
1

Deep Reinforcement Learning for Crowdsourced Urban Delivery 1

 2
Tanvir Ahamed1, Bo Zou1*, Nahid Parvez Farazi1, Theja Tulabandhula23

1 Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago 4
2 Department of Information and Decision Sciences, University of Illinois at Chicago 5

 6

Abstract: This paper investigates the problem of assigning shipping requests to ad hoc couriers in the 7

context of crowdsourced urban delivery. The shipping requests are spatially distributed each with a 8

limited time window between the earliest time for pickup and latest time for delivery. The ad hoc 9

couriers, termed crowdsourcees, also have limited time availability and carrying capacity. We propose 10

a new deep reinforcement learning (DRL)-based approach to tackling this assignment problem. A deep 11

Q network (DQN) algorithm is trained which entails two salient features of experience replay and 12

target network that enhance the efficiency, convergence, and stability of DRL training. More 13

importantly, this paper makes three methodological contributions: 1) presenting a comprehensive and 14

novel characterization of crowdshipping system states that encompasses spatial-temporal and capacity 15

information of crowdsourcees and requests; 2) embedding heuristics that leverage information offered 16

by the state representation and are based on intuitive reasonings to guide specific actions to take, to 17

preserve tractability and enhance efficiency of training; and 3) integrating rule-interposing to prevent 18

repeated visiting of the same routes and node sequences during routing improvement, thereby further 19

enhancing the training efficiency by accelerating learning. The computational complexities of the 20

heuristics and the overall DQN training are investigated. The effectiveness of the proposed approach 21

is demonstrated through extensive numerical analysis. The results show the benefits brought by the 22

heuristics-guided action choice, rule-interposing, and having time-related information in the state space 23

in DRL training, the near-optimality of the solutions obtained, and the superiority of the proposed 24

approach over existing methods in terms of solution quality, computation time, and scalability. 25

Keywords: Crowdshipping, deep reinforcement learning, deep Q network, pickup and delivery, state 26

representation, heuristics-guided action choice, rule-interposing. 27

* Corresponding author. Email: bzou@uic.edu.

Manuscript File Click here to view linked References

mailto:bzou@uic.edu
https://www.editorialmanager.com/trb/viewRCResults.aspx?pdf=1&docID=5313&rev=2&fileID=57253&msid=dcd6e496-b699-4756-8e5c-a53545a8a7f4
https://www.editorialmanager.com/trb/viewRCResults.aspx?pdf=1&docID=5313&rev=2&fileID=57253&msid=dcd6e496-b699-4756-8e5c-a53545a8a7f4

2

1 Introduction 28

This paper investigates a static crowdshipping problem with spatially distributed request pickup 29

and delivery locations, using “crowdsourcees” who are ordinary people and also spatially distributed, 30

and have some available time to perform delivery for income earning. A delivery service provider 31

(DSP) centrally assigns requests to crowdsourcees to minimize total shipping cost (TSC). Distributed 32

locations of requests are common for pickup-delivery from restaurants, grocery stores, and retail shops 33

to customers, and even for document delivery between different office locations. We consider that each 34

request has a narrow time window (e.g., two hours) between earliest pickup and latest delivery. In 35

addition, crowdsourcees inform the DSP of their available time. Each crowdsourcee has a limited 36

carrying capacity. Thus, the assignment needs to respect pickup-delivery time windows of requests, 37

and time availability and carrying capacity of crowdsourcees. In shipping cost calculation, we consider 38

that a crowdsourcee is paid a fixed rate ($/minute) when carrying a request. If a request is not assigned 39

to a crowdsourcee, the request will be picked up and delivered by a backup vehicle, which is more 40

expensive. 41

Following the above description, the crowdshipping problem can be viewed as a specific type of 42

pickup-and-delivery problem and belongs to the broad category of vehicle routing problems (VRP). 43

While many integer programming models and heuristic algorithms have been developed for solving 44

similar problems, the novelty of this paper is that we propose, for the first time in the literature, an 45

approach that leverages deep reinforcement learning (DRL)—more specifically deep Q learning 46

(DQN)—to frame and solve the constrained crowdsourcee-shipping request assignment problem. Two 47

salient features of DQN are experience replay and target network which can enhance efficiency, 48

convergence, and stability in DRL training. Our work goes beyond simple adoption of the DQN 49

algorithm in the existing literature, by making three major methodological contributions as follows. 50

The first contribution is on a novel representation of system states for the crowdshipping problem. 51

Due to the combinatorial nature of the crowdshipping problem and the heterogeneity of both requests 52

and crowdsourcees in terms of time and carrying capacity, the states of a crowdshipping system cannot 53

be represented by one or a few metrics. A comprehensive representation must in some way capture the 54

sequence of pickup and delivery nodes on each crowdsourcee route. A node corresponds to a physical 55

location (with longitude and latitude information), which can be the origin of a crowdsourcee, the pickup 56

location of a request, or the delivery location of a request. Yet routing sequence alone is not enough to 57

reflect the fact that both requests and crowdsourcees are time sensitive: on the one hand, each request 58

has a limited time window between the earliest possible pickup and the latest delivery (e.g., 2 hours). 59

3

On the other hand, by dedicating one’s time to crowdshipping, a crowdsourcee also has limited time 60

availability. The time information about requests and crowdsourcees, which changes as crowdsourcee 61

routes are constantly created and improved, is an inherent part of the system state that helps the DRL 62

agent make informed routing decisions, especially with respect to what requests need be considered 63

first and what crowdsourcee routes may be given higher priority given time availability and delivery 64

urgency. To this end, a novel representation of system states that leverages the notion of information 65

array is proposed which encompasses not only static location information of request pickup and 66

delivery nodes but information on crowdsourcee routing sequences, request-specific time availability, 67

and crowdsourcee-specific time and capacity availability. 68

The second contribution is on embedment of heuristics-guided action choice in DRL. The 69

combinatorial nature of the problem means that a very large number of different actions can be taken 70

to construct and improve crowdsourcee routing. But enumerating all possible actions would be neither 71

efficient nor practical in DRL training. To preserve training tractability, we abstract the action space 72

into five general types of actions for assigning or improving the assignment of requests to 73

crowdsourcees: 1) inserting an unassigned request to a crowdsourcee route (insertion); 2) moving an 74

assigned request to another place in the same crowdsourcee route (intra-route move); 3) moving an 75

assigned request to a different crowdsourcee route (inter-route move); 4) exchanging the positions of 76

two requests that are assigned to two different crowdsource routes (1-exchange); 5) do-nothing. As 77

many possibilities for taking a specific action still exist given an action type, heuristics that leverage 78

the information offered by our proposed state representation and are based on intuitive reasonings are 79

designed to guide the specific action to take. Thus, each time when an action needs to be taken, we 80

first employ the DQN algorithm to identify the action type. Then, the specific action given the action 81

type is executed using the corresponding heuristic. We show that the embedment of heuristics-guided 82

action choice significantly enhances DRL training efficiency and solution quality. 83

The third contribution is on integration of rule-interposing into DRL training and implementation. 84

The rules aim to prevent certain routes or node sequences from being visited repeatedly during 85

neighborhood moves (i.e., intra-route move, inter-route move, and 1-exchange) within a period of time, 86

as repeated visiting discourages exploring more actions and may get the routing sequence trapped in 87

local optimum, thus compromising the efficiency of DRL training. Specifically, we employ two rules 88

that: 1) set up and update a priority list of crowdsourcee routes for each neighborhood move, based on 89

criteria in line with the nature of the neighborhood moves. A crowdsourcee route that is chosen for a 90

neighborhood move will be removed from the priority list and not considered for some period of time; 91

2) introduce Tabu tenure for the relative positions of pickup and delivery nodes. Two nodes that were 92

4

neighbored and are moved away are prohibited to be neighbored again for some period of time. With 93

the two rules, computation efforts involved in repeatedly visiting routes or node sequences during 94

neighborhood moves are spared, thereby enhancing the training efficiency by accelerating learning. 95

With the above three methodological contributions, the effectiveness of the proposed DRL-based 96

approach to solve the crowdshipping problems of our interest is demonstrated through extensive 97

numerical analysis. Our results show superiority of the trained DQN algorithm over existing methods 98

in solution quality, computation time, and scalability. In addition, the obtained solutions are reasonably 99

close to global optimum. Given that the training of DRL will be performed offline and a trained DRL 100

model can solve problems in a matter of seconds, the proposed approach has significant potential for 101

practical crowdshipping operations. Moreover, the proposed methodological framework, which in this 102

paper tackles a more complicated type of pickup and delivery problems with time constraints from 103

both “vehicles” (crowdsourcees) and “customers” (shipping requests), has the potential to be adapted 104

to solving similar types of routing-related problems. 105

The remainder of the paper is structured as follows. Section 2 reviews and synthesizes the relevant 106

literature. Section 3 provides a detailed presentation of the methodology including the fundamentals 107

of reinforcement learning (RL) and DRL; information array, representation of states, actions, and 108

rewards; the DQN algorithm for crowdshipping; and rule-interposing design. Section 4 implements the 109

DRL model and discusses the results from extensive numerical experiments. Summaries and 110

suggestions for future research are given in Section 5. 111

2 Literature review 112

Crowdshipping has garnered growing research attention in recent years (e.g., Wang et al., 2016; 113

Kafle et al., 2017; Le et al., 2019; Arslan et al., 2020). However, DRL has not been considered as a 114

way to guide request-crowdsourcee assignment. Given the focus of the paper on the methodological 115

aspects of DRL for crowdshipping and the relevance of our problem to other types of freight delivery 116

and passenger transportation problems that involve routing, in this section we review recent advances 117

of DRL in solving related problems. We will synthesize the problem characteristics and DRL 118

specifications in representative studies, based on which the uniqueness of our paper is then highlighted. 119

A basic version of routing problems is the traveling salesman problem concerning routing of a 120

single vehicle. Bello et al. (2016) probably make one of the first attempts to combine reinforcement 121

learning with neural networks to tackle traveling salesman problems. A pointer network comprising 122

two recurrent neural networks for encoding and decoding and an attention function is trained with 123

policy gradient. Kool et al. (2018) build on Bello et al.’s work and train an attention-based encoder-124

5

decoder DRL model. Dai et al. (2017) use a graph embedding network to represent the policy to capture 125

the property of a node in the context of its graph neighborhood. A fitted Q-learning is adopted to learn 126

a greedy policy that is parameterized by the graph embedding network. For the TSP problems 127

considered above, only spatial information of nodes is involved. Actions in DRL pertain to adding 128

nodes—one at a time—to progressively construct the vehicle route. 129

The complexity of routing problems is augmented when extended to multiple routes, with time 130

constraints, and with pickups and deliveries. For freight delivery problems, Nazari et al. (2018) 131

consider a parameterized stochastic policy to solve VRP with limited vehicle capacity. The authors 132

apply a policy gradient algorithm to optimize parameters of a stochastic policy. Chen et al. (2019) use 133

multi-agent RL to train a courier dispatch policy to deal with goods pickups with time windows. To 134

maintain the state-action space, RL is decentralized with each courier modeled as an agent. However, 135

a decentralized approach may compromise modeling of courier coordination in undertaking pickup 136

tasks. The problem considered in Yu et al. (2019), which deals with pickup and delivery with vehicle 137

capacity constraints and delivery deadline, is more similar to our paper. Like Chen et al. (2019), the 138

authors opt for a distributed neural optimization strategy with a pointer network and graph embedding 139

to progressively develop a complete tour of each vehicle. More recently, Duan et al. (2020) propose a 140

joint learning approach based on graph convolutional network with node feature (coordinates and 141

demand) and edge feature (distance) as inputs, to solve capacitated VRP. 142

On the passenger side, the interest in adopting DRL for VRP arises with the proliferation of 143

ridesharing. Oda and Joe-Wong (2018) propose a DQN-based framework that learns which zone an 144

idle vehicle should go to. The learning is independent for each vehicle, which is assumed to have at 145

most one rider onboard at any point in time. Singh et al. (2019) relax the assumption by allowing more 146

than one rider in a ridesharing vehicle. However, the training remains decentralized, i.e., each vehicle 147

solves its DQN problem without coordination with other vehicles in vicinity. In addition, it is possible 148

in the study that a rider transfers from one vehicle to another, which is undesirable and not common in 149

practice. Another distributed model-free algorithm using DQN to learn dispatch policies for each 150

vehicle individually is developed by Al-Abbasi et al. (2019), in which training of a vehicle’s 151

dispatching policy again does not consider coordination with other vehicles. 152

As shown in Table 1a, most of the multi-vehicle routing problems in the DRL literature are 153

different from the crowdshipping problem in this paper. Only Yu et al. (2019) on the freight side and 154

Al-Abbasi et al. (2019) on the passenger side consider pickup and delivery with the possibility of a 155

vehicle carrying multiple customers at the same time and without transfer. While vehicle capacity limit 156

is accounted for in some papers, customer time window constraints are mostly not, only in Chen et al. 157

6

(2019) and Yu et al. (2019). Yet none takes into account limited time availability of vehicles, which is 158

an essential characteristic in our crowdshipping problem (where crowdsourcees are “vehicles”). Except 159

for Nazari et al. (2019) and Duan et al. (2020), all other works train each vehicle individually, probably 160

due to the substantially augmented action space and consequently complexity of DQN training if all 161

vehicles are considered together (note that in Duan et al. (2020), vehicle routes are constructed one at 162

a time sequentially rather than simultaneously). However, centralized DQN would be more appropriate 163

as a DSP has full control in request-crowdsourcee assignment. 164

Because of the richer features and centralized nature for crowdshipping, fully capturing the states 165

of a crowdshipping system requires more involved and elaborate representation. As shown in Table 166

1b, the existing studies mostly have vehicle and/or customer locations in state representation, with 167

limited consideration of time-related information for vehicles and customers. On the other hand, given 168

that both crowdsourcees and requests have limited time windows and that heuristics-guided action 169

choice embedded in our proposed DRL requires time-related information to proceed, incorporation of 170

time-related information is critical. Furthermore, for performing the heuristics, information on routing 171

sequence is needed, which is not included explicitly in any prior studies reviewed. Also related to the 172

heuristics-embedding feature, the specification of action space in our work is richer than in the existing 173

literature. Finally, no existing papers consider rule-interposing. 174

7

Table 1a: VRP characteristics considered in selected DRL studies and the present paper 175

Problem characteristics

Pickup and delivery Consider “vehicle”
capacity constraint

Considers limited
time of “customers”

Considers limited
time of “vehicles” Centralized

pa
ss

en
ge

r

Oda and Joe-Wong
(2018)

Yes, but one rider in a
vehicle at a time

No No No No

Singh et al. (2019) Yes, but a rider may transfer
between vehicles in a trip

Yes No No No

Al-Abbasi et al.
(2019)

Yes (ridesharing) Yes No No No

Fr
ei

gh
t

Nazari et al. (2018) No Yes No No Yes (but only 1 vehicle in
numerical analysis)

Chen et al. (2019) No (pickup only) No Yes No No

Yu et al.
(2019)

Yes Yes Yes No No

Duan et al. (2020) No Yes No No Yes (but vehicle routes are
constructed one at a time)

 This paper Yes Yes Yes Yes Yes
Note: The term “vehicle” is quoted because in crowdshipping, “vehicles” would refer to crowdsourcees. Similarly, the term “customers” is quoted as 176
“customers” would refer to shipping requests on the freight side. 177

8

Table 1b: DRL specifications in solving VRP in selected studies and the present paper 178

 State representation Action characterization Rule-interposing

Pa
ss

en
ge

r

Oda and Joe-Wong
(2018)

1. Vehicle location
2. Occupied/idle status
3. Destination of the vehicle
4. Number of available vehicles in each zone
5. Future demand of each zone

Which zone for an idle vehicle
under study to go to

No

Singh et al. (2019) 1. Vehicle location (in which zone)
2. Available seats of each vehicle
3. Rider pickup time
4. Rider destination
5. Number of vehicles in each zone
6. Predicted future rider demand

Which zone to which vehicles
are dispatched

No

Al-Abbasi et al. (2019) 1. Vehicle location
2. Number of available seats
3. Rider pickup time
4. Rider destination
5. When an occupied vehicle becomes available
6. Future rider demand

1. Whether the vehicle under
study should pick up new riders
2. If yes, which zone to go to

No

Fr
ei

gh
t

Nazari et al. (2018) 1. Customer location
2. Customer demand

Which node to visit by a vehicle No

Chen et al. (2019) 1. Number of couriers and requests in each grid
2. Total price of requests in each grid
3. Distance between neighboring grids
4. Score (percent of fulfilled price in total price)

1. Target grid
2. Maximum patrol time in the
grid

No

Yu et al. (2019) 1. Available requests
2. Renewable energy generation points
3. Next stops of other vehicles in the system
4. Battery charging demand of each vehicle

What is the next stop in the tour
of the vehicle

No

Duan et al. (2020) 1. Coordinates and demand at each customer node
2. Adjacency among customer nodes
3. Distance between any two customer nodes

What is the next node to visit No

 This paper 1. Crowdsourcee starting locations
2. Request pickup and delivery locations
3. Node precedence relation of crowdsourcee routes
4. Request slack time, unused service time, and occupation time
5. Crowdsourcee routing duration and remaining available time
6. Time and capacity violation of crowdsourcee routes

1. Inserting a request to a route
2. Intra-route move of a request
3. Inter-route move of a request
4. 1-exchange move of two
requests in two routes
5. No action

Yes

179

9

3 Methodology 180

This section describes the crowdshipping-adapted DRL methodology. First, we introduce the 181

fundamental ideas of RL and DRL. Then, we discuss how states, actions, and rewards which are 182

essential elements of DRL are specified in crowdshipping. Building on the specifications, we detail 183

the training process using DQN. Two key ideas are worth mentioning. First, DQN learns from how a 184

policy—a decision rule which directs what type of action to take given a state—performed on previous 185

instances and improves the policy over time. Knowing the action type, the specific action will be 186

determined by a corresponding heuristic that leverages time-related information from the state space. 187

By letting DQN focus on only a small set of abstracted action types, the heuristics-guided action choice 188

preserves training tractability and consequently contributes to the scalability of the proposed approach. 189

Second, solutions to a crowdshipping problem instance can be constructed progressively, one step at a 190

time, which is amenable to the DRL framework. 191

3.1 Fundamental idea 192

RL is one of the three categories of machine learning (the other two are supervised learning and 193

unsupervised learning) (Sutton and Barto, 2018). The tenet of RL is to train an agent such that the 194

agent can optimize its behavior by accumulating and learning from its experiences of interacting with 195

the environment. The optimality is measured as maximizing the total reward by taking consecutive 196

actions. At each decision point, the agent has information about the current state of the environment 197

and selects the best action based on his current experiences. The action taken transitions the 198

environment to a new state. The agent gets some reward, i.e., reinforcement, as a signal of how good 199

or bad the action taken is. 200

To formulate the decision process, RL employs MDP as the mathematical foundation to keep track 201

of the progression of the decision process. To do so, the following notations are introduced. 𝑆 is the 202

set of states of the environment. 𝐴 is the set of actions the agent can take. 𝑅 is the set of possible 203

rewards as a result of the agent taking an action at a given state. To illustrate, the environment is in 204

state 𝑠𝑡 ∈ 𝑆 at time step 𝑡. The agent takes an action 𝑎𝑡 ∈ 𝐴. The action transitions the environment to 205

a new state 𝑠𝑡+1 ∈ 𝑆 at the next time step 𝑡 + 1. Meanwhile, the agent receives a reward 𝑟𝑡 ∈ 𝑅. The 206

reward is a function of state-action pair: 𝑟𝑡(𝑠𝑡, 𝑎𝑡) (Fig. 1). 207

 208

10

 209
Fig. 1. Illustration of states, actions, and rewards 210

 211
Since the actions are taken consecutively, the objective of the agent at any time step 𝑡 is to 212

maximize the cumulative reward, i.e., the return 𝐺𝑡, from 𝑡 till the last time step 𝑇: 213

 214
𝐺𝑡 = 𝑟𝑡 + 𝑟𝑡+1 +⋯+ 𝑟𝑇. (1)

 215
If we consider that the reward is received over a long period, a discount factor 𝛾 ∈ [0,1] is often 216

used to reflect discounting: 217

 218

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯+ 𝛾
𝑇−𝑡𝑟𝑇 (2)

 219
In RL, a policy 𝜋 is a mapping from states to probabilities of selecting each possible action. A 220

value function 𝑉𝜋 expresses the expected return when starting in state 𝑠 and following policy 𝜋 221

thereafter. At time step 𝑡, the value function can be written as: 222

 223

𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠] = 𝔼𝜋 [∑𝛾𝑘𝑟𝑡+𝑘

𝑇−𝑡

𝑘=0

| 𝑠𝑡 = 𝑠]. (3)

 224
Related to the value function, we define the value of taking action 𝑎 in state 𝑠 and following policy 225

𝜋 thereafter, denoted as 𝑄𝜋(𝑠, 𝑎). 𝑄𝜋(𝑠, 𝑎) is termed action-value function, or “Q-function” of the 226

state-action pair (𝑠, 𝑎). The letter “Q” represents the quality of this state-action pair: 227

 228

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋 [∑𝛾𝑘𝑟𝑡+𝑘

𝑇−𝑡

𝑘=0

| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. (4)

 229

11

It is desired to seek an optimal policy 𝜋∗ such that 𝑉𝜋∗(𝑠) = max
𝑎
𝑄∗(𝑠, 𝑎), where 𝑄∗(𝑠, 𝑎) means 230

that the agent takes action 𝑎 at state 𝑠 and follows policy 𝜋∗ thereafter. Clearly, if 𝑄∗(𝑠, 𝑎) is known 231

for every state-action pair (𝑠, 𝑎), then 𝜋∗ is also known. The problem of finding the optimal policy 232

then becomes finding optimal Q-values 𝑄∗(𝑠, 𝑎), ∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴. To do so, one of the prominent 233

algorithms is Q-learning (Watkins and Dayan, 1992). At a time step, the Q-function value (thereafter 234

simplified as “Q-value”) for a given state-action pair is updated using the following rule which is based 235

on the Bellman optimality equation: 236

 237

𝑄(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼 [𝑟(𝑠, 𝑎) + 𝛾max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′)] (5)

 238
where 𝑠′ is the transitioned state after taking action 𝑎 at state 𝑠. 𝑟(𝑠, 𝑎) is the associated reward. On 239

the left-hand side of Eq. (5) is the updated 𝑄(𝑠, 𝑎) value. On the right-hand side (RHS), 𝑄(𝑠, 𝑎) and 240

𝑄(𝑠′, 𝑎′) come from the current Q-matrix, which is a mapping from a discrete state-action space to Q-241

values. 𝛼 is the learning rate taking values between 0 and 1. It can be shown that Q-learning converges 242

to the optimal Q-values with probability 1 as long as all actions are repeatedly sampled in all states and 243

state-action pairs are discrete (Watkins and Dayan, 1992). 244

The Q-learning algorithm works well to find the optimal policy when the state-action space is 245

small. However, it would become computationally inefficient and even infeasible to compute Q-values 246

for every state-action pair when the state-action space is large (just imagine Eq. (5) needs to be 247

repeatedly computed for a large number of state-action combinations, with constant updates of the Q-248

matrix). This is where deep learning can help reduce the computational burden. Specifically, a 249

parameterized DNN can be integrated with an RL algorithm like Q-learning, to efficiently approximate 250

the optimal Q-values instead of maintaining and updating a Q-matrix while applying Eq. (5). 251

More specifically, we adapt the DQN algorithm, proposed by Minh et al. (2015), to the problem 252

considered in this paper. DQN is a relatively new DRL algorithm that uses a convolutional neural 253

network as a function approximator of the Q-function. DQN has excelled in video game environments 254

where the state-action space is very large. A prominent advantage of DQN is that it overcomes 255

instability and divergence that occur when a nonlinear function approximator such as a neural network 256

is used to represent the Q-function, by embedding two salient feature: experience replay and target 257

network, whose use will be discussed in subsection 3.3. Before getting into the details of DQN, below 258

we first describe our specifications of states, actions, and rewards in the context of crowdshipping. 259

12

3.2 DRL formulation for crowdshipping 260

3.2.1 Information array 261

In this section, we propose a novel state and action space design as well as reward function 262

specification for crowdshipping. A key in this proposal is the creation of an information array that 263

contains the routing sequence of each crowdsourcee. Let 𝐽 and 𝐾 denote respectively the sets of 264

shipping requests and crowdsourcees. The information array is a |𝐾| × (2|𝐽| + 1) matrix where 265

|𝐾| and |𝐽| denote respectively the numbers of crowdsourcees (which is equivalent to the number 266

of routes) and shipping requests. Each row indicates the routing sequence of one crowdsourcee. 267

The matrix has 2|𝐽| + 1 columns to accommodate the extreme possibility that all |𝐽| requests (2|𝐽| 268

nodes) are assigned to a single crowdsourcee plus the origin node of the crowdsourcee (thus one 269

more node needs to be added). For example, if the 𝑘th row of the information array contains the 270

following tuple: (𝑢𝑘, 𝑝1, 𝑝2, 𝑑1, 𝑑2), it means that crowdsourcee 𝑘 will leave his/her origin node 271

𝑢𝑘, go to the pickup node of the first request 𝑝1, pick up the second request 𝑝2, then drop off the 272

first request 𝑑1, and finally drop off the second request 𝑑2. In this case, the cells of the first five 273

columns of the 𝑘th row are occupied, whereas the remaining cells in the row are empty (Fig. 2). 274

 275
 1 2 3 4 5 ⋯ 2|𝐽| + 1
1 𝑢1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝑘 𝑢𝑘 𝑝1 𝑝2 𝑑1 𝑑2 0 0
⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
|𝐾| 𝑢|𝐾| ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Fig. 2. Illustration of the information array 276

 277
The information array is constantly updated after every time step. Given that we consider a static 278

problem for the purpose of operation planning rather than real-time decision support, we assume that 279

all requests are unassigned (i.e., assigned to backup vehicles) at the beginning. Thus, initially each row 280

in the information array contains only the origin node of a crowdsourcee. 281

3.2.2 State representation using a three-tuple 282

The information array provides a foundation for specifying the state space. At each time step 𝑡, 283

the state of the crowdshipping environment is described by a three-tuple 𝑠𝑡 = {𝑆𝑙 , 𝑆𝑟, 𝑆𝑐} which 284

provides respectively: 1) location information of pickup and delivery nodes of requests and 285

crowdsourcee routing sequences; 2) request-specific time information; and 3) crowdsourcee-specific 286

13

time and capacity information. With {𝑆𝑙 , 𝑆𝑟, 𝑆𝑐}, the agent not only has a complete picture of the 287

crowdsourcee routing sequences, but can leverage the time-related information to perform heuristics-288

guided actions, as described in subsection 3.2.3. 289

The first component in the three-tuple, 𝑆𝑙, is specified as follows: 290

𝑆𝑙 = {𝑛𝑖, 𝑛𝑗
𝑝
, 𝑛𝑗

𝑑 , 𝑛𝑘
𝑐 ; ∀𝑖 ∈ 𝐽 ∪ 𝐾, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾} 291

where 292

𝑛𝑖 is the coordinate of node 𝑖;
𝑛𝑗
𝑝 is the coordinate of the successor node of the pickup node of request 𝑗 if 𝑗 is assigned;
𝑛𝑗
𝑑 is the coordinate of the predecessor node of the delivery node of request 𝑗 if 𝑗 is assigned;

𝑛𝑘
𝑐 is the coordinate of the first node visited by crowdsourcee 𝑘 if the crowdsourcee is assigned

(i.e., first node other than the crowdsourcee origin).
 293

The second component in the three-tuple, 𝑆𝑟 , contains three pieces of request-specific time 294

information: 295

𝑆𝑟 = {𝓈𝑗, 𝑏𝑗, 𝑜𝑗; ∀𝑗 ∈ 𝐽} 296

where 297

𝓈𝑗 is the slack time of request 𝑗;
𝑏𝑗 is the unused service time of request 𝑗;
𝑜𝑗 is the occupation time of request 𝑗.

 298
For a request 𝑗, slack time 𝓈𝑗 measures how urgent it needs to be assigned: 299

 300

𝓈𝑗 = {
(𝑡𝑑𝑗
𝑙 − 𝑡𝑝𝑗

𝑒) − 𝑇𝑝𝑗,𝑑𝑗
𝑐 𝑓𝑗 = 0

ℳ 𝑓𝑗 = 1
 (6)

 301
where 302

𝑡𝑑𝑗
𝑙 is the latest delivery time for request 𝑗;
𝑡𝑝𝑗
𝑒 is the earliest pickup time for request 𝑗;
𝑇𝑝𝑗,𝑑𝑗
𝑐 is the direct travel time by crowdsourcee from pickup node 𝑝𝑗 to delivery node 𝑑𝑗;
ℳ is a very large number;
𝑓𝑗 equals 1 if request 𝑗 is assigned to a crowdsourcee, and 0 otherwise.

 303
For an unassigned request 𝑗, its urgency is the difference between the largest amount of time 304

allowed for pickup and delivery (𝑡𝑑𝑗
𝑙 − 𝑡𝑝𝑗

𝑒), and the minimum amount of time needed to do so by 305

crowdsourcee (𝑇𝑝𝑗,𝑑𝑗
𝑐). The larger the difference, the lower the urgency with which the request needs 306

14

to be assigned. For an assigned request, a very large number ℳ is given, which means that its urgency 307

is effectively zero (as it is already assigned). Using this urgency measure, the agent solving for the 308

assignments can prioritize assigning requests that have not been assigned to crowdsourcees. 309

The unused service time of a request 𝑗 (𝑏𝑗) quantifies the gap between the latest delivery time 𝑡𝑑𝑗
𝑙 310

and the actual delivery time 𝑡𝑑𝑗 (Eq. (7)). Conceptually, a larger 𝑏𝑗 means greater flexibility in altering 311

the way the request is picked up and delivered (e.g., by moving the request to a different position in 312

the assigned crowdsourcee route or to a different route). 313

 314
𝑏𝑗 = 𝑡𝑑𝑗

𝑙 − 𝑡𝑑𝑗 (7)
 315

Note that in the case of an unassigned request, the request will be delivered by a backup vehicle 316

which departs from a pre-specified depot 𝐷. Assuming that the backup vehicle will leave the depot at 317

the earliest pickup time 𝑡𝑝𝑗
𝑒 , the actual delivery time will be 𝑡𝑑𝑗 = 𝑡𝑝𝑗

𝑒 + 𝑇𝐷,𝑝𝑗
𝑏 + 𝑇𝑝𝑗,𝑑𝑗

𝑏 where 𝑇𝐷,𝑝𝑗
𝑏 and 318

𝑇𝑝𝑗,𝑑𝑗
𝑏 denote respectively the travel time of the backup vehicle from the depot to the pickup node, and 319

from the pickup node directly to the delivery node. 320

The occupation time of a request (𝑜𝑗) quantifies the duration between pickup and delivery of a 321

request 𝑗. 322

 323
𝑜𝑗 = 𝑡𝑑𝑗 − 𝑡𝑝𝑗 (8)

 324
where 325

𝑡𝑝𝑗 is the pickup time of request 𝑗 by the assigned crowdsourcee.
 326

For an unassigned request, 𝑡𝑝𝑗 is equal to 𝑡𝑝𝑗
𝑒 + 𝑇𝐷,𝑝𝑗

𝑏 . Thus, 𝑜𝑗 = 𝑇𝑝𝑗,𝑑𝑗
𝑏 . 327

The third component in the three-tuple, namely 𝑆𝑐, contains four pieces of crowdsourcee-specific 328

time and capacity information: 329

𝑆𝑐 = {𝔥𝑘 , 𝑣𝑘 , 𝜏𝑘 ,𝜂𝑘; ∀𝑘 ∈ 𝐾} 330

where 331

𝔥𝑘 is the routing duration for crowdsourcee 𝑘;
𝑣𝑘 is the total delivery time violation of requests assigned to crowdsourcee route 𝑘;
𝜏𝑘 is the remaining available time for crowdsourcee 𝑘;
𝜂𝑘 is the total capacity violation along the route of crowdsourcee 𝑘.

 332

15

The calculation of 𝔥𝑘 is intuitive. 𝑣𝑘 is calculated using Eq. (9), where 𝐽𝑘 denote the set of 333

requests assigned to crowdsourcee 𝑘. The max operator is used when delivery is earlier than the latest 334

delivery time (i.e., 𝑡𝑑𝑗 − 𝑡𝑑𝑗
𝑙 ≤ 0) such that it does not contribute to the violation: 335

 336

𝑣𝑘 = ∑ max(𝑡𝑑𝑗 − 𝑡𝑑𝑗
𝑙 , 0)

𝑗∈𝐽𝑘

 (9)

 337
The remaining available time of crowdsourcee 𝑘, 𝜏𝑘, is the difference between the crowdsourcee’s 338

total available time (𝑡end𝑘 − 𝑡start
𝑘) and the route duration (𝔥𝑘), as shown in Eq. (10), where 𝑡end𝑘 and 339

𝑡start
𝑘 are the end and start of crowdsource 𝑘’s available time window. An underlying assumption is 340

that an assigned crowdsourcee will start routing at 𝑡start𝑘 . If the total available time of a crowdsourcee 341

is less than the route duration, 𝜏𝑘 < 0 means that crowdsourcee 𝑘’s time availability is violated when 342

finishing the last delivery on the route. 343

 344
𝜏𝑘 = (𝑡end

𝑘 − 𝑡start
𝑘) − 𝔥𝑘 . (10)

 345
Given that a crowdsourcee has limited carrying capacity (measured in weight), the total capacity 346

violation along a crowdsourcee route 𝜂𝑘 is the total number of capacity violation occurrences at each 347

pickup node: 348

 349

𝜂𝑘 = ∑ 𝛿𝑝𝑗
𝑗∈𝐽𝑘

, (11)

 350
where 𝛿𝑝𝑗 = 1 if the total weight carried right after picking up at node 𝑝𝑗 exceeds the carrying 351

capacity, and zero otherwise. 352

With the full specification of 𝑠𝑡 = {𝑆𝑙 , 𝑆𝑟, 𝑆𝑐}, the dimension of the state space can be explicitly 353

expressed as a function of the dimensions of 𝐽 and 𝐾. We show this in Remark 1 below. 354

 355
Remark 1. The dimension of the state space is 11|𝐽| + 8|𝐾|. 356

Proof. See Appendix A. 357

 358

3.2.3 Action space design 359

As mentioned in Section 1, the combinatorial nature of the crowdshipping problem means that a 360

large number of different actions can be taken to construct and improve crowdsourcee routing. 361

16

However, enumerating all possible actions would be neither efficient nor practical in DRL training. To 362

preserve training tractability, we abstract the action space into five types of actions. At each time step, 363

the agent may perform one action from the five types to alter an existing crowdsourcee route(s) or 364

create a new crowdsourcee route. The choice of an action type is informed by the DQN algorithm. 365

Once the action type is identified, the specific action to take is directed by the heuristics that leverage 366

time-related state information about crowdsourcees and requests (e.g., slack time of a request and 367

remaining available time of a crowdsourcee) so that assignment urgency, flexibility for routing 368

improvement, and shipping cost reduction potential are taken into account toward more efficient 369

crowdsourcee routing construction/improvement. 370

Among the five types of actions, the first type pertains to inserting an unassigned request to an 371

existing/new route. The other three types of actions: intra-route move, inter-route move, and 1-372

exchange, are neighborhood moves of requests that have been previously placed in some existing 373

crowdsourcee routes. Here the term “neighborhood” means that a move makes only one change to the 374

solution, such that the solutions before and after the move remain quite similar to each other. Details 375

of performing the neighborhood moves are described in subsections 3.2.3.2-3.2.3.4 below. The last 376

action type is do-nothing, i.e., no action is taken. We consider do-nothing as an action for preserving 377

good solutions. Specifically, if a very good solution has been achieved, having the option of do-nothing 378

prevents taking another action that would move away from the solution to an inferior solution. It is 379

worth mentioning that other more complex actions can be realized using the proposed five action types, 380

in multiple time steps. In other words, our proposed action types are building blocks for other more 381

complex actions. For instance, a 3-way exchange of requests among three crowdsourcee routes in a 382

cyclic manner could be decomposed into and realized through two inter-route moves. Because of the 383

decomposition, it is possible that the inter-route moves are taken consecutively or with other actions 384

in between, therefore permitting more flexibility. Fig. 3 provides an illustration of the first four action 385

types. 386

 387

17

(a) Insertion

(b) Intra-route move

(c) Inter-route move

(d) 1-exchange

Fig. 3. Illustration of the four types of actions considered 388

 389
For insertion, intra-route move, and inter-route move, routing feasibility after taking an action 390

needs to be checked by following Definition 1 below. 391

 392
Definition 1. Feasibility of a crowdsourcee route. A crowdsourcee route 𝑘 is feasible if the following 393

four conditions are met: 394

(1) request pickup is no earlier than the earliest pickup, for all requests on the route: 𝑡𝑝𝑗 ≥ 𝑡𝑝𝑗
𝑒 , ∀𝑗 ∈ 𝐽𝑘; 395

18

(2) request delivery is no later than the latest delivery, for all requests on the route: 𝑡𝑑𝑗 ≤ 𝑡𝑑𝑗
𝑙 , ∀𝑗 ∈ 𝐽𝑘; 396

(3) remaining available time of the crowdsourcee after completing the route is non-negative: 𝜏𝑘 ≥ 0; 397

(4) no violation of crowdsourcee capacity on the route: 𝜂𝑘 = 0. 398

 399
Conceptually, the decision on what action to take at a time step proceeds in two stages. First, the 400

DQN algorithm identifies one of the five action types (insertion, intra-route move, inter-route move, 401

1-exchange, and do-nothing) as specified in the action space. Once the action type is identified, in the 402

second stage the specific action is executed using the corresponding heuristic, based on system state 403

information and intuitive reasonings. The remainder of this subsection describes in detail the heuristics 404

that guide the specific action to take under each action type (except for do-nothing). We also present 405

computational complexity of each heuristic as Remarks 1-4, with proofs provided in Appendix A. 406

3.2.3.1 Inserting an unassigned request in an existing/new route 407

For insertion, we need to determine which request to choose for insertion, and where to insert the 408

request. The action consists of three steps. 409

 410
Step 1: Select a request.

 Among the unassigned requests, select one with the smallest slack time.

Step 2: Insert the request to a route.

 For the selected request, calculate the distances between the pickup node of the request
and each crowdsourcee. For an assigned crowdsourcee, the distance is to the end of the
crowdsourcee route. For an unassigned crowdsourcee, the distance is to the crowdsourcee
origin. Identify the smallest distance.

If the smallest distance occurs to an assigned crowdsourcee, insert the node to the end of
the crowdsourcee route. If the smallest distance occurs to an idle crowdsourcee, create a
new route: crowdsourcee origin → request pickup node → request delivery node.

Step 3: Perform intra-route move.

 If the request is inserted to an existing crowdsourcee route, explore moving the request to
earlier positions in the route. The move follows Step 2 of intra-route move below, but for
the inserted request only. Place the request at the position that is feasible and leads to the
smallest routing cost.

If it is not feasible to place the request anywhere in the inserted route, move to the route
with the second smallest distance, insert the request to the end of the route, and perform
intra-route move. If all routes are checked and a feasible placement cannot be found, move
to the unassigned request with the second smallest slack time. Repeat Step 2 and Step 3
described above. If it is not possible to feasibly insert any unassigned request, stop and
nothing is changed.

 411

19

In Step 1, the rationale for considering the unassigned request with the smallest slack time, the 412

information of which comes from 𝓈𝑗 in 𝑆𝑟 (second component in the three-tuple state representation), 413

is that we want to get the most urgent unassigned request assigned first. In Step 2, we perform insertion 414

to the nearest crowdsourcee as this incurs the smallest time loss between the crowdsourcee finishing 415

the currently assigned requests and picking up the request under study. 416

 417
Remark 2. The computational complexity of insertion is 𝑂(|𝐽|2 log|𝐽|). 418

Proof. See Appendix A. 419

 420

3.2.3.2 Intra-route move 421

Intra-route move involves moving a later request to an earlier position in a route to reduce routing 422

cost. The action also consists of three steps. 423

 424
Step 1: Select a route.

 Select the crowdsourcee route with the largest remaining available time.

Step 2: Move examination.

 Enumerate all feasible moves of a request to a different place. For a request, first move it
to the end of the route, i.e., having the last two nodes in a route as the pickup and delivery
nodes of the request. Then, examine all feasible moves of the request to an earlier place in
the route.

To illustrate, consider routing sequence (𝑢𝑘 , 𝑝1, 𝑑1, … , 𝑝𝑛−1, 𝑑𝑛−1, 𝑝𝑛, 𝑑𝑛) and moving
request 𝑛 (whose pickup and delivery nodes are already at the end of the route). Move 𝑝𝑛
to an earlier position, one place at a time, i.e., to the places right before 𝑑𝑛−1, right before
𝑝𝑛−1,…, until right after 𝑢𝑘. For each new position of 𝑝𝑛, examine feasibility of holding
𝑑𝑛 at its initial place, moving it one place at a time to an earlier position, as long as 𝑑𝑛 is
not before 𝑝𝑛. For each feasible (𝑝𝑛, 𝑑𝑛) move, calculate the routing cost.

Repeat the above for every request in the route.

Step 3: Identify the best move.
 Among all the feasible moves in Step 2, pick the one with the smallest routing cost. If the

routing cost is smaller than the original routing cost, perform the move. If no move yields
a smaller routing cost or there is no feasible move, stop and nothing is changed.

 425
In Step 1, the rationale for considering the route with the largest remaining available time, for 426

which the information comes from 𝜏𝑘 in 𝑆𝑐, is that such a route has the greatest flexibility for moving 427

requests around. 428

 429
Remark 3. The computational complexity of intra-route move is 𝑂(|𝐽| log|𝐽|). 430

20

Proof. See Appendix A. 431

 432

3.2.3.3 Inter-route move 433

Inter-route move picks a request from a route and moves it to another route by performing the 434

following three steps. 435

 436
Step 1: Select a request.

 Among all assigned requests, select one with the largest occupation time.

Step 2: Move the request to the end of a different route.

 Insert request to another existing route or create a new route, following Step 2 of insertion.
Calculate the combined routing cost for the two routes involved in the inter-route move.

Step 3: Perform intra-route move of the request.
 If the request is inserted to an existing crowdsourcee route, explore moving the pickup and

delivery nodes of the request to earlier positions in the route to reduce routing cost. The
move follows Step 2 of intra-route move below, but for the inserted request only.

If there exist feasible intra-route moves that lead to lower routing cost than the cost after
Step 2, perform the intra-route move that leads to the lowest routing cost. If not and the
solution after Step 2 is feasible, perform only Steps 1-2. Otherwise, nothing is changed.

 437
In Step 1, the rationale for considering the request with the largest occupation time, for which the 438

information comes from 𝑜𝑗 in 𝑆𝑟, is that larger occupation time may suggest greater time (and thus 439

cost) reduction potential by moving the request to a different route. 440

 441
Remark 4. The computational complexity of inter-route move is 𝑂(|𝐽| log|𝐽|). 442

Proof. See Appendix A. 443

 444

3.2.3.4 1-exchange move 445

1-exchange move pertains to exchanging two requests which are on two crowdsourcee routes. 446

Performing the move has four steps. 447

 448
Step 1: Select the first request.

 Among all assigned requests, select the first request that has the largest unused service
time.

Step 2: Select the second request.

 Excluding the route associated with the first selected request, select the second request that
has the largest unused service time among the remaining assigned requests.

21

Step 3: Exchange the selected requests.

 Remove the two requests from their routes. Add each request to the end of the other route.
Calculate the combined routing cost for the two routes involved in the 1-exchange move.

Step 4: Perform intra-route move of the two requests.

 For each of the two requests, this follows Step 2 of intra-route move. Place the request at
the position that is feasible and leads to the smallest routing cost. The associated routing
cost should be lower than the routing cost from Step 3. If this is not possible, leave the
request at the end of the route, i.e., do not perform Step 4.

 449
In Steps 1 and 2, the rationale for choosing requests with the largest unused service time, for which 450

the information comes from 𝑏𝑗 in 𝑆𝑟, is that such requests have the greatest flexibility to be moved 451

around. It should be noted that unlike the other three actions, we do not consider feasibility while 452

performing Step 3 in 1-exchange. This is intentional to help the search escape local optima (Nanry and 453

Barnes, 2000). 454

 455
Remark 5. The computational complexity of 1-exchange move is 𝑂(|𝐽| log|𝐽|). 456

Proof. See Appendix A. 457

 458

3.2.4 Reward specification 459

Given the state and the action at a time step, we specify the reward as the change in TSC as a 460

result of the action taken. If the action taken at time step 𝑡 is inserting request 𝑗 in crowdsourcee route 461

𝑘, the reward is computed as: 462

 463
𝑟𝑡 = 𝛽

𝑐𝔥𝑘,𝑡−1 + 𝛽
𝑏 (𝑇𝐷,𝑝𝑗

𝑏 + 𝑇𝑝𝑗,𝑑𝑗
𝑏 + 𝑠 + 𝑇𝑑𝑗,𝐷

𝑏) − 𝛽𝑐𝔥𝑘,𝑡 (12)
 464
where 465

𝛽𝑏 is the unit cost of using a backup vehicle (in $/minute);
𝛽𝑐 is the unit cost of using a crowdsourcee (in $/minute);
𝔥𝑘,𝑡−1 is the route duration (in minutes) of crowdsourcee route 𝑘 at time step 𝑡 − 1;
𝔥𝑘,𝑡 is the route duration (in minutes) of crowdsourcee route 𝑘 at time step 𝑡;
𝑠 is the stopping time of a node (assumed one minutes);
𝑇𝑑𝑗,𝐷
𝑏 is the backup vehicle travel time from the delivery node of request 𝑗 back to depot 𝐷.

 466

In Eq. (12), 𝛽𝑐𝔥𝑘,𝑡−1 is the cost of crowdsourcee route 𝑘 at time step 𝑡 − 1, which is before request 467

𝑗 is inserted. If the route does not exist before inserting 𝑗, this term will be zero. 𝛽𝑏(𝑇𝐷,𝑝𝑗
𝑏 + 𝑇𝑝𝑗,𝑑𝑗

𝑏 +468

22

𝑇𝑑𝑗,𝐷
𝑏) is the cost of picking up and delivering the request by a backup vehicle. 𝛽𝑐𝔥𝑘,𝑡 is the cost of the 469

crowdsourcee route 𝑘 at time step 𝑡, after request 𝑗 is inserted. The calculation result using Eq. (12) is 470

measured in dollars. 471

If the action taken at time step 𝑡 is a neighborhood move, let us use 𝛹𝑡 to denote the set of 472

crowdsourcee route(s) that are involved in the move. For intra-route move, 𝛹𝑡 will have just one route. 473

For inter-route move and 1-exchange, 𝛹𝑡 will have two routes. The reward is calculated as the 474

difference of the routing costs before and after the move: 475

 476
𝑟𝑡 = 𝑐𝑡

1 − 𝑐𝑡
2 (13)

 477
where 𝑐𝑡1 and 𝑐𝑡2 are routing costs for the route(s) in 𝛹𝑡 before and after the neighborhood move: 478

 479

𝑐𝑡
1 = 𝛽𝑐 (∑ 𝔥𝑘,𝑡−1

𝑘∈𝛹𝑡

+ 𝜗 ∑ 𝑣𝑘,𝑡−1
𝑘∈𝛹𝑡

+ 𝜏 ∑ 𝜒𝑘,𝑡−1
𝑘∈𝛹𝑡

+ 𝜌𝜙 ∑ 𝜂𝑘,𝑡−1
𝑘∈𝛹𝑡

) (14)

𝑐𝑡
2 = 𝛽𝑐 (∑ 𝔥𝑘,𝑡

𝑘∈𝛹𝑡

+ 𝜗 ∑ 𝑣𝑘,𝑡
𝑘∈𝛹𝑡

+ 𝜏 ∑ 𝜒𝑘,𝑡
𝑘∈𝛹𝑡

+ 𝜌𝜙 ∑ 𝜂𝑘,𝑡
𝑘∈𝛹𝑡

) (15)

 480
where 481

𝔥𝑘,𝑡 is the route duration for crowdsourcee 𝑘 at time step 𝑡;
𝑣𝑘,𝑡 is the delivery time violation of requests assigned to crowdsourcee route 𝑘 at time step 𝑡;
𝜒𝑘,𝑡 is the available time violation for crowdsourcee 𝑘 at time step 𝑡;
𝜂𝑘,𝑡 is the carrying capacity violation for crowdsourcee 𝑘 at time step 𝑡;
𝜗 is the penalty multiplier for delivery time violation;
𝜏 is the penalty multiplier for crowdsourcee overworking;
𝜌 is the penalty multiplier for crowdsourcee carrying capacity violation;
𝜙 is the capacity violation-to-time conversion factor.

 482
Here,𝜗, 𝜏, and 𝜌 are unitless penalty parameters. 𝜙 has unit of minutes per capacity violation. The 483

calculation result of Eq. (13) is also in dollars. 484

3.3 DRL algorithm for crowdshipping 485

This subsection describes how DQN, which is our training algorithm, is adapted to the context of 486

crowdshipping. DQN is an off-policy RL approach, as it is based on Q-learning (Sutton and Barto, 487

2018). The training is offline with a simulator developed by ourselves. In DQN, the training of the 488

agent is through multiple episodes, each. Each episode is associated with a crowdshipping problem 489

23

instance of a certain size, which is randomly generated and starts with an initial state that all 490

crowdsourcees are idle (unassigned). Training in an episode involves improving the solution by taking 491

actions described in subsection 3.2.3, one at a time in a number of time steps. 492

At each time step, an 𝜀-greedy strategy is employed to consider both exploration and exploitation 493

as the agent decides what type of action to take among insertion, intra-route move, inter-route move, 494

1-exchange move, and do-nothing. By exploration, it means that the agent takes a random action type, 495

with probability 𝜀. By exploitation, the agent takes one of the five action types above that is the best—496

based on the experiences that the agent has learned so far (reflected in the current Q-values, as shown 497

in line 7 in Algorithm 1 at the end of this subsection), with probability 1 − 𝜀. Once the best action type 498

is chosen, the specific action follows the heuristics described in subsection 3.2.3 (line 8 in Algorithm 499

1). Consequently, a reward and a new state are observed. 500

While exploitation takes advantage of what have been learned in terms of the best action to take, 501

exploration is necessary to try to get the agent out of local optima toward even better action sequences, 502

to further reduce total shipping cost. At the beginning of an episode, 𝜀 takes value 1, i.e., the focus is 503

purely on exploration, which is intuitive as the agent has zero learned experience (thus nothing to 504

exploit) at this point. Then as time goes by, the agent gradually increases the probability of exploiting 505

learned actions. A decay rate of 𝜉 is used which describes the change in probabilities between two time 506

steps (Eq. (16)). 𝜉 is a hyper parameter. 507

 508
𝜀𝑡+1 = 𝜀𝑡(1 − 𝜉) (16)

 509
One salient feature of DQN is experience replay, for which a replay memory 𝑀 is used to store 510

the agent’s experiences during training. Up to |𝑀| experiences can be stored in the replay memory. An 511

experience is associated with taking an action at a given state and time step, observing a state transition, 512

and getting a reward. For example, at time step 𝑡, the agent performs an action 𝑎𝑡 which transforms 513

the state from 𝑠𝑡 to 𝑠𝑡+1 and yields a reward 𝑟𝑡. The experience is denoted as 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). At 514

the beginning of the training, 𝑀 is empty. As the training continues, experiences are accumulated and 515

added to replay memory 𝑀. Once |𝑀| experiences are stored in 𝑀, adding a new experience requires 516

simultaneous removal of the oldest experience stored in 𝑀. 517

At each time step, a DNN is trained using a minibatch 𝑀sub of samples that are randomly selected 518

from 𝑀. Note that in the beginning of the training, the number of accumulated experiences in 𝑀 will 519

be fewer than |𝑀sub|. In this case, experiences will continuously be accumulated in 𝑀 but DNN will 520

not be trained, until the replay memory has |𝑀sub| experiences. The employment of experience replay 521

24

using randomly selected minibatch samples has multiple advantages. First, because the samples are 522

randomly selected, correlation between samples will be less than learning directly from consecutive 523

samples, thereby enhancing the efficiency of learning. Second, each experience can potentially be used 524

in many weight updates, thus allowing for greater data efficiency. Third, by experience replay the 525

behavior distribution is averaged over many previous states, which contributes to smoothing out 526

learning and avoiding oscillation or divergence in the parameters (Mnih et al., 2015). 527

For each selected experience (𝑠, 𝑎, 𝑟, 𝑠′), state 𝑠 is used as the input for the DNN (with weight 528

parameters 𝜃) to generate state-action value 𝑄(𝑠, 𝑎: 𝜃), or Q-value, which is the output of the DNN.2 529

Collectively for all the selected experiences, the prediction of 𝑄(𝑠, 𝑎: 𝜃)’s comprises the first forward 530

pass. 𝑄(𝑠, 𝑎: 𝜃) is then compared with the target optimal Q-value 𝑄∗(𝑠, 𝑎) which gives the maximum 531

expected return achievable by following any DQN policy. Ideally, the target optimal Q-value should 532

satisfy the Bellman optimality equation: 533

 534

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′ [𝑟 + 𝛾max
𝑎′∈𝐴

𝑄∗(𝑠
′, 𝑎′)| 𝑠, 𝑎] (17)

 535
where 𝑟 is the immediate reward by taking action 𝑎 at station 𝑠. 536

The comparison of 𝑄(𝑠, 𝑎: 𝜃) with 𝑄∗(𝑠, 𝑎) is performed using a loss function. Assuming a square 537

form for the loss function and replacing 𝑄∗(𝑠, 𝑎) by the RHS of Eq. (17), the loss function ℒ, which 538

depends on DNN weight parameters 𝜃, can be expressed as: 539

 540

ℒ(𝜃) =
1

|𝑀sub|
∑ [𝑟 + 𝛾max

𝑎′∈𝐴
𝑄∗(𝑠

′, 𝑎′) − 𝑄(𝑠, 𝑎: 𝜃)]
2

(𝑠,𝑎,𝑟,𝑠′)∈𝑀sub

 (18)

 541
Obviously, to calculate ℒ(𝜃), 𝑄∗(𝑠′, 𝑎′) is needed. However, 𝑄∗(𝑠′, 𝑎′) is unknown (if 𝑄∗(𝑠′, 𝑎′) 542

was known, then the training would be done). One way to get an approximation of 𝑄∗(𝑠′, 𝑎′) is to 543

perform another forward pass with the DNN, i.e., for state 𝑠′ in each experience (𝑠, 𝑎, 𝑟, 𝑠′) along with 544

the same weight parameters 𝜃 of the DNN, predict state-action values 𝑄(𝑠′, 𝑎′: 𝜃), ∀𝑎′ ∈ 𝐴 using the 545

DNN. By approximating 𝑄∗(𝑠′,𝑎′) with 𝑄(𝑠′, 𝑎′: 𝜃), Eq. (17) can be re-expressed as: 546

 547

ℒ(𝜃) =
1

|𝑀sub|
∑ [𝑟 + 𝛾max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′: 𝜃) − 𝑄(𝑠, 𝑎: 𝜃)]

2

(𝑠,𝑎,𝑟,𝑠′)∈𝑀sub

 (19)

2 In this paper, we use an architecture in which there is a separate output for each possible action. Only the state is the
input to the DNN. Thus, among the outputs for different actions, we choose the one corresponding to action 𝑎 as
𝑄(𝑠, 𝑎: 𝜃).

25

 548

After performing two forward passes as described above, the gradient of the loss in Eq. (19) is 549

used to update 𝜃 by the Adam optimizer, a widely-used gradient descent-based algorithm for 550

minimizing the loss (Kingma and Ba, 2015). However, a main drawback exists in this two-forward 551

pass procedure. When 𝜃 gets updated, the Q-values obtained from this network will also get updated 552

(in the next time step). So will the target Q-values as they are calculated using the same network 553

parameter. In other words, the direction of updates for the Q-values and the target Q-values will be 554

same. As a consequence, the correlation between the Q-values and the target Q-values can be high, 555

possibly leading to oscillation or divergence of the policy during training. 556

To tackle this issue, a second salient feature of DQN is that a parallel network, called the target 557

network, of the original DNN is created to preserve DNN parameter values for a period of time, so that 558

target Q-values do not get updated with the same frequency as the Q-values. The target network, which 559

is a clone of the original network, initializes its parameters 𝜃′ using the original DNN: 𝜃′ = 𝜃 at the 560

beginning of the training. Then, instead of updating 𝜃′ by 𝜃 of the original DNN at every time step, 𝜃′ 561

is frozen for 𝛿 time steps. Only after every 𝛿 time steps, 𝜃′ gets updated to whatever is the present 562

value of the original network parameters 𝜃. In this procedure, 𝛿 is a hyper parameter. 563

The Q-value obtained from the target network 𝑄(𝑠′, 𝑎′: 𝜃′) is used to calculate the approximate 564

target Q-value 𝑟 + 𝛾max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′: 𝜃′). The loss function shown in Eq. (17) becomes: 565

 566

ℒ(𝜃) =
1

|𝑀sub|
∑ [𝑟 + 𝛾max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′: 𝜃′) − 𝑄(𝑠, 𝑎: 𝜃)]

2

(𝑠,𝑎,𝑟,𝑠′)∈𝑀sub

 (20)

 567
In implementing DQN, we use a slightly modified version of the squared loss function called 568

Huber loss function. For each sample, the squared term is used only if the absolute error falls below a 569

threshold (here we choose the value 1). Otherwise, we use an absolute term as shown in Eq. (21). An 570

advantage of the Huber function form is that the loss is less sensitive to outliers than the square loss 571

for large errors, which prevents exploding gradients. 572

 573

ℒ(𝜃) =
1

|𝑀sub|
∑ 𝐿𝐻 (𝑟 + 𝛾max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′: 𝜃′) − 𝑄(𝑠, 𝑎: 𝜃))

(𝑠,𝑎,𝑟,𝑠′)∈𝑀sub

 (21)

26

where

𝐿𝐻 (𝑟 + 𝛾max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′: 𝜃′) − 𝑄(𝑠, 𝑎: 𝜃)) =

{

 0.5 [𝑟 + 𝛾max

𝑎′∈𝐴
𝑄(𝑠′, 𝑎′: 𝜃′) − 𝑄(𝑠, 𝑎: 𝜃)]

2

 if |𝑟 + 𝛾max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′: 𝜃′) − 𝑄(𝑠, 𝑎: 𝜃)| < 1

|𝑟 + 𝛾max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′: 𝜃′) − 𝑄(𝑠, 𝑎: 𝜃)| − 0.5 otherwise

 574
Finally, it should be mentioned that during an episode, we also accumulate the rewards that are 575

negative. If the accumulated negative reward in an episode falls below a threshold, then the training of 576

the episode is perceived as not promising and consequently terminates. 577

Summarizing, the overall learning algorithm is presented in Algorithm 1 and illustrated in Fig. 4 578

below. 579

 580
Algorithm 1: Overall learning algorithm for the crowdshipping problem
1. Initialize replay memory 𝑀 = ∅
2. Initialize the original DNN with random weight parameters 𝜃
3. Initialize the target DNN with same structure as the original DNN and weight parameters 𝜃′ = 𝜃
4. for episode 𝑖 = 1 to 𝐼, do ⊳ 𝐼 is the number of episodes
5. Initialize state 𝑠0 ∈ 𝑆 ⊳ in the initial state 𝑠0, all crowdsourcees are unassigned
6. for time step 𝑡 = 1 to 𝑇, do ⊳ 𝑇 is the number of time steps in an episode
7.

Select a random action type 𝑎𝑡 with probability 𝜀; otherwise, set action type 𝑎𝑡 =
argmax
𝑎∈𝐴

𝑄(𝑠𝑡, 𝑎; 𝜃)

8. Execute a specific action under action type 𝑎𝑡, as guided by the corresponding heuristic in
subsection 3.2.3. This results in 𝑟𝑡 and 𝑠𝑡+1

9. Store experience 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝑀
10. if |𝑀| > |𝑀sub|, do
11. if ℝ𝑡 > 𝒦, do ⊳ ℝ𝑡 is accumulated negative reward in the episode; 𝒦 is a threshold
12. Randomly sample a minibatch 𝑀sub of experiences from 𝑀
13. for each experience 𝑒𝑗 = (𝑠𝑗, 𝑎𝑗 , 𝑟𝑗, 𝑠𝑗+1) in 𝑀sub, do
14. Compute 𝑟𝑗 + 𝛾max

𝑎′∈𝐴
𝑄(𝑠𝑗+1, 𝑎

′: 𝜃′)
15. end for
16. Calculate loss by Eq. (21)
17. Update weight parameters θ by the Adam optimizer
18. Update 𝜃′ = 𝜃 every 𝛿 time steps
19. else
20. break ⊳ if ℝ𝑡 < 𝒦, the training is perceived as not promising and stop
21. end if
22. end if
23. end for
24. end for
 581

27

Based on Algorithm 1 and the state and action space characterization, the complexity of DQN 582

training is examined, with results formalized as Remark 6 below. 583

 584
Remark 6. The computational complexity of DQN training in the context of crowdshipping is 585

𝑂({([(|𝐽| + ℓ)ℯ + ℓℯ2]|𝑀sub| + |𝐽|
2log|𝐽|)}𝐼𝑇), where ℓ is the number of hidden layers in the DNN, 586

ℯ is the upper bound on the number of neurons in a hidden layer, |𝑀sub| is minibatch size, 𝐼 is the 587

number of episodes, and 𝑇 is the upper bound on the number of time steps in an episode (note in line 588

20 of Algorithm 1 that training in an episode can stop earlier). 589

Proof. See Appendix A. 590

 591

 592
Fig. 4. The architecture of the overall learning algorithm 593

 594

3.4 Rule-interposing in DRL training and implementation 595

Whether in DRL training or in implementation of the trained policy, it is possible that some routes 596

or node sequences are repeatedly visited during neighborhood moves. This reduces the efficiency of 597

DRL training, as well as the efficiency in search for the best crowdsourcee-request assignment outcome 598

when a trained policy is applied to solve a problem instance (note that after DRL training is done, at a 599

given state 𝑠 the optimal Q-value only provides what type of action to take, i.e., 𝑎∗ = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) 600

where 𝑄∗ denotes the optimal Q-value). In this subsection, we propose two rules that aim to prevent 601

such repeated visiting of routes and node sequences, by excluding a previously visited route or node 602

28

sequence from being considered again in a number of subsequent actions. In what follows, the first 603

rule focuses on routes. The second rule focuses on node sequences. 604

3.4.1 Rule 1: Introducing priority lists for route selection 605

To avoid that actions are repeatedly exerted on one or a subset of crowdsourcee routes, the first 606

rule proposed relies on construction and use of three priority lists of crowdsourcee routes, with each 607

list corresponding to one of the three neighborhood move action types (intra-route move, inter-route 608

move, and 1-exchange) described in subsection 3.2.3. Specifically, when a neighborhood move action 609

type is chosen, we pick the crowdsourcee route(s) from the top of the corresponding priority list to 610

apply the action type. After the specific action is taken on the route(s), the route(s) are removed from 611

the list. Thus over time, routes will be continuously picked and removed from the priority list. The 612

priority list will be shortened, and eventually become empty. Then, we construct a new priority list of 613

all the crowdsourcee routes for the same action type. By doing so, during the life cycle of a priority 614

list, a route is considered only once for the associated action type. This allows more exploration of the 615

same action type on other routes. This construction-destruction of priority lists repeats throughout the 616

training and implementation of a trained DRL to solve a problem instance. 617

Each of the three priority lists is constructed based on some criterion. For intra-route move, the 618

priority list is constructed by sorting crowdsourcee routes in descending order based on the 619

crowdsourcee’s remaining available time, which is consistent with the rationale of Step 1 in subsection 620

3.2.3.2. For inter-route move, the priority list is constructed by sorting crowdsourcee routes in 621

descending order based on the occupation time of each crowdsourcee, measured as the duration 622

between the time of the last delivery and the time of the first pickup. This is in line with Step 1 in 623

subsection 3.2.3.3 (there we also consider the largest occupation time, though for requests). Thus, 624

request selection of Step 1 in subsection 3.2.3.3 will be only from the route with the highest priority. 625

After an inter-route move action is taken, that route is removed from the priority list. The occupation 626

time of the route to which the request is moved will be updated. The position of that route in the priority 627

list will also be updated, for which the computational complexity is O(log(𝑁)) based on binary search, 628

with 𝑁 being the number of crowdsourcee routes in the priority list. For 1-exchange move, the priority 629

list is constructed by sorting crowdsourcee routes in descending order based on unused service time, 630

which is consistent with Steps 1 and 2 in subsection 3.2.3.4. Thus, the selection of the first and the 631

second requests will be from the two routes with the highest and second highest priority respectively. 632

After a 1-exchange move action is taken, the two routes will be removed from the priority list. 633

29

3.4.2 Rule 2: Imposing Tabu tenure for neighborhood moves 634

The second interposing rule is that after a request node (either pickup or delivery) is moved away 635

from an adjacent node (either right before or right after in the routing sequence) on a crowdsourcee 636

route, the former node cannot be moved back to the same location relative to the latter node over a 637

certain number of subsequent actions. This latter node can be of a different request, or of the same 638

request (i.e., the former node is the pickup node of a request, and the latter node is the delivery node 639

of the same request). Similar to Rule 1, this rule applies to the three types of neighborhood moves 640

(intra-route move, inter-route move, and 1-exchange). For each type of neighborhood move, a Tabu 641

tenure will be created to record for how many subsequent actions a request node cannot be neighbored 642

with another node. Similar to Rule 1, Tabu tenure allows neighborhood moves to explore more routing 643

sequences, rather than getting trapped in routing sequences that have been explored and only locally 644

optimal. 645

To operationalize Tabu tenure, two matrices are created and maintained. The first matrix, of 646

dimension 2|𝐽| × 2|𝐽|, indicates whether a node (indexed by the column. There are in total |𝐽| requests 647

thus 2|𝐽| pickup and delivery nodes) preceding another node (indexed by the row) is Tabu-ed and for 648

how long. The second matrix, of dimension (|𝐾| + 2|𝐽|) × 2|𝐽|, indicates whether a node (indexed by 649

the column) following another node (indexed by the row) is Tabu-ed and for how long. The second 650

matrix has |𝐾| more rows which correspond to the origins of the |𝐾| crowdsourcees, as a pickup node 651

can be placed right after the origin of a crowdsourcee. Given that the two matrices are relatively sparse, 652

we adopt a three-coordinate representation that records only the row number, column number, and 653

value of the non-zero elements (indicating for how many subsequent actions a position is Tabu-ed) of 654

a sparse matrix, rather than storing the entire matrix. For example, suppose we deal with the preceding 655

relationships of two requests (|𝐽| = 2), which leads to a matrix of 4 × 4. If node 1 (pickup node of 656

request 1) preceding node 3 (pickup node of request 2) is Tabu-ed for the next two subsequent actions, 657

and node 2 (delivery node of request 1) preceding node 4 (delivery node of request 2) is Tabu-ed for 658

the next three subsequent actions, we record only two elements in each of three lists: Row list: [3, 4]; 659

Column list: [1, 2]; and Data list: [2, 3]. In our numerical experiments in Section 4, this dealing with 660

sparse matrices is shown to significantly reduce DRL training time (by 14%). The precedence/ 661

succession relationships are updated whenever an action is taken. Note that if a Tabu-ed position yields 662

a solution that is better than the best solution obtained so far for a problem, then the Tabu tenure will 663

be overridden. 664

30

4 Numerical experiments 665

This section illustrates numerical implementation of the proposed methodology described in 666

Section 3. We primarily investigate two problem sizes: a medium size with 50 requests and 22 667

crowdsourcees, and a larger size with 200 requests and 70 crowdsourcees. In subsection 4.1, we first 668

present and discuss the results for the medium-size problems in detail, including problem setup, 669

training results, results comparison with full, partial, and no time-related information in the state space, 670

benefits of heuristics-guided action choice and rule-interposing, and results sensitivity to key 671

hyperparameters. To further gauge the performance of the DRL-based approach, benchmarking is 672

performed in subsection 4.2. This includes comparison with three popular heuristic methods as well as 673

with optimal solutions that can be obtained for a series of small-size problem instances. In subsection 674

4.3, to keep the paper length we briefly report implementation results for the larger-size problem 675

instances in terms of total shipping cost and computation time, in comparison with the three heuristics. 676

The DQN algorithm is coded and trained in the PyTorch environment. All numerical investigations are 677

conducted on a PC with Intel Core i9-10920X CPUs at 3.50GHz and 128GB RAM and NVIDIA Titan 678

RTX GPUs. 679

4.1 Medium-size problems: DRL training and application 680

4.1.1 Setup 681

As mentioned above, we consider a static problem of assigning 50 requests to 22 crowdsourcees. 682

Following Remark 1, the dimension of the state space is 11 × 50 + 8 × 22 = 726. The service area 683

has a square shape of 6 miles × 6 miles. For a problem instance in both training and testing, the pickup 684

and delivery locations of each request are randomly generated in the service area. So are the origins of 685

the crowdsourcees. The available time of a crowdsourcee is randomly drawn from a uniform 686

distribution of 1-2 hours. The weight of a shipping request is also randomly drawn from a uniform 687

distribution of 2-7 lbs. The carrying capacity of a crowdsourcee is 10 lbs. The earliest pickup time of 688

all requests is the present time. The latest delivery time of a request is randomly drawn from a uniform 689

distribution of 100-120 minutes. Crowdsourcees are assumed to bike to perform pickup and delivery 690

at a speed of 10 mph. Given that all problem instances are randomly generated, in the statistical sense 691

there should be no difference between instances for training and testing. On the other hand, as a very 692

large number of instances are used (e.g., 808 instances used in training), for illustration we only present 693

two randomly picked instances, one from training and one from testing, as shown in Appendix B. No 694

significant differences (apart from the effect due to randomness) among the instances can be discerned. 695

31

If a request is not assigned to any crowdsourcees, it will be picked up and delivered by a backup 696

vehicle which leaves a depot located at the center of the service area and returns to the depot after 697

finishing the delivery. Given the small weight of a request relative to the typical carrying capacity of a 698

backup vehicle, capacity constraints are not considered for backup vehicles. We assume backup 699

vehicles travel at a speed of 20 mph. We follow Kafle et al. (2017) by setting the operating cost of a 700

backup vehicle to be $68/hour ($1.13/minute) and the pay rate for crowdsourcees to be $10/hour 701

($0.17/minute), which is considerably cheaper. Crowdsourcees get paid whenever carrying requests. 702

Following Mnih et al. (2015), values of hyperparameters, shown in Table 2, are selected by 703

performing an informal search. It should be noted that since these hyperparameter values are chosen 704

for our specific crowdshipping problems, they may not be the best hyperparameter values for other 705

problem settings. Nonetheless, if a new problem setting bears similarities with our crowdshipping 706

problems (e.g., a pickup and delivery problem with capacity constraints only or without constraints), 707

the hyperparameter values identified here could be a good start point for hyperparameter fine tuning. 708

We set 𝑇 = 85 time steps as the upper bound on the length of an episode, the penalty parameters in 709

the reward specification to be 𝜗 = 0.1, 𝜏 = 0.2, and 𝜌𝜙 = 0.15 minutes/capacity violation, and the 710

length of Tabu tenure to be three consecutive actions. We choose a 6-layer (i.e., ℓ = 6) fully connected 711

feed-forward neural network as our DNN construction, where each hidden layer has 512 neurons (i.e., 712

ℯ = 512). 713

 714
Table 2: Hyperparameter values 715

Hyperparameter Value
Replay memory size (|𝑀|) 15,000
Minibatch size (|𝑀sub|) 256
Target network update frequency (𝛿) 400
Discount factor (𝛾) 0.88
Learning rate (𝛼) 0.0001
Decay rate (𝜉) 0.001
Episode termination threshold (𝒦) -55

 716

4.1.2 Training results 717

Fig. 5 plots the evolution of training over time steps, using four measures: (a) loss per time step. 718

The light purple curve reflects the actual values, while the red curve is the running average over three 719

time steps; (b) average Q-value, averaged over all state-action pairs in a minibatch. Similar to (a), the 720

light purple curve reflects the actual values, while the red curve is the running average over 65 time 721

steps; (c) accumulated reward between two terminations. As described in subsection 3.3, a termination 722

32

occurs when the accumulated negative reward falls below threshold 𝒦 (line 20 of Algorithm 1); (d) 723

cumulative penalty, which is the sum of the last three terms in the parentheses (multiplied by 𝛽𝑐) in 724

Eq. (14)-(15) over all time steps from the start of the training. In (a) and (b), running averages are taken 725

to better illustrate the changes and trends. The training stops when the relative change in cumulative 726

penalty in the most recent 3,000 time steps is less than 5%. In total, 46,071 time steps (778 episodes) 727

are used in the DQN training. The training takes 49.3 minutes. 728

Fig. 5(a) illustrates that in the early stage of training, the loss value per time step experiences a 729

jump every 400 time steps (as made clearer in the zoom-in view), which corresponds to an update of 730

the target network. The jumps are particularly acute in the beginning since the agent has little learned 731

experience then. The magnitude of jumps diminishes as learning continues. In Fig. 5(b), the average 732

Q-value keeps improving till after 13,500 time steps. Before that, updates in the DNN considerably 733

improve the DQN algorithm which yields better solutions. Fig. 5(b) also shows a magnifier of the first 734

5,000 time steps. It is interesting to observe step-wise jumps every 400 time steps, which is again the 735

target network update frequency. In other words, whenever updating the target network, it leads to a 736

significant improvement in average Q-value. The magnitude of the jumps decreases over time steps, 737

suggesting that the marginal improvement of the DQN algorithm is diminishing as training continues. 738

In Fig. 5(c), the accumulated reward between two terminations tends to stabilize after around 42,000 739

time steps. Fig. 5(d) shows that the accumulative penalty over all time steps becomes stable a bit later: 740

after around 38,000 time steps, the DQN algorithm becomes well trained that taking actions suggested 741

by the DQN algorithm will cause little violation of time and capacity constraints (which incurs penalty) 742

during neighborhood moves. 743

 744

(a)

33

(b)

(c)

(d)

Fig. 5. Evolution of (a) loss; (b) average Q-value; (c) accumulated reward between two terminations; 745
and (d) cumulative penalty in the course of DQN training 746

 747
To further show the effectiveness of the DQN algorithm training, we apply the DQN algorithm 748

throughout its training to three randomly generated problem instances of the same size (50 requests 749

and 22 crowdsourcees). Fig. 6 shows the TSC results when applying the DQN algorithm with the most 750

up-to-date DNN weight parameters every 40 episodes. It can be seen that TSC will be drastically 751

reduced after the first 40 episodes. For example, for problem instance 1 TSC reduces by more than 752

three-quarters from 1,475 to less than 250. Afterwards, the improvement in TSC is more incremental 753

with some rebounds. After 640 episodes, TSC becomes very stable for all three problem instances (as 754

shown further in the zoom-in view). 755

34

 756

 757
Fig. 6. Evolution of total shipping cost during training 758

 759

4.1.3 Assessing the benefits of heuristics-guided action choice 760

Recall that one novelty of our proposed DRL algorithm lies in the embedment of heuristics-guided 761

action choice in DRL. At each time step, the DRL agent performs one of the five types of actions to 762

create new or change existing crowdsourcee routes. To compare the proposed DRL algorithm with a 763

DRL algorithm without heuristics-guided action choice, a neighborhood move will be randomly 764

chosen given any of the first four action types, as described in Appendix C. Similar to what we do in 765

Fig. 6, we apply the DQN algorithm throughout its training to two randomly generated problem 766

instances and present the TSC results using the most up-to-date DNN weight parameters every 40 767

episodes. For each problem instance, we train the DQN algorithm twice, one with heuristics-guided 768

action choice and the other without. The results are shown in Fig. 7. 769

 770

 771
Fig. 7. Comparison of total shipping cost with and without 772

heuristics-guided action choice during training 773

35

 774
We observe that at the beginning of the training, the TSC curve with heuristics-guided action 775

choice (solid line) is higher than without heuristics-guided action choice (dashed line) for both problem 776

instances. However, for the rest of training, the TSC curves with heuristics-guided action choice are 777

well below the TSC curves without heuristics-guided action choice. At the end of training, a substantial 778

TSC gap remains. The final TSC without heuristics-guided action choice is 24.5 and 10.5% higher than 779

with heuristics-guided action choice, for the two problem instances respectively. The results clearly 780

show the advantage of heuristics-guided action choice in DQN training. 781

Fig. 8 presents comparisons of applying the trained DRL models to 20 randomly generated 782

problem instances. The reduction of TSC with heuristics-guided action choice is clearly observed. 783

Across the 20 problem instances, the average TSC reduction is 11.4% with a standard deviation of 784

9.6%. The largest reduction, which occurs to problem instance 8, is 35.5%. 785

 786

 787
Fig. 8. Comparison of total shipping cost with and without 788

heuristics-guided action choice during testing 789
 790

Fig. 9 reports further the DQN training time without and with heuristics-guided action choice. To 791

make sensible comparisons, we let training without heuristics-guided action choice run same number 792

of time steps. The results show that the training time with heuristics-guided action choice (49.3 793

minutes) is much larger than without heuristics-guided action choice (29.6 minutes). This suggests that 794

a non-trivial amount of added computation is needed during training for heuristics-guided action choice 795

to achieve lower TSC. 796

 797

36

 798
Fig. 9. Comparison of training time with and without heuristics-guided action choice 799

 800

4.1.4 Assessing the benefits of rule-interposing 801

In this subsection we evaluate the benefits of another novelty of the proposed DRL algorithm: the 802

integration of rule-interposing into DRL training and implementation. As in Fig. 7, we apply the DQN 803

algorithm throughout its training to the same two randomly generated problem instances, and present 804

the TSC results using the most up-to-date DNN weight parameters every 40 episodes. For each problem 805

instance, we train the DQN algorithm twice, one with rule-interposing and the other without. The 806

results are shown in Fig. 10. 807

For the first problem instance (in blue), although the TSC without the two rules appears to be 808

diminishing at the beginning of the training, the TSC value rebounds after 80 episodes, then declines 809

and meets the TSC curve when the two rules are used at around 240 episodes. Afterwards, the TSC 810

curve without the two rules experiences some fluctuations, surges after around 560 episodes, and 811

remains well above the TSC curve with the two rules. At the end of the training, the TSC without the 812

two rules is 24.3% higher than with the rules. For the second problem instance (in red), the TSC curve 813

without the two rules experiences greater fluctuations throughout the episodes. Overall, the results also 814

demonstrate the advantage of rule-interposing in DQN training. 815

 816

37

 817
Fig. 10. Comparison of total shipping cost with and without rule-interposing 818

 819
Fig. 11 presents comparisons of applying the trained DRL models to the same 20 randomly 820

generated problem instances as in subsection 4.1.3. We observe an overall TSC reduction with rule-821

interposing. The average TSC reduction across all 20 instances is 9.2% with a standard deviation of 822

12.1%. The largest reduction, which occurs to problem instance 17, is 34.5%. 823

 824

 825
Fig. 11. Comparison of total shipping cost with and without rule-interposing during testing 826

 827
Fig. 12 reports further the DQN training time with and without the two rules embedded. Again, to 828

make sensible comparisons, we allow the training without the two rules to run the same number of 829

time steps. The results show that the training time with rule-interposing (49.3 minutes) is only slightly 830

higher than without rule-interposing (47.1 minutes). 831

 832

38

 833
Fig. 12. Comparison of training time with and without rule-interposing 834

 835

4.1.5 Comparison with full, partial, and no time-related information in state space 836

A uniqueness of the state representation is the specification and inclusion of a variety of time 837

information that relate to both requests and crowdsourcees. A question arises as to how important such 838

information is in training the DRL agent. To this end, this subsection investigates the possibility of 839

having lower-dimension state space representation without part or all of the time-related information. 840

Specifically, three alternatives are investigated. The first alternative does not have request-related time 841

information, that is, we remove 𝑆𝑟 from the three-tuple state representation 𝑠𝑡 = {𝑆𝑙 , 𝑆𝑟, 𝑆𝑐}. The 842

second alternative does not have crowdsourcee-related time information, that is, we remove 𝑆𝑐 from 843

the three-tuple except for 𝜂𝑘 which records violation of crowdsourcee carrying capacity. The third 844

alternative is an additive of the first two alternatives, i.e., the state space does not include any time 845

information related to requests and crowdsourcees. As a result of absent time information, a step in a 846

heuristic that is directed by time information will be performed randomly. For example, if request-847

related information is removed, step 1 of insertion (subsection 3.2.3.1) would randomly select an 848

unassigned request, rather than selecting the request with the smallest slack time. 849

A DRL model is trained under each of the three alternatives, and then applied to 20 randomly 850

generated problem instances along with the DRL model trained with full time-related information as 851

in subsection 3.2.2. Fig. 13 below reports the results. It can be seen that time information plays a crucial 852

role in guiding crowdsourcee route construction and improvement to reduce total shipping cost. 853

Without any or with only partial time information, the total shipping cost would be higher—in many 854

problem instances significantly. The results clearly suggest the importance to have the full time-related 855

information while characterizing the state space. 856

 857

39

 858
Fig. 13. Comparison of total shipping cost with full, partial, and no time-related 859

information in the state space 860
 861

4.1.6 Sensitivity of DQN training to hyperparameter values 862

Finally, we investigate the sensitivity of DQN training to the values of four key hyperparameters: 863

(a) decay rate 𝜉; (b) learning rate 𝛼; (c) discount factor 𝛾; (d) target network update frequency 𝛿. Fig. 864

14 presents the results. In each graph in Fig. 14, a curve corresponds to a specific value of the 865

hyperparameter under investigation and is obtained in a similar fashion as the curves in Fig. 6, for a 866

randomly generated problem instance. For a given graph, the three other hyperparameters not 867

investigated in the graph take their values in Table 2. While Fig. 14 reports TSC values of one problem 868

instance, we have also experimented with many other randomly generated problem instances and found 869

consistent results. It can be seen that, for all graphs in Fig. 14, the chosen value for each hyperparameter 870

produces more stable TSC curves than the alternative values. In addition, the final TSC using the 871

chosen hyperparameter value is always no worse than using alternative values, which reaffirms our 872

choice of the hyperparameter values. 873

 874

(a)

40

(b)

(c)

(d)

Fig. 14. Sensitivity of total shipping cost to different hyperparameter values: (a) 𝜉; (b) 𝛼; (c) 𝛾; (d) 𝛿 875
 876

4.2 Benchmarking 877

To further gauge the performance of the DRL-based approach, benchmarking is performed in this 878

subsection. We first compare the DRL-based approach with three popular heuristic methods: simple 879

heuristic, reactive Tabu search (RTS), and simulated annealing (SA), for problem instances of the same 880

size as in subsection 4.1. We also compare the DRL-based approach against optimal solutions, which 881

come from formulating the problem as a mixed-integer linear program (MILP) and solving the MILP 882

by CPLEX. The sizes of the problem instances are smaller so that optimal solutions can be obtained 883

41

within a reasonable amount of time (as is shown in subsection 4.2.2, even for such small sizes CPLEX 884

still cannot yield a solution for some instances). 885

4.2.1 Comparison with heuristic methods 886

Among the three heuristic methods, the simple heuristic basically performs Steps 1-2 of the 887

insertion action described in subsection 3.2.3.1, and can generate solutions very fast. However, it does 888

not explore neighborhood moves. Therefore, the resulting solution can be far from optimum. RTS is a 889

hierarchical heuristic that dynamically adjusts search parameters and alternates between different 890

neighborhoods while seeking the optimal routing solution, based on the state and quality of the search. 891

Our implementation of RTS follows Nanry and Barnes (2000) with consideration of three types of 892

neighborhood moves (intra-route move, inter-route move, and 1-exchange). SA is based on the analogy 893

between the simulation of solids annealing and the problem of solving large combinatorial optimization 894

problems (Kirkpatrick et al., 1983; van Laarhoven and Aarts, 1987). Prior research shows that SA can 895

yield reasonably good solutions for large VRP instances and can be faster than other heuristics such as 896

Tabu search and genetic algorithm (Tan et al., 2001). At each temperature during cooling, an intra-897

route move, an inter-route move, and an 1-exchange move as described in Ahamed and Zou (2020) are 898

performed in sequence, with each move followed by an evaluation that accepts not only an improved 899

solution, but also an inferior solution with certain probability. The parameter setting of SA follows 900

those in Kafle et al. (2017). 901

For the simple heuristic, it terminates when all feasible insertions of requests are performed. In 902

implementing RTS and SA, we allow for a sufficient number of iterations until the reduction in TSC 903

is not visible (TSC change is less than 2% in the last ten iterations). Fig. 15 presents the TSC results 904

using DRL and the three heuristics, for 20 randomly generated problem instances. DRL yields the best 905

solution in 18 out of the 20 problem instances. In contrast, the solutions using the simple heuristic are 906

the worst, despite small computation time as shown in Fig. 16. On the other hand, while the TSC results 907

from RTS and SA are closer to those using DRL, the computation time is much longer, by more than 908

an order of magnitude (20-40 minutes vs. mostly less than 1 second). Considering both solution quality 909

and time, the comparison clearly indicates the superiority of DRL. 910

 911

42

 912
Fig. 15. Comparison of DRL with existing heuristics in terms of TSC (medium-size problems) 913

 914

 915
Fig. 16. Comparison of DRL with existing heuristics in computation time (medium-size problems) 916

 917

4.2.2 Benchmarking with optimal solutions 918

To further investigate how close the solutions obtained from our approach are from the optimal 919

solutions, we create two sets of benchmarking problem instances following the same procedure 920

described in subsection 4.1.1. However, these instances have smaller sizes: problem instances in the 921

first set each have six requests and three crowdsourcees. Problem instances in the second set each have 922

eight requests and four crowdsourcees. We consider the smaller-size instances so that they can be 923

solved to optimality using commercial solvers in a reasonable amount of time. These problem instances 924

are deposited in GitHub for potentially further use by other researchers.3 925

The comparison results are shown in Tables 3-4. The 20 problem instances in Table 3 are those 926

from the first set. The 15 problem instances in Table 4 correspond to the second set. Appendix D 927

3 https://github.com/tahame2/DRL_benchmarking_2021.git

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Ftahame2%2FDRL_benchmarking_2021.git&data=04%7C01%7Cbzou%40uic.edu%7Ce5070ee68a504101696f08d90658ca03%7Ce202cd477a564baa99e3e3b71a7c77dd%7C0%7C0%7C637547801128330595%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=pF2mS72DXI0wbZgkJJpjeQ4CrSWA%2FwpMT65k01a59JE%3D&reserved=0

43

presents a Hamiltonian tour-based MILP formulation for the problems, which is solved by CPLEX 928

12.8 using the branch-and-bound method. Each problem instance is also solved by DRL. We report 929

both TSC and computation time using CPLEX and DRL. The last column in each table shows the 930

optimality gap (%), calculated as TSCDRL−TSCCPLEX
TSCCPLEX

× 100%, where TSCDRL is the TSC value from DRL 931

and TSCCPLEX is the TSC value using CPLEX. 932

For the first set of problem instances, the optimality gap is between -3% and 16%, with an average 933

of 5.4%. We note that this average is comparable with some reported average gaps using DRL (e.g., in 934

Nazari et al., 2018), though their context is solving general VRP rather than crowdshipping problems. 935

The negative optimality gap is because the solution produced by CPLEX may not be exactly optimal 936

due to: 1) gap tolerance (the difference the best upper and lower bounds); and 2) integrality toleration 937

for integer variables. The occurrence of the negative gap and very small positive gap suggests that in 938

those instances DRL can yield solutions that are very close to the exact optimal solutions. On the other 939

hand, the computation time using CPLEX is much longer, with an average of 12.7 seconds, as 940

compared to 0.07 seconds by DRL. A similar conclusion can be made for the second set of problem 941

instances in Table 4, with an average optimality gap of 6.2%. It should be noted that with the slight 942

increase in problem size, the computation time by CPLEX has increased substantially, from an average 943

of 12.7 seconds to 16.6 minutes. In contrast, the average computation time by DRL remains at 0.07 944

seconds, suggesting strong scalability of the DRL approach. 945

 946

44

Table 3: Comparison of solving 20 randomly generated problem instances 947
each with 6 requests and 3 crowdsourcees using CPLEX and DRL 948

Problem instances
CPLEX DRL Optimality

Gap (%) Total shipping
cost ($)

Computation
time (second)

Total shipping
cost ($)

Computation
time (second)

P_6_3_1 29.6 27.0 31.5 0.04 6.4
P_6_3_2 24.6 3.4 24.3 0.10 -1.2
P_6_3_3 27.8 5.7 29.2 0.09 5.0
P_6_3_4 28.0 40.0 30.4 0.06 8.6
P_6_3_5 30.8 6.0 30.7 0.08 -0.3
P_6_3_6 25.8 4.0 25.8 0.07 0.0
P_6_3_7 26.8 3.0 29.6 0.07 10.4
P_6_3_8 27.8 9.5 27.2 0.07 -2.2
P_6_3_9 21.4 3.3 20.8 0.07 -2.8
P_6_3_10 25.5 30.2 28.2 0.07 10.6
P_6_3_11 29.6 3.7 30.9 0.06 4.4
P_6_3_12 24.5 7.0 27.9 0.05 13.9
P_6_3_13 15.4 2.5 17.2 0.05 11.7
P_6_3_14 25.7 2.9 28.0 0.07 8.9
P_6_3_15 19.5 3.0 20.9 0.07 7.2
P_6_3_16 37.4 54.5 36.6 0.06 -2.1
P_6_3_17 19.5 3.3 19.4 0.06 -0.5
P_6_3_18 21.2 2.5 22.2 0.06 4.7
P_6_3_19 25.9 39.6 30.1 0.06 16.2
P_6_3_20 21.1 3.0 22.9 0.06 8.5
Average 12.7 0.07 5.4

 949
Table 4: Comparison of solving 15 randomly generated problem instances 950

each with 8 requests and 4 crowdsourcees using CPLEX and DRL 951

Problem instances
CPLEX DRL Optimality

Gap (%) Total shipping
cost ($)

Computation
time (min)

Total shipping
cost ($)

Computation
time (second)

P_8_4_1 37.1 27.9 39.9 0.07 7.5
P_8_4_2 36.2 124.1 37.6 0.07 3.9
P_8_4_3 39.6 3.5 42.9 0.07 8.3
P_8_4_4 27.2 1.1 29.8 0.06 9.6
P_8_4_5 27.6 7.3 31.3 0.06 13.4
P_8_4_6 31.9 3.9 33.2 0.07 4.1
P_8_4_7 31.6 6.5 33.2 0.07 5.1
P_8_4_8 31.8 7.1 34.1 0.06 7.2
P_8_4_9 36.6 29.2 39.5 0.07 7.9
P_8_4_10 29.6 4.1 29.5 0.06 -0.3
P_8_4_11 26.0 1.4 25.6 0.09 -1.5
P_8_4_12 35.7 31.5 37.3 0.07 4.5
P_8_4_13 29.6 0.8 32.7 0.08 10.5
P_8_4_14 27.7 0.1 27.7 0.06 0.0
P_8_4_15 24.4 0.8 27.7 0.05 13.5
Average 16.6 0.07 6.2

 952

45

4.3 Larger-size problems 953

4.3.1 Setup 954

The larger-size problem instance considers problems of assigning 200 requests to 70 955

crowdsourcees, which are of comparable size to many pickup-and-delivery operation planning 956

problems investigated in the existing literature (Liu et al., 2015; Braekers and Kovacs, 2016; Ghilas et 957

al., 2016). Apart from a larger number of requests and crowdsourcees, other setups and problem 958

instance generation are the same as in the medium-size problems. With a larger problem size, it is 959

natural to expect a higher number of time steps per episode to insert all requests and perform 960

neighborhood moves of the requests. Therefore, we increase the length of an episode to 300 time steps. 961

Following a similar informal search as in subsection 4.1.1, the penalty parameters in the reward 962

specification are set to be 𝜗 = 0.25, 𝜏 = 0.15, and 𝜌𝜙 = 0.2, and the length of Tabu tenure to be 12 963

subsequent actions. The episode termination threshold 𝒦 is decreased to -175. Decay rate 𝜉 is set as 964

0.002. Other hyperparameter values remain the same. The training time takes 3 hours and 22 minutes. 965

4.3.2 Comparison of solutions using DRL and heuristics 966

We compare performance of the DRL-based approach with the three same heuristics as in 967

subsection 4.2.1. 20 problem instances with 200 requests and 70 crowdsourcees are randomly 968

generated. Fig. 17 shows that DRL yields the best solution in 18 out of the 20 instances. Again, the 969

solutions from the simple heuristic are always the worst, despite small computation time (Fig. 18). 970

While the resulting TSC values from RTS and SA are closer to those from DRL, the computation time 971

is much longer (between 15-20 minutes vs. 2-3 seconds in most cases by DRL). By comparing the 972

change in computation time from the medium-size problem (Fig. 14), it is clear that DRL is much more 973

scalable than RTS or SA. 974

 975

46

 976
Fig. 17. Comparison of DRL with existing heuristics in terms of TSC (larger-size problems) 977

 978

 979
Fig. 18. Comparison of DRL with existing heuristics in computation time (larger-size problems) 980

 981

5 Conclusion 982

Crowdshipping has gained increasing popularity for urban delivery given the low cost of hiring 983

ad hoc couriers to perform pickups and deliveries. In this paper, we propose a novel, deep 984

reinforcement learning-based approach to seek high-quality and computationally efficient assignment 985

of requests to crowdsourcees. In performing the assignment, we consider that requests have time 986

windows for pickup and delivery. In addition, crowdsourcees have limited time availability and 987

carrying capacity. The novelty of the proposed DRL approach lies in its new characterization of system 988

states, the embedment of heuristics-guided action choice, and the integration of rule-interposing into 989

DRL training and implementation. The computational complexities of the heuristics and the overall 990

47

DQN training are investigated. The effectiveness of the approach is demonstrated through extensive 991

numerical analysis. The results show the benefits brought by the heuristics-guided action choice, rule-992

interposing, and having time-related information in the state space in DRL training, the near-optimality 993

of the solutions obtained, and the superiority of the proposed approach over existing methods in terms 994

of solution quality, computation time, and scalability. 995

With its comprehensive and detailed specifications of states, actions, and rewards, the proposed 996

approach not only has the potential to improve the efficiency of crowdshipping operation planning, but 997

provides a new avenue that may be adapted to other pickup and delivery problems and vehicle routing 998

contexts. For example, another type of crowdshipping with all requests originating from a central 999

location (depot) can be viewed as a special case of the problems investigated in this paper. Also, while 1000

we consider dedicated crowdsourcees in the paper, the proposed DRL-based approach can be 1001

conveniently adapted to the context of opportunistic crowdsourcees given the origin and destination of 1002

the original trip of each crowdsourcee. 1003

For possible extension of the proposed approach, we suggest a few directions. First, future efforts 1004

could be made to investigate a dynamic version of the problem. In this case, different initial states 1005

should be considered for different problem instances. Each time right before an assignment, the system 1006

state needs to reflect en-route crowdsourcees and idle crowdsourcees, the latter including those left 1007

unassigned from the previous assignment and new arrivals. Similarly, system state needs to encompass 1008

information of unassigned requests, including those left unassigned from the previous assignment and 1009

new arrivals. Second, in the real world the pickup and delivery locations of shipping requests are 1010

usually in different spatial distributions (e.g., the locations of restaurants/retail stores in a city may be 1011

quite different from the locations of residential buildings), which gives rise to the need for proactively 1012

relocating idle crowdsourcees to balance the spatial distribution of crowdsourcee supply and request 1013

pickup demand. It will be interesting to explore how to incorporate relocation decisions in the DRL 1014

framework. A third direction is to explore other DRL algorithms, including the effect of the state space 1015

dimension on training efficiency of those algorithms as compared to DQN. Lastly, some behavioral 1016

aspects, e.g., a crowdsourcee rejects an assigned request, could be added to further enrich the flexibility 1017

of the DRL model. 1018

Acknowledgment 1019

This research is funded by the National Science Foundation under Grant Number CMMI-1020

1663411. The financial support of the National Science Foundation is gratefully acknowledged. An 1021

earlier version of the paper was presented at the INFORMS 2020 Annual Meeting. We also thank the 1022

48

three anonymous reviewers and Professor Qiang Meng, the Associate Editor, for their constructive 1023

feedback which has helped us significantly improve the paper. 1024

 1025

49

Appendix A: Proofs of Remarks 1-6 1026

Proof of Remark 1. We look at the dimension of each component in the three-tuple of {𝑆𝑙 , 𝑆𝑟, 𝑆𝑐}. 𝑆𝑙 1027

specifies: 1) the coordinate of each node; 2) the coordinate of the successor node of a pickup node (if 1028

the request is assigned); 3) the coordinate of the predecessor node of a delivery node (if the request is 1029

assigned); and 4) the coordinate of the first node visited by a crowdsourcee. The number of nodes is 1030

2|𝐽| + |𝐾|. Thus, the dimension of 𝑆𝑙 is 2((2|𝐽| + |𝐾|) + |𝐽| + |𝐽| + |𝐾|) = 8|𝐽| + 4|𝐾|,where the 1031

multiplication by 2 is because each coordinate contains longitude and latitude. For the second 1032

component, 𝑆𝑟 specifies: 1) slack time of each request; 2) unused service time of each request; and 3) 1033

occupation time of each request. The dimension of 𝑆𝑟 is |𝐽| + |𝐽| + |𝐽| = 3|𝐽| . For the third 1034

component, 𝑆𝑐 specifies: 1) the routing duration for each crowdsourcee; 2) total delivery time violation 1035

of each crowdsourcee route; 3) remaining available time for each crowdsourcee; and 4) capacity 1036

violation of each crowdsourcee route. The dimension of 𝑆𝑐 is |𝐾| + |𝐾| + |𝐾| + |𝐾| = 4|𝐾| . So 1037

overall, the dimension of the state space is 8|𝐽| + 4|𝐾| + 3|𝐽| + 4|𝐾| = 11|𝐽| + 8|𝐾|. ■ 1038

 1039

Proof of Remark 2. We first investigate the computational complexity of insertion for each of the 1040

three steps, based on which the overall computational complexity can be drawn. Step 1 requires 1041

calculation of slack time of at most |𝐽| requests, which will be directly extracted from the system state 1042

thus taking a constant time. Selecting the request with the smallest slack time requires sorting, whose 1043

complexity is 𝑂(|𝐽|log|𝐽|). So the overall complexity of Step 1 is 𝑂(|𝐽|log|𝐽|). 1044

Step 2 requires calculation of the distance between the selected request and the end of each 1045

crowdsourcee routes. There are at most |𝐾| crowdsourcee routes. Thu, the distance calculation has a 1046

complexity of 𝑂(|𝐾|). Once the distances are obtained, a sorting is needed to identify the smallest 1047

distance, whose complexity is 𝑂(|𝐾|log|𝐾|). So the overall complexity of Step 2 is 𝑂(|𝐾|log|𝐾|). 1048

Step 3 performs intra-route move. Given the limited number of requests a crowdsourcee can carry, 1049

the computation time for intra-route operation is bounded by a constant (see proof of Remark 3). The 1050

computation time for subsequent feasibility check is also bounded by a constant. The worst case is that 1051

we check feasibility of inserting the request to all crowdsourcee routes and finds none is feasible for 1052

the request. So the complexity is 𝑂(|𝐾|). 1053

In this worst case, we need to move to the next request in the sorted list from Step 1, and perform 1054

Step 2 for the request. The overall worst case is that we check every request. Thus, the complexity of 1055

Steps 2-3 combined is 𝑂(|𝐽||𝐾|log|𝐾|). Given that |𝐾| ≤ |𝐽| (i.e., the number of crowdsourcees is no 1056

50

more than the number of requests) and the complexity of Step 1 is 𝑂(|𝐽|log|𝐽|), the overall complexity 1057

of insertion is 𝑂(|𝐽|2log|𝐽|). ■ 1058

 1059

Proof of Remark 3. Similar to the proof of Remark 1, we first look into the computational complexity 1060

of each step in insertion. Step 1 requires sorting of at most |𝐽| crowdsourcee routes based on each 1061

route’s remaining available time (which comes directly from the system state). Thus, the complexity 1062

of Step 1 is 𝑂(|𝐽|log|𝐽|). For Step 2, the computation time is bounded by a constant. This is because 1063

the number of requests that can be accommodated by a route is bounded given the limited carrying 1064

capacity of a crowdsourcee. Therefore, the number of possible moves in this step in a route is bounded. 1065

For Step 3, it involves sorting of the moves based on routing cost and comparison with the original 1066

routing cost. Again, given that the number of possible moves is bounded, the computation complexity 1067

of this step is a constant. Thus, overall, the computational complexity of intra-route move is 1068

𝑂(|𝐽|log|𝐽|). ■ 1069

 1070

Proof of Remark 4. Step 1 of an inter-route move requires sorting of the assigned requests based on 1071

occupation time (which comes directly from the system state), thus having a computational complexity 1072

of (|𝐽|log|𝐽|). The computational complexity of Step 2 is 𝑂(|𝐾|log|𝐾|), as it follow the same step in 1073

insertion. Similar to the argument in intra-route move, the computation complexity of Step 3 is a 1074

constant as the number of possible moves is bounded (because the number of requests that can be 1075

accommodated by a route is bounded). Considering that |𝐽| ≥ |𝐾| , the overall complexity is 1076

𝑂(|𝐽|log|𝐽|). ■ 1077

 1078

Proof of Remark 5. Step 1 of a 1-exchange move involves sorting assigned requests based on unused 1079

service time (which comes from the system state), thus having a computation complexity of 1080

𝑂(|𝐽|log|𝐽|). Step 2 does not involve further computation, as sorting is already done (excluding the 1081

route associated with the first selected request does not require another sorting). Step 3 exchanges the 1082

selected requests, which takes a constant time. Step 4 performs intra-route move of the two requests in 1083

their respective new routes, whose computational complexity is a constant following the same 1084

argument as in the proof of Remark 2. Thus, the overall complexity of 1-exchange is 𝑂(|𝐽|log|𝐽|). ■ 1085

 1086

Proof of Remark 6. The complexity of DQN training depends on the number of parameters in the 1087

DNN to be trained. First, recall from Remark 1 that the state space has a dimension of (11|𝐽| + 8|𝐾|). 1088

51

Thus, the first layer has up to (11|𝐽| + 8|𝐾| + 1)ℯ parameters (since ℯ is the upper bound on the 1089

number of neurons in a hidden layer). The subsequent layers each have up to ℯ2 + ℯ parameters. The 1090

DNN outputs the Q-values for each of the five action types, thus associated with up to 5(ℯ + 1) 1091

parameters. Overall, the DNN has up to (11|𝐽| + 8|𝐾| + 1)ℯ + (ℓ − 1)(ℯ2 + ℯ) + 5(ℯ + 1) =1092

(11|𝐽| + 8|𝐾| + ℓ + 5)ℯ + (ℓ − 1)ℯ2 + 5 parameters to update in each time step. Note also that in 1093

each time step, a minibatch of |𝑀sub| experiences are involved. In addition, a heuristic will be 1094

performed to execute a specific action for the chosen action type. Among the five action types, the 1095

greatest complexity occurs to insertion which has a complexity of 𝑂(|𝐽|2log|𝐽|) (see Remarks 2-5). 1096

Further recognizing that |𝐽| ≥ |𝐾|, the complexity of one time step is 𝑂([(|𝐽| + ℓ)ℯ + ℓℯ2]|𝑀sub| +1097

|𝐽|2log|𝐽|). Given that training takes 𝐼 episodes each with up to 𝑇 time steps, the overall complexity of 1098

DQN training is 𝑂({[(|𝐽| + ℓ)ℯ + ℓℯ2]|𝑀sub| + |𝐽|
2log|𝐽|}𝐼𝑇). 1099

Two points are worth mentioning. First, we keep both [(|𝐽| + ℓ)ℯ + ℓℯ2]|𝑀sub| and |𝐽|2log|𝐽| 1100

terms in the complexity expression, as it is not clear a priori which of the two terms dominates the 1101

computation time. Second, the complexity expression is parameterized by the number of episodes 𝐼, 1102

which typically cannot be determined before the training is carried out as it depends on the 1103

characteristics of the instances used for learning. ■ 1104

Appendix B: Illustration of problem instances used in training and testing 1105

We randomly pick two instances, one from training and one from testing, to display the pickup 1106

and delivery locations of requests and origins of crowdsourcees. Overall, no significant differences 1107

(apart from the effect due to randomness) among the instances are discerned. 1108

 1109

Training instance Testing instance

Fig. B1. Illustration of two randomly picked problem instances from training and testing 1110
 1111

52

Appendix C: Identification of the specific action to take given the action 1112

type under a DRL algorithm without heuristics-guided action choice 1113

Insertion

Step 1: Select a request.

 Among the unassigned requests, randomly select an unassigned request.

Step 2: Insert the request to a route.

 Insert the request to the end of a randomly picked crowdsourcee route (which can be an
existing or a new route). If the insertion is not feasible, then randomly pick another
crowdsourcee route. If a feasible insertion cannot be found, then do nothing.

Intra-route move

Step 1: Select a route.
 Select the crowdsourcee route with the largest remaining available time (based on Rule

1 in subsection 3.4.1).

Step 2: Move a request from the route to a different location on the same route.

 Randomly pick a request from the route. Enumerate all feasible moves of the pickup
and delivery nodes of the request on the route. Pick the move with the maximum
reduced cost. If such a move does not exist, then randomly pick another request and do
the same. If such a move cannot be found after enumerating all requests on the route,
then do nothing.

Inter-route move

Step 1: Select a request.
 Select the crowdsourcee route with the largest occupation time (based on Rule 1 in

subsection 3.4.1).

Step 2: Move the request to the end of a different route.
 Randomly select a request from the route. Investigate moving the request to the end of a

different route that is also randomly picked. If the move if feasible, perform the move.
Otherwise, randomly pick another route and investigate moving the request to the end
of the route. If the request cannot be moved to the end of any different route, then do
nothing.

1-exchange

Step 1: Select two routes.
 Select the two crowdsourcee routes with the largest and the second largest unused

service time (based on Rule 1 in subsection 3.4.1).

Step 2: Select requests from the two routes and exchange.

 Randomly select a request from each routes and exchange their locations.

53

 1114
Note that for intra-route move, inter-route move, and 1-exchange, we do not consider Rule 2 of 1115

subsection 3.4.2 since the rule is related to heuristics-guided action choice. 1116

Appendix D: MILP formulation of the crowdshipping problem 1117

The crowdshipping problem is a pickup and delivery problem with time and capacity constraints. 1118

We consider the following MILP model which is based on Hamiltonian tour formulation (Lu and 1119

Dessouky, 2004). In the formulation, request nodes are ordered such that the first |𝐽| nodes are pickup 1120

nodes, and the remaining nodes are delivery nodes which follow the same order as their associated 1121

pickup nodes. Recall that in the paper the set of request nodes is 𝐽. Then we use 𝐽+ = {1, 2,… , |𝐽|} to 1122

denote the set of pickup nodes, and 𝐽− = {|𝐽| + 1, |𝐽| + 2, … ,2|𝐽|} to denote the set of delivery nodes. 1123

We further introduce set ℕ = 𝐽 ∪ 𝐾 = 𝐽+ ∪ 𝐽− ∪ 𝐾, which contains in sequence nodes in 𝐽+, nodes in 1124

𝐽−, and crowdsourcee origin nodes in 𝐾 = {2|𝐽| + 1,2|𝐽| + 2, … ,2|𝐽| + |𝐾|}. 1125

Among the parameters, 𝑞𝑗 denotes the weight of request at node 𝑗 ∈ 𝐽. 𝑞𝑗 > 0 if 𝑗 is a pickup 1126

node, and 𝑞𝑗 < 0 if 𝑗 is a delivery node. 𝑐𝑖𝑗 and 𝑡𝑖𝑗 denote respectively the cost and time while a 1127

crowdsourcee traverses link (𝑖, 𝑗). Because crowdsourcee routes are constructed sequentially based on 1128

Hamiltonian tour formulation, 𝑐𝑖𝑗 = 0 if 𝑖 ∈ 𝐽 and 𝑗 ∈ 𝐾 . 𝒞 denotes carrying capacity of a 1129

crowdsourcee. 1130

The MILP model has four set of decision variables: 1) 𝐱 = {𝑥𝑖𝑗; 𝑖, 𝑗 ∈ ℕ, 𝑖 ≠ 𝑗}, which are binary 1131

indicating whether node 𝑖 is right before node 𝑗 in the Hamiltonian tour; 2) 𝐲 = {𝑦𝑖𝑗; 𝑖, 𝑗 ∈ ℕ, 𝑖 ≠ 𝑗}, 1132

which are also binary indicating whether node 𝑖 is before node 𝑗 in the Hamiltonian tour; 3) 𝐐 =1133

{𝑄𝑖; 𝑖 ∈ 𝐽}, which are continuous variables deciding the carrying load of a crowdsourcee right after 1134

visiting a request node 𝑖; and 4) 𝐓 = {𝑇𝑖; 𝑖 ∈ 𝐽}, which are continuous variables deciding the departure 1135

time of a crowdsourcee from a request node 𝑖. 1136

 1137
 1138

54

min
𝐱,𝐲,𝐐,𝐓

∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐽𝑖∈ℕ

 (G1)

s.t.
Routing sequence constraints

∑𝑥𝑖𝑗
𝑖∈ℕ

= 1 ∀𝑗 ∈ ℕ (G2)

∑𝑥𝑖𝑗
𝑗∈ℕ

= 1 ∀𝑖 ∈ ℕ (G3)

𝑦𝑘𝑖 ≤ 𝑦𝑘𝑗 + (1 − 𝑥𝑖𝑗) ∀𝑖, 𝑗, 𝑘 ∈ ℕ and 𝑗 ≠ 2|𝐽| + 1 (G4)
𝑦𝑘𝑖 ≥ 𝑦𝑘𝑗 + (𝑥𝑖𝑗 − 1) ∀𝑖, 𝑗, 𝑘 ∈ ℕ and 𝑗 ≠ 2|𝐽| + 1 (G5)
𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 ∀𝑖, 𝑗 ∈ ℕ (G7)
𝑦𝑖,|𝐽|+𝑖 = 1 ∀𝑖 ∈ 𝐽

+ (G8)
𝑦|𝐽|+𝑖,𝑖 = 0 ∀𝑖 ∈ 𝐽

+ (G9)
𝑦𝑖𝑗 = 𝑦|𝐽|+𝑖,𝑗 ∀𝑖 ∈ 𝐽

+, 𝑗 ∈ 𝐾 (G10)
𝑦𝑖𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝐾 and 𝑖 < 𝑗 (G11)
𝑦𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝐾 and 𝑖 > 𝑗 (G12)
Capacity constraints
𝑄𝑖 + 𝑞𝑗 − 𝑄𝑗 ≤ℳ(1 − 𝑥𝑖𝑗) ∀𝑖, 𝑗 ∈ ℕ (G13)
𝑄𝑖 + 𝑞𝑗 − 𝑄𝑗 ≥ℳ(𝑥𝑖𝑗 − 1) ∀𝑖, 𝑗 ∈ ℕ (G14)
𝑄𝑗 ≤ 𝒞 ∀𝑗 ∈ 𝐽 (G15)
Delivery time window and crowdsourcee time availability constraints
𝑇𝑖 + 𝑡𝑖𝑗 + 𝑠 − 𝑇𝑗 ≤ ℳ(1 − 𝑥𝑖𝑗) ∀𝑖 ∈ ℕ, 𝑗 ∈ 𝐽 (G16)
𝑇𝑖 + 𝑡𝑖𝑗 + 𝑠 − 𝑇𝑗 ≥ ℳ(𝑥𝑖𝑗 − 1) ∀𝑖 ∈ ℕ, 𝑗 ∈ 𝐽 (G17)
𝑇𝑗 ≤ 𝑡𝑑𝑗

𝑙 ∀𝑖 ∈ ℕ, 𝑗 ∈ 𝐽− (G18)
𝑇𝑗 ≥ 𝑡𝑝𝑗

𝑒 ∀𝑖 ∈ ℕ, 𝑗 ∈ 𝐽+ (G19)
𝑇|𝐽|+𝑖 ≥ 𝑇𝑖 ∀𝑖 ∈ 𝐽

+ (G20)
𝑇𝑖 − 𝑡end

𝑘 ≤ℳ(1 − 𝑥𝑖,𝑘+1) ∀𝑖 ∈ 𝐽
−, 𝑘 ∈ 𝐾 \{2|𝐽| + |𝐾|} (G21)

𝑇𝑖 − 𝑡end
2|𝐽|+|𝐾| ≤ ℳ(1 − 𝑥𝑖,2|𝐽|+1) ∀𝑖 ∈ 𝐽

− (G22)
𝑇𝑖 ≥ 𝑡start

𝑖 ∀𝑖 ∈ 𝐾 (G23)
Integrality, non-negativity, and fixed-value constraints
𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁 (G24)
𝑦𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝑁 (G25)
𝑄𝑖 ≥ 0 ∀𝑖 ∈ 𝐽 (G26)
𝑄𝑖 = 0 ∀𝑖 ∈ 𝐾 (G27)
𝑇𝑖 ≥ 0 ∀𝑖 ∈ 𝐽 (G28)

 1139
The objective function (G1) minimizes total routing cost. The constraints are organized in four 1140

groups. The first group relates to routing sequence. Constraints (G2)-(G3) stipulate that each node is 1141

visited exactly once in the Hamiltonian tour. Constraints (G4)-(G5) ensure that the precedence 1142

relationship of a node 𝑘 with respect to two connected nodes (𝑖 and 𝑗 with 𝑥𝑖𝑗 = 1) should be 1143

consistent, i.e., 𝑦𝑘𝑖 = 𝑦𝑘𝑗. Since the origin of crowdsourcee 1 is the start of the Hamiltonian tour, it is 1144

55

meaningless to talk about its preceding node (that is why 𝑗 ≠ 2|𝐽| + 1). The case of (𝑖, 𝑗) =1145

(2|𝐽| + |𝐾|, 2|𝐽| + 1) is excluded since the end of crowdsourcee |𝐾| ’s route will be artificially 1146

connected to crowdsourcee 1’s origin (since it is a Hamiltonian tour). (G7) says that the case of 1147

immediate precedence is more restricted than general precedence. (G8)-(G9) specifies that for a 1148

request, the pickup node must be visited before the delivery node. (G10) specifies that a 1149

crowdsourcee’s origin cannot be in between the pickup and delivery nodes of a request. Constraints 1150

(G11)-(G12) the precedence relationship between two crowdsourcees’ origins follow their orders in 1151

𝐾. 1152

For the second group, capacity-related constraints, (G13)-(G14) updates the carrying load by a 1153

crowdsourcee for two consecutively visited nodes. (G15) constrains that the carrying load does not 1154

exceed the carrying capacity of a crowdsourcee. For the third group, time-related constraints, (G16)-1155

(G17) calculates the departure time from a node 𝑗 based on the departure time from its immediate 1156

preceding node 𝑖, travel time from 𝑖 to 𝑗, and stopping time at 𝑗. (G18) says that the actual delivery 1157

time (arrival time) at a delivery node 𝑗 should be no later than the latest delivery time. Similarly, (G19) 1158

says that the actual pickup time at a pickup node 𝑗 should be no earlier than the earliest pickup time. 1159

(G20) means that the time of visiting a delivery node should be no earlier than the time of visiting the 1160

corresponding pickup node. (G21)-(G22) stipulate that a crowdsourcee route needs to end earlier than 1161

the end of the crowdsourcee’s available time. (G22) is written separately for the last crowdsourcee |𝐾| 1162

because, based on the Hamiltonian tour formulation, the end of crowdsourcee |𝐾|’s route connects 1163

back to crowdsourcee 1’s origin. Furthermore, the leaving time from the origin should be no earlier 1164

than the start of the available time of a crowdsourcee (constraint (G23)). With these constraints, the 1165

feasibility of crowdsourcee routes as presented in Definition 1 is ensured. The final group of constraints 1166

specifies the integrality, non-negativity, and fixed-value constraints of the decision variables. In 1167

particular, at the origin, a crowdsourcee does not carry loads (constraint (G27)). 1168

References 1169

1. Ahamed, T., Zou, B., 2020. Multi-tier adaptive memory programming and cluster- and job-based 1170
relocation for distributed on-demand crowdshipping. Working Paper. Department of Civil, Materials, 1171
and Environmental Engineering, University of Illinois at Chicago. 1172

2. Al-Abbasi, A.O., Ghosh, A. and Aggarwal, V., 2019. Deeppool: Distributed model-free algorithm for 1173
ride-sharing using deep reinforcement learning. IEEE Transactions on Intelligent Transportation 1174
Systems, 20(12), pp.4714-4727. 1175

3. Arslan, A., Agatz, N. and Klapp, M., 2020. Operational Strategies for On-demand Personal Shopper 1176
Services. 1177

4. Braekers, K. and Kovacs, A.A., 2016. A multi-period dial-a-ride problem with driver consistency. 1178
Transportation Research Part B: Methodological, 94, pp.355-377. 1179

56

5. Bello, I., Pham, H., Le, Q.V., Norouzi, M. and Bengio, S., 2016. Neural combinatorial optimization 1180
with reinforcement learning. arXiv preprint arXiv:1611.09940. 1181

6. Berbeglia, G., Cordeau, J.F. and Laporte, G., 2010. Dynamic pickup and delivery problems. European 1182
journal of operational research, 202(1), pp.8-15. 1183

7. Chen, X., Ulmer, M.W. and Thomas, B.W., 2019. Deep Q-Learning for Same-Day Delivery with a 1184
Heterogeneous Fleet of Vehicles and Drones. arXiv preprint arXiv:1910.11901. 1185

8. Dai, H., Khalil, E., Zhang, Y., Dilkina, B. and Song, L., 2017. Learning combinatorial optimization 1186
algorithms over graphs. In Advances in Neural Information Processing Systems (pp. 6348-6358). 1187

9. Ghilas, V., Demir, E. and Van Woensel, T., 2016. A scenario-based planning for the pickup and 1188
delivery problem with time windows, scheduled lines and stochastic demands. Transportation 1189
Research Part B: Methodological, 91, pp.34-51. 1190

10. Kafle, N., Zou, B. and Lin, J., 2017. Design and modeling of a crowdsource-enabled system for urban 1191
parcel relay and delivery. Transportation research part B: methodological, 99, pp.62-82. 1192

11. Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint 1193
arXiv:1412.6980. 1194

12. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. “Optimization by Simulated Annealing,” 1195
Science vol. 220, no. 4598, pp. 671-680. 1196

13. Kool, W., Van Hoof, H. and Welling, M., 2018. Attention, learn to solve routing problems!. arXiv 1197
preprint arXiv:1803.08475. 1198

14. Le, T.V., Stathopoulos, A., Van Woensel, T. and Ukkusuri, S.V., 2019. Supply, demand, operations, 1199
and management of crowd-shipping services: A review and empirical evidence. Transportation 1200
Research Part C: Emerging Technologies, 103, pp.83-103. 1201

15. Liu, M., Luo, Z. and Lim, A., 2015. A branch-and-cut algorithm for a realistic dial-a-ride problem. 1202
Transportation Research Part B: Methodological, 81, pp.267-288. 1203

16. Lu, Q. and Dessouky, M.M., 2006. A new insertion-based construction heuristic for solving the 1204
pickup and delivery problem with time windows. European Journal of Operational Research, 175(2), 1205
pp.672-687. 1206

17. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., 1207
Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control through 1208
deep reinforcement learning. nature, 518(7540), pp.529-533. 1209

18. Nanry, W.P. and Barnes, J.W., 2000. Solving the pickup and delivery problem with time windows 1210
using reactive tabu search. Transportation Research Part B: Methodological, 34(2), pp.107-121. 1211

19. Nazari, M., Oroojlooy, A., Snyder, L. and Takác, M., 2018. Reinforcement learning for solving the 1212
vehicle routing problem. In Advances in Neural Information Processing Systems (pp. 9839-9849). 1213

20. Oda, T. and Joe-Wong, C., 2018, April. MOVI: A model-free approach to dynamic fleet 1214
management. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2708-1215
2716). IEEE. 1216

21. Shao, S., Xu, S.X. and Huang, G.Q., 2020. Variable neighborhood search and tabu search for auction-1217
based waste collection synchronization. Transportation Research Part B: Methodological, 133, pp.1-1218
20. 1219

22. Singh, A., Al-Abbasi, A. and Aggarwal, V., 2019, December. A reinforcement learning based 1220
algorithm for multi-hop ride-sharing: Model-free approach. In Neural Information Processing 1221
Systems (Neurips) Workshop. 1222

23. Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press. 1223
24. Tan, K.C., Lee, L.H., Zhu, Q.L. and Ou, K., 2001. Heuristic methods for vehicle routing problem 1224

with time windows. Artificial intelligence in Engineering, 15(3), pp.281-295. 1225
25. Van Laarhoven, P.J. and Aarts, E.H., 1987. Simulated annealing. In Simulated annealing: Theory and 1226

applications (pp. 7-15). Springer, Dordrecht. 1227
26. Wang, Y., Zhang, D., Liu, Q., Shen, F. and Lee, L.H., 2016. Towards enhancing the last-mile 1228

delivery: An effective crowd-tasking model with scalable solutions. Transportation Research Part E: 1229
Logistics and Transportation Review, 93, pp.279-293. 1230

57

27. Watkins, C.J. and Dayan, P., 1992. Q-learning. Machine learning, 8(3-4), pp.279-292. 1231
28. Yu, J., Yu, W. and Gu, J., 2019. Online vehicle routing with neural combinatorial optimization and 1232

deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 20(10), 1233
pp.3806-3817. 1234

Tanvir Ahamed: Conceptualization, Methodology, Coding, Investigation, Writing – Original Draft, Writing

– Review & Editing, Visualization. Bo Zou: Conceptualization, Methodology, Investigation, Writing –

Original Draft, Writing – Review & Editing, Supervision. Nahid Parvez Farazi: Methodology,

Investigation, Writing – Original Draft, Writing – Review & Editing. Theja Tulabandhula: Methodology,

Investigation, Writing – Review & Editing.

Author Statement

