

1 Deep Reinforcement Learning for Crowdsourced Urban Delivery

2
3 Tanvir Ahamed¹, Bo Zou^{1*}, Nahid Parvez Farazi¹, Theja Tulabandhula²

4 ¹ Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago

5 ² Department of Information and Decision Sciences, University of Illinois at Chicago

6
7 **Abstract:** This paper investigates the problem of assigning shipping requests to *ad hoc* couriers in the
8 context of crowdsourced urban delivery. The shipping requests are spatially distributed each with a
9 limited time window between the earliest time for pickup and latest time for delivery. The *ad hoc*
10 couriers, termed crowdsourcees, also have limited time availability and carrying capacity. We propose
11 a new deep reinforcement learning (DRL)-based approach to tackling this assignment problem. A deep
12 Q network (DQN) algorithm is trained which entails two salient features of experience replay and
13 target network that enhance the efficiency, convergence, and stability of DRL training. More
14 importantly, this paper makes three methodological contributions: 1) presenting a comprehensive and
15 novel characterization of crowdshipping system states that encompasses spatial-temporal and capacity
16 information of crowdsourcees and requests; 2) embedding heuristics that leverage information offered
17 by the state representation and are based on intuitive reasonings to guide specific actions to take, to
18 preserve tractability and enhance efficiency of training; and 3) integrating rule-interposing to prevent
19 repeated visiting of the same routes and node sequences during routing improvement, thereby further
20 enhancing the training efficiency by accelerating learning. The computational complexities of the
21 heuristics and the overall DQN training are investigated. The effectiveness of the proposed approach
22 is demonstrated through extensive numerical analysis. The results show the benefits brought by the
23 heuristics-guided action choice, rule-interposing, and having time-related information in the state space
24 in DRL training, the near-optimality of the solutions obtained, and the superiority of the proposed
25 approach over existing methods in terms of solution quality, computation time, and scalability.

26 **Keywords:** Crowdshipping, deep reinforcement learning, deep Q network, pickup and delivery, state
27 representation, heuristics-guided action choice, rule-interposing.

* Corresponding author. Email: bzou@uic.edu.

28 **1 Introduction**

29 This paper investigates a static crowdshipping problem with spatially distributed request pickup
30 and delivery locations, using “crowdsourcers” who are ordinary people and also spatially distributed,
31 and have some available time to perform delivery for income earning. A delivery service provider
32 (DSP) centrally assigns requests to crowdsourcers to minimize total shipping cost (TSC). Distributed
33 locations of requests are common for pickup-delivery from restaurants, grocery stores, and retail shops
34 to customers, and even for document delivery between different office locations. We consider that each
35 request has a narrow time window (e.g., two hours) between earliest pickup and latest delivery. In
36 addition, crowdsourcers inform the DSP of their available time. Each crowdsourcer has a limited
37 carrying capacity. Thus, the assignment needs to respect pickup-delivery time windows of requests,
38 and time availability and carrying capacity of crowdsourcers. In shipping cost calculation, we consider
39 that a crowdsourcer is paid a fixed rate (\$/minute) when carrying a request. If a request is not assigned
40 to a crowdsourcer, the request will be picked up and delivered by a backup vehicle, which is more
41 expensive.

42 Following the above description, the crowdshipping problem can be viewed as a specific type of
43 pickup-and-delivery problem and belongs to the broad category of vehicle routing problems (VRP).
44 While many integer programming models and heuristic algorithms have been developed for solving
45 similar problems, the novelty of this paper is that we propose, for the first time in the literature, an
46 approach that leverages deep reinforcement learning (DRL)—more specifically deep Q learning
47 (DQN)—to frame and solve the constrained crowdsourcer-shipping request assignment problem. Two
48 salient features of DQN are experience replay and target network which can enhance efficiency,
49 convergence, and stability in DRL training. Our work goes beyond simple adoption of the DQN
50 algorithm in the existing literature, by making three major methodological contributions as follows.

51 The first contribution is on a novel representation of system states for the crowdshipping problem.
52 Due to the combinatorial nature of the crowdshipping problem and the heterogeneity of both requests
53 and crowdsourcers in terms of time and carrying capacity, the states of a crowdshipping system cannot
54 be represented by one or a few metrics. A comprehensive representation must in some way capture the
55 sequence of pickup and delivery nodes on each crowdsourcer route. A node corresponds to a physical
56 location (with longitude and latitude information), which can be the origin of a crowdsourcer, the pickup
57 location of a request, or the delivery location of a request. Yet routing sequence alone is not enough to
58 reflect the fact that both requests and crowdsourcers are time sensitive: on the one hand, each request
59 has a limited time window between the earliest possible pickup and the latest delivery (e.g., 2 hours).

60 On the other hand, by dedicating one’s time to crowdshipping, a crowdsourcee also has limited time
61 availability. The time information about requests and crowdsources, which changes as crowdsourcee
62 routes are constantly created and improved, is an inherent part of the system state that helps the DRL
63 agent make informed routing decisions, especially with respect to what requests need be considered
64 first and what crowdsourcee routes may be given higher priority given time availability and delivery
65 urgency. To this end, a novel representation of system states that leverages the notion of information
66 array is proposed which encompasses not only static location information of request pickup and
67 delivery nodes but information on crowdsourcee routing sequences, request-specific time availability,
68 and crowdsourcee-specific time and capacity availability.

69 The second contribution is on embedment of heuristics-guided action choice in DRL. The
70 combinatorial nature of the problem means that a very large number of different actions can be taken
71 to construct and improve crowdsourcee routing. But enumerating all possible actions would be neither
72 efficient nor practical in DRL training. To preserve training tractability, we abstract the action space
73 into five general types of actions for assigning or improving the assignment of requests to
74 crowdsources: 1) inserting an unassigned request to a crowdsourcee route (insertion); 2) moving an
75 assigned request to another place in the same crowdsourcee route (intra-route move); 3) moving an
76 assigned request to a different crowdsoucee route (inter-route move); 4) exchanging the positions of
77 two requests that are assigned to two different crowdsoucee routes (1-exchange); 5) do-nothing. As
78 many possibilities for taking a specific action still exist given an action type, heuristics that leverage
79 the information offered by our proposed state representation and are based on intuitive reasonings are
80 designed to guide the specific action to take. Thus, each time when an action needs to be taken, we
81 first employ the DQN algorithm to identify the action type. Then, the specific action given the action
82 type is executed using the corresponding heuristic. We show that the embedment of heuristics-guided
83 action choice significantly enhances DRL training efficiency and solution quality.

84 The third contribution is on integration of rule-interposing into DRL training and implementation.
85 The rules aim to prevent certain routes or node sequences from being visited repeatedly during
86 neighborhood moves (i.e., intra-route move, inter-route move, and 1-exchange) within a period of time,
87 as repeated visiting discourages exploring more actions and may get the routing sequence trapped in
88 local optimum, thus compromising the efficiency of DRL training. Specifically, we employ two rules
89 that: 1) set up and update a priority list of crowdsourcee routes for each neighborhood move, based on
90 criteria in line with the nature of the neighborhood moves. A crowdsourcee route that is chosen for a
91 neighborhood move will be removed from the priority list and not considered for some period of time;
92 2) introduce Tabu tenure for the relative positions of pickup and delivery nodes. Two nodes that were

93 neighbored and are moved away are prohibited to be neighbored again for some period of time. With
94 the two rules, computation efforts involved in repeatedly visiting routes or node sequences during
95 neighborhood moves are spared, thereby enhancing the training efficiency by accelerating learning.

96 With the above three methodological contributions, the effectiveness of the proposed DRL-based
97 approach to solve the crowdshipping problems of our interest is demonstrated through extensive
98 numerical analysis. Our results show superiority of the trained DQN algorithm over existing methods
99 in solution quality, computation time, and scalability. In addition, the obtained solutions are reasonably
100 close to global optimum. Given that the training of DRL will be performed offline and a trained DRL
101 model can solve problems in a matter of seconds, the proposed approach has significant potential for
102 practical crowdshipping operations. Moreover, the proposed methodological framework, which in this
103 paper tackles a more complicated type of pickup and delivery problems with time constraints from
104 both “vehicles” (crowdsourcers) and “customers” (shipping requests), has the potential to be adapted
105 to solving similar types of routing-related problems.

106 The remainder of the paper is structured as follows. Section 2 reviews and synthesizes the relevant
107 literature. Section 3 provides a detailed presentation of the methodology including the fundamentals
108 of reinforcement learning (RL) and DRL; information array, representation of states, actions, and
109 rewards; the DQN algorithm for crowdshipping; and rule-interposing design. Section 4 implements the
110 DRL model and discusses the results from extensive numerical experiments. Summaries and
111 suggestions for future research are given in Section 5.

112 **2 Literature review**

113 Crowdshipping has garnered growing research attention in recent years (e.g., Wang et al., 2016;
114 Kafle et al., 2017; Le et al., 2019; Arslan et al., 2020). However, DRL has not been considered as a
115 way to guide request-crowdsourcer assignment. Given the focus of the paper on the methodological
116 aspects of DRL for crowdshipping and the relevance of our problem to other types of freight delivery
117 and passenger transportation problems that involve routing, in this section we review recent advances
118 of DRL in solving related problems. We will synthesize the problem characteristics and DRL
119 specifications in representative studies, based on which the uniqueness of our paper is then highlighted.

120 A basic version of routing problems is the traveling salesman problem concerning routing of a
121 single vehicle. Bello et al. (2016) probably make one of the first attempts to combine reinforcement
122 learning with neural networks to tackle traveling salesman problems. A pointer network comprising
123 two recurrent neural networks for encoding and decoding and an attention function is trained with
124 policy gradient. Kool et al. (2018) build on Bello et al.’s work and train an attention-based encoder-

125 decoder DRL model. Dai et al. (2017) use a graph embedding network to represent the policy to capture
126 the property of a node in the context of its graph neighborhood. A fitted Q-learning is adopted to learn
127 a greedy policy that is parameterized by the graph embedding network. For the TSP problems
128 considered above, only spatial information of nodes is involved. Actions in DRL pertain to adding
129 nodes—one at a time—to progressively construct the vehicle route.

130 The complexity of routing problems is augmented when extended to multiple routes, with time
131 constraints, and with pickups and deliveries. For freight delivery problems, Nazari et al. (2018)
132 consider a parameterized stochastic policy to solve VRP with limited vehicle capacity. The authors
133 apply a policy gradient algorithm to optimize parameters of a stochastic policy. Chen et al. (2019) use
134 multi-agent RL to train a courier dispatch policy to deal with goods pickups with time windows. To
135 maintain the state-action space, RL is decentralized with each courier modeled as an agent. However,
136 a decentralized approach may compromise modeling of courier coordination in undertaking pickup
137 tasks. The problem considered in Yu et al. (2019), which deals with pickup and delivery with vehicle
138 capacity constraints and delivery deadline, is more similar to our paper. Like Chen et al. (2019), the
139 authors opt for a distributed neural optimization strategy with a pointer network and graph embedding
140 to progressively develop a complete tour of each vehicle. More recently, Duan et al. (2020) propose a
141 joint learning approach based on graph convolutional network with node feature (coordinates and
142 demand) and edge feature (distance) as inputs, to solve capacitated VRP.

143 On the passenger side, the interest in adopting DRL for VRP arises with the proliferation of
144 ridesharing. Oda and Joe-Wong (2018) propose a DQN-based framework that learns which zone an
145 idle vehicle should go to. The learning is independent for each vehicle, which is assumed to have at
146 most one rider onboard at any point in time. Singh et al. (2019) relax the assumption by allowing more
147 than one rider in a ridesharing vehicle. However, the training remains decentralized, i.e., each vehicle
148 solves its DQN problem without coordination with other vehicles in vicinity. In addition, it is possible
149 in the study that a rider transfers from one vehicle to another, which is undesirable and not common in
150 practice. Another distributed model-free algorithm using DQN to learn dispatch policies for each
151 vehicle individually is developed by Al-Abbasi et al. (2019), in which training of a vehicle's
152 dispatching policy again does not consider coordination with other vehicles.

153 As shown in Table 1a, most of the multi-vehicle routing problems in the DRL literature are
154 different from the crowdshipping problem in this paper. Only Yu et al. (2019) on the freight side and
155 Al-Abbasi et al. (2019) on the passenger side consider pickup and delivery with the possibility of a
156 vehicle carrying multiple customers at the same time and without transfer. While vehicle capacity limit
157 is accounted for in some papers, customer time window constraints are mostly not, only in Chen et al.

158 (2019) and Yu et al. (2019). Yet none takes into account limited time availability of vehicles, which is
159 an essential characteristic in our crowdshipping problem (where crowdsourcees are “vehicles”). Except
160 for Nazari et al. (2019) and Duan et al. (2020), all other works train each vehicle individually, probably
161 due to the substantially augmented action space and consequently complexity of DQN training if all
162 vehicles are considered together (note that in Duan et al. (2020), vehicle routes are constructed one at
163 a time sequentially rather than simultaneously). However, centralized DQN would be more appropriate
164 as a DSP has full control in request-crowdsourcee assignment.

165 Because of the richer features and centralized nature for crowdshipping, fully capturing the states
166 of a crowdshipping system requires more involved and elaborate representation. As shown in Table
167 1b, the existing studies mostly have vehicle and/or customer locations in state representation, with
168 limited consideration of time-related information for vehicles and customers. On the other hand, given
169 that both crowdsourcees and requests have limited time windows and that heuristics-guided action
170 choice embedded in our proposed DRL requires time-related information to proceed, incorporation of
171 time-related information is critical. Furthermore, for performing the heuristics, information on routing
172 sequence is needed, which is not included explicitly in any prior studies reviewed. Also related to the
173 heuristics-embedding feature, the specification of action space in our work is richer than in the existing
174 literature. Finally, no existing papers consider rule-interposing.

Table 1a: VRP characteristics considered in selected DRL studies and the present paper

		Problem characteristics				
		Pickup and delivery	Consider “vehicle” capacity constraint	Considers limited time of “customers”	Considers limited time of “vehicles”	Centralized
passenger	Oda and Joe-Wong (2018)	Yes, but one rider in a vehicle at a time	No	No	No	No
	Singh et al. (2019)	Yes, but a rider may transfer between vehicles in a trip	Yes	No	No	No
	Al-Abbasi et al. (2019)	Yes (ridesharing)	Yes	No	No	No
Freight	Nazari et al. (2018)	No	Yes	No	No	Yes (but only 1 vehicle in numerical analysis)
	Chen et al. (2019)	No (pickup only)	No	Yes	No	No
	Yu et al. (2019)	Yes	Yes	Yes	No	No
	Duan et al. (2020)	No	Yes	No	No	Yes (but vehicle routes are constructed one at a time)
	This paper	Yes	Yes	Yes	Yes	Yes

Note: The term “vehicle” is quoted because in crowdshipping, “vehicles” would refer to crowdsourcers. Similarly, the term “customers” is quoted as “customers” would refer to shipping requests on the freight side.

Table 1b: DRL specifications in solving VRP in selected studies and the present paper

		State representation	Action characterization	Rule-interposing
Passenger	Oda and Joe-Wong (2018)	1. Vehicle location 2. Occupied/idle status 3. Destination of the vehicle 4. Number of available vehicles in each zone 5. Future demand of each zone	Which zone for an idle vehicle under study to go to	No
	Singh et al. (2019)	1. Vehicle location (in which zone) 2. Available seats of each vehicle 3. Rider pickup time 4. Rider destination 5. Number of vehicles in each zone 6. Predicted future rider demand	Which zone to which vehicles are dispatched	No
	Al-Abbasi et al. (2019)	1. Vehicle location 2. Number of available seats 3. Rider pickup time 4. Rider destination 5. When an occupied vehicle becomes available 6. Future rider demand	1. Whether the vehicle under study should pick up new riders 2. If yes, which zone to go to	No
Freight	Nazari et al. (2018)	1. Customer location 2. Customer demand	Which node to visit by a vehicle	No
	Chen et al. (2019)	1. Number of couriers and requests in each grid 2. Total price of requests in each grid 3. Distance between neighboring grids 4. Score (percent of fulfilled price in total price)	1. Target grid 2. Maximum patrol time in the grid	No
	Yu et al. (2019)	1. Available requests 2. Renewable energy generation points 3. Next stops of other vehicles in the system 4. Battery charging demand of each vehicle	What is the next stop in the tour of the vehicle	No
	Duan et al. (2020)	1. Coordinates and demand at each customer node 2. Adjacency among customer nodes 3. Distance between any two customer nodes	What is the next node to visit	No
	This paper	1. Crowdsourcee starting locations 2. Request pickup and delivery locations 3. Node precedence relation of crowdsourcee routes 4. Request slack time, unused service time, and occupation time 5. Crowdsourcee routing duration and remaining available time 6. Time and capacity violation of crowdsourcee routes	1. Inserting a request to a route 2. Intra-route move of a request 3. Inter-route move of a request 4. 1-exchange move of two requests in two routes 5. No action	Yes

180 **3 Methodology**

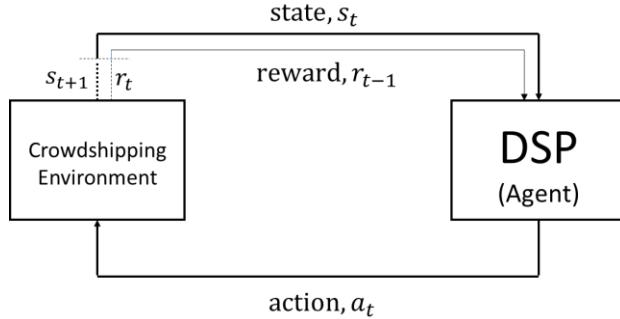
181 This section describes the crowdshipping-adapted DRL methodology. First, we introduce the
182 fundamental ideas of RL and DRL. Then, we discuss how states, actions, and rewards which are
183 essential elements of DRL are specified in crowdshipping. Building on the specifications, we detail
184 the training process using DQN. Two key ideas are worth mentioning. First, DQN learns from how a
185 policy—a decision rule which directs what type of action to take given a state—performed on previous
186 instances and improves the policy over time. Knowing the action type, the specific action will be
187 determined by a corresponding heuristic that leverages time-related information from the state space.
188 By letting DQN focus on only a small set of abstracted action types, the heuristics-guided action choice
189 preserves training tractability and consequently contributes to the scalability of the proposed approach.
190 Second, solutions to a crowdshipping problem instance can be constructed progressively, one step at a
191 time, which is amenable to the DRL framework.

192 **3.1 Fundamental idea**

193 RL is one of the three categories of machine learning (the other two are supervised learning and
194 unsupervised learning) (Sutton and Barto, 2018). The tenet of RL is to train an agent such that the
195 agent can optimize its behavior by accumulating and learning from its experiences of interacting with
196 the environment. The optimality is measured as maximizing the total reward by taking consecutive
197 actions. At each decision point, the agent has information about the current state of the environment
198 and selects the best action based on his current experiences. The action taken transitions the
199 environment to a new state. The agent gets some reward, i.e., reinforcement, as a signal of how good
200 or bad the action taken is.

201 To formulate the decision process, RL employs MDP as the mathematical foundation to keep track
202 of the progression of the decision process. To do so, the following notations are introduced. S is the
203 set of states of the environment. A is the set of actions the agent can take. R is the set of possible
204 rewards as a result of the agent taking an action at a given state. To illustrate, the environment is in
205 state $s_t \in S$ at time step t . The agent takes an action $a_t \in A$. The action transitions the environment to
206 a new state $s_{t+1} \in S$ at the next time step $t + 1$. Meanwhile, the agent receives a reward $r_t \in R$. The
207 reward is a function of state-action pair: $r_t(s_t, a_t)$ (Fig. 1).

208



209
210 **Fig. 1.** Illustration of states, actions, and rewards
211

212 Since the actions are taken consecutively, the objective of the agent at any time step t is to
213 maximize the cumulative reward, i.e., the return G_t , from t till the last time step T :

214

$$G_t = r_t + r_{t+1} + \dots + r_T. \quad (1)$$

215
216 If we consider that the reward is received over a long period, a discount factor $\gamma \in [0,1]$ is often
217 used to reflect discounting:

218

$$G_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t} r_T \quad (2)$$

219
220 In RL, a policy π is a mapping from states to probabilities of selecting each possible action. A
221 value function V_π expresses the expected return when starting in state s and following policy π
222 thereafter. At time step t , the value function can be written as:

223

$$V_\pi(s) = \mathbb{E}_\pi[G_t | s_t = s] = \mathbb{E}_\pi \left[\sum_{k=0}^{T-t} \gamma^k r_{t+k} \middle| s_t = s \right]. \quad (3)$$

224
225 Related to the value function, we define the value of taking action a in state s and following policy
226 π thereafter, denoted as $Q_\pi(s, a)$. $Q_\pi(s, a)$ is termed action-value function, or “Q-function” of the
227 state-action pair (s, a) . The letter “Q” represents the quality of this state-action pair:

228

$$Q_\pi(s, a) = \mathbb{E}_\pi[G_t | s_t = s, a_t = a] = \mathbb{E}_\pi \left[\sum_{k=0}^{T-t} \gamma^k r_{t+k} \middle| s_t = s, a_t = a \right]. \quad (4)$$

230 It is desired to seek an optimal policy π^* such that $V_{\pi^*}(s) = \max_a Q_*(s, a)$, where $Q_*(s, a)$ means
 231 that the agent takes action a at state s and follows policy π^* thereafter. Clearly, if $Q_*(s, a)$ is known
 232 for every state-action pair (s, a) , then π^* is also known. The problem of finding the optimal policy
 233 then becomes finding optimal Q-values $Q_*(s, a), \forall (s, a) \in S \times A$. To do so, one of the prominent
 234 algorithms is Q-learning (Watkins and Dayan, 1992). At a time step, the Q-function value (thereafter
 235 simplified as “Q-value”) for a given state-action pair is updated using the following rule which is based
 236 on the Bellman optimality equation:

237

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r(s, a) + \gamma \max_{a' \in A} Q(s', a') \right] \quad (5)$$

238 where s' is the transitioned state after taking action a at state s . $r(s, a)$ is the associated reward. On
 239 the left-hand side of Eq. (5) is the updated $Q(s, a)$ value. On the right-hand side (RHS), $Q(s, a)$ and
 240 $Q(s', a')$ come from the current Q-matrix, which is a mapping from a discrete state-action space to Q-
 241 values. α is the learning rate taking values between 0 and 1. It can be shown that Q-learning converges
 242 to the optimal Q-values with probability 1 as long as all actions are repeatedly sampled in all states and
 243 state-action pairs are discrete (Watkins and Dayan, 1992).

244 The Q-learning algorithm works well to find the optimal policy when the state-action space is
 245 small. However, it would become computationally inefficient and even infeasible to compute Q-values
 246 for every state-action pair when the state-action space is large (just imagine Eq. (5) needs to be
 247 repeatedly computed for a large number of state-action combinations, with constant updates of the Q-
 248 matrix). This is where deep learning can help reduce the computational burden. Specifically, a
 249 parameterized DNN can be integrated with an RL algorithm like Q-learning, to efficiently approximate
 250 the optimal Q-values instead of maintaining and updating a Q-matrix while applying Eq. (5).

251 More specifically, we adapt the DQN algorithm, proposed by Minh et al. (2015), to the problem
 252 considered in this paper. DQN is a relatively new DRL algorithm that uses a convolutional neural
 253 network as a function approximator of the Q-function. DQN has excelled in video game environments
 254 where the state-action space is very large. A prominent advantage of DQN is that it overcomes
 255 instability and divergence that occur when a nonlinear function approximator such as a neural network
 256 is used to represent the Q-function, by embedding two salient features: experience replay and target
 257 network, whose use will be discussed in subsection 3.3. Before getting into the details of DQN, below
 258 we first describe our specifications of states, actions, and rewards in the context of crowdshipping.

260 **3.2 DRL formulation for crowdshipping**

261 **3.2.1 Information array**

262 In this section, we propose a novel state and action space design as well as reward function
 263 specification for crowdshipping. A key in this proposal is the creation of an information array that
 264 contains the routing sequence of each crowdsourcer. Let J and K denote respectively the sets of
 265 shipping requests and crowdsourcers. The information array is a $|K| \times (2|J| + 1)$ matrix where
 266 $|K|$ and $|J|$ denote respectively the numbers of crowdsourcers (which is equivalent to the number
 267 of routes) and shipping requests. Each row indicates the routing sequence of one crowdsourcer.
 268 The matrix has $2|J| + 1$ columns to accommodate the extreme possibility that all $|J|$ requests ($2|J|$
 269 nodes) are assigned to a single crowdsourcer plus the origin node of the crowdsourcer (thus one
 270 more node needs to be added). For example, if the k th row of the information array contains the
 271 following tuple: $(u_k, p_1, p_2, d_1, d_2)$, it means that crowdsourcer k will leave his/her origin node
 272 u_k , go to the pickup node of the first request p_1 , pick up the second request p_2 , then drop off the
 273 first request d_1 , and finally drop off the second request d_2 . In this case, the cells of the first five
 274 columns of the k th row are occupied, whereas the remaining cells in the row are empty (Fig. 2).
 275

	1	2	3	4	5	...	$2 J + 1$
1	u_1
\vdots
k	u_k	p_1	p_2	d_1	d_2	0	0
\vdots
$ K $	$u_{ K }$

276 **Fig. 2.** Illustration of the information array

277
 278 The information array is constantly updated after every time step. Given that we consider a static
 279 problem for the purpose of operation planning rather than real-time decision support, we assume that
 280 all requests are unassigned (i.e., assigned to backup vehicles) at the beginning. Thus, initially each row
 281 in the information array contains only the origin node of a crowdsourcer.

282 **3.2.2 State representation using a three-tuple**

283 The information array provides a foundation for specifying the state space. At each time step t ,
 284 the state of the crowdshipping environment is described by a three-tuple $s_t = \{S^l, S^r, S^c\}$ which
 285 provides respectively: 1) location information of pickup and delivery nodes of requests and
 286 crowdsourcer routing sequences; 2) request-specific time information; and 3) crowdsourcer-specific

287 time and capacity information. With $\{S^l, S^r, S^c\}$, the agent not only has a complete picture of the
 288 crowdsourcer routing sequences, but can leverage the time-related information to perform heuristics-
 289 guided actions, as described in subsection 3.2.3.

290 The first component in the three-tuple, S^l , is specified as follows:

$$291 \quad S^l = \{n_i, n_j^p, n_j^d, n_k^c; \forall i \in J \cup K, j \in J, k \in K\}$$

292 where

- n_i is the coordinate of node i ;
- n_j^p is the coordinate of the successor node of the pickup node of request j if j is assigned;
- n_j^d is the coordinate of the predecessor node of the delivery node of request j if j is assigned;
- n_k^c is the coordinate of the first node visited by crowdsourcer k if the crowdsourcer is assigned (i.e., first node other than the crowdsourcer origin).

293
 294 The second component in the three-tuple, S^r , contains three pieces of request-specific time
 295 information:

$$296 \quad S^r = \{s_j, b_j, o_j; \forall j \in J\}$$

297 where

- s_j is the slack time of request j ;
- b_j is the unused service time of request j ;
- o_j is the occupation time of request j .

298
 299 For a request j , slack time s_j measures how urgent it needs to be assigned:

$$300 \quad s_j = \begin{cases} (t_{d_j}^l - t_{p_j}^e) - T_{p_j, d_j}^c & f_j = 0 \\ \mathcal{M} & f_j = 1 \end{cases} \quad (6)$$

301
 302 where

- $t_{d_j}^l$ is the latest delivery time for request j ;
- $t_{p_j}^e$ is the earliest pickup time for request j ;
- T_{p_j, d_j}^c is the direct travel time by crowdsourcer from pickup node p_j to delivery node d_j ;
- \mathcal{M} is a very large number;
- f_j equals 1 if request j is assigned to a crowdsourcer, and 0 otherwise.

303
 304 For an unassigned request j , its urgency is the difference between the largest amount of time
 305 allowed for pickup and delivery ($t_{d_j}^l - t_{p_j}^e$), and the minimum amount of time needed to do so by
 306 crowdsourcer (T_{p_j, d_j}^c). The larger the difference, the lower the urgency with which the request needs

307 to be assigned. For an assigned request, a very large number \mathcal{M} is given, which means that its urgency
 308 is effectively zero (as it is already assigned). Using this urgency measure, the agent solving for the
 309 assignments can prioritize assigning requests that have not been assigned to crowdsourcees.

310 The unused service time of a request j (b_j) quantifies the gap between the latest delivery time $t_{d_j}^l$
 311 and the actual delivery time t_{d_j} (Eq. (7)). Conceptually, a larger b_j means greater flexibility in altering
 312 the way the request is picked up and delivered (e.g., by moving the request to a different position in
 313 the assigned crowdsourcee route or to a different route).

314

$$b_j = t_{d_j}^l - t_{d_j} \quad (7)$$

315
 316 Note that in the case of an unassigned request, the request will be delivered by a backup vehicle
 317 which departs from a pre-specified depot D . Assuming that the backup vehicle will leave the depot at
 318 the earliest pickup time $t_{p_j}^e$, the actual delivery time will be $t_{d_j} = t_{p_j}^e + T_{D,p_j}^b + T_{p_j,d_j}^b$ where T_{D,p_j}^b and
 319 T_{p_j,d_j}^b denote respectively the travel time of the backup vehicle from the depot to the pickup node, and
 320 from the pickup node directly to the delivery node.

321 The occupation time of a request (o_j) quantifies the duration between pickup and delivery of a
 322 request j .

323

$$o_j = t_{d_j} - t_{p_j} \quad (8)$$

324
 325 where

326 t_{p_j} is the pickup time of request j by the assigned crowdsourcee.

327 For an unassigned request, t_{p_j} is equal to $t_{p_j}^e + T_{D,p_j}^b$. Thus, $o_j = T_{p_j,d_j}^b$.

328 The third component in the three-tuple, namely S^c , contains four pieces of crowdsourcee-specific
 329 time and capacity information:

330

$$S^c = \{\mathfrak{h}_k, v_k, \tau_k, \eta_k; \forall k \in K\}$$

331 where

332 \mathfrak{h}_k is the routing duration for crowdsourcee k ;

v_k is the total delivery time violation of requests assigned to crowdsourcee route k ;

τ_k is the remaining available time for crowdsourcee k ;

η_k is the total capacity violation along the route of crowdsourcee k .

333 The calculation of \mathfrak{h}_k is intuitive. v_k is calculated using Eq. (9), where J^k denote the set of
 334 requests assigned to crowdsourcer k . The max operator is used when delivery is earlier than the latest
 335 delivery time (i.e., $t_{d_j} - t_{d_j}^l \leq 0$) such that it does not contribute to the violation:

336

$$v_k = \sum_{j \in J^k} \max(t_{d_j} - t_{d_j}^l, 0) \quad (9)$$

337

338 The remaining available time of crowdsourcer k , τ_k , is the difference between the crowdsourcer's
 339 total available time ($t_{\text{end}}^k - t_{\text{start}}^k$) and the route duration (\mathfrak{h}_k), as shown in Eq. (10), where t_{end}^k and
 340 t_{start}^k are the end and start of crowdsourcer k 's available time window. An underlying assumption is
 341 that an assigned crowdsourcer will start routing at t_{start}^k . If the total available time of a crowdsourcer
 342 is less than the route duration, $\tau_k < 0$ means that crowdsourcer k 's time availability is violated when
 343 finishing the last delivery on the route.

344

$$\tau_k = (t_{\text{end}}^k - t_{\text{start}}^k) - \mathfrak{h}_k. \quad (10)$$

345

346 Given that a crowdsourcer has limited carrying capacity (measured in weight), the total capacity
 347 violation along a crowdsourcer route η_k is the total number of capacity violation occurrences at each
 348 pickup node:

349

$$\eta_k = \sum_{j \in J^k} \delta_{p_j}, \quad (11)$$

350

351 where $\delta_{p_j} = 1$ if the total weight carried right after picking up at node p_j exceeds the carrying
 352 capacity, and zero otherwise.

353 With the full specification of $s_t = \{S^l, S^r, S^c\}$, the dimension of the state space can be explicitly
 354 expressed as a function of the dimensions of J and K . We show this in Remark 1 below.

355

356 **Remark 1.** The dimension of the state space is $11|J| + 8|K|$.

357 **Proof.** See Appendix A.

358

359 3.2.3 Action space design

360 As mentioned in Section 1, the combinatorial nature of the crowdshipping problem means that a
 361 large number of different actions can be taken to construct and improve crowdsourcer routing.

362 However, enumerating all possible actions would be neither efficient nor practical in DRL training. To
363 preserve training tractability, we abstract the action space into five types of actions. At each time step,
364 the agent may perform one action from the five types to alter an existing crowdsourcee route(s) or
365 create a new crowdsourcee route. The choice of an action type is informed by the DQN algorithm.
366 Once the action type is identified, the specific action to take is directed by the heuristics that leverage
367 time-related state information about crowdsourcees and requests (e.g., slack time of a request and
368 remaining available time of a crowdsourcee) so that assignment urgency, flexibility for routing
369 improvement, and shipping cost reduction potential are taken into account toward more efficient
370 crowdsourcee routing construction/improvement.

371 Among the five types of actions, the first type pertains to inserting an unassigned request to an
372 existing/new route. The other three types of actions: intra-route move, inter-route move, and 1-
373 exchange, are neighborhood moves of requests that have been previously placed in some existing
374 crowdsourcee routes. Here the term “neighborhood” means that a move makes only one change to the
375 solution, such that the solutions before and after the move remain quite similar to each other. Details
376 of performing the neighborhood moves are described in subsections 3.2.3.2-3.2.3.4 below. The last
377 action type is do-nothing, i.e., no action is taken. We consider do-nothing as an action for preserving
378 good solutions. Specifically, if a very good solution has been achieved, having the option of do-nothing
379 prevents taking another action that would move away from the solution to an inferior solution. It is
380 worth mentioning that other more complex actions can be realized using the proposed five action types,
381 in multiple time steps. In other words, our proposed action types are building blocks for other more
382 complex actions. For instance, a 3-way exchange of requests among three crowdsourcee routes in a
383 cyclic manner could be decomposed into and realized through two inter-route moves. Because of the
384 decomposition, it is possible that the inter-route moves are taken consecutively or with other actions
385 in between, therefore permitting more flexibility. Fig. 3 provides an illustration of the first four action
386 types.

387

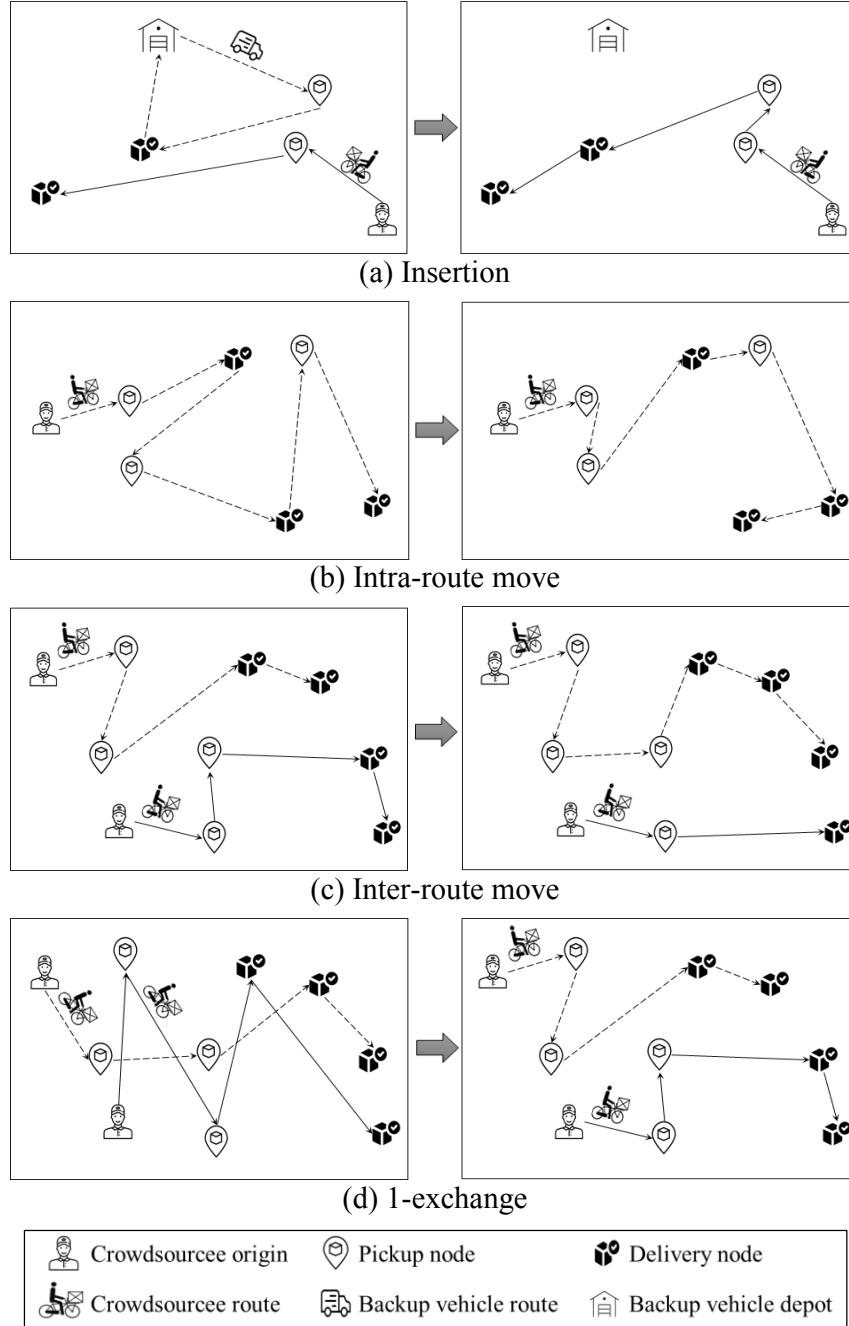


Fig. 3. Illustration of the four types of actions considered

388

389

390 For insertion, intra-route move, and inter-route move, routing feasibility after taking an action
391 needs to be checked by following Definition 1 below.

392

393 **Definition 1.** Feasibility of a crowdsourcer route. A crowdsourcer route k is feasible if the following
394 four conditions are met:

395 (1) request pickup is no earlier than the earliest pickup, for all requests on the route: $t_{p_j} \geq t_{p_j}^e, \forall j \in J^k$;

396 (2) request delivery is no later than the latest delivery, for all requests on the route: $t_{d_j} \leq t_{d_j}^l, \forall j \in J^k$;
 397 (3) remaining available time of the crowdsourcee after completing the route is non-negative: $\tau_k \geq 0$;
 398 (4) no violation of crowdsourcee capacity on the route: $\eta_k = 0$.

399
 400 Conceptually, the decision on what action to take at a time step proceeds in two stages. First, the
 401 DQN algorithm identifies one of the five action types (insertion, intra-route move, inter-route move,
 402 1-exchange, and do-nothing) as specified in the action space. Once the action type is identified, in the
 403 second stage the specific action is executed using the corresponding heuristic, based on system state
 404 information and intuitive reasonings. The remainder of this subsection describes in detail the heuristics
 405 that guide the specific action to take under each action type (except for do-nothing). We also present
 406 computational complexity of each heuristic as Remarks 1-4, with proofs provided in Appendix A.

407 *3.2.3.1 Inserting an unassigned request in an existing/new route*

408 For insertion, we need to determine which request to choose for insertion, and where to insert the
 409 request. The action consists of three steps.

410

Step 1: *Select a request.*

Among the unassigned requests, select one with the smallest slack time.

Step 2: *Insert the request to a route.*

For the selected request, calculate the distances between the pickup node of the request and each crowdsourcee. For an assigned crowdsourcee, the distance is to the end of the crowdsourcee route. For an unassigned crowdsourcee, the distance is to the crowdsourcee origin. Identify the smallest distance.

If the smallest distance occurs to an assigned crowdsourcee, insert the node to the end of the crowdsourcee route. If the smallest distance occurs to an idle crowdsourcee, create a new route: crowdsourcee origin \rightarrow request pickup node \rightarrow request delivery node.

Step 3: *Perform intra-route move.*

If the request is inserted to an existing crowdsourcee route, explore moving the request to earlier positions in the route. The move follows Step 2 of intra-route move below, but for the inserted request only. Place the request at the position that is feasible and leads to the smallest routing cost.

If it is not feasible to place the request anywhere in the inserted route, move to the route with the second smallest distance, insert the request to the end of the route, and perform intra-route move. If all routes are checked and a feasible placement cannot be found, move to the unassigned request with the second smallest slack time. Repeat Step 2 and Step 3 described above. If it is not possible to feasibly insert any unassigned request, stop and nothing is changed.

411

412 In Step 1, the rationale for considering the unassigned request with the smallest slack time, the
413 information of which comes from s_j in S^r (second component in the three-tuple state representation),
414 is that we want to get the most urgent unassigned request assigned first. In Step 2, we perform insertion
415 to the nearest crowdsourcer as this incurs the smallest time loss between the crowdsourcer finishing
416 the currently assigned requests and picking up the request under study.

417
418 **Remark 2.** The computational complexity of insertion is $O(|J|^2 \log|J|)$.

419 **Proof.** See Appendix A.

420
421 3.2.3.2 *Intra-route move*
422 Intra-route move involves moving a later request to an earlier position in a route to reduce routing
423 cost. The action also consists of three steps.

424 **Step 1:** *Select a route.*

Select the crowdsourcer route with the largest remaining available time.

Step 2: *Move examination.*

Enumerate all feasible moves of a request to a different place. For a request, first move it to the end of the route, i.e., having the last two nodes in a route as the pickup and delivery nodes of the request. Then, examine all feasible moves of the request to an earlier place in the route.

To illustrate, consider routing sequence $(u_k, p_1, d_1, \dots, p_{n-1}, d_{n-1}, p_n, d_n)$ and moving request n (whose pickup and delivery nodes are already at the end of the route). Move p_n to an earlier position, one place at a time, i.e., to the places right before d_{n-1} , right before p_{n-1}, \dots , until right after u_k . For each new position of p_n , examine feasibility of holding d_n at its initial place, moving it one place at a time to an earlier position, as long as d_n is not before p_n . For each feasible (p_n, d_n) move, calculate the routing cost.

Repeat the above for every request in the route.

Step 3: *Identify the best move.*

Among all the feasible moves in Step 2, pick the one with the smallest routing cost. If the routing cost is smaller than the original routing cost, perform the move. If no move yields a smaller routing cost or there is no feasible move, stop and nothing is changed.

425
426 In Step 1, the rationale for considering the route with the largest remaining available time, for
427 which the information comes from τ_k in S^c , is that such a route has the greatest flexibility for moving
428 requests around.

429
430 **Remark 3.** The computational complexity of intra-route move is $O(|J| \log|J|)$.

431 **Proof.** See Appendix A.

432

433 **3.2.3.3 Inter-route move**

434 Inter-route move picks a request from a route and moves it to another route by performing the
435 following three steps.

436

Step 1: *Select a request.*

Among all assigned requests, select one with the largest occupation time.

Step 2: *Move the request to the end of a different route.*

Insert request to another existing route or create a new route, following Step 2 of insertion.
Calculate the combined routing cost for the two routes involved in the inter-route move.

Step 3: *Perform intra-route move of the request.*

If the request is inserted to an existing crowdsourcer route, explore moving the pickup and delivery nodes of the request to earlier positions in the route to reduce routing cost. The move follows Step 2 of intra-route move below, but for the inserted request only.

If there exist feasible intra-route moves that lead to lower routing cost than the cost after Step 2, perform the intra-route move that leads to the lowest routing cost. If not and the solution after Step 2 is feasible, perform only Steps 1-2. Otherwise, nothing is changed.

437

438 In Step 1, the rationale for considering the request with the largest occupation time, for which the
439 information comes from o_j in S^r , is that larger occupation time may suggest greater time (and thus
440 cost) reduction potential by moving the request to a different route.

441

442 **Remark 4.** The computational complexity of inter-route move is $O(|J| \log|J|)$.

443 **Proof.** See Appendix A.

444

445 **3.2.3.4 1-exchange move**

446 1-exchange move pertains to exchanging two requests which are on two crowdsourcer routes.

447 Performing the move has four steps.

448

Step 1: *Select the first request.*

Among all assigned requests, select the first request that has the largest unused service
time.

Step 2: *Select the second request.*

Excluding the route associated with the first selected request, select the second request that
has the largest unused service time among the remaining assigned requests.

Step 3: *Exchange the selected requests.*

Remove the two requests from their routes. Add each request to the end of the other route. Calculate the combined routing cost for the two routes involved in the 1-exchange move.

Step 4: *Perform intra-route move of the two requests.*

For each of the two requests, this follows Step 2 of intra-route move. Place the request at the position that is feasible and leads to the smallest routing cost. The associated routing cost should be lower than the routing cost from Step 3. If this is not possible, leave the request at the end of the route, i.e., do not perform Step 4.

449
450 In Steps 1 and 2, the rationale for choosing requests with the largest unused service time, for which
451 the information comes from b_j in S^r , is that such requests have the greatest flexibility to be moved
452 around. It should be noted that unlike the other three actions, we do not consider feasibility while
453 performing Step 3 in 1-exchange. This is intentional to help the search escape local optima (Nanry and
454 Barnes, 2000).

455
456 **Remark 5.** The computational complexity of 1-exchange move is $O(|J| \log|J|)$.

457 **Proof.** See Appendix A.

458
459 **3.2.4 Reward specification**
460 Given the state and the action at a time step, we specify the reward as the change in TSC as a
461 result of the action taken. If the action taken at time step t is inserting request j in crowdsourcer route
462 k , the reward is computed as:

463

$$r_t = \beta^b \mathfrak{h}_{k,t-1} + \beta^b (T_{D,p_j}^b + T_{p_j,d_j}^b + s + T_{d_j,D}^b) - \beta^c \mathfrak{h}_{k,t} \quad (12)$$

464
465 where

- β^b is the unit cost of using a backup vehicle (in \$/minute);
- β^c is the unit cost of using a crowdsourcer (in \$/minute);
- $\mathfrak{h}_{k,t-1}$ is the route duration (in minutes) of crowdsourcer route k at time step $t - 1$;
- $\mathfrak{h}_{k,t}$ is the route duration (in minutes) of crowdsourcer route k at time step t ;
- s is the stopping time of a node (assumed one minutes);
- $T_{d_j,D}^b$ is the backup vehicle travel time from the delivery node of request j back to depot D .

466
467 In Eq. (12), $\beta^c \mathfrak{h}_{k,t-1}$ is the cost of crowdsourcer route k at time step $t - 1$, which is before request
468 j is inserted. If the route does not exist before inserting j , this term will be zero. $\beta^b (T_{D,p_j}^b + T_{p_j,d_j}^b +$

469 $T_{d_j,D}^b$) is the cost of picking up and delivering the request by a backup vehicle. $\beta^c \mathfrak{h}_{k,t}$ is the cost of the
 470 crowdsourcer route k at time step t , after request j is inserted. The calculation result using Eq. (12) is
 471 measured in dollars.

472 If the action taken at time step t is a neighborhood move, let us use Ψ_t to denote the set of
 473 crowdsourcer route(s) that are involved in the move. For intra-route move, Ψ_t will have just one route.
 474 For inter-route move and 1-exchange, Ψ_t will have two routes. The reward is calculated as the
 475 difference of the routing costs before and after the move:

476

$$r_t = c_t^1 - c_t^2 \quad (13)$$

477
 478 where c_t^1 and c_t^2 are routing costs for the route(s) in Ψ_t before and after the neighborhood move:

479

$$c_t^1 = \beta^c \left(\sum_{k \in \Psi_t} \mathfrak{h}_{k,t-1} + \vartheta \sum_{k \in \Psi_t} v_{k,t-1} + \tau \sum_{k \in \Psi_t} \chi_{k,t-1} + \rho \phi \sum_{k \in \Psi_t} \eta_{k,t-1} \right) \quad (14)$$

$$c_t^2 = \beta^c \left(\sum_{k \in \Psi_t} \mathfrak{h}_{k,t} + \vartheta \sum_{k \in \Psi_t} v_{k,t} + \tau \sum_{k \in \Psi_t} \chi_{k,t} + \rho \phi \sum_{k \in \Psi_t} \eta_{k,t} \right) \quad (15)$$

480

481 where

- $\mathfrak{h}_{k,t}$ is the route duration for crowdsourcer k at time step t ;
- $v_{k,t}$ is the delivery time violation of requests assigned to crowdsourcer route k at time step t ;
- $\chi_{k,t}$ is the available time violation for crowdsourcer k at time step t ;
- $\eta_{k,t}$ is the carrying capacity violation for crowdsourcer k at time step t ;
- ϑ is the penalty multiplier for delivery time violation;
- τ is the penalty multiplier for crowdsourcer overworking;
- ρ is the penalty multiplier for crowdsourcer carrying capacity violation;
- ϕ is the capacity violation-to-time conversion factor.

482

483 Here, ϑ , τ , and ρ are unitless penalty parameters. ϕ has unit of minutes per capacity violation. The
 484 calculation result of Eq. (13) is also in dollars.

485 3.3 DRL algorithm for crowdshipping

486 This subsection describes how DQN, which is our training algorithm, is adapted to the context of
 487 crowdshipping. DQN is an off-policy RL approach, as it is based on Q-learning (Sutton and Barto,
 488 2018). The training is offline with a simulator developed by ourselves. In DQN, the training of the
 489 agent is through multiple episodes, each. Each episode is associated with a crowdshipping problem

490 instance of a certain size, which is randomly generated and starts with an initial state that all
491 crowdsourcers are idle (unassigned). Training in an episode involves improving the solution by taking
492 actions described in subsection 3.2.3, one at a time in a number of time steps.

493 At each time step, an ε -greedy strategy is employed to consider both exploration and exploitation
494 as the agent decides what type of action to take among insertion, intra-route move, inter-route move,
495 1-exchange move, and do-nothing. By exploration, it means that the agent takes a random action type,
496 with probability ε . By exploitation, the agent takes one of the five action types above that is the best—
497 based on the experiences that the agent has learned so far (reflected in the current Q-values, as shown
498 in line 7 in Algorithm 1 at the end of this subsection), with probability $1 - \varepsilon$. Once the best action type
499 is chosen, the specific action follows the heuristics described in subsection 3.2.3 (line 8 in Algorithm
500 1). Consequently, a reward and a new state are observed.

501 While exploitation takes advantage of what have been learned in terms of the best action to take,
502 exploration is necessary to try to get the agent out of local optima toward even better action sequences,
503 to further reduce total shipping cost. At the beginning of an episode, ε takes value 1, i.e., the focus is
504 purely on exploration, which is intuitive as the agent has zero learned experience (thus nothing to
505 exploit) at this point. Then as time goes by, the agent gradually increases the probability of exploiting
506 learned actions. A decay rate of ξ is used which describes the change in probabilities between two time
507 steps (Eq. (16)). ξ is a hyper parameter.

508

$$\varepsilon_{t+1} = \varepsilon_t(1 - \xi) \quad (16)$$

509

510 One salient feature of DQN is experience replay, for which a replay memory M is used to store
511 the agent’s experiences during training. Up to $|M|$ experiences can be stored in the replay memory. An
512 experience is associated with taking an action at a given state and time step, observing a state transition,
513 and getting a reward. For example, at time step t , the agent performs an action a_t which transforms
514 the state from s_t to s_{t+1} and yields a reward r_t . The experience is denoted as $e_t = (s_t, a_t, r_t, s_{t+1})$. At
515 the beginning of the training, M is empty. As the training continues, experiences are accumulated and
516 added to replay memory M . Once $|M|$ experiences are stored in M , adding a new experience requires
517 simultaneous removal of the oldest experience stored in M .

518 At each time step, a DNN is trained using a minibatch M_{sub} of samples that are randomly selected
519 from M . Note that in the beginning of the training, the number of accumulated experiences in M will
520 be fewer than $|M_{\text{sub}}|$. In this case, experiences will continuously be accumulated in M but DNN will
521 not be trained, until the replay memory has $|M_{\text{sub}}|$ experiences. The employment of experience replay

522 using randomly selected minibatch samples has multiple advantages. First, because the samples are
 523 randomly selected, correlation between samples will be less than learning directly from consecutive
 524 samples, thereby enhancing the efficiency of learning. Second, each experience can potentially be used
 525 in many weight updates, thus allowing for greater data efficiency. Third, by experience replay the
 526 behavior distribution is averaged over many previous states, which contributes to smoothing out
 527 learning and avoiding oscillation or divergence in the parameters (Mnih et al., 2015).

528 For each selected experience (s, a, r, s') , state s is used as the input for the DNN (with weight
 529 parameters θ) to generate state-action value $Q(s, a: \theta)$, or Q-value, which is the output of the DNN.²
 530 Collectively for all the selected experiences, the prediction of $Q(s, a: \theta)$'s comprises the first *forward*
 531 *pass*. $Q(s, a: \theta)$ is then compared with the target optimal Q-value $Q_*(s, a)$ which gives the maximum
 532 expected return achievable by following any DQN policy. Ideally, the target optimal Q-value should
 533 satisfy the Bellman optimality equation:

534

$$Q_*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a' \in A} Q_*(s', a') \mid s, a \right] \quad (17)$$

535

536 where r is the immediate reward by taking action a at station s .

537 The comparison of $Q(s, a: \theta)$ with $Q_*(s, a)$ is performed using a loss function. Assuming a square
 538 form for the loss function and replacing $Q_*(s, a)$ by the RHS of Eq. (17), the loss function \mathcal{L} , which
 539 depends on DNN weight parameters θ , can be expressed as:

540

$$\mathcal{L}(\theta) = \frac{1}{|M_{\text{sub}}|} \sum_{(s, a, r, s') \in M_{\text{sub}}} \left[r + \gamma \max_{a' \in A} Q_*(s', a') - Q(s, a: \theta) \right]^2 \quad (18)$$

541

542 Obviously, to calculate $\mathcal{L}(\theta)$, $Q_*(s', a')$ is needed. However, $Q_*(s', a')$ is unknown (if $Q_*(s', a')$
 543 was known, then the training would be done). One way to get an approximation of $Q_*(s', a')$ is to
 544 perform another *forward pass* with the DNN, i.e., for state s' in each experience (s, a, r, s') along with
 545 the same weight parameters θ of the DNN, predict state-action values $Q(s', a': \theta)$, $\forall a' \in A$ using the
 546 DNN. By approximating $Q_*(s', a')$ with $Q(s', a': \theta)$, Eq. (17) can be re-expressed as:

547

$$\mathcal{L}(\theta) = \frac{1}{|M_{\text{sub}}|} \sum_{(s, a, r, s') \in M_{\text{sub}}} \left[r + \gamma \max_{a' \in A} Q(s', a': \theta) - Q(s, a: \theta) \right]^2 \quad (19)$$

² In this paper, we use an architecture in which there is a separate output for each possible action. Only the state is the input to the DNN. Thus, among the outputs for different actions, we choose the one corresponding to action a as $Q(s, a: \theta)$.

548

549 After performing two forward passes as described above, the gradient of the loss in Eq. (19) is
 550 used to update θ by the Adam optimizer, a widely-used gradient descent-based algorithm for
 551 minimizing the loss (Kingma and Ba, 2015). However, a main drawback exists in this two-forward
 552 pass procedure. When θ gets updated, the Q-values obtained from this network will also get updated
 553 (in the next time step). So will the target Q-values as they are calculated using the same network
 554 parameter. In other words, the direction of updates for the Q-values and the target Q-values will be
 555 same. As a consequence, the correlation between the Q-values and the target Q-values can be high,
 556 possibly leading to oscillation or divergence of the policy during training.

557 To tackle this issue, a second salient feature of DQN is that a parallel network, called the target
 558 network, of the original DNN is created to preserve DNN parameter values for a period of time, so that
 559 target Q-values do not get updated with the same frequency as the Q-values. The target network, which
 560 is a clone of the original network, initializes its parameters θ' using the original DNN: $\theta' = \theta$ at the
 561 beginning of the training. Then, instead of updating θ' by θ of the original DNN at every time step, θ'
 562 is frozen for δ time steps. Only after every δ time steps, θ' gets updated to whatever is the present
 563 value of the original network parameters θ . In this procedure, δ is a hyper parameter.

564 The Q-value obtained from the target network $Q(s', a': \theta')$ is used to calculate the approximate
 565 target Q-value $r + \gamma \max_{a' \in A} Q(s', a': \theta')$. The loss function shown in Eq. (17) becomes:

566

$$\mathcal{L}(\theta) = \frac{1}{|M_{\text{sub}}|} \sum_{(s, a, r, s') \in M_{\text{sub}}} \left[r + \gamma \max_{a' \in A} Q(s', a': \theta') - Q(s, a: \theta) \right]^2 \quad (20)$$

567

568 In implementing DQN, we use a slightly modified version of the squared loss function called
 569 Huber loss function. For each sample, the squared term is used only if the absolute error falls below a
 570 threshold (here we choose the value 1). Otherwise, we use an absolute term as shown in Eq. (21). An
 571 advantage of the Huber function form is that the loss is less sensitive to outliers than the square loss
 572 for large errors, which prevents exploding gradients.

573

$$\mathcal{L}(\theta) = \frac{1}{|M_{\text{sub}}|} \sum_{(s, a, r, s') \in M_{\text{sub}}} L_H \left(r + \gamma \max_{a' \in A} Q(s', a': \theta') - Q(s, a: \theta) \right) \quad (21)$$

where

$$L_H \left(r + \gamma \max_{a' \in A} Q(s', a'; \theta') - Q(s, a; \theta) \right) = \begin{cases} 0.5 \left[r + \gamma \max_{a' \in A} Q(s', a'; \theta') - Q(s, a; \theta) \right]^2 & \text{if } \left| r + \gamma \max_{a' \in A} Q(s', a'; \theta') - Q(s, a; \theta) \right| < 1 \\ \left| r + \gamma \max_{a' \in A} Q(s', a'; \theta') - Q(s, a; \theta) \right| - 0.5 & \text{otherwise} \end{cases}$$

574

575 Finally, it should be mentioned that during an episode, we also accumulate the rewards that are
576 negative. If the accumulated negative reward in an episode falls below a threshold, then the training of
577 the episode is perceived as not promising and consequently terminates.

578 Summarizing, the overall learning algorithm is presented in Algorithm 1 and illustrated in Fig. 4
579 below.

580

Algorithm 1: Overall learning algorithm for the crowdshipping problem

```

1. Initialize replay memory  $M = \emptyset$ 
2. Initialize the original DNN with random weight parameters  $\theta$ 
3. Initialize the target DNN with same structure as the original DNN and weight parameters  $\theta' = \theta$ 
4. for episode  $i = 1$  to  $I$ , do  $\triangleright I$  is the number of episodes
5.   Initialize state  $s_0 \in S$   $\triangleright$  in the initial state  $s_0$ , all crowdsourcers are unassigned
6.   for time step  $t = 1$  to  $T$ , do  $\triangleright T$  is the number of time steps in an episode
7.     Select a random action type  $a_t$  with probability  $\varepsilon$ ; otherwise, set action type  $a_t = \arg\max_{a \in A} Q(s_t, a; \theta)$ 
8.     Execute a specific action under action type  $a_t$ , as guided by the corresponding heuristic in
9.     subsection 3.2.3. This results in  $r_t$  and  $s_{t+1}$ 
9.     Store experience  $e_t = (s_t, a_t, r_t, s_{t+1})$  in  $M$ 
10.    if  $|M| > |M_{\text{sub}}|$ , do
11.      if  $\mathbb{R}_t > \mathcal{K}$ , do  $\triangleright \mathbb{R}_t$  is accumulated negative reward in the episode;  $\mathcal{K}$  is a threshold
12.        Randomly sample a minibatch  $M_{\text{sub}}$  of experiences from  $M$ 
13.        for each experience  $e_j = (s_j, a_j, r_j, s_{j+1})$  in  $M_{\text{sub}}$ , do
14.          Compute  $r_j + \gamma \max_{a' \in A} Q(s_{j+1}, a'; \theta')$ 
15.        end for
16.        Calculate loss by Eq. (21)
17.        Update weight parameters  $\theta$  by the Adam optimizer
18.        Update  $\theta' = \theta$  every  $\delta$  time steps
19.      else
20.        break  $\triangleright$  if  $\mathbb{R}_t < \mathcal{K}$ , the training is perceived as not promising and stop
21.      end if
22.    end if
23.  end for
24. end for

```

581

582 Based on Algorithm 1 and the state and action space characterization, the complexity of DQN
583 training is examined, with results formalized as Remark 6 below.

584 **Remark 6.** The computational complexity of DQN training in the context of crowdshipping is
 585 $O(\{([(|J| + \ell)e + \ell e^2]|M_{\text{sub}}| + |J|^2 \log|J|)\}IT)$, where ℓ is the number of hidden layers in the DNN,
 586 e is the upper bound on the number of neurons in a hidden layer, $|M_{\text{sub}}|$ is minibatch size, I is the
 587 number of episodes, and T is the upper bound on the number of time steps in an episode (note in line
 588 20 of Algorithm 1 that training in an episode can stop earlier).

590 **Proof.** See Appendix A.

591

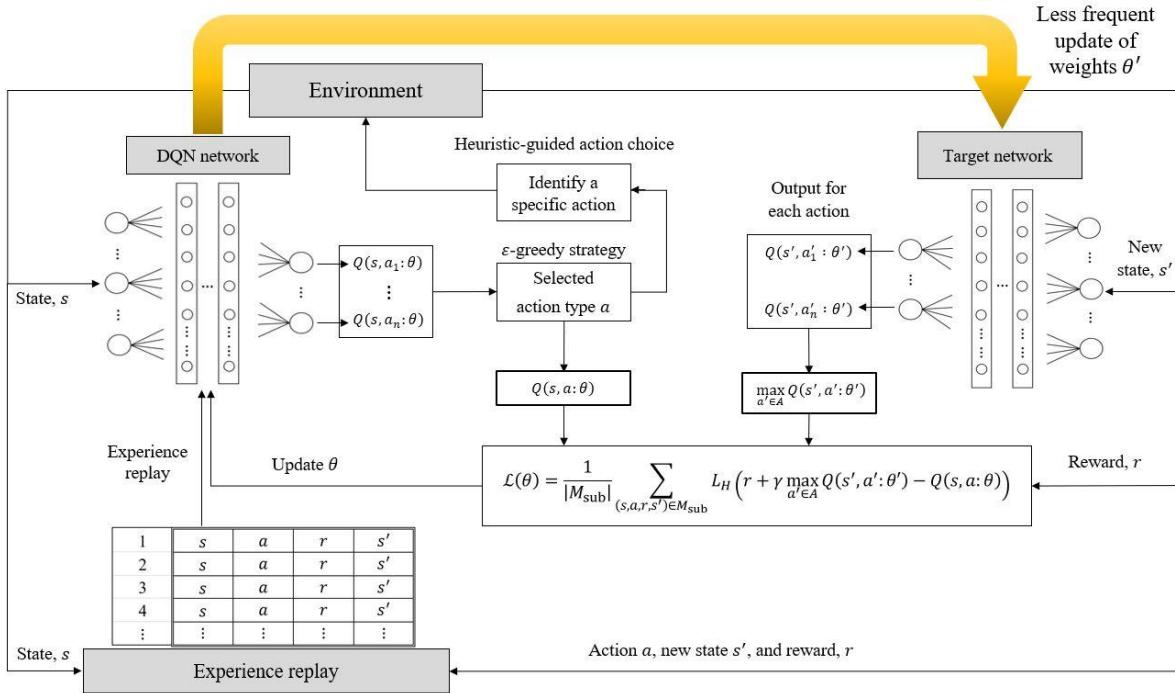


Fig. 4. The architecture of the overall learning algorithm

595 3.4 Rule-interposing in DRL training and implementation

596 Whether in DRL training or in implementation of the trained policy, it is possible that some routes
 597 or node sequences are repeatedly visited during neighborhood moves. This reduces the efficiency of
 598 DRL training, as well as the efficiency in search for the best crowdsourcer-request assignment outcome
 599 when a trained policy is applied to solve a problem instance (note that after DRL training is done, at a
 600 given state s the optimal Q-value only provides what type of action to take, i.e., $a^* = \underset{a \in A}{\operatorname{argmax}} Q^*(s, a)$
 601 where Q^* denotes the optimal Q-value). In this subsection, we propose two rules that aim to prevent
 602 such repeated visiting of routes and node sequences, by excluding a previously visited route or node

603 sequence from being considered again in a number of subsequent actions. In what follows, the first
604 rule focuses on routes. The second rule focuses on node sequences.

605 **3.4.1 Rule 1: Introducing priority lists for route selection**

606 To avoid that actions are repeatedly exerted on one or a subset of crowdsourcee routes, the first
607 rule proposed relies on construction and use of three priority lists of crowdsourcee routes, with each
608 list corresponding to one of the three neighborhood move action types (intra-route move, inter-route
609 move, and 1-exchange) described in subsection 3.2.3. Specifically, when a neighborhood move action
610 type is chosen, we pick the crowdsourcee route(s) from the top of the corresponding priority list to
611 apply the action type. After the specific action is taken on the route(s), the route(s) are removed from
612 the list. Thus over time, routes will be continuously picked and removed from the priority list. The
613 priority list will be shortened, and eventually become empty. Then, we construct a new priority list of
614 all the crowdsourcee routes for the same action type. By doing so, during the life cycle of a priority
615 list, a route is considered only once for the associated action type. This allows more exploration of the
616 same action type on other routes. This construction-destruction of priority lists repeats throughout the
617 training and implementation of a trained DRL to solve a problem instance.

618 Each of the three priority lists is constructed based on some criterion. For intra-route move, the
619 priority list is constructed by sorting crowdsourcee routes in descending order based on the
620 crowdsourcee's remaining available time, which is consistent with the rationale of Step 1 in subsection
621 3.2.3.2. For inter-route move, the priority list is constructed by sorting crowdsourcee routes in
622 descending order based on the occupation time of each crowdsourcee, measured as the duration
623 between the time of the last delivery and the time of the first pickup. This is in line with Step 1 in
624 subsection 3.2.3.3 (there we also consider the largest occupation time, though for requests). Thus,
625 request selection of Step 1 in subsection 3.2.3.3 will be only from the route with the highest priority.
626 After an inter-route move action is taken, that route is removed from the priority list. The occupation
627 time of the route to which the request is moved will be updated. The position of that route in the priority
628 list will also be updated, for which the computational complexity is $O(\log(N))$ based on binary search,
629 with N being the number of crowdsourcee routes in the priority list. For 1-exchange move, the priority
630 list is constructed by sorting crowdsourcee routes in descending order based on unused service time,
631 which is consistent with Steps 1 and 2 in subsection 3.2.3.4. Thus, the selection of the first and the
632 second requests will be from the two routes with the highest and second highest priority respectively.
633 After a 1-exchange move action is taken, the two routes will be removed from the priority list.

634 **3.4.2 Rule 2: Imposing Tabu tenure for neighborhood moves**

635 The second interposing rule is that after a request node (either pickup or delivery) is moved away
636 from an adjacent node (either right before or right after in the routing sequence) on a crowdsourcer
637 route, the former node cannot be moved back to the same location relative to the latter node over a
638 certain number of subsequent actions. This latter node can be of a different request, or of the same
639 request (i.e., the former node is the pickup node of a request, and the latter node is the delivery node
640 of the same request). Similar to Rule 1, this rule applies to the three types of neighborhood moves
641 (intra-route move, inter-route move, and 1-exchange). For each type of neighborhood move, a Tabu
642 tenure will be created to record for how many subsequent actions a request node cannot be neighbored
643 with another node. Similar to Rule 1, Tabu tenure allows neighborhood moves to explore more routing
644 sequences, rather than getting trapped in routing sequences that have been explored and only locally
645 optimal.

646 To operationalize Tabu tenure, two matrices are created and maintained. The first matrix, of
647 dimension $2|J| \times 2|J|$, indicates whether a node (indexed by the column. There are in total $|J|$ requests
648 thus $2|J|$ pickup and delivery nodes) preceding another node (indexed by the row) is Tabu-ed and for
649 how long. The second matrix, of dimension $(|K| + 2|J|) \times 2|J|$, indicates whether a node (indexed by
650 the column) following another node (indexed by the row) is Tabu-ed and for how long. The second
651 matrix has $|K|$ more rows which correspond to the origins of the $|K|$ crowdsourceres, as a pickup node
652 can be placed right after the origin of a crowdsourcer. Given that the two matrices are relatively sparse,
653 we adopt a three-coordinate representation that records only the row number, column number, and
654 value of the non-zero elements (indicating for how many subsequent actions a position is Tabu-ed) of
655 a sparse matrix, rather than storing the entire matrix. For example, suppose we deal with the preceding
656 relationships of two requests ($|J| = 2$), which leads to a matrix of 4×4 . If node 1 (pickup node of
657 request 1) preceding node 3 (pickup node of request 2) is Tabu-ed for the next two subsequent actions,
658 and node 2 (delivery node of request 1) preceding node 4 (delivery node of request 2) is Tabu-ed for
659 the next three subsequent actions, we record only two elements in each of three lists: Row list: [3, 4];
660 Column list: [1, 2]; and Data list: [2, 3]. In our numerical experiments in Section 4, this dealing with
661 sparse matrices is shown to significantly reduce DRL training time (by 14%). The precedence/
662 succession relationships are updated whenever an action is taken. Note that if a Tabu-ed position yields
663 a solution that is better than the best solution obtained so far for a problem, then the Tabu tenure will
664 be overridden.

665 **4 Numerical experiments**

666 This section illustrates numerical implementation of the proposed methodology described in
667 Section 3. We primarily investigate two problem sizes: a medium size with 50 requests and 22
668 crowdsourcées, and a larger size with 200 requests and 70 crowdsourcées. In subsection 4.1, we first
669 present and discuss the results for the medium-size problems in detail, including problem setup,
670 training results, results comparison with full, partial, and no time-related information in the state space,
671 benefits of heuristics-guided action choice and rule-interposing, and results sensitivity to key
672 hyperparameters. To further gauge the performance of the DRL-based approach, benchmarking is
673 performed in subsection 4.2. This includes comparison with three popular heuristic methods as well as
674 with optimal solutions that can be obtained for a series of small-size problem instances. In subsection
675 4.3, to keep the paper length we briefly report implementation results for the larger-size problem
676 instances in terms of total shipping cost and computation time, in comparison with the three heuristics.
677 The DQN algorithm is coded and trained in the PyTorch environment. All numerical investigations are
678 conducted on a PC with Intel Core i9-10920X CPUs at 3.50GHz and 128GB RAM and NVIDIA Titan
679 RTX GPUs.

680 **4.1 Medium-size problems: DRL training and application**

681 **4.1.1 Setup**

682 As mentioned above, we consider a static problem of assigning 50 requests to 22 crowdsourcées.
683 Following Remark 1, the dimension of the state space is $11 \times 50 + 8 \times 22 = 726$. The service area
684 has a square shape of 6 miles \times 6 miles. For a problem instance in both training and testing, the pickup
685 and delivery locations of each request are randomly generated in the service area. So are the origins of
686 the crowdsourcées. The available time of a crowdsourcée is randomly drawn from a uniform
687 distribution of 1-2 hours. The weight of a shipping request is also randomly drawn from a uniform
688 distribution of 2-7 lbs. The carrying capacity of a crowdsourcée is 10 lbs. The earliest pickup time of
689 all requests is the present time. The latest delivery time of a request is randomly drawn from a uniform
690 distribution of 100-120 minutes. Crowdsourcées are assumed to bike to perform pickup and delivery
691 at a speed of 10 mph. Given that all problem instances are randomly generated, in the statistical sense
692 there should be no difference between instances for training and testing. On the other hand, as a very
693 large number of instances are used (e.g., 808 instances used in training), for illustration we only present
694 two randomly picked instances, one from training and one from testing, as shown in Appendix B. No
695 significant differences (apart from the effect due to randomness) among the instances can be discerned.

696 If a request is not assigned to any crowdsourcers, it will be picked up and delivered by a backup
 697 vehicle which leaves a depot located at the center of the service area and returns to the depot after
 698 finishing the delivery. Given the small weight of a request relative to the typical carrying capacity of a
 699 backup vehicle, capacity constraints are not considered for backup vehicles. We assume backup
 700 vehicles travel at a speed of 20 mph. We follow Kafle et al. (2017) by setting the operating cost of a
 701 backup vehicle to be \$68/hour (\$1.13/minute) and the pay rate for crowdsourcers to be \$10/hour
 702 (\$0.17/minute), which is considerably cheaper. Crowdsourcers get paid whenever carrying requests.

703 Following Mnih et al. (2015), values of hyperparameters, shown in Table 2, are selected by
 704 performing an informal search. It should be noted that since these hyperparameter values are chosen
 705 for our specific crowdshipping problems, they may not be the best hyperparameter values for other
 706 problem settings. Nonetheless, if a new problem setting bears similarities with our crowdshipping
 707 problems (e.g., a pickup and delivery problem with capacity constraints only or without constraints),
 708 the hyperparameter values identified here could be a good start point for hyperparameter fine tuning.
 709 We set $T = 85$ time steps as the upper bound on the length of an episode, the penalty parameters in
 710 the reward specification to be $\vartheta = 0.1$, $\tau = 0.2$, and $\rho\phi = 0.15$ minutes/capacity violation, and the
 711 length of Tabu tenure to be three consecutive actions. We choose a 6-layer (i.e., $\ell = 6$) fully connected
 712 feed-forward neural network as our DNN construction, where each hidden layer has 512 neurons (i.e.,
 713 $e = 512$).

714
 715

Table 2: Hyperparameter values

Hyperparameter	Value
Replay memory size ($ M $)	15,000
Minibatch size ($ M_{\text{sub}} $)	256
Target network update frequency (δ)	400
Discount factor (γ)	0.88
Learning rate (α)	0.0001
Decay rate (ξ)	0.001
Episode termination threshold (\mathcal{K})	-55

716

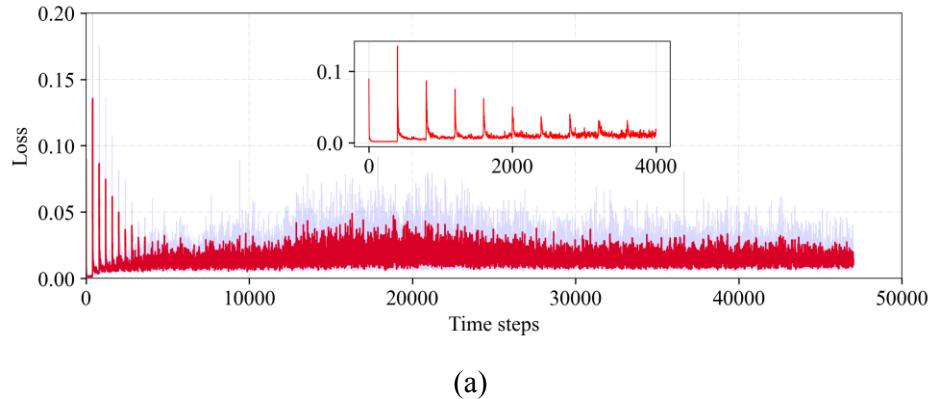
717 4.1.2 Training results

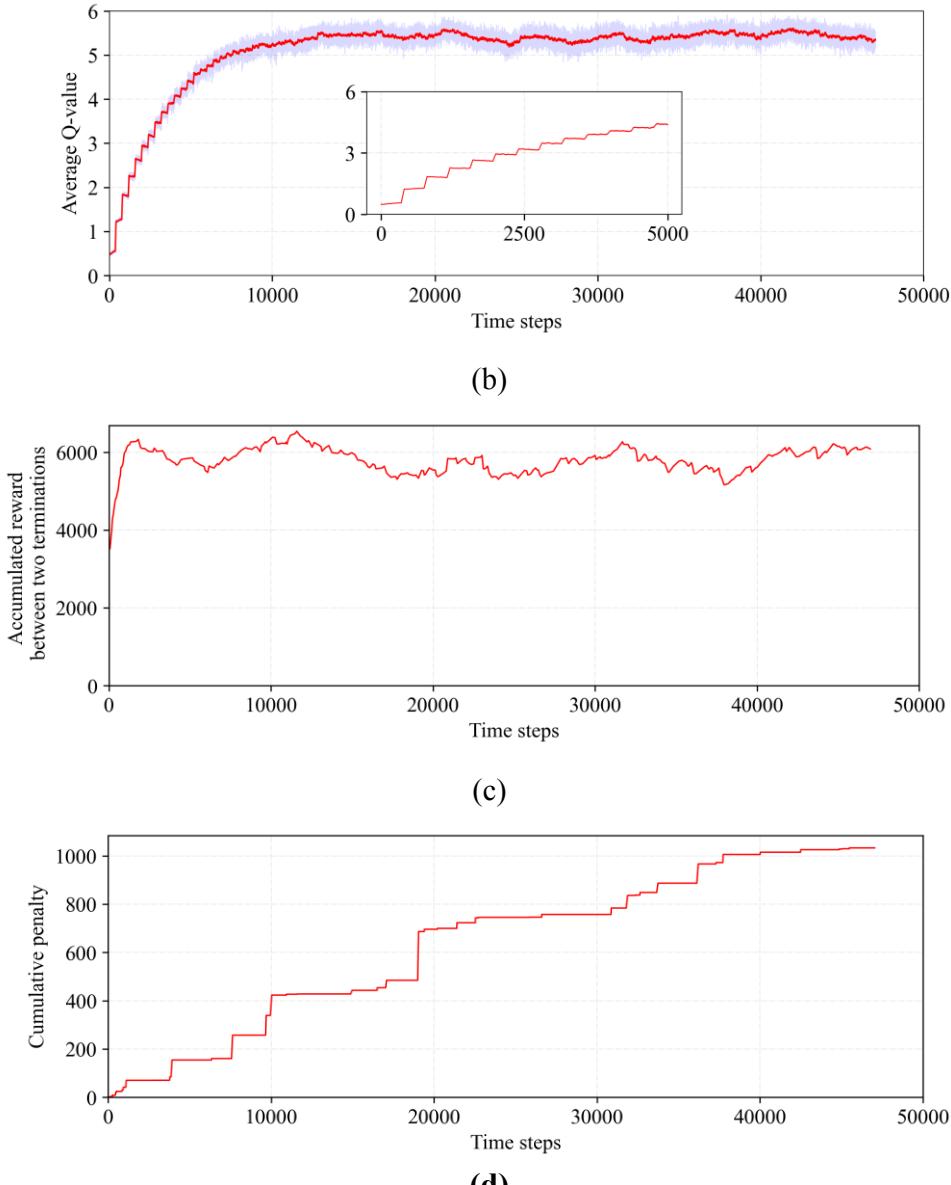
718 Fig. 5 plots the evolution of training over time steps, using four measures: (a) loss per time step.
 719 The light purple curve reflects the actual values, while the red curve is the running average over three
 720 time steps; (b) average Q-value, averaged over all state-action pairs in a minibatch. Similar to (a), the
 721 light purple curve reflects the actual values, while the red curve is the running average over 65 time
 722 steps; (c) accumulated reward between two terminations. As described in subsection 3.3, a termination

723 occurs when the accumulated negative reward falls below threshold \mathcal{K} (line 20 of Algorithm 1); (d)
 724 cumulative penalty, which is the sum of the last three terms in the parentheses (multiplied by β^c) in
 725 Eq. (14)-(15) over all time steps from the start of the training. In (a) and (b), running averages are taken
 726 to better illustrate the changes and trends. The training stops when the relative change in cumulative
 727 penalty in the most recent 3,000 time steps is less than 5%. In total, 46,071 time steps (778 episodes)
 728 are used in the DQN training. The training takes 49.3 minutes.

729 Fig. 5(a) illustrates that in the early stage of training, the loss value per time step experiences a
 730 jump every 400 time steps (as made clearer in the zoom-in view), which corresponds to an update of
 731 the target network. The jumps are particularly acute in the beginning since the agent has little learned
 732 experience then. The magnitude of jumps diminishes as learning continues. In Fig. 5(b), the average
 733 Q-value keeps improving till after 13,500 time steps. Before that, updates in the DNN considerably
 734 improve the DQN algorithm which yields better solutions. Fig. 5(b) also shows a magnifier of the first
 735 5,000 time steps. It is interesting to observe step-wise jumps every 400 time steps, which is again the
 736 target network update frequency. In other words, whenever updating the target network, it leads to a
 737 significant improvement in average Q-value. The magnitude of the jumps decreases over time steps,
 738 suggesting that the marginal improvement of the DQN algorithm is diminishing as training continues.
 739 In Fig. 5(c), the accumulated reward between two terminations tends to stabilize after around 42,000
 740 time steps. Fig. 5(d) shows that the accumulative penalty over all time steps becomes stable a bit later:
 741 after around 38,000 time steps, the DQN algorithm becomes well trained that taking actions suggested
 742 by the DQN algorithm will cause little violation of time and capacity constraints (which incurs penalty)
 743 during neighborhood moves.

744





745 **Fig. 5.** Evolution of (a) loss; (b) average Q-value; (c) accumulated reward between two terminations;
 746 and (d) cumulative penalty in the course of DQN training
 747

748 To further show the effectiveness of the DQN algorithm training, we apply the DQN algorithm
 749 throughout its training to three randomly generated problem instances of the same size (50 requests
 750 and 22 crowdsourcers). Fig. 6 shows the TSC results when applying the DQN algorithm with the most
 751 up-to-date DNN weight parameters every 40 episodes. It can be seen that TSC will be drastically
 752 reduced after the first 40 episodes. For example, for problem instance 1 TSC reduces by more than
 753 three-quarters from 1,475 to less than 250. Afterwards, the improvement in TSC is more incremental
 754 with some rebounds. After 640 episodes, TSC becomes very stable for all three problem instances (as
 755 shown further in the zoom-in view).

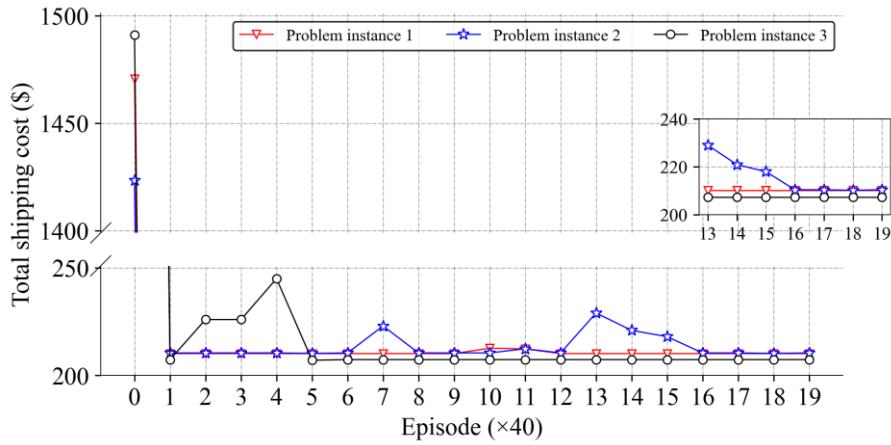


Fig. 6. Evolution of total shipping cost during training

760 4.1.3 Assessing the benefits of heuristics-guided action choice

761 Recall that one novelty of our proposed DRL algorithm lies in the embedment of heuristics-guided
 762 action choice in DRL. At each time step, the DRL agent performs one of the five types of actions to
 763 create new or change existing crowdsourcer routes. To compare the proposed DRL algorithm with a
 764 DRL algorithm without heuristics-guided action choice, a neighborhood move will be randomly
 765 chosen given any of the first four action types, as described in Appendix C. Similar to what we do in
 766 Fig. 6, we apply the DQN algorithm throughout its training to two randomly generated problem
 767 instances and present the TSC results using the most up-to-date DNN weight parameters every 40
 768 episodes. For each problem instance, we train the DQN algorithm twice, one with heuristics-guided
 769 action choice and the other without. The results are shown in Fig. 7.

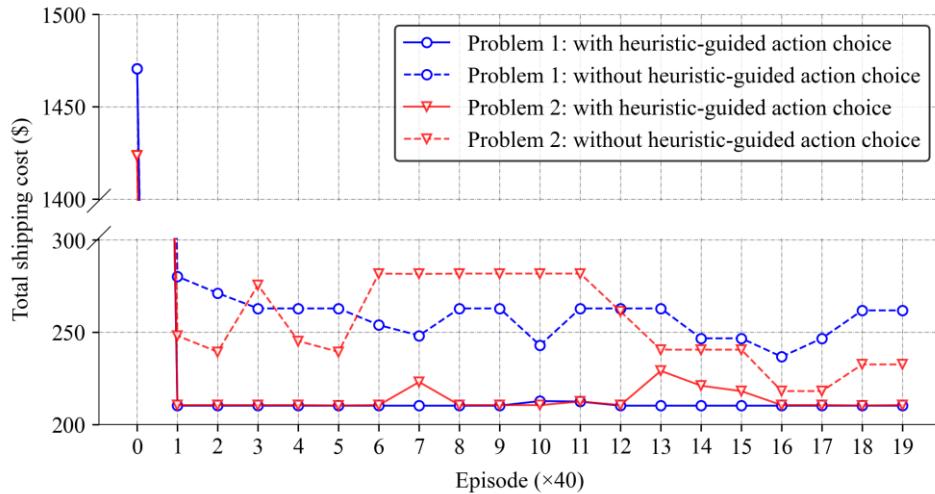
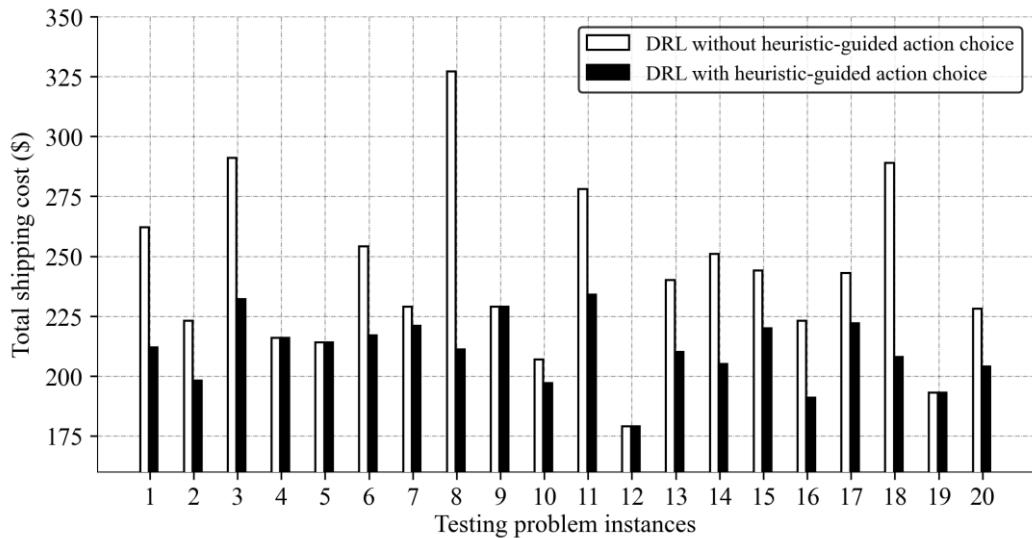


Fig. 7. Comparison of total shipping cost with and without
 heuristics-guided action choice during training

774
 775 We observe that at the beginning of the training, the TSC curve with heuristics-guided action
 776 choice (solid line) is higher than without heuristics-guided action choice (dashed line) for both problem
 777 instances. However, for the rest of training, the TSC curves with heuristics-guided action choice are
 778 well below the TSC curves without heuristics-guided action choice. At the end of training, a substantial
 779 TSC gap remains. The final TSC without heuristics-guided action choice is 24.5 and 10.5% higher than
 780 with heuristics-guided action choice, for the two problem instances respectively. The results clearly
 781 show the advantage of heuristics-guided action choice in DQN training.

782 Fig. 8 presents comparisons of applying the trained DRL models to 20 randomly generated
 783 problem instances. The reduction of TSC with heuristics-guided action choice is clearly observed.
 784 Across the 20 problem instances, the average TSC reduction is 11.4% with a standard deviation of
 785 9.6%. The largest reduction, which occurs to problem instance 8, is 35.5%.

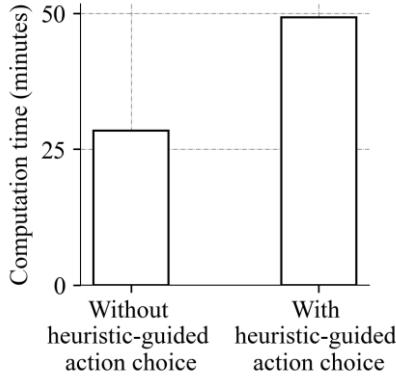
786



787
 788 **Fig. 8.** Comparison of total shipping cost with and without
 789 heuristics-guided action choice during testing
 790

791 Fig. 9 reports further the DQN training time without and with heuristics-guided action choice. To
 792 make sensible comparisons, we let training without heuristics-guided action choice run same number
 793 of time steps. The results show that the training time with heuristics-guided action choice (49.3
 794 minutes) is much larger than without heuristics-guided action choice (29.6 minutes). This suggests that
 795 a non-trivial amount of added computation is needed during training for heuristics-guided action choice
 796 to achieve lower TSC.

797



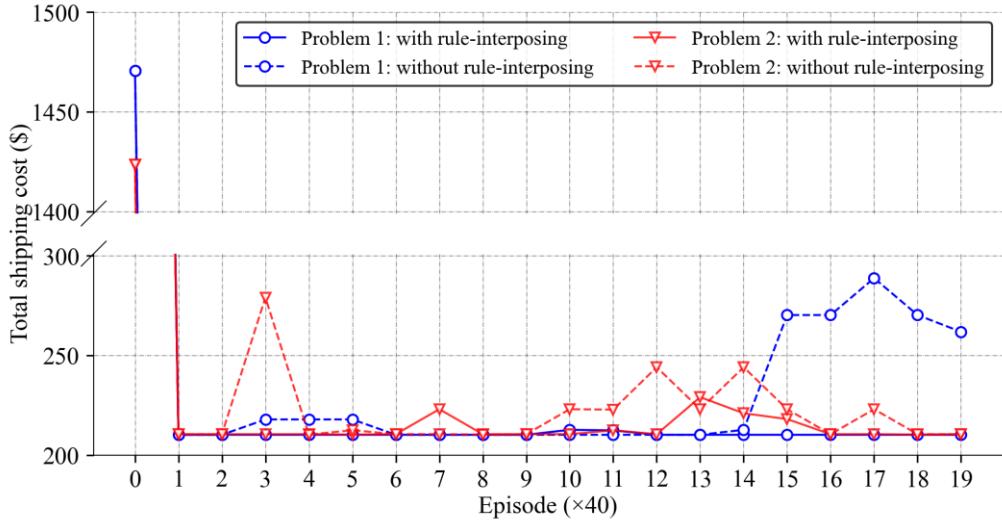
798
799 **Fig. 9.** Comparison of training time with and without heuristics-guided action choice
800

801 **4.1.4 Assessing the benefits of rule-interposing**

802 In this subsection we evaluate the benefits of another novelty of the proposed DRL algorithm: the
803 integration of rule-interposing into DRL training and implementation. As in Fig. 7, we apply the DQN
804 algorithm throughout its training to the same two randomly generated problem instances, and present
805 the TSC results using the most up-to-date DNN weight parameters every 40 episodes. For each problem
806 instance, we train the DQN algorithm twice, one with rule-interposing and the other without. The
807 results are shown in Fig. 10.

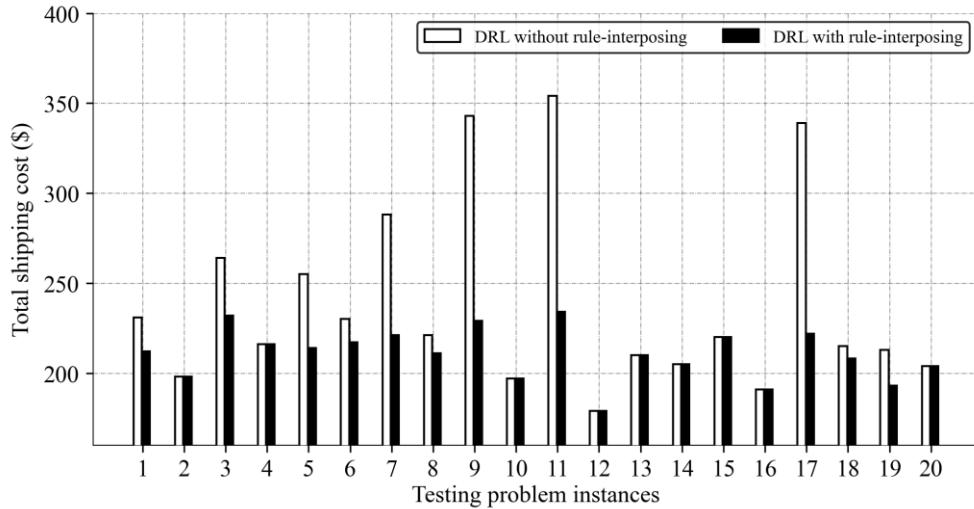
808 For the first problem instance (in blue), although the TSC without the two rules appears to be
809 diminishing at the beginning of the training, the TSC value rebounds after 80 episodes, then declines
810 and meets the TSC curve when the two rules are used at around 240 episodes. Afterwards, the TSC
811 curve without the two rules experiences some fluctuations, surges after around 560 episodes, and
812 remains well above the TSC curve with the two rules. At the end of the training, the TSC without the
813 two rules is 24.3% higher than with the rules. For the second problem instance (in red), the TSC curve
814 without the two rules experiences greater fluctuations throughout the episodes. Overall, the results also
815 demonstrate the advantage of rule-interposing in DQN training.

816



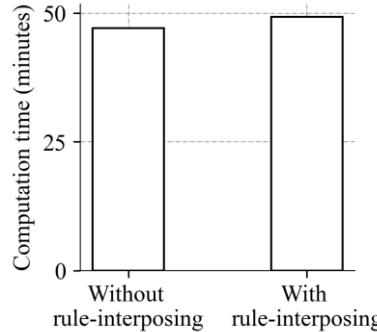
817
818 **Fig. 10.** Comparison of total shipping cost with and without rule-interposing
819

820 Fig. 11 presents comparisons of applying the trained DRL models to the same 20 randomly
821 generated problem instances as in subsection 4.1.3. We observe an overall TSC reduction with rule-
822 interposing. The average TSC reduction across all 20 instances is 9.2% with a standard deviation of
823 12.1%. The largest reduction, which occurs to problem instance 17, is 34.5%.



825
826 **Fig. 11.** Comparison of total shipping cost with and without rule-interposing during testing
827

828 Fig. 12 reports further the DQN training time with and without the two rules embedded. Again, to
829 make sensible comparisons, we allow the training without the two rules to run the same number of
830 time steps. The results show that the training time with rule-interposing (49.3 minutes) is only slightly
831 higher than without rule-interposing (47.1 minutes).



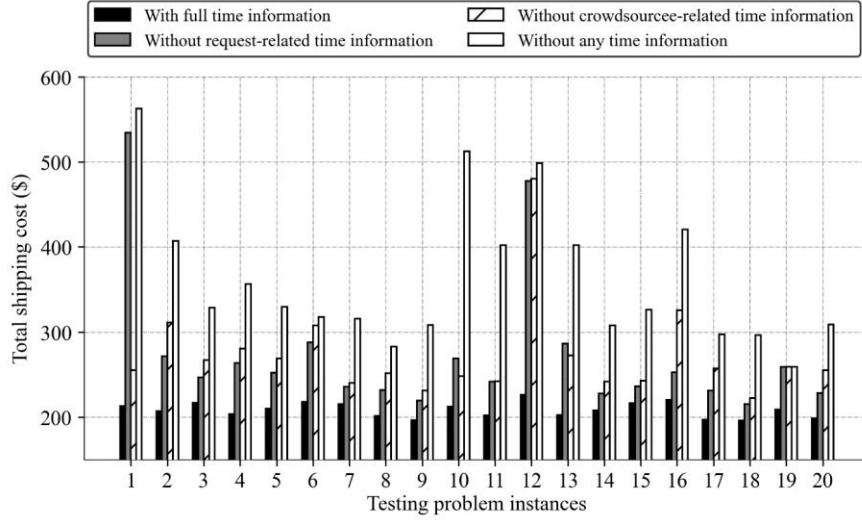
833
834 **Fig. 12.** Comparison of training time with and without rule-interposing
835

836 4.1.5 Comparison with full, partial, and no time-related information in state space

837 A uniqueness of the state representation is the specification and inclusion of a variety of time
838 information that relate to both requests and crowdsourcers. A question arises as to how important such
839 information is in training the DRL agent. To this end, this subsection investigates the possibility of
840 having lower-dimension state space representation without part or all of the time-related information.
841 Specifically, three alternatives are investigated. The first alternative does not have request-related time
842 information, that is, we remove S^r from the three-tuple state representation $s_t = \{S^l, S^r, S^c\}$. The
843 second alternative does not have crowdsourcer-related time information, that is, we remove S^c from
844 the three-tuple except for η_k which records violation of crowdsourcer carrying capacity. The third
845 alternative is an additive of the first two alternatives, i.e., the state space does not include any time
846 information related to requests and crowdsourcers. As a result of absent time information, a step in a
847 heuristic that is directed by time information will be performed randomly. For example, if request-
848 related information is removed, step 1 of insertion (subsection 3.2.3.1) would randomly select an
849 unassigned request, rather than selecting the request with the smallest slack time.

850 A DRL model is trained under each of the three alternatives, and then applied to 20 randomly
851 generated problem instances along with the DRL model trained with full time-related information as
852 in subsection 3.2.2. Fig. 13 below reports the results. It can be seen that time information plays a crucial
853 role in guiding crowdsourcer route construction and improvement to reduce total shipping cost.
854 Without any or with only partial time information, the total shipping cost would be higher—in many
855 problem instances significantly. The results clearly suggest the importance to have the full time-related
856 information while characterizing the state space.

857

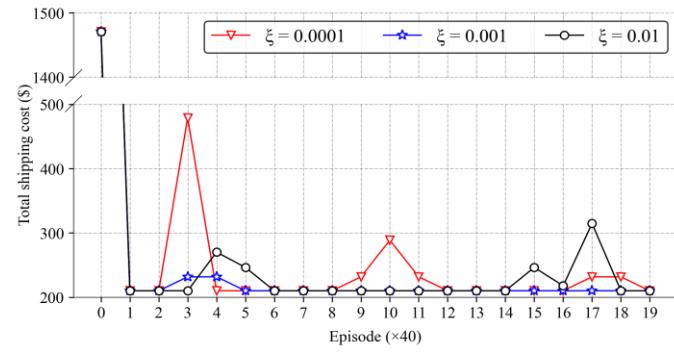


858
859 **Fig. 13.** Comparison of total shipping cost with full, partial, and no time-related
860 information in the state space
861

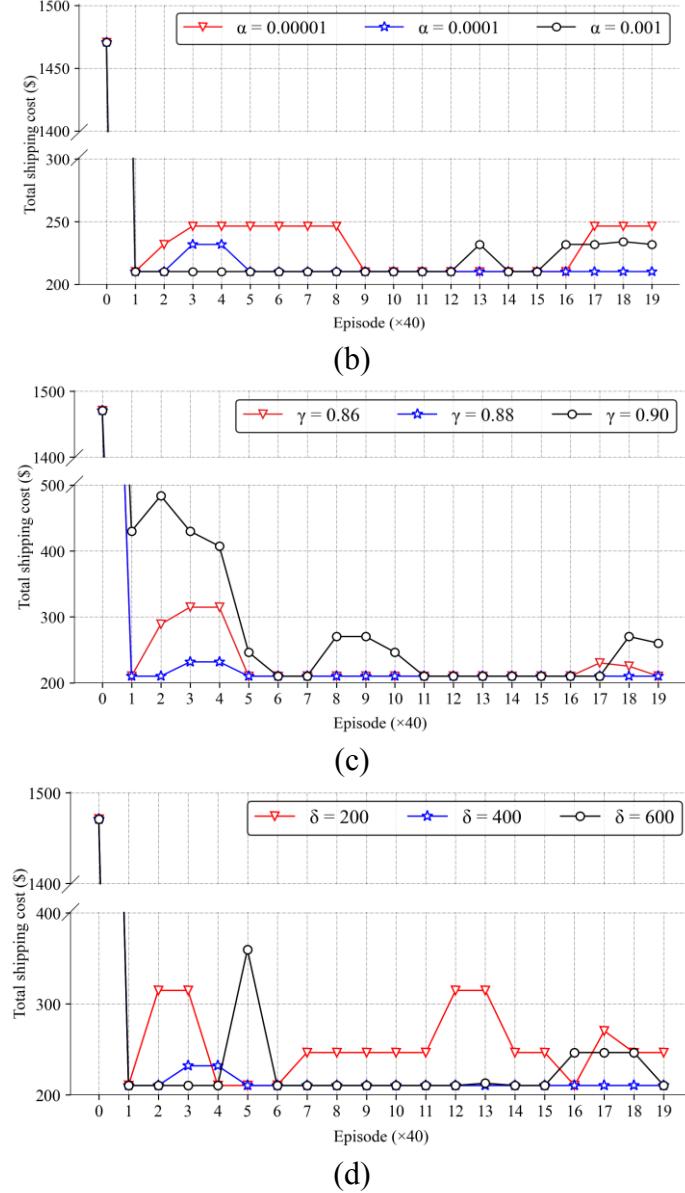
862 4.1.6 Sensitivity of DQN training to hyperparameter values

863 Finally, we investigate the sensitivity of DQN training to the values of four key hyperparameters:

864 (a) decay rate ξ ; (b) learning rate α ; (c) discount factor γ ; (d) target network update frequency δ . Fig.
865 14 presents the results. In each graph in Fig. 14, a curve corresponds to a specific value of the
866 hyperparameter under investigation and is obtained in a similar fashion as the curves in Fig. 6, for a
867 randomly generated problem instance. For a given graph, the three other hyperparameters not
868 investigated in the graph take their values in Table 2. While Fig. 14 reports TSC values of one problem
869 instance, we have also experimented with many other randomly generated problem instances and found
870 consistent results. It can be seen that, for all graphs in Fig. 14, the chosen value for each hyperparameter
871 produces more stable TSC curves than the alternative values. In addition, the final TSC using the
872 chosen hyperparameter value is always no worse than using alternative values, which reaffirms our
873 choice of the hyperparameter values.



(a)



875 **Fig. 14.** Sensitivity of total shipping cost to different hyperparameter values: (a) ξ ; (b) α ; (c) γ ; (d) δ
876

877 4.2 Benchmarking

878 To further gauge the performance of the DRL-based approach, benchmarking is performed in this
879 subsection. We first compare the DRL-based approach with three popular heuristic methods: simple
880 heuristic, reactive Tabu search (RTS), and simulated annealing (SA), for problem instances of the same
881 size as in subsection 4.1. We also compare the DRL-based approach against optimal solutions, which
882 come from formulating the problem as a mixed-integer linear program (MILP) and solving the MILP
883 by CPLEX. The sizes of the problem instances are smaller so that optimal solutions can be obtained

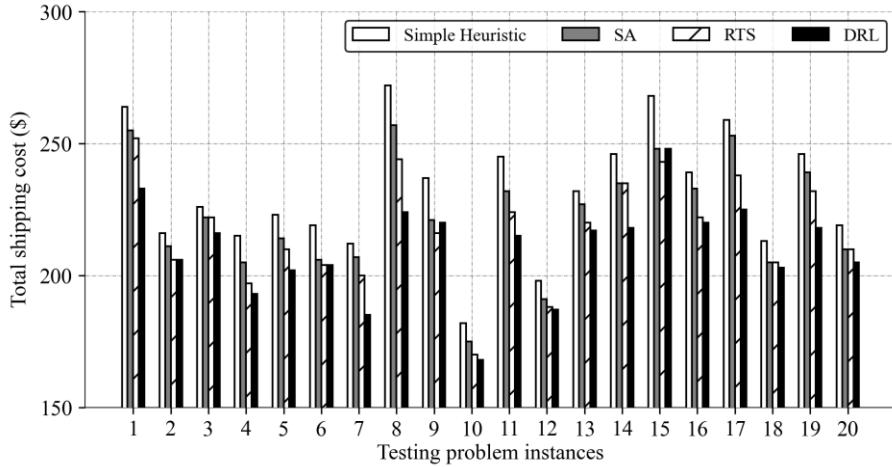
884 within a reasonable amount of time (as is shown in subsection 4.2.2, even for such small sizes CPLEX
885 still cannot yield a solution for some instances).

886 **4.2.1 Comparison with heuristic methods**

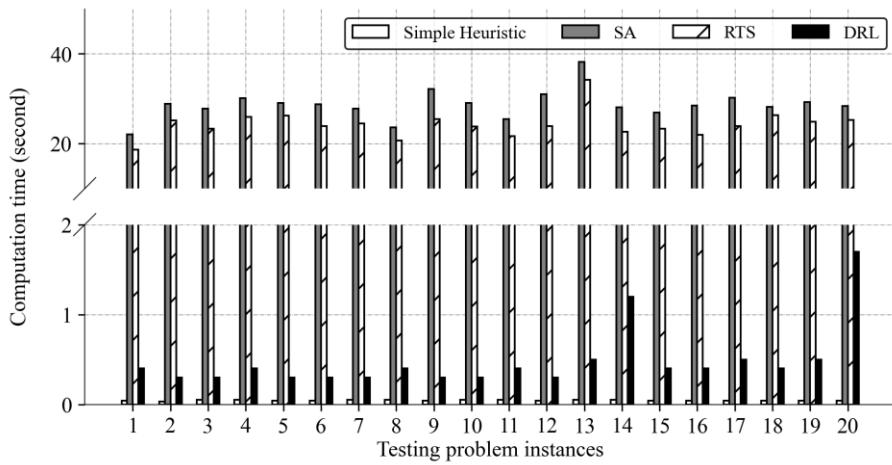
887 Among the three heuristic methods, the simple heuristic basically performs Steps 1-2 of the
888 insertion action described in subsection 3.2.3.1, and can generate solutions very fast. However, it does
889 not explore neighborhood moves. Therefore, the resulting solution can be far from optimum. RTS is a
890 hierarchical heuristic that dynamically adjusts search parameters and alternates between different
891 neighborhoods while seeking the optimal routing solution, based on the state and quality of the search.
892 Our implementation of RTS follows Nanry and Barnes (2000) with consideration of three types of
893 neighborhood moves (intra-route move, inter-route move, and 1-exchange). SA is based on the analogy
894 between the simulation of solids annealing and the problem of solving large combinatorial optimization
895 problems (Kirkpatrick et al., 1983; van Laarhoven and Aarts, 1987). Prior research shows that SA can
896 yield reasonably good solutions for large VRP instances and can be faster than other heuristics such as
897 Tabu search and genetic algorithm (Tan et al., 2001). At each temperature during cooling, an intra-
898 route move, an inter-route move, and an 1-exchange move as described in Ahamed and Zou (2020) are
899 performed in sequence, with each move followed by an evaluation that accepts not only an improved
900 solution, but also an inferior solution with certain probability. The parameter setting of SA follows
901 those in Kafle et al. (2017).

902 For the simple heuristic, it terminates when all feasible insertions of requests are performed. In
903 implementing RTS and SA, we allow for a sufficient number of iterations until the reduction in TSC
904 is not visible (TSC change is less than 2% in the last ten iterations). Fig. 15 presents the TSC results
905 using DRL and the three heuristics, for 20 randomly generated problem instances. DRL yields the best
906 solution in 18 out of the 20 problem instances. In contrast, the solutions using the simple heuristic are
907 the worst, despite small computation time as shown in Fig. 16. On the other hand, while the TSC results
908 from RTS and SA are closer to those using DRL, the computation time is much longer, by more than
909 an order of magnitude (20-40 minutes vs. mostly less than 1 second). Considering both solution quality
910 and time, the comparison clearly indicates the superiority of DRL.

911



912
913 **Fig. 15.** Comparison of DRL with existing heuristics in terms of TSC (medium-size problems)
914



915
916 **Fig. 16.** Comparison of DRL with existing heuristics in computation time (medium-size problems)
917

918 **4.2.2 Benchmarking with optimal solutions**

919 To further investigate how close the solutions obtained from our approach are from the optimal
920 solutions, we create two sets of benchmarking problem instances following the same procedure
921 described in subsection 4.1.1. However, these instances have smaller sizes: problem instances in the
922 first set each have six requests and three crowdsourcers. Problem instances in the second set each have
923 eight requests and four crowdsourcers. We consider the smaller-size instances so that they can be
924 solved to optimality using commercial solvers in a reasonable amount of time. These problem instances
925 are deposited in GitHub for potentially further use by other researchers.³

926 The comparison results are shown in Tables 3-4. The 20 problem instances in Table 3 are those
927 from the first set. The 15 problem instances in Table 4 correspond to the second set. Appendix D

³ https://github.com/tahame2/DRL_benchmarking_2021.git

928 presents a Hamiltonian tour-based MILP formulation for the problems, which is solved by CPLEX
929 12.8 using the branch-and-bound method. Each problem instance is also solved by DRL. We report
930 both TSC and computation time using CPLEX and DRL. The last column in each table shows the
931 optimality gap (%), calculated as $\frac{TSC_{DRL} - TSC_{CPLEX}}{TSC_{CPLEX}} \times 100\%$, where TSC_{DRL} is the TSC value from DRL
932 and TSC_{CPLEX} is the TSC value using CPLEX.

933 For the first set of problem instances, the optimality gap is between -3% and 16%, with an average
934 of 5.4%. We note that this average is comparable with some reported average gaps using DRL (e.g., in
935 Nazari et al., 2018), though their context is solving general VRP rather than crowdshipping problems.
936 The negative optimality gap is because the solution produced by CPLEX may not be exactly optimal
937 due to: 1) gap tolerance (the difference the best upper and lower bounds); and 2) integrality toleration
938 for integer variables. The occurrence of the negative gap and very small positive gap suggests that in
939 those instances DRL can yield solutions that are very close to the exact optimal solutions. On the other
940 hand, the computation time using CPLEX is much longer, with an average of 12.7 seconds, as
941 compared to 0.07 seconds by DRL. A similar conclusion can be made for the second set of problem
942 instances in Table 4, with an average optimality gap of 6.2%. It should be noted that with the slight
943 increase in problem size, the computation time by CPLEX has increased substantially, from an average
944 of 12.7 seconds to 16.6 minutes. In contrast, the average computation time by DRL remains at 0.07
945 seconds, suggesting strong scalability of the DRL approach.

946

Table 3: Comparison of solving 20 randomly generated problem instances each with 6 requests and 3 crowdsourcees using CPLEX and DRL

Problem instances	CPLEX		DRL		Optimality Gap (%)
	Total shipping cost (\$)	Computation time (second)	Total shipping cost (\$)	Computation time (second)	
P_6_3_1	29.6	27.0	31.5	0.04	6.4
P_6_3_2	24.6	3.4	24.3	0.10	-1.2
P_6_3_3	27.8	5.7	29.2	0.09	5.0
P_6_3_4	28.0	40.0	30.4	0.06	8.6
P_6_3_5	30.8	6.0	30.7	0.08	-0.3
P_6_3_6	25.8	4.0	25.8	0.07	0.0
P_6_3_7	26.8	3.0	29.6	0.07	10.4
P_6_3_8	27.8	9.5	27.2	0.07	-2.2
P_6_3_9	21.4	3.3	20.8	0.07	-2.8
P_6_3_10	25.5	30.2	28.2	0.07	10.6
P_6_3_11	29.6	3.7	30.9	0.06	4.4
P_6_3_12	24.5	7.0	27.9	0.05	13.9
P_6_3_13	15.4	2.5	17.2	0.05	11.7
P_6_3_14	25.7	2.9	28.0	0.07	8.9
P_6_3_15	19.5	3.0	20.9	0.07	7.2
P_6_3_16	37.4	54.5	36.6	0.06	-2.1
P_6_3_17	19.5	3.3	19.4	0.06	-0.5
P_6_3_18	21.2	2.5	22.2	0.06	4.7
P_6_3_19	25.9	39.6	30.1	0.06	16.2
P_6_3_20	21.1	3.0	22.9	0.06	8.5
Average		12.7		0.07	5.4

Table 4: Comparison of solving 15 randomly generated problem instances each with 8 requests and 4 crowdsourcees using CPLEX and DRL

Problem instances	CPLEX		DRL		Optimality Gap (%)
	Total shipping cost (\$)	Computation time (min)	Total shipping cost (\$)	Computation time (second)	
P_8_4_1	37.1	27.9	39.9	0.07	7.5
P_8_4_2	36.2	124.1	37.6	0.07	3.9
P_8_4_3	39.6	3.5	42.9	0.07	8.3
P_8_4_4	27.2	1.1	29.8	0.06	9.6
P_8_4_5	27.6	7.3	31.3	0.06	13.4
P_8_4_6	31.9	3.9	33.2	0.07	4.1
P_8_4_7	31.6	6.5	33.2	0.07	5.1
P_8_4_8	31.8	7.1	34.1	0.06	7.2
P_8_4_9	36.6	29.2	39.5	0.07	7.9
P_8_4_10	29.6	4.1	29.5	0.06	-0.3
P_8_4_11	26.0	1.4	25.6	0.09	-1.5
P_8_4_12	35.7	31.5	37.3	0.07	4.5
P_8_4_13	29.6	0.8	32.7	0.08	10.5
P_8_4_14	27.7	0.1	27.7	0.06	0.0
P_8_4_15	24.4	0.8	27.7	0.05	13.5
Average		16.6		0.07	6.2

953 **4.3 Larger-size problems**

954 **4.3.1 Setup**

955 The larger-size problem instance considers problems of assigning 200 requests to 70
956 crowdsourcers, which are of comparable size to many pickup-and-delivery operation planning
957 problems investigated in the existing literature (Liu et al., 2015; Braekers and Kovacs, 2016; Ghilas et
958 al., 2016). Apart from a larger number of requests and crowdsourcers, other setups and problem
959 instance generation are the same as in the medium-size problems. With a larger problem size, it is
960 natural to expect a higher number of time steps per episode to insert all requests and perform
961 neighborhood moves of the requests. Therefore, we increase the length of an episode to 300 time steps.
962 Following a similar informal search as in subsection 4.1.1, the penalty parameters in the reward
963 specification are set to be $\vartheta = 0.25$, $\tau = 0.15$, and $\rho\phi = 0.2$, and the length of Tabu tenure to be 12
964 subsequent actions. The episode termination threshold \mathcal{K} is decreased to -175. Decay rate ξ is set as
965 0.002. Other hyperparameter values remain the same. The training time takes 3 hours and 22 minutes.

966 **4.3.2 Comparison of solutions using DRL and heuristics**

967 We compare performance of the DRL-based approach with the three same heuristics as in
968 subsection 4.2.1. 20 problem instances with 200 requests and 70 crowdsourcers are randomly
969 generated. Fig. 17 shows that DRL yields the best solution in 18 out of the 20 instances. Again, the
970 solutions from the simple heuristic are always the worst, despite small computation time (Fig. 18).
971 While the resulting TSC values from RTS and SA are closer to those from DRL, the computation time
972 is much longer (between 15-20 minutes vs. 2-3 seconds in most cases by DRL). By comparing the
973 change in computation time from the medium-size problem (Fig. 14), it is clear that DRL is much more
974 scalable than RTS or SA.

975

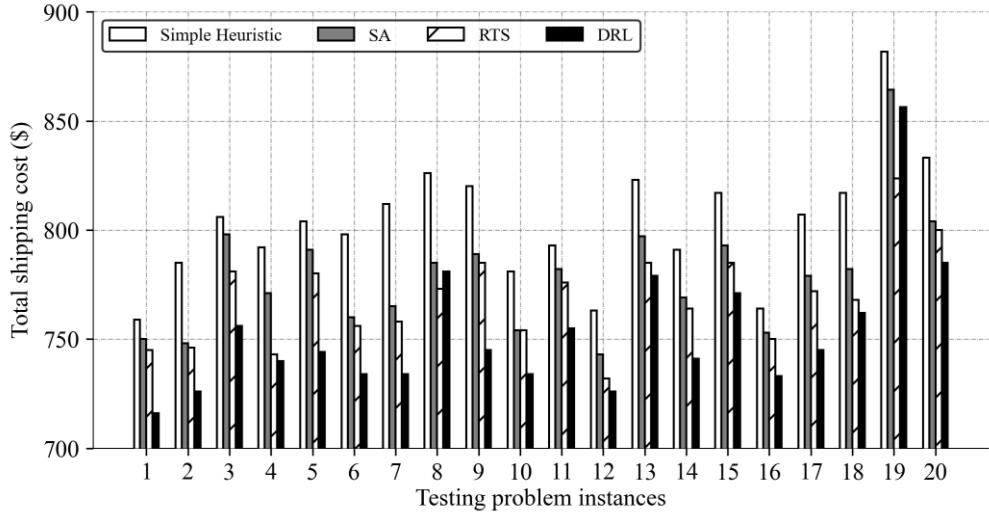


Fig. 17. Comparison of DRL with existing heuristics in terms of TSC (larger-size problems)

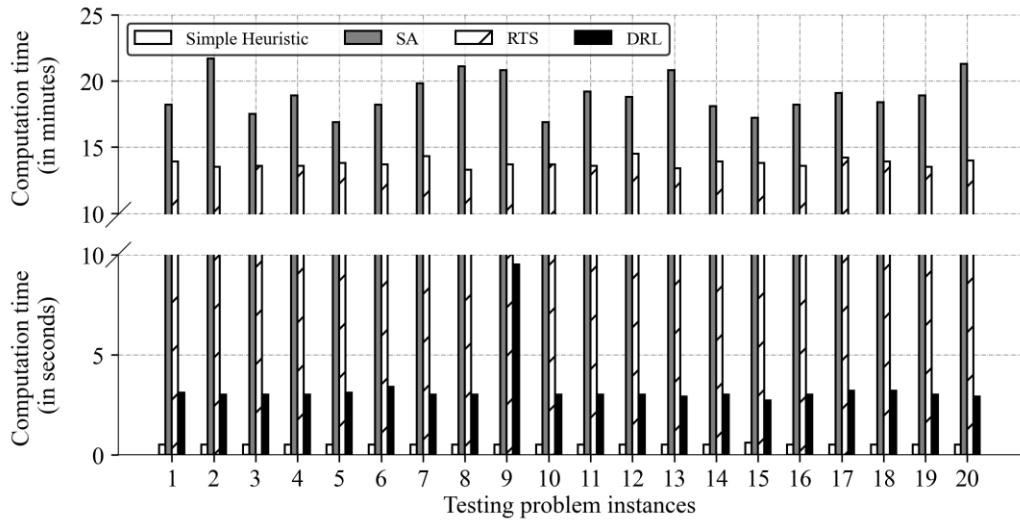


Fig. 18. Comparison of DRL with existing heuristics in computation time (larger-size problems)

5 Conclusion

Crowdshipping has gained increasing popularity for urban delivery given the low cost of hiring *ad hoc* couriers to perform pickups and deliveries. In this paper, we propose a novel, deep reinforcement learning-based approach to seek high-quality and computationally efficient assignment of requests to crowdsourcers. In performing the assignment, we consider that requests have time windows for pickup and delivery. In addition, crowdsourcers have limited time availability and carrying capacity. The novelty of the proposed DRL approach lies in its new characterization of system states, the embedment of heuristics-guided action choice, and the integration of rule-interposing into DRL training and implementation. The computational complexities of the heuristics and the overall

991 DQN training are investigated. The effectiveness of the approach is demonstrated through extensive
992 numerical analysis. The results show the benefits brought by the heuristics-guided action choice, rule-
993 interposing, and having time-related information in the state space in DRL training, the near-optimality
994 of the solutions obtained, and the superiority of the proposed approach over existing methods in terms
995 of solution quality, computation time, and scalability.

996 With its comprehensive and detailed specifications of states, actions, and rewards, the proposed
997 approach not only has the potential to improve the efficiency of crowdshipping operation planning, but
998 provides a new avenue that may be adapted to other pickup and delivery problems and vehicle routing
999 contexts. For example, another type of crowdshipping with all requests originating from a central
1000 location (depot) can be viewed as a special case of the problems investigated in this paper. Also, while
1001 we consider dedicated crowdsourcers in the paper, the proposed DRL-based approach can be
1002 conveniently adapted to the context of opportunistic crowdsourcers given the origin and destination of
1003 the original trip of each crowdsourcer.

1004 For possible extension of the proposed approach, we suggest a few directions. First, future efforts
1005 could be made to investigate a dynamic version of the problem. In this case, different initial states
1006 should be considered for different problem instances. Each time right before an assignment, the system
1007 state needs to reflect en-route crowdsourcers and idle crowdsourcers, the latter including those left
1008 unassigned from the previous assignment and new arrivals. Similarly, system state needs to encompass
1009 information of unassigned requests, including those left unassigned from the previous assignment and
1010 new arrivals. Second, in the real world the pickup and delivery locations of shipping requests are
1011 usually in different spatial distributions (e.g., the locations of restaurants/retail stores in a city may be
1012 quite different from the locations of residential buildings), which gives rise to the need for proactively
1013 relocating idle crowdsourcers to balance the spatial distribution of crowdsourcer supply and request
1014 pickup demand. It will be interesting to explore how to incorporate relocation decisions in the DRL
1015 framework. A third direction is to explore other DRL algorithms, including the effect of the state space
1016 dimension on training efficiency of those algorithms as compared to DQN. Lastly, some behavioral
1017 aspects, e.g., a crowdsourcer rejects an assigned request, could be added to further enrich the flexibility
1018 of the DRL model.

1019 **Acknowledgment**

1020 This research is funded by the National Science Foundation under Grant Number CMMI-
1021 1663411. The financial support of the National Science Foundation is gratefully acknowledged. An
1022 earlier version of the paper was presented at the INFORMS 2020 Annual Meeting. We also thank the

1023 three anonymous reviewers and Professor Qiang Meng, the Associate Editor, for their constructive
1024 feedback which has helped us significantly improve the paper.

1025

1026 Appendix A: Proofs of Remarks 1-6

1027 **Proof of Remark 1.** We look at the dimension of each component in the three-tuple of $\{S^l, S^r, S^c\}$. S^l
1028 specifies: 1) the coordinate of each node; 2) the coordinate of the successor node of a pickup node (if
1029 the request is assigned); 3) the coordinate of the predecessor node of a delivery node (if the request is
1030 assigned); and 4) the coordinate of the first node visited by a crowdsourcer. The number of nodes is
1031 $2|J| + |K|$. Thus, the dimension of S^l is $2((2|J| + |K|) + |J| + |J| + |K|) = 8|J| + 4|K|$, where the
1032 multiplication by 2 is because each coordinate contains longitude and latitude. For the second
1033 component, S^r specifies: 1) slack time of each request; 2) unused service time of each request; and 3)
1034 occupation time of each request. The dimension of S^r is $|J| + |J| + |J| = 3|J|$. For the third
1035 component, S^c specifies: 1) the routing duration for each crowdsourcer; 2) total delivery time violation
1036 of each crowdsourcer route; 3) remaining available time for each crowdsourcer; and 4) capacity
1037 violation of each crowdsourcer route. The dimension of S^c is $|K| + |K| + |K| + |K| = 4|K|$. So
1038 overall, the dimension of the state space is $8|J| + 4|K| + 3|J| + 4|K| = 11|J| + 8|K|$. ■

1039
1040 **Proof of Remark 2.** We first investigate the computational complexity of insertion for each of the
1041 three steps, based on which the overall computational complexity can be drawn. Step 1 requires
1042 calculation of slack time of at most $|J|$ requests, which will be directly extracted from the system state
1043 thus taking a constant time. Selecting the request with the smallest slack time requires sorting, whose
1044 complexity is $O(|J|\log|J|)$. So the overall complexity of Step 1 is $O(|J|\log|J|)$.

1045 Step 2 requires calculation of the distance between the selected request and the end of each
1046 crowdsourcer routes. There are at most $|K|$ crowdsourcer routes. Thus, the distance calculation has a
1047 complexity of $O(|K|)$. Once the distances are obtained, a sorting is needed to identify the smallest
1048 distance, whose complexity is $O(|K|\log|K|)$. So the overall complexity of Step 2 is $O(|K|\log|K|)$.

1049 Step 3 performs intra-route move. Given the limited number of requests a crowdsourcer can carry,
1050 the computation time for intra-route operation is bounded by a constant (see proof of Remark 3). The
1051 computation time for subsequent feasibility check is also bounded by a constant. The worst case is that
1052 we check feasibility of inserting the request to all crowdsourcer routes and finds none is feasible for
1053 the request. So the complexity is $O(|K|)$.

1054 In this worst case, we need to move to the next request in the sorted list from Step 1, and perform
1055 Step 2 for the request. The overall worst case is that we check every request. Thus, the complexity of
1056 Steps 2-3 combined is $O(|J||K|\log|K|)$. Given that $|K| \leq |J|$ (i.e., the number of crowdsourcers is no

1057 more than the number of requests) and the complexity of Step 1 is $O(|J|\log|J|)$, the overall complexity
1058 of insertion is $O(|J|^2\log|J|)$. ■

1059

1060 **Proof of Remark 3.** Similar to the proof of Remark 1, we first look into the computational complexity
1061 of each step in insertion. Step 1 requires sorting of at most $|J|$ crowdsourcer routes based on each
1062 route's remaining available time (which comes directly from the system state). Thus, the complexity
1063 of Step 1 is $O(|J|\log|J|)$. For Step 2, the computation time is bounded by a constant. This is because
1064 the number of requests that can be accommodated by a route is bounded given the limited carrying
1065 capacity of a crowdsourcer. Therefore, the number of possible moves in this step in a route is bounded.
1066 For Step 3, it involves sorting of the moves based on routing cost and comparison with the original
1067 routing cost. Again, given that the number of possible moves is bounded, the computation complexity
1068 of this step is a constant. Thus, overall, the computational complexity of intra-route move is
1069 $O(|J|\log|J|)$. ■

1070

1071 **Proof of Remark 4.** Step 1 of an inter-route move requires sorting of the assigned requests based on
1072 occupation time (which comes directly from the system state), thus having a computational complexity
1073 of $(|J|\log|J|)$. The computational complexity of Step 2 is $O(|K|\log|K|)$, as it follows the same step in
1074 insertion. Similar to the argument in intra-route move, the computation complexity of Step 3 is a
1075 constant as the number of possible moves is bounded (because the number of requests that can be
1076 accommodated by a route is bounded). Considering that $|J| \geq |K|$, the overall complexity is
1077 $O(|J|\log|J|)$. ■

1078

1079 **Proof of Remark 5.** Step 1 of a 1-exchange move involves sorting assigned requests based on unused
1080 service time (which comes from the system state), thus having a computation complexity of
1081 $O(|J|\log|J|)$. Step 2 does not involve further computation, as sorting is already done (excluding the
1082 route associated with the first selected request does not require another sorting). Step 3 exchanges the
1083 selected requests, which takes a constant time. Step 4 performs intra-route move of the two requests in
1084 their respective new routes, whose computational complexity is a constant following the same
1085 argument as in the proof of Remark 2. Thus, the overall complexity of 1-exchange is $O(|J|\log|J|)$. ■

1086

1087 **Proof of Remark 6.** The complexity of DQN training depends on the number of parameters in the
1088 DNN to be trained. First, recall from Remark 1 that the state space has a dimension of $(11|J| + 8|K|)$.

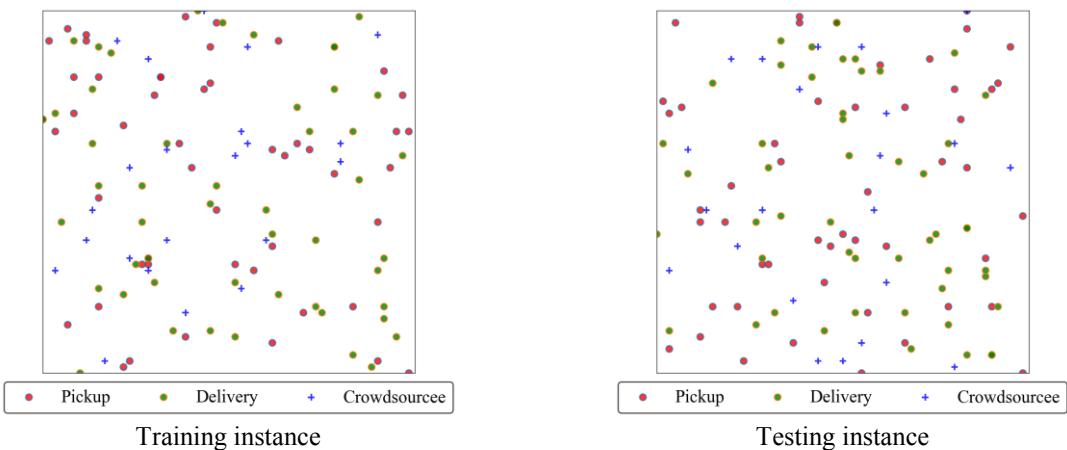
1089 Thus, the first layer has up to $(11|J| + 8|K| + 1)e$ parameters (since e is the upper bound on the
 1090 number of neurons in a hidden layer). The subsequent layers each have up to $e^2 + e$ parameters. The
 1091 DNN outputs the Q-values for each of the five action types, thus associated with up to $5(e + 1)$
 1092 parameters. Overall, the DNN has up to $(11|J| + 8|K| + 1)e + (\ell - 1)(e^2 + e) + 5(e + 1) =$
 1093 $(11|J| + 8|K| + \ell + 5)e + (\ell - 1)e^2 + 5$ parameters to update in each time step. Note also that in
 1094 each time step, a minibatch of $|M_{\text{sub}}|$ experiences are involved. In addition, a heuristic will be
 1095 performed to execute a specific action for the chosen action type. Among the five action types, the
 1096 greatest complexity occurs to insertion which has a complexity of $O(|J|^2 \log |J|)$ (see Remarks 2-5).
 1097 Further recognizing that $|J| \geq |K|$, the complexity of one time step is $O([(|J| + \ell)e + \ell e^2]|M_{\text{sub}}| +$
 1098 $|J|^2 \log |J|)$. Given that training takes I episodes each with up to T time steps, the overall complexity of
 1099 DQN training is $O([(|J| + \ell)e + \ell e^2]|M_{\text{sub}}| + |J|^2 \log |J|)IT$.

1100 Two points are worth mentioning. First, we keep both $[(|J| + \ell)e + \ell e^2]|M_{\text{sub}}|$ and $|J|^2 \log |J|$
 1101 terms in the complexity expression, as it is not clear *a priori* which of the two terms dominates the
 1102 computation time. Second, the complexity expression is parameterized by the number of episodes I ,
 1103 which typically cannot be determined before the training is carried out as it depends on the
 1104 characteristics of the instances used for learning. ■

1105 Appendix B: Illustration of problem instances used in training and testing

1106 We randomly pick two instances, one from training and one from testing, to display the pickup
 1107 and delivery locations of requests and origins of crowdsourcers. Overall, no significant differences
 1108 (apart from the effect due to randomness) among the instances are discerned.

1109



1110 **Fig. B1.** Illustration of two randomly picked problem instances from training and testing
 1111

1112 **Appendix C: Identification of the specific action to take given the action**
 1113 **type under a DRL algorithm without heuristics-guided action choice**

Insertion
<p>Step 1: <i>Select a request.</i> Among the unassigned requests, randomly select an unassigned request.</p>
<p>Step 2: <i>Insert the request to a route.</i> Insert the request to the end of a randomly picked crowdsourcer route (which can be an existing or a new route). If the insertion is not feasible, then randomly pick another crowdsourcer route. If a feasible insertion cannot be found, then do nothing.</p>
Intra-route move
<p>Step 1: <i>Select a route.</i> Select the crowdsourcer route with the largest remaining available time (based on Rule 1 in subsection 3.4.1).</p>
<p>Step 2: <i>Move a request from the route to a different location on the same route.</i> Randomly pick a request from the route. Enumerate all feasible moves of the pickup and delivery nodes of the request on the route. Pick the move with the maximum reduced cost. If such a move does not exist, then randomly pick another request and do the same. If such a move cannot be found after enumerating all requests on the route, then do nothing.</p>
Inter-route move
<p>Step 1: <i>Select a request.</i> Select the crowdsourcer route with the largest occupation time (based on Rule 1 in subsection 3.4.1).</p>
<p>Step 2: <i>Move the request to the end of a different route.</i> Randomly select a request from the route. Investigate moving the request to the end of a different route that is also randomly picked. If the move is feasible, perform the move. Otherwise, randomly pick another route and investigate moving the request to the end of the route. If the request cannot be moved to the end of any different route, then do nothing.</p>
1-exchange
<p>Step 1: <i>Select two routes.</i> Select the two crowdsourcer routes with the largest and the second largest unused service time (based on Rule 1 in subsection 3.4.1).</p>
<p>Step 2: <i>Select requests from the two routes and exchange.</i> Randomly select a request from each route and exchange their locations.</p>

1114
1115 Note that for intra-route move, inter-route move, and 1-exchange, we do not consider Rule 2 of
1116 subsection 3.4.2 since the rule is related to heuristics-guided action choice.

1117 **Appendix D: MILP formulation of the crowdshipping problem**

1118 The crowdshipping problem is a pickup and delivery problem with time and capacity constraints.
1119 We consider the following MILP model which is based on Hamiltonian tour formulation (Lu and
1120 Dessouky, 2004). In the formulation, request nodes are ordered such that the first $|J|$ nodes are pickup
1121 nodes, and the remaining nodes are delivery nodes which follow the same order as their associated
1122 pickup nodes. Recall that in the paper the set of request nodes is J . Then we use $J^+ = \{1, 2, \dots, |J|\}$ to
1123 denote the set of pickup nodes, and $J^- = \{|J| + 1, |J| + 2, \dots, 2|J|\}$ to denote the set of delivery nodes.
1124 We further introduce set $\mathbb{N} = J \cup K = J^+ \cup J^- \cup K$, which contains in sequence nodes in J^+ , nodes in
1125 J^- , and crowdsourcer origin nodes in $K = \{2|J| + 1, 2|J| + 2, \dots, 2|J| + |K|\}$.

1126 Among the parameters, q_j denotes the weight of request at node $j \in J$. $q_j > 0$ if j is a pickup
1127 node, and $q_j < 0$ if j is a delivery node. c_{ij} and t_{ij} denote respectively the cost and time while a
1128 crowdsourcer traverses link (i, j) . Because crowdsourcer routes are constructed sequentially based on
1129 Hamiltonian tour formulation, $c_{ij} = 0$ if $i \in J$ and $j \in K$. \mathcal{C} denotes carrying capacity of a
1130 crowdsourcer.

1131 The MILP model has four set of decision variables: 1) $\mathbf{x} = \{x_{ij}; i, j \in \mathbb{N}, i \neq j\}$, which are binary
1132 indicating whether node i is right before node j in the Hamiltonian tour; 2) $\mathbf{y} = \{y_{ij}; i, j \in \mathbb{N}, i \neq j\}$,
1133 which are also binary indicating whether node i is before node j in the Hamiltonian tour; 3) $\mathbf{Q} =$
1134 $\{Q_i; i \in J\}$, which are continuous variables deciding the carrying load of a crowdsourcer right after
1135 visiting a request node i ; and 4) $\mathbf{T} = \{T_i; i \in J\}$, which are continuous variables deciding the departure
1136 time of a crowdsourcer from a request node i .

$$\min_{\mathbf{x}, \mathbf{y}, \mathbf{Q}, \mathbf{T}} \sum_{i \in \mathbb{N}} \sum_{j \in J} c_{ij} x_{ij} \quad (G1)$$

s.t.

Routing sequence constraints

$$\sum_{i \in \mathbb{N}} x_{ij} = 1 \quad \forall j \in \mathbb{N} \quad (G2)$$

$$\sum_{j \in \mathbb{N}} x_{ij} = 1 \quad \forall i \in \mathbb{N} \quad (G3)$$

$$y_{ki} \leq y_{kj} + (1 - x_{ij}) \quad \forall i, j, k \in \mathbb{N} \text{ and } j \neq 2|J| + 1 \quad (G4)$$

$$y_{ki} \geq y_{kj} + (x_{ij} - 1) \quad \forall i, j, k \in \mathbb{N} \text{ and } j \neq 2|J| + 1 \quad (G5)$$

$$x_{ij} \leq y_{ij} \quad \forall i, j \in \mathbb{N} \quad (G7)$$

$$y_{i,|J|+i} = 1 \quad \forall i \in J^+ \quad (G8)$$

$$y_{|J|+i,i} = 0 \quad \forall i \in J^+ \quad (G9)$$

$$y_{ij} = y_{|J|+i,j} \quad \forall i \in J^+, j \in K \quad (G10)$$

$$y_{ij} = 1 \quad \forall i, j \in K \text{ and } i < j \quad (G11)$$

$$y_{ij} = 0 \quad \forall i, j \in K \text{ and } i > j \quad (G12)$$

Capacity constraints

$$Q_i + q_j - Q_j \leq \mathcal{M}(1 - x_{ij}) \quad \forall i, j \in \mathbb{N} \quad (G13)$$

$$Q_i + q_j - Q_j \geq \mathcal{M}(x_{ij} - 1) \quad \forall i, j \in \mathbb{N} \quad (G14)$$

$$Q_j \leq \mathcal{C} \quad \forall j \in J \quad (G15)$$

Delivery time window and crowdsourcbee time availability constraints

$$T_i + t_{ij} + s - T_j \leq \mathcal{M}(1 - x_{ij}) \quad \forall i \in \mathbb{N}, j \in J \quad (G16)$$

$$T_i + t_{ij} + s - T_j \geq \mathcal{M}(x_{ij} - 1) \quad \forall i \in \mathbb{N}, j \in J \quad (G17)$$

$$T_j \leq t_{d_j}^l \quad \forall i \in \mathbb{N}, j \in J^- \quad (G18)$$

$$T_j \geq t_{p_j}^e \quad \forall i \in \mathbb{N}, j \in J^+ \quad (G19)$$

$$T_{|J|+i} \geq T_i \quad \forall i \in J^+ \quad (G20)$$

$$T_i - t_{\text{end}}^k \leq \mathcal{M}(1 - x_{i,k+1}) \quad \forall i \in J^-, k \in K \setminus \{2|J| + |K|\} \quad (G21)$$

$$T_i - t_{\text{end}}^{2|J|+|K|} \leq \mathcal{M}(1 - x_{i,2|J|+1}) \quad \forall i \in J^- \quad (G22)$$

$$T_i \geq t_{\text{start}}^i \quad \forall i \in K \quad (G23)$$

Integrality, non-negativity, and fixed-value constraints

$$x_{ij} \in \{0,1\} \quad \forall i, j \in \mathbb{N} \quad (G24)$$

$$y_{ij} \in \{0,1\} \quad \forall i, j \in \mathbb{N} \quad (G25)$$

$$Q_i \geq 0 \quad \forall i \in J \quad (G26)$$

$$Q_i = 0 \quad \forall i \in K \quad (G27)$$

$$T_i \geq 0 \quad \forall i \in J \quad (G28)$$

1139

1140 The objective function (G1) minimizes total routing cost. The constraints are organized in four
 1141 groups. The first group relates to routing sequence. Constraints (G2)-(G3) stipulate that each node is
 1142 visited exactly once in the Hamiltonian tour. Constraints (G4)-(G5) ensure that the precedence
 1143 relationship of a node k with respect to two connected nodes (i and j with $x_{ij} = 1$) should be
 1144 consistent, i.e., $y_{ki} = y_{kj}$. Since the origin of crowdsourcbee 1 is the start of the Hamiltonian tour, it is

1145 meaningless to talk about its preceding node (that is why $j \neq 2|J| + 1$). The case of $(i, j) =$
1146 $(2|J| + |K|, 2|J| + 1)$ is excluded since the end of crowdsourcer $|K|$'s route will be artificially
1147 connected to crowdsourcer 1's origin (since it is a Hamiltonian tour). (G7) says that the case of
1148 immediate precedence is more restricted than general precedence. (G8)-(G9) specifies that for a
1149 request, the pickup node must be visited before the delivery node. (G10) specifies that a
1150 crowdsourcer's origin cannot be in between the pickup and delivery nodes of a request. Constraints
1151 (G11)-(G12) the precedence relationship between two crowdsourcers' origins follow their orders in
1152 K .

1153 For the second group, capacity-related constraints, (G13)-(G14) updates the carrying load by a
1154 crowdsourcer for two consecutively visited nodes. (G15) constrains that the carrying load does not
1155 exceed the carrying capacity of a crowdsourcer. For the third group, time-related constraints, (G16)-
1156 (G17) calculates the departure time from a node j based on the departure time from its immediate
1157 preceding node i , travel time from i to j , and stopping time at j . (G18) says that the actual delivery
1158 time (arrival time) at a delivery node j should be no later than the latest delivery time. Similarly, (G19)
1159 says that the actual pickup time at a pickup node j should be no earlier than the earliest pickup time.
1160 (G20) means that the time of visiting a delivery node should be no earlier than the time of visiting the
1161 corresponding pickup node. (G21)-(G22) stipulate that a crowdsourcer route needs to end earlier than
1162 the end of the crowdsourcer's available time. (G22) is written separately for the last crowdsourcer $|K|$
1163 because, based on the Hamiltonian tour formulation, the end of crowdsourcer $|K|$'s route connects
1164 back to crowdsourcer 1's origin. Furthermore, the leaving time from the origin should be no earlier
1165 than the start of the available time of a crowdsourcer (constraint (G23)). With these constraints, the
1166 feasibility of crowdsourcer routes as presented in Definition 1 is ensured. The final group of constraints
1167 specifies the integrality, non-negativity, and fixed-value constraints of the decision variables. In
1168 particular, at the origin, a crowdsourcer does not carry loads (constraint (G27)).

1169 References

- 1170 1. Ahamed, T., Zou, B., 2020. Multi-tier adaptive memory programming and cluster- and job-based
1171 relocation for distributed on-demand crowdshipping. *Working Paper*. Department of Civil, Materials,
1172 and Environmental Engineering, University of Illinois at Chicago.
- 1173 2. Al-Abbasi, A.O., Ghosh, A. and Aggarwal, V., 2019. Deeppool: Distributed model-free algorithm for
1174 ride-sharing using deep reinforcement learning. *IEEE Transactions on Intelligent Transportation
1175 Systems*, 20(12), pp.4714-4727.
- 1176 3. Arslan, A., Agatz, N. and Klapp, M., 2020. Operational Strategies for On-demand Personal Shopper
1177 Services.
- 1178 4. Braekers, K. and Kovacs, A.A., 2016. A multi-period dial-a-ride problem with driver consistency.
1179 *Transportation Research Part B: Methodological*, 94, pp.355-377.

1180 5. Bello, I., Pham, H., Le, Q.V., Norouzi, M. and Bengio, S., 2016. Neural combinatorial optimization
1181 with reinforcement learning. arXiv preprint arXiv:1611.09940.

1182 6. Berbeglia, G., Cordeau, J.F. and Laporte, G., 2010. Dynamic pickup and delivery problems. European
1183 journal of operational research, 202(1), pp.8-15.

1184 7. Chen, X., Ulmer, M.W. and Thomas, B.W., 2019. Deep Q-Learning for Same-Day Delivery with a
1185 Heterogeneous Fleet of Vehicles and Drones. arXiv preprint arXiv:1910.11901.

1186 8. Dai, H., Khalil, E., Zhang, Y., Dilkina, B. and Song, L., 2017. Learning combinatorial optimization
1187 algorithms over graphs. In Advances in Neural Information Processing Systems (pp. 6348-6358).

1188 9. Ghilas, V., Demir, E. and Van Woensel, T., 2016. A scenario-based planning for the pickup and
1189 delivery problem with time windows, scheduled lines and stochastic demands. Transportation
1190 Research Part B: Methodological, 91, pp.34-51.

1191 10. Kafle, N., Zou, B. and Lin, J., 2017. Design and modeling of a crowdsource-enabled system for urban
1192 parcel relay and delivery. Transportation research part B: methodological, 99, pp.62-82.

1193 11. Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
1194 arXiv:1412.6980.

1195 12. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. "Optimization by Simulated Annealing,"
1196 Science vol. 220, no. 4598, pp. 671-680.

1197 13. Kool, W., Van Hoof, H. and Welling, M., 2018. Attention, learn to solve routing problems!. arXiv
1198 preprint arXiv:1803.08475.

1199 14. Le, T.V., Stathopoulos, A., Van Woensel, T. and Ukkusuri, S.V., 2019. Supply, demand, operations,
1200 and management of crowd-shipping services: A review and empirical evidence. Transportation
1201 Research Part C: Emerging Technologies, 103, pp.83-103.

1202 15. Liu, M., Luo, Z. and Lim, A., 2015. A branch-and-cut algorithm for a realistic dial-a-ride problem.
1203 Transportation Research Part B: Methodological, 81, pp.267-288.

1204 16. Lu, Q. and Dessouky, M.M., 2006. A new insertion-based construction heuristic for solving the
1205 pickup and delivery problem with time windows. European Journal of Operational Research, 175(2),
1206 pp.672-687.

1207 17. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
1208 Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control through
1209 deep reinforcement learning. nature, 518(7540), pp.529-533.

1210 18. Nanry, W.P. and Barnes, J.W., 2000. Solving the pickup and delivery problem with time windows
1211 using reactive tabu search. Transportation Research Part B: Methodological, 34(2), pp.107-121.

1212 19. Nazari, M., Oroojlooy, A., Snyder, L. and Takáć, M., 2018. Reinforcement learning for solving the
1213 vehicle routing problem. In Advances in Neural Information Processing Systems (pp. 9839-9849).

1214 20. Oda, T. and Joe-Wong, C., 2018, April. MOVI: A model-free approach to dynamic fleet
1215 management. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2708-
1216 2716). IEEE.

1217 21. Shao, S., Xu, S.X. and Huang, G.Q., 2020. Variable neighborhood search and tabu search for auction-
1218 based waste collection synchronization. Transportation Research Part B: Methodological, 133, pp.1-
1219 20.

1220 22. Singh, A., Al-Abbasi, A. and Aggarwal, V., 2019, December. A reinforcement learning based
1221 algorithm for multi-hop ride-sharing: Model-free approach. In Neural Information Processing
1222 Systems (Neurips) Workshop.

1223 23. Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

1224 24. Tan, K.C., Lee, L.H., Zhu, Q.L. and Ou, K., 2001. Heuristic methods for vehicle routing problem
1225 with time windows. Artificial intelligence in Engineering, 15(3), pp.281-295.

1226 25. Van Laarhoven, P.J. and Aarts, E.H., 1987. Simulated annealing. In Simulated annealing: Theory and
1227 applications (pp. 7-15). Springer, Dordrecht.

1228 26. Wang, Y., Zhang, D., Liu, Q., Shen, F. and Lee, L.H., 2016. Towards enhancing the last-mile
1229 delivery: An effective crowd-tasking model with scalable solutions. Transportation Research Part E:
1230 Logistics and Transportation Review, 93, pp.279-293.

1231 27. Watkins, C.J. and Dayan, P., 1992. Q-learning. *Machine learning*, 8(3-4), pp.279-292.

1232 28. Yu, J., Yu, W. and Gu, J., 2019. Online vehicle routing with neural combinatorial optimization and
1233 deep reinforcement learning. *IEEE Transactions on Intelligent Transportation Systems*, 20(10),
1234 pp.3806-3817.

Tanvir Ahamed: Conceptualization, Methodology, Coding, Investigation, Writing – Original Draft, Writing – Review & Editing, Visualization. **Bo Zou:** Conceptualization, Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing, Supervision. **Nahid Parvez Farazi:** Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing. **Theja Tulabandhula:** Methodology, Investigation, Writing – Review & Editing.