e., the original data set is enriched by considering the

unlabeled data with all the possible responses recorded by the labeled data).

Then, Blanchet and Kang (2018) considers a DRO formulation for estimating β∗ in which the

distributional uncertainty region is defined in terms of the Wasserstein distance. The DRO formu-

lation proposed in Blanchet and Kang (2018) is equivalent to the problem

min
β

max
Uδ(Pn;Xn,m)

EP [L (X,Y,β)] , (5)

which corresponds to (1).

The formulation of Blanchet and Kang (2018) (i.e. (5)) is of significant interest because it is a

natural semi-supervised learning extension version of regularized linear regression, which is a highly

popular supervised machine learning estimator (see Hastie et al. (2005)). In particular, it is shown in
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Blanchet et al. (2019b), see also Shafieezadeh-Abadeh et al. (2015), that replacing Uδ (Pn;Xn,m) by

Uδ (Pn;Rl) in (5) one recovers exactly regularized logistic regression and δ corresponds exactly to the

regularization parameter. This connection between Wasserstein DRO and mainstream supervised

learning estimators has been established for a large class of methods, including square-root Lasso

(Blanchet et al. (2019b)), support vector machines (Blanchet et al. (2019b)), group Lasso (Blanchet

and Kang (2017)), adaptive Lasso (Blanchet et al. (2019e)), etc.

The methods developed in this paper provide the theoretical underpinning for the choice of the

uncertainty size δ in the context of (5), which yields regularized estimators that are informed by

the unlabeled data in a meaningful way.

2.2. Novel Stress-testing Framework

Consider the following stress-testing exercise. An insurance company wishes to estimate a certain

expectation of interest, say EP∗(L(X)), where X might represent one or several risk factors, L (X)

is the corresponding financial loss and P∗ (·) is the underlying probability measure which may be

unknown.

The insurance company may estimate E∗ (L(X)) based on n i.i.d. empirical samples X1, ...,Xn ∈

Rl. However, the regulator (or auditor) is also interested in quantifying the potential financial loss

based on stress scenarios, say an i.i.d. sample Y1, ..., Ym ∈ Rl, where m = [κn] with κ ∈ [0,∞). It

may be natural to choose κ= 1 so that the amount of information provided by the regulator and

the company is balanced, but this is not necessary.

The scenarios provided by the regulator may or may not come from the same distribution as

the Xi’s. In fact, typically they will come from a different distribution. The regulator’s beliefs are

captured by the distribution of the Yi’s. These beliefs may, in turn, be informed by the knowledge

that is accessible only by the regulator and not by the insurance company. The regulator may

not necessarily question the fact that the historical data from the Xi’s follows distribution P∗ (·),

but the regulator might be concerned that the insurance company lacks additional information to

assess the overall risk exposure better.
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On the one hand, the insurance company clearly knows well its idiosyncratic risk exposures,

so the data represented by the Xn’s, arising from a model with such idiosyncratic information

is meaningful and should be considered carefully. On the other hand, it is also correct that the

regulator possesses additional information that should be considered in evaluating the potential

impact of scenarios that may not be appropriately captured by the data of the insurance company.

How does one incorporate both the Xi’s and the Yi’s in a meaningful way for the purposes of

evaluating the risk of the company?

The methodology developed in this paper allows incorporating both the empirical data of the

insurance company and the stress scenarios provided by the regulator into a Distributionally Robust

Performance Analysis (DRPA) formulation (closely related to Distributionally Robust Optimiza-

tion – DRO) as we describe next.

Define Zk = Xk for k = 1, . . . , n and Zn+k = Yk for k = 1, . . . ,m (i.e., merge both the empirical

samples and the stress scenarios into a set Zn+m = {Z1, ...,Zn+m}). We let

Pn (dx) = n−1

n∑
k=1

δ{Xk} (dx)

be the empirical distribution of the data generated by the insurance company. A natural estimate

for E∗ (L(X)) based on the insurance company’s data is given by

EPn (L(X)) = n−1

n∑
k=1

L (Xk) .

Now, let P (Zn+m) be the set of all probability distributions with support on Zn+m. Our DRPA

approach consists in providing estimates for EP (L(X)) via

θ− (δ) , θ+ (δ) = min , max
P∈Uδ(Pn;Zn,m)

EP (L(X)) . (6)

We believe that the DRPA formulation (6) provides a reasonable approach for combining both

the insurance company’s information and the regulator’s beliefs. We do not disregard the data

coming from the insurance company (in fact, the empirical distribution Pn is placed at the center
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of the uncertainty set), but we also capture the potential impact of out-of-sample scenarios based

on the regulator’s beliefs.

Formulation (6) is closely related to (1) and the methodology that we present in this paper can

be used to find an optimal choice for δ. In particular, an equivalent way of representing the range

[θ− (δ) , θ+ (δ)] is in terms of a suitably defined SOS profile function (or “SOS function”), RW
n (·),

as we shall see, so that

[min{θ :RW
n (θ)≤ δ},max{θ :RW

n (θ)≤ δ}] = [θ− (δ) , θ+ (δ)]. (7)

Therefore, the study of the function RW
n (·) is a key in the analysis of (6) and the selection of δ based

on statistical principles, and this leads us to our contributions A)-B) described in the Introduction.

We emphasize, however, that our choice of δ is purely statistical. That is, we operate under the

blanket assumption that the risk is correctly computed solely with the bank’s internal data as the

sample size grows to infinity. Under this assumption there is less and less need for scenarios as

the sample size of the internal data increases. In practice, the sample size is always finite and,

in the end, the choice of regulatory capital is the result of an informed negotiation between the

regulator and the bank. We provide a tool that helps to inform this discussion because it statistically

combines both elements (internal data and external scenarios) in a way that is consistent with the

guidelines described in of Governors Federal Reserve System (2019) for generating stress scenarios.

However, non-statistical criteria (e.g., social cost based) may also be used to choose δ, leading to,

for instance, hybrid methods that would build on our current development. However, these types

of hybrid choices would require additional modeling elements that are beyond the scope of our

statistical treatment.

3. Basic Definitions

Throughout our development we adopt the convention that all vectors we consider are expressed

as columns, so, for example, xT = (x1, ..., xl) is a row vector in Rl (here we use xT to denote the

transpose of x). Also, given a random variable W ∈Rd so that E (W ) = 0 and E
(
‖W‖22

)
<∞, we

use V ar (W ) = E (WW T ) to denote the covariance matrix of W .
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3.1. On Wasserstein Distance and Distributional Uncertainty

As we mentioned in the introduction, we utilize the Wasserstein distance of order 2 to describe the

distributional uncertainty region. We consider two closed subsets of Rl, namely X and Z. We use

the notation P (X ×Z) to denote all the Borel probability measures π with support on X ×Z. Any

π ∈ P (X ×Z) can be thought of as the joint distribution of a pair of random vectors (X,Z). We

use the notation πX to denote the marginal distribution of X under π; similarly, πZ is the marginal

distribution of Z under π.

The Wasserstein distance (of order 2) between the Borel probability measures µ and υ, supported

on X and Z, respectively, is defined as
√
D (µ,υ), where

D (µ,υ) = inf{
∫ ∫

‖x− z‖22 π (dx,dz) : π ∈P (X ×Z) , πX = µ,πZ = v}.

In simple words, the square of the Wasserstein distance of order 2 (under the Euclidean metric) is

defined as the minimum cost of transporting the mass encoded by µ into the mass encoded by υ;

computing the unitary-cost-per-transportation of a unit of mass from x to y as the square of the

Euclidean distance between the source (x) and destination (y).

Our results can be directly adapted to the situation in which the Euclidean metric is replaced

by the so-called Mahalanobis distance, namely, ‖x− y‖2A = (x− y)
T
A (x− y) for any positive def-

inite matrix A. The use of this distance and procedures to fit A for classification tasks based on

manifold learning tools are studied in Blanchet et al. (2019e). In order to simplify the notation

and the exposition we continue with the standard Euclidean metric throughout our development,

corresponding to A= I.

In the sequel, X and Z are finite cardinality sets. Therefore, in this case, the evaluation of D (µ,υ)

is a finite dimensional linear programming problem and so, conceptually, computing D (µ,υ) is

straightforward. The Wasserstein distance is defined in great generality (for arbitrary metric spaces)

as the solution of the Monge-Kantorovich problem with the cost-per-transportation defined in

terms of the underlying metric. We refer the reader to Villani (2008) for more information on
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Wasserstein distances. Because we focus on the finite-cardinality case, it is enough with elementary

notions of finite dimensional linear programming to understand the definition we use in this paper.

The distributional uncertainty set, Uδ (Pn), mentioned in the Introduction to motivate our con-

tributions can then be defined by choosing X =X n and Z =Zn+m and letting

Uδ (Pn) = Uδ (Pn;Zn+m) = {P :D (Pn, P )≤ δ}.

3.2. The SOS Profile Function

To motivate the definition of the SOS Profile function, once again, we return to the DRO framework

defined in the Introduction. We note from (2) that

Λδ (Pn) = {θ :EP [h (X,θ)] = 0 for P ∈ Uδ (Pn)},

where h (X,θ) =∇θL (X,θ). So (by convexity) we have that θ∗ ∈Λδ (Pn) if and only if there exists

P ∈ Uδ (Pn) such that

EP [h (X,θ∗)] = 0. (8)

Let RW
n (θ∗) be the smallest transportation cost (measured by D (Pn, P )) between Pn and any

member P ∈ P (Zn+m) for which (8) is true. It is easy to reason that RW
n (θ∗) ≤ δ if and only if

θ∗ ∈Λδ (Pn). Formally, we have the following definition for the SOS profile function RW
n (θ), namely

RW
n (θ) = min{D (Pn, P ) :EP [h (X,θ)] = 0}. (9)

The goal of this paper is to study the behavior of RW
n (θ∗) under the estimating equation assump-

tion

EP∗ [h (X,θ∗)] = 0, (10)

and the {Xi}ni=1 being an i.i.d. sample from P∗. We will formulate our results in terms of the

estimating equation (10) for general h (·) (not necessarily arising from an optimization problem).

We consider this more general framework because we believe that our results may be applicable

to inference settings other than DRO, for instance, the stress-testing framework described earlier.

In fact, we now return to such setting to explain how to use the SOS profile function in this case.
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3.2.1. The SOS Profile function for stress-testing setting In the stress-testing setting

described earlier, we wish to select δ just as large to guarantee that θ∗ := EP∗(L(X))∈ [θ− (δ) , θ+ (δ)]

with a certain degree of confidence, which we shall denote by α.

Therefore, because of equation (7), we are interested in choosing the smallest δ so that

P{θ∗ ∈ [θ− (δ) , θ+ (δ)]}= P{RW
n (θ∗)≤ δ}= α. (11)

In other words, δ is chosen to be the α-quantile of the random variable

RW
n (θ∗) = min{D (Pn, P ) :EP [L (X)− θ∗] = 0}.

Note that this formulation is a particular case of the one introduced in (10) by letting h (θ,x) =

L (x)− θ. For pedagogical reasons, we will present our results first for the SOS profile function for

means (i.e., assuming that L (x) = x) and later we move to more general estimating equations.

4. Main Results

4.1. SOS Function for Means

We state the following underlying assumptions throughout this subsection.

A1): Let us write Xn = {X1, ...,Xn} ⊂ Rl to denote an i.i.d. sample from a continuous distribu-

tion. Therefore, the cardinality of the set Xn is n.

A2): We also consider an independent i.i.d. sample Ym = {Y1, ..., Ym} ⊂ Rl from a continuous

distribution. Throughout our discussion we shall assume that m= [κn] with κ∈ [0,∞).

A3): Assume that E‖X1‖22 +E‖Y1‖22 <∞.

A4): If l= 1 we assume that Xi and Yi have positive densities fX (·) and fY (·). If l≥ 2 we assume

that Xi and Yi have differentiable positive densities fX (·) and fY (·), with bounded gradients.

Define Zn+m = {Z1, ...,Zn+m} = Xn ∪ Ym, with Zk = Xk for k = 1, ..., n, and Zn+j = Yj for j =

1, ...,m. For any closed set C let us write P (C) to denote the set of probability measures supported

on C. Therefore, in particular, a typical element υn ∈P (Zn+m) takes the form

υn (dz) =
n+m∑
k=1

v (k) δZk (dz) ,
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where δZk (dz) is a Dirac measure centered at Zk. Now, we shall use µn ∈ P (Xn) to denote the

empirical measure associated to Xn, that is,

µn (dx) =
1

n

n∑
i=1

δXi (dx) .

Given any π ∈ P (Xn×Zn+m) we write πX ∈ P (Xn) to denote the marginal distribution with

respect to the first coordinate, namely πX (dx) =
∫
z∈Zn+m

π (dx,dz) and, likewise, we define πZ ∈

P (Zn) as πZ (dz) =
∫
x∈Xn

π (dx,dz).

We have the following formal definition of the SOS function for estimating means.

Definition 1. The SOS function, RW
n (·), to estimate θ∗ =E (X) is defined as

RW
n (θ∗) = inf{

∫ ∫
‖x− z‖22 π (dx,dz) : (12)

s.t. π ∈P (Xn×Zn+m) , πX = µn, πZ = vn,

∫
zvn (dz) = θ∗ },

= inf{
∫ ∫

‖x− z‖22 π (dx,dz) :

s.t. π ∈P (Xn×Zn+m) , πX = µn,

∫
zπZ (dz) = θ∗} .

(Here and throughout the paper, s.t. is an abbreviation for “subject to.”)

We now state the following asymptotic distributional result for the SOS function.

Theorem 1 (SOS Profile Function Analysis for Means). In addition to Assumptions A1)-

A4), suppose that the covariance matrix of X, V ar (X), exists. The following asymptotic result

follows

• When l= 1,

nRW
n (θ∗)⇒ σ2χ2

1

where σ2 = V ar (X).

• When l= 2, define Z̃ ∼N (0, V ar (X))∈Rl, then

nRW
n (θ∗)⇒ ρ

(
Z̃
)(

2− η̃
(
Z̃
)
ρ
(
Z̃
))∥∥∥Z̃∥∥∥2

2
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where ρ := ρ
(
Z̃
)

is the unique solution to the equation

1

ρ
= g̃

(
ρZ̃
)
,

and g̃ : Rl→R is a deterministic function defined as

g̃ (x) = P
(
τ(0)≤ ‖x‖22

)
,

where τ is a random variable satisfying

P (τ > t) = E [exp (− (fX (X1) +κfY (X1))πt)] .

And the function η̃ : Rl→R is a deterministic function given as

η̃ (x) = E
[
max

(
1− τ(0)/‖x‖22,0

)]
.

• When l≥ 3,

n1/2+ 3
2l+2RW

n (θ∗)⇒
2l+ 2

l+ 2

∥∥∥Z̃∥∥∥1+ 1
l+1

2(
E
[

πl/2

Γ(l/2+1)
(fX (X1) +κfY (X1))

]) 1
l+1

where Z̃ ∼N (0, V ar (X))∈Rl.

4.1.1. More on the limiting distribution The limiting distributions that we obtain are

explicitly characterized. They depend on parameters that are meaningful in the application settings

that we shall discuss. For example, the distribution from which stress scenarios are generated or

the distribution of the predictors of the unlabeled data clearly play a key role in the limiting

distribution. These parameters dictate the “spread”of the distribution and, consequently, the size

of quantiles. So, the parameters that appear in our limit theorems readily affect the uncertainty

size in a quantifiable way.

In order to make this point relatively more tangible, consider the following example based on

simulated data.

Our asymptotic theorem gives different asymptotic distributions for different degrees of freedom

(d.f.) in the Student-t distribution. If we select the 95% quantile for the construction of our robust
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risk valuation interval, we can see that the higher the d.f., the smaller the quantile, as we show in

Figure 4.1.1. So, an increase in the likelihood of more extreme scenarios provided by the regulator

translates directly into a larger confidence region for the risk or a larger size in the uncertainty

region, in a precisely quantifiable way thanks to our results. The SOS profile function is the distance

Figure 2 95% quantile for the SOS profile function asymptotic distribution (dimension being 3 and the κ= 10)

with different degree of freedom for the Student-t distribution in stress scenarios. The in-sample data

is standard Gaussian. The red dashed line illustrates the situation in which stress scenarios are also

chosen to be standard Gaussian.

between the empirical distribution and the manifold determined by the estimating equation(s). If

the in-sample data and the stress-scenario data are more similar, we would expect smaller quantiles

(this corresponds to the setting in which the d.f. is large for the Student-t distribution), and we

will observe larger quantiles when the two distributions are different from each other (this is the

setting in which the d.f. is small for Student-t).

4.1.2. Evaluating the Limiting Distribution In Theorem 1 and in the rest of our results,

the limiting distribution depends on parameters that might be unknown. For example, take the

case l≥ 3 in Theorem 1. We obtain that

n1/2+ 3
2l+2RW

n (θ∗)⇒
2l+ 2

l+ 2

∥∥∥Z̃∥∥∥1+ 1
l+1

2

(c0)
1/(l+1)

, (13)



Blanchet and Kang: Sample Out-of-Sample Inference
Article submitted to Operations Research; manuscript no. OPRE-2016-05-283.R3 19

where

c0 := E
[

πl/2

Γ(l/2 + 1)
(fX (X1) +κfY (X1))

]
and Z̃ ∼N (0, V ar (X)). This situation is quite standard when developing asymptotic distributions

for hypothesis testing and the remedy is to simply use any consistent plug-in estimator to estimate

the unknown quantities. For instance, we can use

Σn =
1

n

n∑
j=1

(Xj −EPn (Xj)) (Xj −EPn (Xj))
T

instead of Σ = V ar (X). We can also use any consistent estimator (converging on compact sets

and with rapid decay at infinity) for the densities of fX (·) and fY (·), say f
(n)
X (·) and f

(n)
Y (·),

respectively, and estimate c0 via

c0 (n) =EPn

[
πl/2

Γ(l/2 + 1)

(
f

(n)
X (X) +κf

(n)
Y (X1)

)]
,

which is consistent as n→∞. Because the asymptotic distribution in (13) is continuous in c0 and

Σ, it follows that estimating quantiles based on the plug-in estimators c0 (n) and Σn in place of

c0 and Σ leads to asymptotically equivalent specifications for the asymptotic quantiles of RW
n (θ∗).

These quantiles, in turn, can be estimated by Monte Carlo using the asymptotic limits, with the

plug-in estimators in place. A completely analogous approach can be followed for the asymptotic

distributions obtained in the developments that we discuss next.

4.2. SOS Function for Estimating Equations

Throughout this subsection we assume that A1) and A2) are in force. Let us assume that h :

Rd×Rl→Rq and q≤ d. We also impose the following assumptions.

B1) Assume θ∗ ∈Rd satisfies

E (h (θ∗,X)) = 0.

B2) Furthermore, suppose that

E‖h (θ∗,X)‖22 <∞, and E‖h (θ∗, Y )‖22 <∞.

Our goal is to estimate θ∗ under two reasonable SOS function formulations, which we shall

discuss. These are “implicit” or “indirect” and “explicit” or “direct” formulations, we will explain

their nature next.
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4.2.1. Implicit SOS Formulation for Estimating Equations The first SOS function form

for estimating equations is the following; we call it Implicit SOS or Indirect SOS function because

the Wasserstein distance is applied to h (θ,Xi) and h (θ,Zk) and thus it implicitly or indirectly

induces a notion of proximity among the samples.

Definition 2 (Implicit SOS Profile Function for Estimating Equations). Let us write

X h
n (θ∗) = {h (θ∗,Xi) :Xi ∈Xn} and Zhn+m (θ∗) = {h (θ∗,Zk) :Zk ∈Zn+m} then

RW
n (θ∗) = inf{

∫ ∫
‖h (θ∗, x)−h (θ∗, z)‖22 π (dx,dz) : (14)

s.t. π ∈P
(
X h
n (θ∗)×Zhn+m (θ∗)

)
, πX = µn,

∫
h (θ∗, z)πZ (dz) = 0} .

The Implicit SOS formulation might lead to dimension reductions if l ( the dimension of the

ambient space of X) is large. In addition, the presence of h (·) in the distance evaluation allows the

procedure to use the available information in a more efficient way. For instance, if h (θ,x) = |x|−θ,

then the sign of x is irrelevant for the estimation problem and this will have the effect of increasing

the power of the Implicit SOS function relative to the explicit counterpart.

The analysis of the Implicit SOS function follows as a direct consequence of Theorem 1; just

redefine Xi← h (θ∗,Xi), Zk← h (θ∗,Zk), and apply Theorem 1 directly. Thus the proof of the next

result is omitted.

Theorem 2 (Implicit SOS Profile Function Analysis). Let us denote gX(·) as the density

for h (θ∗,Xi)∈Rq and gY (·) for the density of h (θ∗, Yi)∈Rq. Then, the Wasserstein profile function

defined in Equation (14) has the following asymptotic results:

• When q= 1,

nRW
n (θ∗)⇒ V ar (h (θ∗,X1))χ2

1

• When q= 2, if Z̃ ∼N (0, V ar (h (θ∗,X)))∈Rq then

nRW
n (θ∗)⇒ ρ

(
Z̃
)[

2− η
(
Z̃
)
ρ
(
Z̃
)]∥∥∥Z̃∥∥∥2

2
,
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where ρ
(
Z̃
)

is the unique solution to the equation

1

ρ
= g̃

(
ρZ̃
)
,

and g̃ : Rq→R is a deterministic function defined as

g̃ (x) = P
(
‖x‖22 ≥ τ(0)

)
,

where τ is a random variable satisfying

P [τ > t] = E [exp (− [gX (h (θ∗,X1)) +κgY (h (θ∗,X1))]πt)] .

And the function η̃ : Rq→R is a deterministic continuous function given as

η̃ (x) = E
[
max

(
1− τ(0)/‖x‖22,0

)]
.

• When q≥ 3,

n1/2+ 3
2q+2RW

n (θ∗)⇒
2q+ 2

q+ 2

∥∥∥Z̃∥∥∥1+ 1
q+1

2(
E
[

πq/2

Γ(q/2+1)
(gX (h (θ∗,X1)) +κgY (h (θ∗,X1)))

]) 1
q+1

where Z̃ ∼N (0, V ar (h (θ∗,X)))∈Rq.

4.2.2. Explicit SOS Formulation for Estimating Equations The second SOS function

form we call Explicit SOS function because the Wasserstein distance is explicitly or directly applied

to the samples and the scenarios.

Definition 3 (Explicit SOS Profile Function for Estimating Equations).

RW
n (θ∗) = inf{

∫ ∫
‖x− z‖22 π (dx,dz) : (15)

s.t. π ∈P
(
Xn×Z(n+m)

)
, πX = µn,

∫
h (θ∗, z)πZ (dz) = 0} .

Both the implicit and explicit SOS formulations have their merits. We have discussed the merit

of the implicit SOS formulation. For the Explicit SOS formulation, consider the stress-testing

application discussed in Section 2.2. The interest of an auditor or a regulator might be on the impact
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of scenarios on a specific performance measure of interest. One might think that the regulator

applies the same stress scenarios to different insurance companies or banks, and therefore the

function h (·) is unique to each insurance company. The regulator is interested in the impact of

stress-testing scenarios on the structure of the bank (modeled by h (·)). In this setting, the Explicit

SOS formulation appears more appropriate.

While the analysis of the Explicit SOS formulation is also largely based on the techniques devel-

oped for Theorem 1, it does require some additional assumptions that are not immediately clear

without examining the proof of Theorem 1. In particular, in addition to A1), A2), B1) and B2),

here we impose the following assumptions.

BE1) Assume that the derivative of h (θ∗, x) with respect to (w.r.t.) x, Dxh (θ∗, ·) :Rl→Rq×l,

is continuous function of x and the second derivative w.r.t. x is bounded, i.e., ‖D2
xh (θ∗, ·)‖< K̃ for

all x.

BE2) Define Vi = Dxh (θ∗,Xi) · Dxh (θ∗,Xi)
T ∈ Rq×q and assume that Υ = E (Vi) is strictly

positive definite.

We provide the proof of the next result in our technical Section 7.3.

Theorem 3 (Explicit SOS Profile Function Analysis). Under assumptions A1)-A2), B1)-

B2) and BE1)-BE2), we have that (15) satisfies

• When l= 1,

nRW
n (θ∗)⇒ Z̃TΥ−1Z̃

where Z̃ ∼N (0, V ar (h (θ∗,X)))∈Rq.

• Assume that l= 2. Let Z̃ ∼N (0, V ar (h (θ∗,X))) ∈Rq. It is possible to uniquely define deter-

ministic continuous mapping, ζ̃ : Rq→Rq, such that ζ̃ (z) is defined via

z =−E
[
V1I

(
τ ≤ ζ̃T (z)V1ζ̃ (z)

)]
ζ̃ (z) ,

where τ is independent of V1 satisfying

P (τ > t) = E (exp (− [fX (X1) +κfY (X1)]πt)) .
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Then, we have that,

nRW
n (θ∗)⇒−2Z̃T ζ̃

(
Z̃
)
− ζ̃T

(
Z̃
)
G̃
(
ζ̃
(
Z̃
))

ζ̃
(
Z̃
)
,

where G̃ : Rq→Rq×q is a deterministic continuous mapping defined as

G̃ (ζ) = E
[
V1 max

(
1− τ/

(
ζTV1ζ

)
,0
)]
.

• Suppose that l≥ 3. It is possible to uniquely define deterministic continuous mapping ζ̃ : Rq→

Rq, such that

z =−E
[
πl/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)
V1 ·

(
ζ̃T (z)V1ζ̃ (z)

)l]
ζ̃ (z) ,

(note that V1 is a function of X1, so these are correlated). Moreover,

n1/2+ 3
2l+2RW

n (θ∗) ⇒−2Z̃T ζ̃
(
Z̃
)
− 2

l+ 2
G̃
(
Z̃
)
,

where Z̃ ∼N (0, V ar (h (θ∗,X)))∈Rq and G̃ : Rq→R is a deterministic continuous function defined

as

G̃ (ζ) = E
[

πl/2

Γ(l/2 + 1)
(fX (X1) +κfY (X1))

(
ζTV1ζ

)l/2+1
]
.

We should observe that unlike the implicit formulation, the rate of convergence will only depend

on the dimension of data Xi ∈Rl, but the shape of asymptotic distribution is determined by the

estimating functions h (θ∗,Xi)∈Rq.

4.3. Plug-in Estimators for SOS Functions

In many situations, for example in the context of stochastic optimization, we are interested in a

specific parameter θ∗ = (γ∗, ν∗)∈Rd+p such that E [h (γ∗, ν∗,X)] = 0, where ν∗ ∈Rp is the nuisance

parameter (for example Lagrange multipliers in the setting of constrained optimization).

We shall discuss a method that allows us to deal with the nuisance parameter using a plug-in

estimator, while taking advantage of the SOS framework for the estimation of γ∗. After we state

our assumptions we will provide the results in this section, and the proofs, which follow closely

those of Theorem 2 and Theorem 3, will be given in Section 7.
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Throughout this subsection, let us suppose that h (γ, ν,x) ∈ Rq. In addition, we impose the

following assumptions.

C1) Given γ∗ there is a unique ν∗ ∈Rp such that

E [h (γ∗, ν,X)] = 0 (16)

and, given ν∗, we also assume that γ∗ satisfies

E [h (γ, ν∗,X)] = 0. (17)

C2) We have access to a suitable estimator vn such that the sequence

{
n1/2 (vn− ν∗)

}∞
n=1

is tight,

and

1√
n

n∑
i=1

h (γ∗, vn,Xi)⇒ Z̃ ′,

for some random variable Z̃ ′, as n→∞.

C3) Assume that h (γ, ·, x) is continuously differentiable a.e. (almost everywhere with respect to

the Lebesgue measure) in some neighborhood V around v∗.

C4) Suppose that there is a function M (·) :Rl→ (0,∞) satisfying that

‖h (γ∗, ν, x)‖22 ≤M(x) for a.e. ν ∈ V ,

‖Dνh (γ∗, ν, x)‖22 ≤M(x) for a.e. ν ∈ V ,

and E (M (X1))<∞ and E (M (Y1))<∞.

4.3.1. Plug-in Estimators for Implicit SOS Functions We are interested in studying the

plug-in implicit SOS function (or implicit pseudo-SOS profile function) given by

RW
n (γ∗) = inf{

∫ ∫
‖h (γ∗, vn, x)−h (γ∗, vn, z)‖22 π (dx,dz) : (18)

s.t. π ∈P
(
X h
n (γ∗, vn)×Zhn+m (γ∗, vn)

)
, πX = µn,

∫
h (γ∗, vn, z)πZ (dz) = 0},
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where

X h
n (γ∗, vn) = {h (γ∗, vn, x) : x∈Xn}, Zhn+m (γ∗, vn) = {h (γ∗, vn, z) : z ∈Z(n+m)}.

We typically will use (16) to find a plug-in estimator vn. Under suitable assumptions on the

consistency and convergence rate of the plug-in estimator, we have an asymptotic result for (18),

as we indicate next.

Corollary 1 (Plug-in for Implicit SOS Formulation). Assume A1)-A2) and C1)-C4)

hold. Moreover, suppose we denote gX(·) as the density for h (γ∗, v∗,Xi) ∈ Rq and gY (·) for the

density of h (γ∗, v∗, Yi)∈Rq. We notice Z̃ ′ ∈Rq is defined in C2). We obtain that (18) has following

asymptotic behavior:

• When q= 1,

nRW
n (γ∗)⇒

(
Z̃ ′
)2

.

• When q= 2,

nRW
n (γ∗)⇒ ρ

(
Z̃ ′
)[

2− η̃
(
Z̃ ′
)
ρ
(
Z̃ ′
)]∥∥∥Z̃ ′∥∥∥2

2

where ρ
(
Z̃ ′
)

is the unique solution to the equation

1

ρ
= g̃

(
ρZ̃ ′
)
,

and g̃ : Rq→R is a deterministic continuous function defined as

g̃ (x) = P
(
‖x‖22 ≥ τ

)
.

The function η̃ : Rq→R is a deterministic continuous function defined as

η̃ (x) = E
[
max

(
1− τ/‖x‖22,0

)]
.

Moreover, τ satisfies

P [τ > t] = E [exp (− [gX (h (γ∗, ν∗,X1)) +κgY (h (γ∗, ν∗,X1))]πt)] .

• When q≥ 3,

n1/2+ 3
2q+2RW

n (γ∗)⇒
2q+ 2

q+ 2

∥∥∥Z̃ ′∥∥∥1+ 1
q+1

2(
E
[

πq/2

Γ(q/2+1)
(gX (h (γ∗, ν∗,X1)) +κgY (h (γ∗, ν∗,X1)))

]) 1
q+1

.
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4.3.2. Plug-in Estimators for Explicit SOS Functions We can also analyze plug-in esti-

mators for Explicit SOS profile functions. We now define the explicit plug-in (or pseudo) SOS

function based on (15) as simply plugging in the nuisance parameter:

RW
n (γ∗) = inf

{∫ ∫
‖x− z‖22 π (dx,dz) : (19)

s.t. π ∈P
(
Xn×Z(n+m)

)
, πX = µn,

∫
h (γ∗, vn, z)πZ (dz) = 0

}
.

In addition to C1) to C4) introduced at the beginning of this subsection, we shall impose the

following additional assumptions:

C5) Define V̄i (v∗) = Dxh (γ∗, ν∗,Xi) ·Dxh (γ∗, ν∗,Xi)
T

and assume that Ῡ = E
(
V̄i
)

is strictly

positive definite.

C6) The function M (·) from condition C4) also satisfies

‖Dxh (γ∗, ν, x)‖22 ≤M(x) for a.e. ν ∈ V .

‖DνDxh (γ∗, ν, x)‖22 ≤M(x) for a.e. ν ∈ V .

C7) The second derivative w.r.t. x exist and bounded, i.e., ‖D2
xh (γ∗, ν, x)‖ < K̃ for a.e. ν ∈ V

and all x.

Corollary 2 (Plug-in for Explicit SOS Formulation). Let Xi ∈ Rl, h (γ, ν,x) ∈ Rq, and

assume that A1)-A2) and C1)-C7) hold. We notice Z̃ ′ is defined in C2). Then, the SOS profile

function defined in Equation (19) has the following asymptotic properties:

• When l= 1,

nRW
n (γ∗)⇒ Z̃ ′T Ῡ−1Z̃ ′.

• Suppose that l= 2. It is possible to uniquely define deterministic continuous mapping ζ̃ : Rq→

Rq, such that

z =−E
[
V̄1I

(
τ ≤ ζ̃T (z) V̄1ζ̃ (z)

)]
ζ̃ (z) ,

where τ is independent of V̄1 and it satisfies

P (τ > t) = E (exp (− [fX (X1) +κfY (X1)]πt)) .
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Furthermore,

nRW
n (γ∗)⇒−2ζ̃T

(
Z̃ ′
)
Z̃ ′− ζ̃T

(
Z̃ ′
)
G̃
(
ζ̃
(
Z̃ ′
))

ζ̃
(
Z̃ ′
)
,

where G̃ : Rq→Rq×q is a deterministic continuous mapping defined as

G̃ (ζ) = E
[
V̄1 max

(
1− τ/

(
ζT V̄1ζ

)
,0
)]
.

• Assume that l≥ 3. A deterministic and continuous mapping ζ̃ : Rq→Rq can be defined uniquely

so that

z =−E
[
πl/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)
V̄1

(
ζ̃T (z) V̄1ζ̃ (z)

)l]
ζ̃ (z)

(note that V̄1 is a function of X1). Moreover,

n1/2+ 3
2l+2RW

n (γ∗)⇒−2ζ̃T
(
Z̃ ′
)
Z̃ ′− 2

l+ 2
G̃
(
ζ̃
(
Z̃ ′
))

,

where G̃ : Rq→R is a deterministic continuous function defined as

G̃ (ζ) = E
[

πl/2

Γ(l/2 + 1)
(fX (X1) +κfY (X1))

(
ζT V̄1ζ

)l/2+1
]
.

5. Application to Stochastic Optimization and Stress Testing

We will provide an application of the SOS inference framework to quantify model uncertainty in the

context of stochastic programming. Motivating applications include the evaluation of Conditional

Value at Risk (C-VaR) and semi-supervised learning settings, as we shall discuss in the examples

below.

We are interested in the value function of a stochastic programming problem formulation via

C∗ =min
θ

E [m(θ,X)] (20)

s.t. E[φ(θ,X)]≤ 0.

We assume that the objective function ψ(θ) = E [m(θ,X)] is a convex function in θ; while the

constraints E[φ(θ,X)]≤ 0 specify a convex region in θ; for example we shall assume that φ(·, x) is

a convex function for any x.
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Following Blanchet and Murthy (2019), the goal is to estimate the optimal value function using

the SOS formulation and we will apply a plug-in estimator for θ∗ (which is treated as a nuisance

parameter). Subsequently, when introducing the Lagrangian relaxation of (20) we will be able to

also introduce a plug-in estimator for the associated Lagrange multiplier. Therefore, for simplicity,

we shall focus on the unconstrained minimization problem C∗ = minθ {E [m(θ,X)]}.

The authors in Lam and Zhou (2015, 2017) provide a discussion for some potential approaches

to derive nonparametric confidence interval (including Empirical Likelihood, a Bayesian approach,

bootstrap and the delta method). In Lam and Zhou (2015, 2017) it is argued that the Empirical

Likelihood method tends to have superior finite sample performance, and Blanchet et al. (2019a)

provides an optimal (in certain sense) specification for the Empirical Likelihood approach. More

importantly, in Blanchet et al. (2019a) an approach combining Empirical Likelihood and a plug-in

estimator for the optimizer is introduced, which avoids solving a non-convex optimization problem

introduced in the discussion of Lam and Zhou (2015).

Our goal in this section is to derive a plug-in estimator based on the SOS inference approach

introduced in Section 4. The approach that we introduce next is the analog of the plug-in strategy

discussed in Blanchet et al. (2019a) in order to find a robustified confidence interval for C∗.

The following corollary plays the key role in specifying confidence interval for C∗. The result is

a direct extension of Corollary 1 and Corollary 2, provided the following assumptions are in place.

We define M (θ) = E [m(θ,X)], and the assumptions are

D1): Assume m (·) is convex differentiable in θ, then M (θ) is also convex differentiable. We

assume there is a unique optimizer θ∗n for M (θ).

D2): Assume that m (·) is strongly convex at θ∗, that is, there exist δ > 0, such that for every θ

M (θ)≥M (θ∗) + δ ‖θ− θ∗‖22 .

Corollary 3. Let us consider stochastic programming problem C∗ = minθM (θ) =

minθ E [m(θ,X)]. Assume that D1)-D2) hold. We consider the estimating equations to be the

derivative condition and value function condition

E [m(θ∗,X)−C∗] = 0, and E [Dθm (θ∗,X)] = 0.
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For simplicity, let us denote h (θ∗,C∗, x) =
(
m(θ∗, x)−C∗,Dθm (θ∗, x)

T
)T

. We are interested in

C∗ only and consider a sample average approximation (SAA) estimator for θ∗ to be θ̂SAA. For

h (·,C∗, x) we assume C1)-C7) hold. Let us denote U ∼ N (0,Var (m (θ∗,X))) ∈ R and U(0) =(
U,~0

)T
∈ Rd+1. Recalling the implicit and explicit formulations for general estimating equation

SOS function defined in Definition 2 and Definition 3, we have the following asymptotic results.

For the implicit SOS formulation, we have

• When d= 1 (estimating equation dimension is d+ 1 = 2)

nRW
n (C∗)⇒ ρ (U) [2− η̃ (U)ρ (U)]U 2,

where ρ (U) is the unique solution to

1

ρ
= g̃ (ρU) ,

and g̃ : R→R is a deterministic continuous function defined as

g̃ (x) = P
[
x2 ≥ τ

]
.

η̃ (x) is also a deterministic function, defined as

η̃ (x) = E
[
max

(
1− τ/x2,0

)]
,

and τ satisfies

P [τ > t] =E (exp (− (gX (h (θ∗,C∗,X1) +κgY (h (θ∗,C∗,X1)))πt))) .

• When d≥ 2,

n1/2+ 3
2d+4RW

n (C∗)⇒
2d+ 4

d+ 3

||U ||
1+ 1

d+2
2

E
[
π(d+1)/2

Γ((d+3)/2)
(gX (h (θ∗,C∗,X1)) + gY (h (θ∗,C∗,X1)))

] 1
d+2

.

For the explicit formulation, we have the following asymptotic results (we use ζ[1] to denote the

first element of vector ζ)
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• When l= 1,

nRW
n (C∗)⇒ v1,1U

2,

where v1,1 is the (1,1) element of matrix Υ−1.

• Suppose that l= 2. It is possible to uniquely define deterministic continuous mapping ζ̃ : Rq→

Rq, such that

z =−E
[
V̄1I

(
τ ≤ ζ̃T (z) V̄1ζ̃ (z)

)]
ζ̃ (z) ,

where τ is independent of U satisfying

P (τ > t) = E (exp (− [fX (X1) +κfY (X1)]πt)) .

Furthermore,

nRW
n (C∗)⇒−2Uζ̃[1]− ζ̃T (U(0)) G̃

(
ζ̃ (U(0))

)
ζ̃ (U(0)) ,

where G̃ : Rq→Rq×q is a deterministic continuous mapping defined as

G̃ (ζ) = E
[
V̄1 max

(
1− τ

ζT V̄1ζ
,0

)]
,

and U is independent with V̄1 and τ .

• Assume that l≥ 3. A continuous function ζ̃ : Rq→Rq can be defined uniquely so that

z =−E
[
πl/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)
V̄1

(
ζ̃T (z) V̄1ζ̃ (z)

)l]
ζ̃ (z)

(note that V̄1 is a function of X1). Moreover,

n1/2+ 3
2l+2RW

n (C∗)⇒−2Uζ̃[1]−
2

l+ 2
G̃
(
ζ̃ (U(0))

)
,

where G̃ : Rq→R is a deterministic function given as

G̃ (ζ) = E
[

πl/2

Γ(l/2 + 1)
(fX (X1) +κfY (X1))

(
ζT V̄1ζ

)l/2+1
]
,

and U and X1 are independent.
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As indicated earlier, the corollary is a special case of Corollary 1 and Corollary 2, so the proof is

omitted. The estimating equations correspond to the first order optimality condition (i.e., the first

derivative equal to zero) and the corresponding optimal value equation. We use sample average

approximation estimator as the underlying plug-in estimator.

We notice that for sample average approximation, under assumptions D1)-D2), it has been shown

in Ruszczynski and Shapiro (2003), Shapiro and Dentcheva (2014) that the optimizer θ̂SAA and

the optimal value function 1
n

∑n

i=1m
(
θ̂SAA,Xi

)
satisfy

θ̂SAA− θ∗ =O
(
1/n1/2

)
1

n

n∑
i=1

∇θm
(
θ̂SAA,Xi

)
= 0,

1√
n

n∑
i=1

(
m
(
θ̂SAA,Xi

)
−C∗

)
⇒N (0,Var (m (θ∗,X))) .

Therefore, Corollary 2 and Corollary 1 apply.

Similar to the derivation in Blanchet et al. (2019a) in the setting of Empirical Likeli-

hood, for the plug-in estimator derived from sample average approximation, if we denote

n1/2+3/(2d+4)RW (implicit)
n (C∗)⇒R

(implicit)
0 and n1/2+3/(2l+2)RW (explicit)

n (C∗)⇒R
(explicit)
0 , we can spec-

ify a robust 95% confidence interval for C∗ under both explicit and implicit formulation by:

CI(·) (C∗) =
{
C ∈R

∣∣∣nαRW (·)
n (C)≤R(·)

0 (95%)
}

where α depends on the formulation and dimension as in Corollary 3 and R
(·)
0 (95%) is the upper

95% quantile for R
(explicit)
0 (or R

(implicit)
0 ). The upper/lower bound of confidence interval (C(·)

up/C
(·)
l0 )

can be found by solving the linear programming problem

C(·)
up/C

(·)
lo =max

π(i,j)
/ min

π(i,j)
{

n∑
i,j=1

π(i, j)m(θ̂SAA,Xi)

s.t. π(i, j)≥ 0
n∑
j=1

π(i, j) = 1/n;
n∑

i,j=1

π(i, j)‖Xi−Xj‖22 ≤
R

(·)
0 (95%)

nα
}.

Next, we are going to provide a numerical example in quantifying C-VaR using the methodology

we developed above.
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Example 1 (Quantify the uncertainty of Conditional Value at Risk (C-VaR)). In

this example we would like to find an SOS-based 95% confidence interval for conditional value at

risk with 90% level. The conditional value at risk with α−level is given as solving the stochastic

programming problem:

C-VaR(α) = inf
θ

θ+
1

1−α
E

( l∑
k=1

X(k)− θ

)+
 .

We shall test our method using simulated data under different distributional assumptions. We

sample i.i.d. observations {Xi}ni=1 ⊂ Rl. We will apply the SOS inference procedure to provide a

non-parametric confidence interval for C-VaR(90%). In order to verify the coverage probability we

use data simulated from normal distribution and Laplace (double exponential) distributions. We

consider the case l = 4. For the normal distribution setting we assume Xi ∼N (0, I4×4), while for

Laplace distribution we consider for each k = 1, ...,4, Xk
i ∼ Laplace(0,1) and all of these random

variables are independent. For these two cases, we can calculate the solution in closed form; for the

normal setting the optimizer is θ? = 2.5632 and optimal value function is C-VaR(0.9) = 3.510; for

Laplace setting the optimizer is θ? = 3.497 with optimal value function equal to C-VaR(0.9) = 5.066.

In this example, we have three approaches in which our SOS procedure can be applied: 1) implicit

SOS formulation (ISOS); 2) explicit SOS formulation assuming data being of dimension l (ESOS-

O), i.e. Xi =
(
X

(1)
i , . . . ,X

(l)
i

)T
∈ Rl; 3) explicit formulation assuming data being of dimension 1

(ESOS-C), i.e. Xi = X
(1)
i + . . . + X

(l)
i ∈ R. We compare our methods with empirical likelihood

method (EL) in Blanchet et al. (2019a), nonparametric bootstrap method (BT), and central limit

theorem-based Delta method (CLT) discussed in Theorem 5.7 Shapiro and Dentcheva (2014). We

consider four settings n= 20,50,100 and 500. For each setting, we repeat the experiment N = 1000

times, and note down the empirical coverage probability, mean of upper and lower bounds, and the

mean and standard deviation of the interval width for each method. The results are summarized

in Table 1 for Normal distribution and Table 1 for Laplace distribution below.

We can observe that the three SOS-based approaches seem to have comparable coverage prob-

abilities in most cases, for both generating distributions, in comparison to the EL, bootstrap,
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and delta method. However, for small sample situations (n = 20) EL and all of the SOS-based

approaches appear to perform better than the rest. It is discussed in Lam and Zhou (2015) that

EL has better finite sample performance compared to delta method and bootstrap. We can also

notice that all empirical SOS methods tend to have smaller variance compared to others, especially

for relatively large sample sizes (n= 100,500). Between the three SOS methods, we can see that

explicit formulations work better compared to implicit, which follows our discussion after Definition

3. For the two explicit-formulation methods, since we know the data affects the objective function

in the form X
(1)
i + . . .+X

(l)
i , we would expect better performance if we combined the data into a

single dimension. The numerical results validate our intuition.

n Method Coverage
Probability

Mean Lower
Bound

Mean Upper
Bound

Mean Interval
Length

S.D. of
Length

20

ESOS-C 79.8% 2.59 4.68 2.09 0.79
ESOS-O 73.4% 2.55 4.65 2.10 1.21
ISOS 70.8% 2.34 4.87 2.53 0.82
EL 71.7% 2.61 5.18 2.57 1.92
BT 55.6% 1.76 3.88 2.12 1.23
CLT 71.8% 2.01 4.52 2.51 1.87

50

ESOS-C 93.3% 2.67 4.57 1.90 0.30
ESOS-O 91.0% 2.63 4.54 1.91 0.57
ISOS 87.3% 2.70 4.75 2.05 0.56
EL 89.2% 2.81 4.78 1.96 0.83
BT 82.7% 2.30 4.25 1.95 0.77
CLT 86.6% 2.47 4.44 1.97 0.78

100

ESOS-C 92.8% 2.84 4.20 1.36 0.08
ESOS-O 92.4% 2.80 4.22 1.42 0.23
ISOS 91.3% 2.89 4.32 1.53 0.25
EL 91.4% 2.94 4.46 1.52 0.43
BT 90.1% 2.67 4.16 1.49 0.41
CLT 90.4% 2.75 4.17 1.42 0.39

500

ESOS-C 95.3% 3.16 3.85 0.69 0.01
ESOS-O 94.9% 3.14 3.77 0.63 0.05
ISOS 91.2% 3.19 3.88 0.79 0.03
EL 93.9% 3.20 3.93 0.73 0.08
BT 94.2% 3.16 3.84 0.68 0.07
CLT 94.7% 3.17 3.84 0.67 0.08

Table 1 α= 0.9−Conditional Value at Risk with Gaussian Data. The data X is simulated from 4-dim

standard Gaussian distribution, while each dimension is independent. We consider sample size

n= 20,50,100, and 500. We repeat the experiments N = 1000 times and record the coverage probability for the

confidence interval (CI), the average upper and lower bound for CI, also the average length and standard deviation

for CI. ESOS-C is the explicit formulation of SOS with combined data, ESOS-O stands for explicit-SOS with

original data, ISOS is the implicit SOS, EL stands for empirical likelihood, BT is short for nonparametric

bootstrap, and CLT is the asymptotic CI method.
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n Method Coverage
Probability

Mean Lower
Bound

Mean Upper
Bound

Mean Interval
Length

S.D. of
Length

20

ESOS-C 78.2% 3.57 6.89 3.32 1.10
ESOS-O 73.8% 3.48 7.10 3.62 1.91
ISOS 73.1% 3.87 7.55 3.68 1.16
EL 72.3% 3.56 8.00 4.44 3.30
BT 58.1% 2.40 6.01 3.61 2.40
CLT 70.5% 2.53 6.90 4.37 3.24

50

ESOS-C 89.4% 3.78 6.64 2.86 0.42
ESOS-O 89.3% 3.69 6.78 3.09 0.89
ISOS 80.1% 4.21 7.17 2.96 0.63
EL 86.2% 3.89 7.43 3.53 1.66
BT 80.5% 3.15 6.58 3.43 1.54
CLT 83.6% 3.29 6.64 3.35 1.54

100

ESOS-C 91.9% 3.93 6.22 2.29 0.14
ESOS-O 90.8% 3.88 6.30 2.42 0.43
IISOS 86.6% 4.30 6.78 2.44 0.36
EL 89.9% 4.10 6.66 2.56 0.86
BT 86.2% 3.71 6.16 2.45 0.81
CLT 87.6% 3.76 6.17 2.41 0.79

500

ESOS-C 94.7% 4.53 5.62 1.09 0.06
ESOS-O 94.3% 4.46 5.59 1.13 0.08
ISOS 92.1% 4.43 5.61 1.17 0.13
EL 94.0% 4.53 5.78 1.25 0.18
BT 92.2% 4.46 5.58 1.12 0.16
CLT 93.1% 4.45 5.48 1.13 0.15

Table 2 α= 0.9−Conditional Value at Risk with Laplace Data. The data X is simulated from 4-dim

standard Laplace distribution, while each dimension is independent. We consider sample size

n= 20,50,100, and 500. We repeat the experiments N = 1000 times and record the coverage probability for the

confidence interval (CI), the average upper and lower bound for CI, also the average length and standard deviation

for CI. ESOS-C is the explicit formulation of SOS with combined data, ESOS-O stands for explicit-SOS with

original data, ISOS is the implicit SOS, EL stands for empirical likelihood, BT is short for nonparametric

bootstrap, and CLT is the asymptotic CI method.

In addition, we report the computational time for our calculation in Table 5. The different for-

mulations of SOS-based methods share the same computation cost, thus we only report the case

for implicit SOS. We report the average calculating time in seconds with thousands of experi-

ments, where the experiments are implemented in Python with Scipy optimizers and our machine

is equipped with an Intel i7 3.5Ghz processor and 16GB memory. Our SOS based method requires

solving the C-VaR optimization problem once, then solve the linear programming. The EL based

method is similar, with solving the C-VaR optimization problem once, it then solves a convex opti-

mization problem. Finally, the bootstrap based method requires solving the C-VaR optimization

repetitively. We can observe that for the example we consider, our SOS-based method does not

face computational challenges compared with other methods.
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20 50 100 500

ISOS 0.042 0.108 0.613 14.069

EL 0.018 0.069 0.401 7.272

BT 0.099 1.038 2.085 18.023

Table 3 Computational Cost for Our C-VaR examples. The average computational time in seconds for

different algorithms with different sample sizes.

Example 2 (Semi-supervised Learning). We consider the DRO formulation for Semi-

supervised Learning (SSL) as suggested in Blanchet and Kang (2018). We formulate the data-driven

DRO problem and compare the results for choosing the distributional uncertainty size with the

above asymptotic results of SOS function as suggested in Corollary 3. We consider the MiniBooNE

data set from UCI machine learning data base Blake and Merz (1998). We consider logistic regres-

sion as our baseline model and form SSL-DRO formulation. For each iteration, we randomly split

the data into labeled training set with size n= 30, unlabeled training set with size N −n= 5000,

and testing set with size n= 125034. We compare the choice of the uncertainty size using 5-fold

cross-validation and SoS asymptotic results. We also include the results for logistic regression and

regularized logistic regression as reference. We report the average training error and testing error

as log-exponential loss and testing accuracy as accurate classification rate. The mean and standard

deviation of the training error, testing error, and testing accuracy are evaluated via 500 independent

experiments. The details are included in Table 4.

Training Error Testing Error Testing Accuracy

Logistic Regression 0± 0 18.2± 10.0 .678± .059

LRL1 with CV .401± .167 .910± .131 .717± .041

DRO-SSL with CV .287± .047 .609± .054 .710± .032

DRO-SSL with SoS .304± .045 .682± .048 .709± .028

Table 4 Numerical Results for Semi-supervised Learning.
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6. Conclusions and Discussion

This paper introduces a methodology inspired by Empirical Likelihood, but in which the likelihood

ratio function is replaced by a Wasserstein distance. The method that we propose is motivated

by the problem of systematically finding estimators that incorporate out-of-sample performance in

their design.

In turn, as a motivation for the need to find these types of estimators we discussed applications

to stress testing and semi-supervised learning, which have been discussed in the body of this paper.

Another way in which we can justify our framework is as an approximation approach to solving

the problem

min
θ∈Rl

max
P∈Uδ(Pn;Rd)

EP [L (X,θ)].

It turns out that in great generality (see Esfahani and Kuhn (2018))

max
P∈Uδ(Pn;Rd)

EP [L (X,θ)] = min
λ≥0
{λδ+EPn [f (X,θ;λ)]},

where f (x, θ;λ) is defined as the solution of an optimization problem involving a parameter y ∈Rd

which we refer to as the “inner optimization problem.”The inner optimization problem is typically

not convex and therefore it is challenging to solve. There are cases in which the inner optimization

problem can be solved in closed form, however, and many of those cases have been documented

in the literature in Esfahani and Kuhn (2018). Our results can be used to suitably calibrate an

alternative formulation that may be more tractable given that y ∈Rd is replaced by y ∈Zn,m.

There are a number of structural properties in our procedure that are worth investigating and

that we plan to explore in future work. For instance, we believe the choice of a particular cost

in optimal transport distance deserves substantial analysis. In this paper we have chosen the L2

Wasserstein metric to illustrate our results. The methodology that we propose can be extended to

cover other Wasserstein metrics, so on the technical side our work provides the foundations for such

extensions. However, it is the impact of such selection that appears to also bring about interesting

connections. This already is made evident from our work Blanchet et al. (2019b) in which we see



Blanchet and Kang: Sample Out-of-Sample Inference
Article submitted to Operations Research; manuscript no. OPRE-2016-05-283.R3 37

that the connections that we mentioned earlier in this discussion (to LASSO and SVM) are made

after carefully choosing a natural Wasserstein metric.

In addition, given the parallel philosophy underpinning the method that we proposed (based on

Empirical Likelihood), the results described in this paper open up a significant amount of research

opportunities that are parallel to the substantial literature produced in the area of Empirical

Likelihood during the last three decades. We mention, in particular, applications to regression

problems (see Owen (1991), Chen (1993), Wang and Rao (2001), Zhao and Wang (2008), Chen and

Keilegom (2009), Murphy (1995), Li et al. (1996), Hollander and McKeague (1997), Li et al. (1997),

Einmahl and McKeague (1999), Wang et al. (2009), Zhou (2015)), machine learning (see Duchi

et al. (2016), Hu et al. (2018), Duchi and Namkoong (2018), Blanchet et al. (2019d)), econometrics

(see Newey and Smith (2004), Bravo (2004), Kitamura (2006), Antoine et al. (2007), Guggenberger

(2008), Imbens (2012)), and additional recent work on stochastic optimization (see Lam and Zhou

(2015, 2017), Blanchet et al. (2019a)). The methodology we propose could be extended to the

above applications by simply replacing the Empirical Likelihood function by the SOS function and

by applying asymptotic theorems developed in this paper (or natural extensions).

7. Methodological Development

We shall analyze the limiting distribution of the SOS profile function for means first. In order to

gain some intuition let us perform some basic manipulations. First, without loss of generality we

assume θ∗ = 0, otherwise, we can let X̃i =Xi− θ∗ and apply the analysis to the X̃i’s.

7.1. The Dual Problem and High-Level Understanding of Results

The Dual Problem Let us revisit the definition of (12) and write it as a linear programming

problem,

RW
n (θ∗) = min

π(i,j)≥0

n∑
i=1

m+n∑
j=1

π(i, j)‖Xi−Zj‖22 (21)

s.t.


∑(m+n)

j=1 π(i, j) = 1/n, for all i∑(m+n)

j=1 (
∑n

i=1 π(i, j))Zj = 0

.
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We know with probability one when n→∞, ~0 is in the convex hull of Zj, thus the original linear

programming problem is feasible for all n large enough with probability one. Applying the strong

duality theorem for linear programming problem, see for example, Luenberger (1973), we can write

(21) in the dual formulation as

RW
n (θ∗) = max

λ,γ̃i

{
− 1

n

n∑
i=1

γ̃i

}

s.t. γ̃i + ‖Xi−Zj‖22−λ
TZj ≥ 0 for all i, j.

Let us define γi = γ̃i−λTZi. By the constraint in the above optimization problem, if we take i= j,

we have γ̃i ≥ λTZi, which is equivalent to γi ≥ 0. Then, we can write the optimization problem in

γi’s as

RW
n (θ∗) = max

λ,γi≥0

{
−λT X̄n−

1

n

n∑
i=1

γi

}

s.t. −λTXi− γi ≤−λTZj + ‖Xi−Zj‖22 , for all i, j.

We can further simplify the constraints by minimizing over j, while keeping i fixed, therefore

arriving to the simplified dual formulation

RW
n (θ∗) = max

λ,γi≥0

{
−λT X̄n−

1

n

n∑
i=1

γi

}
(22)

s.t. −λTXi− γi ≤ inf
j

{
−λTZj + ‖Xi−Zj‖22

}
, for all i.

High-Level Intuitive Analysis At this point we can perform a high-level analysis which can

help us guide our intuition about our result. First, consider an approximation performed by freeing

the Zj in the constraints of (22), in this portion the reader can appreciate that the assumption

that Xj has a density yields

inf
j

{
‖Zj − (Xi +λ/2)‖2

2

}
= εn (i) , (23)

where error εn (i) is small as n→∞ and it will be discussed momentarily. Equation (23) is equivalent

to

inf
j

{
−λTZj + ‖Xi−Zj‖22

}
=−λTXi−‖λ‖22 /4 + εn (i) .
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Hence, the i-th constraint in (22) takes the form

−λTXi− γi ≤−λTXi−‖λ‖22 /4 + εn (i) ,

and thus (22) can ultimately be written as

RW
n (θ∗) =− min

λ,γi≥0

{
λT X̄n +

1

n

n∑
i=1

γi

}
(24)

s.t. γi ≥ (1− εn (i))‖λ‖22 /4 for all i.

Now, observe that if Zj was free, then the optimal choice in (23) would be a∗ (i) =Xi +λ/2.

Consider the case l = 1, in this case it is not difficult to convince ourselves (because of the

existence of a density) that εn (i) = Op (1/n) as n→∞ (basically with a probability which is

bounded away from zero there will be a point in the sample {Z1, ...,Zm+n}\Xi which is within

Op (1/n) distance of a∗ (i)). Then it is intuitive to expect the approximation

RW
n (θ∗) =−min

λ

{
λX̄n + (1 +Op (1/n))λ2/4

}
,

which formally yields an optimal selection

λ∗ =− X̄n

(1/2 +Op (1/n))
=−2X̄n +Op

(
1/n3/2

)
,

and therefore we expect, due to the Central Limit Theorem (CLT), that

nRW
n (θ∗) = nX̄2

n +nOp
(
1/n3/2

)
⇒ V ar (X)χ2

1, (25)

as n→∞. This analysis will be made rigorous in the next subsection.

Let us continue our discussion in order to elucidate why the rate of convergence in the asymptotic

distribution of RW
n (θ∗) depends on the dimension. Such dependence arises due to the presence of the

error term εn (i). Note that in dimension l= 2, we expect εn (i) =Op
(
1/n1/2

)
; this time, with pos-

itive probability (uniformly as n→∞) we must have that a point in the sample {Z1, ...,Zm+n}\Xi

is within Op
(
1/n1/2

)
distance of a∗ (i) (because the probability that Xi lies inside a ball of size

1/n1/2 around a point a is of order O
(
1/n1/2

)
). Therefore, in the case l = 2 we formally have
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λ∗ (n) =−X̄n +Op
(
n−1/2

)
, but we know from the CLT that X̄n =Op

(
n−1/2

)
so this time contri-

bution of εi (n) is non-negligible.

Similarly, when l≥ 3 this simple analysis allows us to conclude that the contribution of εi (n) =

O
(
n−1/l

)
will actually dominate the behavior of λ∗ (n) and this explains why the rate of convergence

depends on the dimension of the vector Xi, namely, l. The specific rate depends on a delicate

analysis of the error being εi (n) which is performed in the next sub-section. A key technical device

introduced in our proof technique is a Poisson point process which approximates the number of

points in {Z1, ...,Zm+n}\Xi which are within a distance of size O
(
n−1/l

)
from the free optimizer

a∗ (i) arising in (23).

The introduction of this point process, which in turn is required to analyze εi (n), makes the proof

of our result substantially different from the standard approach used in the theory of Empirical

Likelihood (see Owen (1988, 1990), Qin and Lawless (1994)), which builds on Wilks (1938).

7.2. Proof of Theorem 1

The proof of Theorem 1 is divided in several steps which we will carefully record so that we can

build from these steps in order to prove the remaining results in the paper.

7.2.1. Step 1 (Dual Formulation and Lower Bound): Using the same transformations

introduced in (21) we can obtain the dual formulation of the SOS profile function (12), which is a

natural adaptation of (22), namely

RW
n (θ∗) = max

λ,γi≥0

{
−λX̄n−

1

n

n∑
i=1

γi

}

s.t. −λTXi− γi ≤ inf
j

{
−λTZj + ‖Xi−Zj‖22

}
, for all i.

Observe that the following lower bound applies by optimizing over a∈Rl instead of a=Zj ∈Zn,

therefore obtaining the lower bound

inf
j

{
−λTZj + ‖Xi−Zj‖22

}
≥ inf

a

{
−λTa+ ‖Xi− a‖22

}
=−λTXi−‖λ‖22 /4,

with the optimizer a∗ (Xi, λ) =Xi +λ/2.
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7.2.2. Step 2 (Auxiliary Poisson Point Processes): Then, for each i let us define a point

process,

N (i)
n (t, λ) = #

{
Zj : ‖Zj − a∗ (Xi, λ)‖22 ≤ t

2/l/n2/l,Zj 6=Xi

}
,

(recall that Zj ∈Rl). Observe that, actually, we have

N (i)
n (t, λ) =N (i)

n (t, λ,1) +N (i)
n (t, λ,2),

where

N (i)
n (t, λ,1) = #

{
Xj : ‖Xj − a∗ (Xi, λ)‖22 ≤ t

2/l/n2/l,Xj 6=Xi

}
,

N (i)
n (t, λ,2) = #

{
Yj : ‖Yj − a∗ (Xi, λ)‖22 ≤ t

2/l/n2/l
}
.

For any Xj with j 6= i, conditional on Xi, due to the assumption of density and the formula for

the volume of l-dimensional ball (Rudin (1964)), we have,

P
[
‖Xj − a∗ (Xi, λ)‖22 ≤ t

2/l/n2/l
∣∣∣Xi

]
= fX (a∗ (Xi, λ))

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n) = fX (Xi +λ/2)

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n).

Similarly,

P
[
‖Yj − a∗ (Xi, λ)‖22 ≤ t

2/l/n2/l
∣∣∣Xi

]
= fY (Xi +λ/2)

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n).

Since we have i.i.d. structure for the data points, thus we know, N (i)
n (t, λ,1) and N (i)

n (t, λ,2) con-

ditional on Xi follow binomial distributions,

N (i)
n (t, λ,1)|Xi ∼Bin

(
fX (Xi +λ/2)

πl/2

Γ(d/2 + 1)

t

n
+ op(t/n), n− 1

)
,

N (i)
n (t, λ,2)|Xi ∼Bin

(
fY (Xi +λ/2)

πl/2

Γ(l/2 + 1)

t

n
+ op(t/n), [κn]

)
,

N (i)
n (t, λ) =N (i)

n (t, λ,1) +N (i)
n (t, λ,2).

Moreover, we have as n→∞,

fX (Xi +λ/2)
πl/2

Γ(l/2 + 1)

t

n
× (n− 1)→ fX (Xi +λ/2)

πl/2

Γ(l/2 + 1)
t.
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Thus, by Poisson approximation to the binomial distribution, we have the weak convergence result

N (i)
n (·, λ,1)|Xi⇒Poisson

(
fX (Xi +λ/2)

πl/2

Γ(l/2 + 1)
·
)
,

in D[0,∞).

So we have that N (i)
n (·, λ,1), conditional on Xi, is asymptotically a time homogeneous Poisson

process with rate fX (Xi +λ/2)πd/2/Γ(d/2 + 1). Similar considerations apply to N (i)
n (·, λ,2)|Xi

which yield that

N (i)
n (·, λ)|Xi⇒Poi (Λ (Xi, λ) ·) ,

where

Λ (Xi, λ) = [fX (Xi +λ/2) +κfY (Xi +λ/2)]
πl/2

Γ(l/2 + 1)
.

Let us write Ti (n,λ) to denote the first arrival time of N (i)
n (·, λ), that is,

Ti (n,λ) = inf
{
t≥ 0 :N (i)

n (t, λ)≥ 1
}

Then, we can specify the survival function for Ti (n) to be:

P [Ti (n,λ)> t | Xi] = P
[
N (i)
n (t, λ) = 0

∣∣ Xi

]
= exp (−Λ (Xi, λ) t)

(
1 +O

(
1/n1/l

))
, (26)

uniformly on t over compact sets. The error rate O
(
1/n1/l

)
is obtained by a simple Taylor expansion

of the exponential function applied to the middle term in the previous string of equalities. Motivated

by the form in the right hand side of (26) we define τi (Xi, λ) to be a random variable such that

P [τi (Xi, λ)> t|Xi] = exp (−Λ (Xi, λ) t) ,

and we drop the dependence on Xi and the subindex i when we refer to the unconditional version

of τi (Xi, λ), namely

P [τ (λ)> t] = E [exp (−Λ (X1, λ) t)] .

We finish Step 2 with the statement of two technical lemmas. The first provides a rate of

convergence for the Glivenko-Cantelli theorem associated to the sequence {Ti (n,λ)}ni=1.
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Lemma 1. For any T ∈ (0,∞) (deterministic) and α∈ (0,2], we have that

limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(I (Ti (n,λ)≤ t)−P[Ti (n,λ)≤ t])

∣∣∣∣∣
)
<∞,

and

limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
max

(
t2−Ti(n,λ)α,0

)
−E

[
max

(
t2−Ti(n,λ)α,0

)])∣∣∣∣∣
)
<∞.

The second technical lemma deals with local properties of the distribution of Ti (n,λ). The proofs

of both of these technical results are given at the end of the proof of Theorem 1, in Section 7.2.7.

Lemma 2. For Xi ∈Rl and any finite t, we have the Poisson approximation to binomial as:

P [Ti (n,λ)≤ t]−P [τ(λ)≤ t] =O(t1+1/l/n1/l),

and

P [Ti (n,λ)≤ t]−P [τ(λ)≤ t] = P [τ > t]O
(
1/nl

)
.

7.2.3. Step 3 (Closest Point and SOS Function Simplification): Note that the i-th

constraint, namely,

−γi ≤ λTXi + inf
j

{
−λTZj + ‖Xi−Zj‖22

}
,

can be written as

−γi ≤ inf
j

{
−λT (Zj −Xi) + ‖Xi−Zj‖22

}
=−‖λ‖22 /4 + inf

j

{
‖Zj − (λ/2 +Xi)‖22

}
=−‖λ‖22 /4 +T

2/l
i (n,λ)/n2/l.

However, since γi ≥ 0 we must have that

−γi ≤−‖λ‖22 /4 + min
(
T

2/l
i (n,λ)/n2/l,‖λ‖22 /4

)
.

Therefore, the SOS profile function takes the form

RW
n (θ∗) = max

λ

{
−λT X̄n−‖λ‖22 /4 +

1

n

n∑
i=1

min

(
T

2/l
i (n,λ)

n2/l
,‖λ‖22 /4

)}
.
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To simplify the notation, let us redefine λ←− 2λ then we have that the simplified SOS profile

function becomes:

RW
n (θ∗) = max

λ

{
−2λT X̄n−

1

n

n∑
i=1

max

(
‖λ‖22−

T
2/l
i (n,λ)

n2/l
,0

)}
. (27)

7.2.4. Step 4 (Case l = 1): When l = 1, let us denote
√
nX̄n = Zn and

√
nλ= ζ, where by

CLT we can show Zn⇒ Z̃ ∼N(0, σ2), where when l= 1 we have σ2 = Σ. Then, as n→∞, we have:

nRW
n (θ∗) = max

ζ

{
−2ζZn−

1

n

n∑
i=1

max
(
ζ2−T 2

i

(
n, ζ/

√
n
)
n−1,0

)}

= max
ζ

{
−2ζZn−E

[
max

(
ζ2−T 2

i

(
n, ζ/

√
n
)
n−1,0

)]}
+ op(1)

= max
ζ

{
−2ζZn−E

[
max

(
ζ2−T 2

i (n,0)n−1,0
)]}

+ op(1)

The second equation follows the estimate in (Lemma 1). Using the bonded derivative for the density

condition and first order Taylor expansion, we can prove that E [T 2
i (n,0)]−E [T 2

i (n, ζ/
√
n)]→ 0 as

n→∞ for any fixed ζ. Since max function is Lipschitz continuous function with constant 1, and

using the Dominating Convergence Theorem, the third equation above could be derived as

E
[
max

(
ζ2−T 2

i (n,0)n−1,0
)]
−E

[
max

(
ζ2−T 2

i

(
n, ζ/

√
n
)
n−1,0

)]
≤E
[∣∣T 2

i

(
n, ζ/

√
n
)
n−1−T 2

i (n,0)n−1
∣∣]= op(1). (28)

We know the objective function as a function of ζ is a strictly convex function. Since as ζ = b |Zn|

with b→±∞ implies that the objective function will tend to −∞, we conclude that the sequence

of global optimizers is compact and each optimizer (i.e. for each n) could be characterized by the

first order optimality condition almost surely. To make the analysis more clear, let us denote the

expectation in the maximization problem to be g (ζ,n), as a function of ζ, i.e.

G (ζ,n) = E
[
max

(
ζ2−T 2

i (n,0)n−1,0
)]
,

which is a deterministic function of ζ and for any n it is convex. Moreover, the derivative of G (ζ,n)

is,

g (ζ,n) =∇ζG (ζ,n) = 2ζP
(
T 2
i (n,0)≤ nζ2

)
.
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We need to notice that while taking the derivative we require exchanging the derivative and expec-

tation, this can be done true hereby the Dominated Convergence Theorem since

δ−1
∣∣∣max

(
(ζ + δ)

2−T 2
i (n,0)n−1,0

)
−max

(
ζ2−T 2

i (n,0)n−1,0
)∣∣∣≤ 2|ζ|,

for all δ > 0. We can take the derivative with respect to ζ in −2ζZn −G (ζ,n) and set it to zero,

as n→∞ we obtain

Zn =−ζP
(
T 2
i (n,0)≤ nζ2

)
=−ζP

(
τ 2(0)≤ nζ2

)
+ op(1) =−ζ + op(1).

This estimate follows the second result of Lemma 2. Therefore, the optimizer ζ∗n, satisfies ζ∗n =

−Zn+op(1), as n→∞. Then, we plug it into the objective function to obtain that the scaled SOS

profile function satisfies

nRW
n (θ∗) = 2Z2

n−G (Zn, n) + op (1) as n→∞.

We should notice G (Zn, n) is a function defined via expectation and evaluated at Zn, thus it is

a random variable that depends on Zn. By definition and E [|X|] =
∫∞

0
P [|X| ≥ t]dt, we know as

n→∞,

G (ζ,n) =

∫ ζ2

0

P
[
T 2
i (n,0)≤ n

(
ζ2− t

)]
dt

=

∫ ζ2

0

P
[
τ 2 (0)≤ n

(
ζ2− t

)]
dt+ o(1)

=

∫ ζ2

0

1dt+ o(1) = ζ2 + o(1),

where the second equality is derived from the second argument of Lemma 2. Then for the SOS

profile function, it becomes,

nRW
n (θ∗) = 2Z2

n−Z2
n + op(1) =Z2

n + op(1) as n→∞.

Applying the continuous mapping theorem and the Central Limit Theorem for Zn, we have

nRW
n (θ∗)⇒ σ2χ2

1.
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7.2.5. Step 5 (Case l= 2): Once again we introduce the substitution ζ =
√
nλ and

√
nX̄n =

Zn into (27). Then, scaling the profile function by n, as n→∞ we have

nRW
n (θ∗) =max

ζ

{
−2ζTZn−

1

n

n∑
i=1

max
(
‖ζ‖22−Ti

(
n, ζ/

√
n
)
,0
)}

=max
ζ

{
−2ζTZn−E

[
max

(
‖ζ‖22−Ti

(
n, ζ/

√
n
)
,0
)]}

+ op(1)

=max
ζ

{
−2ζTZn−E

[
max

(
‖ζ‖22−Ti (n,0) ,0

)]}
+ op(1), (29)

where the second equality is by applying Lemma 1 (the error is obtained by localizing ζ on a

compact set, which is valid because the sequence of global optimizers is easily seen to be tight),

and the third equality is applying similar derivation as in (28),The objective function is strictly

convex as a function of ζ and we know when ‖ζ‖2→∞ the objective function tends to −∞, thus

each global maximizer (for each n) can be characterized by the first order optimality condition

almost surely. Similar as Case l= 1, let us denote

G (ζ,n) = E
[
max

(
‖ζ‖22−Ti (n,0) ,0

)]
.

It is a continuous differentiable and convex function in ζ and with derivative equals

g (ζ,n) =∇ζG (ζ,n) = 2ζP
[
‖ζ‖22 ≥ Ti (n,0)

]
= 2ζP

[
‖ζ‖22 ≥ τ(0)

]
+ o(1) as n→∞,

where the first equality requires applying the Dominated Convergence Theorem, as in the case l= 1

and the second estimate follows the first argument in Lemma 2. Combining the above estimation,

we have the first order optimality condition becomes

Zn =−ζP
[
‖ζ‖22 ≥ τ(0)

]
+ op(1) =−ζg̃ (ζ) + op(1) as n→∞, (30)

where g̃ (ζ(0)) = P
[
‖ζ‖22 ≥ τ

]
is a deterministic function of ζ. Using equation (30), we conclude that

the optimizer ζ∗n, satisfies ζ∗n = −ρZn + op (1), for some ρ. In turn, plugging in this representation

into equation (30), as n→∞ we have

‖ζ∗n‖2 g̃ (ζ∗n) + op(1) = ‖Zn‖2 .
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Sending n→∞, we conclude that ρ is the unique solution to

1

ρ
= g̃

(
ρZ̃
)
. (31)

Since the objective function is strictly convex and the above equation is derived from first order

optimality condition, we know the solution exists and is unique (alternatively we can use the conti-

nuity and monotonicity of left and right hand side of (31), to argue the existence and uniqueness).

Let us plug in the optimizer back to the objective function and we can see the scaled SOS profile

function becomes

nRW
n (θ∗) = 2ρ

(∥∥∥Z̃∥∥∥2

2

)
‖Zn‖22−G (ζ∗n, n) + op(1).

For a positive random variable Y , we have: E [Y ] =
∫∞

0
P [Y ≥ t]dt. Therefore, for ζ in a compact

set, as n→∞ we have the following estimate

G (ζ,n) =

∫ ‖ζ‖22
0

P
[
‖ζ‖22−Ti (n,0)≥ t

]
dt

=

∫ ‖ζ‖22
0

P
[
‖ζ‖22− τ(0)≥ t

]
dt+ o(1)

= ‖ζ‖22
∫ 1

0

P
[
1− τ(0)/‖ζ‖22 ≥ s

]
ds+ o(1)

= ‖ζ‖22 E
[
max

(
1− τ(0)/‖ζ‖22,0

)]
+ o(1)

= ‖ζ‖22 η̃ (ζ) + o(1),

where we define η̃ (ζ) = E
[
max

(
1− τ(0)/‖ζ‖22,0

)]
is a deterministic continuous function of ζ. The

second equation follows the first result of Lemma 2. Finally combine G (ζ,n) and the first term,

using the CLT and continuous mapping theorem, where we denote Zn⇒ Z̃ ∼ N(0, V ar(X)), as

n→∞ we have:

nRW
n (θ∗) = 2ρ

(
Z̃
)
‖Zn‖22− ρ

(
Z̃
)2

η̃ (Zn)‖Zn‖22 + op(1)

⇒ 2ρ
(
Z̃
)∥∥∥Z̃∥∥∥2

2
− ρ

(
Z̃
)2

η̃
(
Z̃
)∥∥∥Z̃∥∥∥2

2
.
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7.2.6. Step 6 (Case l≥ 3): For simplicity, let us write
√
nX̄n = Zn and n

3
2l+2λ= ζ, then as

n→∞ we have

n1/2+ 3
2l+2RW

n (θ∗)

= max
ζ

{
−2ζTZn−n(1/2+ 3

2l+2−
2
l ) 1

n

n∑
i=1

max

(∥∥∥∥ ζ

n( 3
2l+2−

1
l )

∥∥∥∥2

2

−T 2/l
i

(
n, ζ/n

3
2l+2

)
,0

)}

= max
ζ

{
−2ζTZn−n(1/2+ 3

2l+2−
2
l )E

[
max

(∥∥∥∥ ζ

n( 3
2l+2−

1
l )

∥∥∥∥2

2

−T 2/l
1

(
n, ζ/n

3
2l+2

)
,0

)]}
+ op(1)

= max
ζ

{
−2ζTZn−n(1/2+ 3

2l+2−
2
l )E

[
max

(∥∥∥∥ ζ

n( 3
2l+2−

1
l )

∥∥∥∥2

2

−T 2/l
1 (n,0) ,0

)]}
+ op(1).

The estimate in second equation the previous display is due to an application of Lemma 1, and the

third equation follows the similar derivation as in (28). Similar as for the lower dimensional case,

let us denote

G (ζ,n) = n(1/2+ 3
2l+2−

2
l )E

[
max

(∥∥∥∥ ζ

n( 3
2l+2−

1
l )

∥∥∥∥2

2

−T 2/l
1 (n,0) ,0

)]
,

being a deterministic function continuous and differentiable as a function of ζ. As we discussed for

the case l= 2 case, the objective function is strictly convex in ζ, the global optimizers are not only

tight, but each optimizer is also characterized by first order optimality conditions almost surely.

We can apply the Dominated Convergence Theorem, as we discussed for l= 1 and the gradient of

G (ζ,n) has the following estimate as n→∞,

g (ζ,n) =∇ζG (ζ,n) = 2n(1/2+ 3
2l+2−

2
l )ζP

[
Ti (n,0)≤

∥∥∥ζn−( 3
2l+2−

1
l )
∥∥∥l

2

]
= 2n(1/2+ 3

2l+2−
2
l )ζP

[
τ(0)≤

∥∥∥ζn−( 3
2l+2−

1
l )
∥∥∥l

2

]
+ o(1).

The second equality estimate is considering ζ within a compact set and the derivation follows the

first argument in Lemma 2. Then the first order optimality condition for the SOS profile function

becomes,

Zn =−n(1/2+ 3
2l+2−

2
l )ζP

[
τ (0)≤

∥∥∥ζn−( 3
2l+2−

1
l )
∥∥∥l

2

]
+ o(1) as n→∞.
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For notation simplicity, let us define

κn = ζn−( 3
2l+2−

1
l ).

We can observe for ζ in a compact set,
∥∥∥ζn−( 3

2l+2−
1
l )
∥∥∥l

2
= ‖κn‖l2→ 0, as n→∞, then we can write

P
[
τ (0)≤ ‖κn‖l2

]
= 1−P

[
τ (0)> ‖κn‖l2

]
= 1−E

[
P
[
τ (0)> ‖κn‖l2

∣∣∣ X1

]]
= E

[
1− exp

(
−π

l/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)
‖κn‖l2

)]
= E

[
πl/2

Γ(l/2 + 1)
[fX (X1) +κfY (X1)]‖κn‖l2

]
+ op

(
n−( 3l

2l+2−1)
)

=C ‖κn‖l2 + op

(
n−( 3l

2l+2−1)
)
,

where we denote

C =
πl/2

Γ(l/2 + 1)
E [fX (X1) +κfY (X1)] .

Plug it back into the optimizer, and as n→∞ we have:

Zn =−Cn(1/2− 3
2l+2 )n(− 3l

2l+2+1)ζ ‖ζ‖l2 + op(1) =−Cζ ‖ζ‖l2 + op(1).

We know that within the objective function, the second term is only based on the L2 norm of ζ,

thus to maximize the objective function we will asymptotically select ζ∗n =−c∗Zn (1 + o (1)), where

c∗ > 0 is suitably chosen, thus, we conclude that the optimizer takes the form,

ζ∗n =−Zn‖Zn‖
( 1
l+1−1)

2 /C
1
l+1 + op(1).

Plugging-in the optimizer back into the objective function, as n→∞we have:

n1/2+ 3
2l+2RW

n (θ∗) =−2ζ∗ Tn Zn−G (ζ∗n, n) + op(1).

Let us focus on the analysis of G (ζ,n) in a compact set. By definition, we can notice that inside

the previous expectation there is a positive random variable bounded by

∥∥∥∥ ζ

n
( 3
2l+2

− 1
l )

∥∥∥∥2

2

= ‖κn‖22,

thus as n→∞ we have the following estimate for the expectation as.

E
[
max

(
‖κn‖22−T

2/l
1 (n,0) ,0

)]
= E

[
E
[
max

(
‖κn‖22−T

2/l
1 (n,0) ,0

) ∣∣∣ X1

]]
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= E
[∫ κn

0

P
[
T1 (n,0)≤ (κn− t)l/2

∣∣∣ X1

]
dt

]
= E

[∫ ‖κn‖22
0

P
[
τ (0)≤

(
‖κn‖22− t

)l/2 ∣∣∣∣ X1

]
+O

(
1/n−1/2+1/l

)
dt

]

= E

[∫ ‖κn‖22
0

(
1− exp

(
−π

l/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)

(
‖κn‖22− t

)l/2))
dt

]

+O
(

1/n−1/2+3/l− 6
2l+2

)
=C

2

l+ 2

∥∥∥∥ ζ

n( 3
2l+2−

1
l )

∥∥∥∥l+2

+O
(

1/n−1/2+3/l− 6
2l+2

)
The estimate in third equation follows by applying the first argument in Lemma 2. The final

equality estimate is due to ‖κn‖22 =
∥∥∥ζn−( 3

2l+2−
1
l )
∥∥∥2

2
→ 0 as n→∞. Then, owing to the previous

results, as n→∞ we have estimate for G (ζ,n) as

G (ζ,n) =− 2C

l+ 2
n(1/2+ 3

2l+2−
2
l )n(− 3l+6

2l+2+ l+2
l ) ‖ζ‖l+2

2 + o(1)

=− 2C

l+ 2
‖ζ‖l+2

2 + o(1).

Finally, we can know that, as n→∞, by the CLT we have Zn⇒ Z̃, then using continuous mapping

theorem, we have that the scaled SOS profile function has the asymptotic distribution given by

n1/2+ 5
4l+2RW

n (θ∗)

= 2‖Zn‖22
‖Zn‖

( 1
l+1−1)

2

C
1
l+1

− 2

l+ 2

‖Zn‖
1+ 1

l+1
2

C
1
l+1

+ op(1)

=
2l+ 2

l+ 2

‖Zn‖
1+ 1

l+1
2

C
1
l+1

+ op(1)⇒ 2l+ 2

l+ 2

∥∥∥Z̃∥∥∥1+ 1
l+1

2

C
1
l+1

.

7.2.7. Proofs of Technical Lemmas in Step 2

[ Proof of Lemma 1]We shall introduce some notation which will be convenient throughout

our development. Define for t≥ 0,

Fn (t) = P (Ti (n,λ)≤ t) ,

Di (t) = I (Ti (n,λ)≤ t) , D̄i (t) = I (Ti (n,λ)≤ t)−Fn (t) ,

F̄n (t) = 1 +n−1/2

n∑
i=1

D̄i (t) .
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Therefore, we are interested in studying

F̄n (t)− 1 =
1

n1/2

n∑
i=1

(I (Ti (n,λ)≤ t)−Fn (t)) .

We will start by studying

E[sup{F̄n (t) : t∈ [0, T ]}].

First, we define

hn (t) =
F̄n (t−)(

F̄ ∗n (t−)
2

+ [F̄n] (t−)
)1/2

,

where, for a given function {g (t) : t∈ [0, T ]}, we define

g∗ (t) = sup{g (s) : s∈ [0, t]},

[g] (t) =

∫ t

0

(dg (s))
2
.

In addition, [g] (t) is defined as the quadratic variational process, i.e.,

[g] (t) = lim
n→∞

n∑
i=1

[
g

(
i× t
n

)
− g

(
(i− 1)× t

n

)]2

.

In particular,

[F̄n] (t) =
1

n

n∑
i=1

I (Ti (n,λ)≤ t) .

We observe that F̄ ∗n (t)≥ 1 , therefore hn (t) is well defined; moreover, note that

hn (t)
2 ≤ 1.

We invoke Theorem 1.2 of Beiglbck and Siorpaes (2015) and conclude that

sup
0≤t≤T

F̄n (t)≤ 6
√

[F̄n] (T ) + 2

∫ T

0

hn (t)dF̄n (t) .

Now we analyze the integral in the right hand side of the previous display. Observe that

E
(∫ T

0

hn (t)dF̄n (t)

)
=

1

n1/2

n∑
i=1

E
(∫ T

0

hn (t)dD̄i (t)

)
= n1/2E

(∫ T

0

hn (t)dD̄1 (t)

)
. (32)
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Let us write

1F̄n (t) = F̄n (t)− D̄1 (t)/n1/2,

that is, we simply remove the last term in the sum defining F̄n (t). We have that

hn (t) =
1F̄n (t−) + D̄1 (t−)/n1/2(

F̄ ∗n (t−)
2

+ [1F̄n] (t−) + [D1] (t−)/n
)1/2

,

moreover, ∣∣
1F̄
∗
n (t)− F̄ ∗n (t)

∣∣≤ 1/n1/2.

We then can write

hn (t) =
1F̄n (t−) + D̄1 (t−)/n1/2(

F̄ ∗n (t−)
2

+ [1F̄n] (t−) + [D1] (t−)/n
)1/2

(33)

=
1F̄n (t−)(

1F̄ ∗n (t−)
2

+ [1F̄n] (t−)
)1/2

(
1 +

Ln (t−)

n1/2

)
,

where we can select a deterministic constant c ∈ (0,∞) such that |Ln (t)| ≤ c for j = 0 and 1

assuming n≥ 4 (this constrain in n is imposed so that a Taylor expansion for the function 1/(1−x)

can be developed for x∈ (0,1)). We now insert (33) into (32) and conclude that if we define

h̄n (t) =
1F̄n (t−)(

1F̄ ∗n (t−)
2

+ [1F̄n] (t−)
)1/2

,

it suffices to verify that

n1/2E
(∫ T

0

h̄n (t)dD̄1 (t)

)
<∞.

Define h̃n (t) to be a copy of h̄n (t), independent of X1 and T1 (n). In particular, h̃n (t) is constructed

by using all of the Xj’s except for X1, which might be replaced by an independent copy, X ′1, of X1.

Observe that the number of processes {D̄i (t) : t≤ T} that depend on T1 (n) and X1 is smaller than

Nn (T,λ,1). Therefore, similarly as we obtained from the analysis leading to the definition of h̄n (·),

we have that a random variable L̄Nn(T,λ,1) can be defined so that
∣∣L̄Nn(T,λ,1)

∣∣≤ c(1 +Nn (T,λ,1))

for some (deterministic) c > 0 and n≥ 4 and satisfying

E
(∫ T

0

h̄n (t)dD̄1 (t)

)



Blanchet and Kang: Sample Out-of-Sample Inference
Article submitted to Operations Research; manuscript no. OPRE-2016-05-283.R3 53

= E
(
h̄n (T1 (n)) I (T1 (n)≤ T )

)
−E

(
h̃n (T1 (n)) I (T1 (n)≤ T )

)
= E

(
h̃n (T1 (n)) I (T1 (n)≤ T )

)
−E

(
h̃n (τi (Xi)) I (τi (Xi)≤ T )

)
+E

(
L̄Nn(T,λ,1)/n

1/2
)

= E
(
L̄Nn(T,λ,1)/n

1/2
)
.

We have that

∣∣E (L̄Nn(T,λ,1)/n
1/2
)∣∣≤ |E (c(1 +Nn (T,λ,1)))|/n1/2 =O

(
1/n1/2

)
.

Consequently, we conclude that

n1/2E
(∫ T

0

hn (t)dD̄1 (t)

)
=O (1) ,

as n→∞, as required. Thus we proved that the first part of the lemma holds. For the second part,

we observe that

limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
max

(
t2−Ti(n,λ)α,0

)
−E

[
max

(
t2−Ti(n,λ)α,0

)])∣∣∣∣∣
)

= limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

1

n1/2

n∑
i=1

(
2sI

(
Tαi (n,λ)≤ s2

)
− 2sP[Tαi (n,λ)≤ s2]

)
ds

∣∣∣∣∣
)

≤ limn→∞

∫ T

0

E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(
2tI
(
Tαi (n,λ)≤ t2

)
− 2tP[Tαi (n,λ)≤ t2]

)∣∣∣∣∣
)
dt

≤ 2T 2limn→∞E

(
sup
t∈[0,T ]

∣∣∣∣∣ 1

n1/2

n∑
i=1

(I (Ti (n,λ)≤ t)−P[Ti (n,λ)≤ t])

∣∣∣∣∣
)
<∞.

Hence, applying the result for the first part of the lemma, we conclude the second part as well.

[ Proof of Lemma 2]

P [Ti (n,λ)≤ t] = P
(
Bin

(
P
(
‖Xi− a (Xi, λ)‖2 ≤ t

1/l/n1/l
)
, n− 1

)
≥ 1
)

= 1−
(
1−P

(
‖Xi− a (Xi, λ)‖2 ≤ t

1/l/n1/l
))n

.

Then, as n→∞ and t→ 0+

P
(
‖Xj − a (Xi, λ)‖2 ≤ t

1/l/n1/l
)

= c0t/n+ c1t/n · t1/l/n1/l + o
(
t1+1/l/n1+1/l

)
.
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Therefore by the Poisson approximation to the Binomial distribution we know:

P [Ti (n,λ)≤ t] = 1− exp (−c0t) +O
(
t1+1/l/n1/l

)
,

P [τ(λ)≤ t] = 1− exp (−c0t) .

Thus we proved the first claim:

P [Ti (n,λ)≤ t]−P [τ(λ)≤ t] =O
(
t1+1/l/n1/l

)
.

The second claim follows the definition of τ and equation (26), where as n→∞ we have

P [Ti (n,λ)≤ t]−P [τ(λ)≤ t] = P [Ti (n,λ)> t]−P [τ(λ)> t]

= E [exp (−Λ (λ,X1))]
(
1 +O

(
1/nl

))
−E [exp (−Λ (λ,X1))]

= P [τ(λ)> t]O
(
1/nl

)
.

7.3. Proofs of Additional Theorems

In this subsection, we are going to provide the proofs of the remaining theorems and corollaries

(Theorem 2, Theorem 3, Corollary 1 and Corollary 2). We are going to follow closely the proof of

Theorem 1 and discuss the differences inside each of its steps.

7.3.1. Proofs of SOS Theorems for General Estimation We will first prove the cor-

responding theorems for general estimating equations. As we discussed before, Theorem 2 is the

direct generalization of Theorem 1 and we are going to only discuss the proof of Theorem 3 in this

part.

[ Proof of Theorem 3]Let us first denote h̄n (θ) = 1
n

∑n

i=1 h (θ,Xi). The analogue of Step 1,

namely, the dual formulation takes the form

RW
n (θ∗) = max

λ

{
−λT h̄n (θ∗)−

1

n

n∑
i=1

max
j

{
λTh (θ∗,Zj)−λTh (θ∗,Xi)−‖Xi−Zj‖22

}+
}
.

Step 2 and Step 3 are given as follows, for l = 1 and l = 2, let us denote
√
nh̄n (θ∗) = Zn and

√
nλ= 2ζ, we can scale the SOS profile function by n, arriving to

nRW
n (θ∗) = max

ζ

{
−2ζTZn−

1

n

n∑
i=1

nmax
j

{
2
ζT√
n
h (θ∗,Zj)− 2

ζT√
n
h (θ∗,Xi)−‖Xi−Zj‖22

}+
}
.



Blanchet and Kang: Sample Out-of-Sample Inference
Article submitted to Operations Research; manuscript no. OPRE-2016-05-283.R3 55

For each i, let us consider the maximization problem

max
j

{
2
ζT√
n
h (θ∗,Zj)− 2

ζT√
n
h (θ∗,Xi)−‖Xi−Zj‖22

}
. (34)

Similar as Step 1 of the proof for Theorem 1, we would like to solve the maximization problem (34)

by first minimizing over z (as a free variable), instead of over j and then quantify the gap. Observe

that the uniform bound ‖D2
xh (θ∗, ·)‖< K̃ stated in BE1) implies that for all n large enough (in

particular, n1/2 > 2K̃ ‖ζ‖) implies that

max
z

{
2
ζT√
n
h (θ∗, z)− 2

ζT√
n
h (θ∗,Xi)−‖Xi− z‖22

}
, (35)

has an optimizer in the interior. Therefore, by the differentiability assumption stated in BE1) we

know that any global minimizer, ā∗ (Xi, ζ), of the problem (35) satisfies

ā∗ (Xi, ζ) =Xi +Dxh (θ∗, ā∗ (Xi, ζ))
T · ζ

n1/2

=Xi +Dxh (θ∗,Xi)
T · ζ

n1/2
+O

(
‖ζ‖22
n
‖Dxh (θ∗, ā∗ (Xi, ζ))‖2

)
. (36)

Moreover, owing to BE1), we obtain that

‖Dxh (θ∗, ā∗ (Xi, ζ))−Dxh (θ∗,Xi)‖2 ≤ K̃
‖ζ‖2
n1/2

. (37)

Consequently, if we define

a∗ (Xi, ζ) =Xi +Dxh (θ∗,Xi)
T · ζ

n1/2
,

we obtain due to (36) and (37) that

‖a∗ (Xi, ζ)− ā∗ (Xi, ζ)‖2 =O

(
‖ζ‖22
n

(
‖Dxh (θ∗,Xi)‖2 +

‖ζ‖2
n1/2

))
.

Then, after performing a Taylor expansion and applying inequality (37) we obtain that

2
ζT√
n
h (θ∗,Xi)− 2

ζT√
n
h (θ∗, ā∗ (Xi, ζ)) + ‖Xi− ā∗ (Xi, ζ)‖22

= 2
ζT√
n
h (θ∗,Xi)− 2

ζT√
n
h (θ∗, a∗ (Xi, ζ)) + ‖Xi− a∗ (Xi, ζ)‖22

+O

(
‖ζ‖3

n3/2

)
+O

(
‖Dxh (θ∗,Xi)‖22 ‖ζ‖

3

2

n3/2

)
.
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In turn, a direct calculation gives that, as n→∞

−ζ
TViζ

n
= 2

ζT√
n
h (θ∗,Xi)− 2

ζT√
n
h (θ∗, a∗ (Xi, ζ)) + ‖Xi− a∗ (Xi, ζ)‖22

+O

(
‖Dxh (θ∗,Xi)‖2 ‖ζ‖3

n3/2

)
.

Similarly as in Step 2 of the proof of Theorem 1 we can define the point process N (i) (t, ζ) and

Ti (n,λ). We know the gap between freeing the variable z and restricting the maximization over

the Zj’s (i.e. the difference between (35) and (34)) is

max
j

{
1

n
ζTViζ −

(
2
ζT√
n
h (θ∗,Zj)− 2

ζT√
n
h (θ∗,Xi)−‖Xi−Zj‖22

)}
+O

(
‖Dxh (θ∗,Xi)‖2 ‖ζ‖3

n3/2

)
.

By the definition of Ti (n,λ), we can write the profile function for l= 1 as

nRW
n (θ∗)

= max
ζ

{
−2ζTZn−

1

n

n∑
i=1

max

(
ζTViζ −

T 2
i (n,λ)

n
+O

(
‖Dxh (θ∗,Xi)‖2 ‖ζ‖3

n1/2

)
,0

)}
.

Note that the sequence of global optimizers is tight as n→∞ because E (Vi) is assumed to be

strictly positive definite with probability one. In turn, from the previous expression we obtain,

following a similar derivation as in the proof of Theorem 1 (invoking Lemma 1) and using the fact

that ζ can be restricted to compact sets, that as n→∞

nRW
n (θ∗) = max

ζ

{
−2ζTZn−E

[
max

(
ζTV1ζ −

T 2
1 (n,λ)

n

)]}
+ op (1) .

Then, for l= 2, as n→∞ we have estimate for the profile function as

nRW
n (θ∗) = max

ζ

{
−2ζTZn−E

[
max

(
ζTV1ζ −T 2

1 (n,λ)
)]}

+ op (1) .

When l ≥ 3, let us denote
√
nh̄n (θ∗) = Zn and n

3
2l+2λ = 2ζ, we can scale profile function by

n
1
2+ 3

2l+2 and write it as

n
1
2+ 3

2l+2RW
n (θ∗)

= max
ζ

{
−2ζTZn−

1

n

n∑
i=1

n
1
2+ 3

2l+2 max
j

{
2
ζT

n
3

2l+2

h (θ∗,Zj)− 2
ζT

n
3

2l+2

h (θ∗,Xi)−‖Xi−Zj‖22

}+
}
.
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By applying same derivation as for l= 1 and 2 above, we can define a point process N (i) (t, ζ) and

Ti (n) as in the proof of Theorem 1. As n→∞, we have the estimate for profile function becomes

n
1
2+ 3

2l+2RW
n (θ∗)

= max
ζ

{
−2ζTZn−n

1
2+ 3

2l+2−
2
l

1

n

n∑
i=1

max
(
n−( 6

2l+2−
2
l )ζTViζ −T 2/l

i (n,λ) ,0
)}

+ op (1)

= max
ζ

{
−2ζTZn−n

1
2+ 3

2l+2−
2
l E
[
max

(
n−( 6

2l+2−
2
l )ζTV1ζ −T 2/l

1 (n,λ) ,0
)}]

+ op (1) .

The final estimation follows as in the proof for Theorem 1 (i.e. applying Lemma 1).

In Step 4 for l= 1, as n→∞ the objective function is

nRW
n (θ∗) = max

ζ

{
−2ζTZn (θ∗)−E

[
max

(
ζTV1ζ −

T 2
1 (n,λ)

n
,0

)]}
+ op(1).

Let us denote G : Rl→R to be a deterministic continuous function, defined as

G (ζ,n) = E
[
max

(
ζTV1ζ −

T 2
1 (n,λ)

n
,0

)]
.

We know Υ = E [V1] is symmetric strictly positive definite matrix, then the objective function is

strictly convex and differentiable in ζ. Thus the (unique) global maximizer is characterized by

the first order optimality condition almost surely. We take derivative w.r.t. ζ and set it to be 0,

applying the same estimation in the original proof the first order optimality condition becomes

Zn =−Υζ + op(1) as n→∞. (38)

Since Υ is invertible, for any n we can solve optimal ζ∗n = −Υ−1Zn + op(1). Plugging ζ∗n in the

objective function, as n→∞ we have

nRW
n (θ∗) = 2ZTn Υ−1Zn−G

(
−Υ−1Zn, n

)
+ op(1).

As n→∞, we can apply the same estimation in the proof of Theorem 1, it becomes

nRW
n (θ∗)⇒ Z̃TΥ−1Z̃.

Thus we proof the claim for l= 1.
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In Step 5 for l= 2, as n→∞ the objective function has estimate

nRW
n (θ∗) = max

ζ

{
−2ζTZn (θ∗)−E

[
max

(
ζTV1ζ −T1 (n,λ),0

)]}
+ op(1).

Still, we denote G (ζ,n) to be a deterministic function given as,

G (ζ,n) = E
[
max

(
ζTV1ζ −T1 (n,λ),0

)]
.

Same as discussed in for l= 1, the objective function is strictly convex and differentiable in ζ, thus

the (unique) global maximizer could be characterized via first order optimality condition almost

surely. We take derivative w.r.t. ζ and set it to be 0, applying same estimation in the proof of

Theorem 1 the first order optimality condition becomes

Zn =−E
[
V11(τ(0)≤ζT V1ζ)

]
ζ + op(1) as n→∞. (39)

We know the objective function is strictly convex differentiable, then for fixed Zn there is a unique

ζ∗n that satisfies the first order optimality condition (39). We plug in the optimizer and the objective

function becomes

nRW
n (θ∗) =−2ZTn ζ

∗
n−G (ζ∗n, n) + op(1) as n→∞.

As n→∞, we can apply the same estimation in the proof of Theorem 1, we have

nRW
n (θ∗)⇒−2Z̃T ζ̃ − ζ̃T G̃

(
ζ̃
)
ζ̃,

where G̃ : Rq→Rq ×Rq is a deterministic continuous mapping defined as,

G̃ (ζ) = E
[
V1 max

(
1− τ(0)/

(
ζTV1ζ

)
,0
)]
,

and ζ̃ := ζ̃
(
Z̃
)

is the unique solution to

Z̃ =−ζE
[
V11(τ(0)≤ζT V1ζ)

]
.

Then we proved the claim for l= 2.
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Finally, in Step 6 for l≥ 3, as n→∞ the objective function is

n1/2+ 3
2l+2RW

n (θ∗)

= max
ζ

{
−2ζTZn−n(1/2+ 3

2l+2−
2
l )E

[
max

(
n−( 6

2l+2−
2
l )ζTV1ζ −T 2/l

1 (n,λ) ,0
)]}

+ op(1).

We denote G (ζ,n) to be a deterministic function defined as,

G (ζ,n) = n(1/2+ 3
2l+2−

2
l )E

[
max

(
n−( 6

2l+2−
2
l )ζTV1ζ −T 2/l

1 (n,λ) ,0
)]
.

Follows the same discussion above for l= 1 and 2, we know the objective function is strictly convex

differentiable in ζ and the global maximizer is characterized by first order optimality condition

almost surely. We take derivative of the objective function w.r.t. ζ and set it to be 0. We apply the

same technique as in the proof of Theorem 1, the first order optimality condition becomes

Zn =−E
[
V1

πl/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)
V1

(
ζTV1ζ

)l]
ζ + op(1). as n→∞ (40)

The objective condition is strictly convex differentiable and for fixed Zn there is a unique ζ∗n

satisfying the first optimality condition (40). We plug ζ∗n into the objective function and it becomes

n1/2+ 3
2l+2RW

n (θ∗) =−2ZTn ζ
∗
n−G (ζ∗n, n) + op(1) as n→∞.

As n→∞, we can apply same estimate in the proof of Theorem 1, we have

n1/2+ 3
2l+2RW

n (θ∗)⇒−2Z̃T ζ̃ − 2

l+ 2
G̃
(
ζ̃
)
,

where G̃ : Rq→R is a deterministic continuous function given as,

G̃ (ζ) = E
[
πl/2 (fX(X1) +κfY (X1))

Γ (l/2 + 1)

(
ζTV1ζ

)l/2+1
]
,

and ζ̃ := ζ̃
(
Z̃
)

is the unique solution to

Z̃ =−E
[
V1

πl/2 (fX (X1) +κfY (X1))

Γ(l/2 + 1)
V1

(
ζTV1ζ

)l]
ζ.

We proved the claim for l≥ 3 and finish the proof for Theorem 3.
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7.3.2. Proofs of SOS Theorems for General Estimation with Plug-In The proofs of

the plug-in version of SOS theorems for general estimation equation also mainly follows the proof

of Theorem 1, we are going to discuss the different steps here.

[ Proof of Corollary 1]For implicit formulation, as we discussed for Theorem 2, we can

redefine Xi ← h (γ∗, νn,Xi), Zk ← h (γ∗, νn,Zk), Xi(∗)← h (γ∗, ν∗,Xi) and Zk(∗)← h (γ∗, ν∗,Xi).

Then the proof for the implicit formulation with plug-in goes as follows.

In Step 1, the dual formulation is similar given as

RW
n (γ∗) = max

λ,γi≥0

{
−λX̄n−

1

n

n∑
i=1

γi

}

s.t. − γi ≤min
j

{
λTXi−λTZj + ‖Xi−Zj‖22

}
, for all i.

We can apply first order Taylor expansion to h (γ∗, νn,Xi) w.r.t. ν, then we have

h (γ∗, νn,Xi) = h (γ∗, ν∗,Xi) +Op

(
‖Dνh (γ∗, ν̄n,Xi)‖

n1/2

)
,

where ν̄n is a point between νn and ν∗. By our change of notation for Xi, Xi(∗), Zk and Zk(∗) and

the above Taylor expansion, we can observe

Zk =Zk(∗) + εn (Zk) ,

where εn (Zk) =Op
(
‖Dνh (γ∗, ν̄n,Zk)‖/n1/2

)
.

In Step 2 we can define a point process N (i)
n (t, λ) and Ti (n) as in the proof of Theorem 1, but

the rate becomes

Λ (Xi, λ) = [fX (Xi +λ/2 + εn (Xi)) +κfY (Xi +λ/2 + εn (Xi))]
πl/2

Γ(l/2 + 1)
.

As n→∞, same as in the proof of Theorem 1 and Theorem 3 we can argue λ→ 0. Then we can

define τ(0) same as in the proof of Theorem 1 and has the with same distribution

P [τ(0)≥ t] = E
[
exp

(
− (fX (X1) +κfY (X1))

πl/2

Γ(l/2 + 1)

)]
.

Then the rest of the proof in Step 3, 4, 5 and 6 stay the same as that of Theorem 1, but replacing

the CLT for Zn by the asymptotic distribution given in C2).
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[ Proof of Corollary 2]For explicit formulation, the proof follows more closely the proof of

Theorem 3 and we are discussing the differences as follows.

In Step 1, the dual formulation takes the form

RW
n (θ∗)

= max
λ

{
−λT h̄n (γ∗, νn)− 1

n

n∑
i=1

max
j

{
λTh (γ∗, νn,Zj)−λTh (γ∗, νn,Xi)−‖Xi−Zj‖22

}+
}
.

Step 2 and Step 3 Follows the same as for the proof of Theorem 3 however we need to notice

that difference is the definition of ā∗ (Xi, ζ), for l= 1 and 2 we have

ā∗ (Xi, ζ) =Xi +Dxh (γ∗, νn, ā∗ (Xi, ζ)) · ζ

n1/2
(41)

=Xi +Dxh (γ∗, νn,Xi) ·
ζ

n1/2
+O

(
‖ζ‖22
n
‖Dxh (γ∗, νn, ā∗ (Xi, ζ))‖2

)

=Xi +Dxh (γ∗, ν∗,Xi) ·
ζ

n1/2
+O

(
‖ζ‖22
n
‖Dxh (γ∗, νn, ā∗ (Xi, ζ))‖2

)

+O

(
‖ζ‖2
n1/2

‖νn− ν∗‖2 ‖Dxh (γ∗, νn, ā∗ (Xi, ζ))‖2 ‖DνDxh (γ∗, ν̄n, ā∗ (Xi, ζ))‖2

)
, (42)

where ν̄n is a point between νn and ν∗. By assumption C5)-C7) we can notice the rest of step

2 and 3 stay the same as in the proof of Theorem 3. In Step 4, 5 and 6 we use Zn =

1

n1/2

∑n

i=1 h (γ∗, νn,Xi)⇒ Z̃ ′ given in C2).
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