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7  Abstract: This paper investigates the problem of assigning shipping requests to ad hoc couriers in the

8  context of crowdsourced urban delivery. The shipping requests are spatially distributed each with a

9  limited time window between the earliest time for pickup and latest time for delivery. The ad hoc
10 couriers, termed crowdsourcees, also have limited time availability and carrying capacity. We propose
11 anew deep reinforcement learning (DRL)-based approach to tackling this assignment problem. A deep
12 Q network (DQN) algorithm is trained which entails two salient features of experience replay and
13 target network that enhance the efficiency, convergence, and stability of DRL training. More
14 importantly, this paper makes three methodological contributions: 1) presenting a comprehensive and
15  novel characterization of crowdshipping system states that encompasses spatial-temporal and capacity
16  information of crowdsourcees and requests; 2) embedding heuristics that leverage information offered
17 by the state representation and are based on intuitive reasonings to guide specific actions to take, to
18  preserve tractability and enhance efficiency of training; and 3) integrating rule-interposing to prevent
19  repeated visiting of the same routes and node sequences during routing improvement, thereby further
20  enhancing the training efficiency by accelerating learning. The computational complexities of the
21  heuristics and the overall DQN training are investigated. The effectiveness of the proposed approach
22 is demonstrated through extensive numerical analysis. The results show the benefits brought by the
23 heuristics-guided action choice, rule-interposing, and having time-related information in the state space
24 in DRL training, the near-optimality of the solutions obtained, and the superiority of the proposed
25  approach over existing methods in terms of solution quality, computation time, and scalability.
26  Keywords: Crowdshipping, deep reinforcement learning, deep Q network, pickup and delivery, state
27  representation, heuristics-guided action choice, rule-interposing.
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1 Introduction

This paper investigates a static crowdshipping problem with spatially distributed request pickup
and delivery locations, using “crowdsourcees” who are ordinary people and also spatially distributed,
and have some available time to perform delivery for income earning. A delivery service provider
(DSP) centrally assigns requests to crowdsourcees to minimize total shipping cost (TSC). Distributed
locations of requests are common for pickup-delivery from restaurants, grocery stores, and retail shops
to customers, and even for document delivery between different office locations. We consider that each
request has a narrow time window (e.g., two hours) between earliest pickup and latest delivery. In
addition, crowdsourcees inform the DSP of their available time. Each crowdsourcee has a limited
carrying capacity. Thus, the assignment needs to respect pickup-delivery time windows of requests,
and time availability and carrying capacity of crowdsourcees. In shipping cost calculation, we consider
that a crowdsourcee is paid a fixed rate ($/minute) when carrying a request. If a request is not assigned
to a crowdsourcee, the request will be picked up and delivered by a backup vehicle, which is more
expensive.

Following the above description, the crowdshipping problem can be viewed as a specific type of
pickup-and-delivery problem and belongs to the broad category of vehicle routing problems (VRP).
While many integer programming models and heuristic algorithms have been developed for solving
similar problems, the novelty of this paper is that we propose, for the first time in the literature, an
approach that leverages deep reinforcement learning (DRL)—more specifically deep Q learning
(DQN)—to frame and solve the constrained crowdsourcee-shipping request assignment problem. Two
salient features of DQN are experience replay and target network which can enhance efficiency,
convergence, and stability in DRL training. Our work goes beyond simple adoption of the DQN
algorithm in the existing literature, by making three major methodological contributions as follows.

The first contribution is on a novel representation of system states for the crowdshipping problem.
Due to the combinatorial nature of the crowdshipping problem and the heterogeneity of both requests
and crowdsourcees in terms of time and carrying capacity, the states of a crowdshipping system cannot
be represented by one or a few metrics. A comprehensive representation must in some way capture the
sequence of pickup and delivery nodes on each crowdsourcee route. A node corresponds to a physical
location (with longitude and latitude information), which can be the origin of a crowdsourcee, the pickup
location of a request, or the delivery location of a request. Yet routing sequence alone is not enough to
reflect the fact that both requests and crowdsourcees are time sensitive: on the one hand, each request

has a limited time window between the earliest possible pickup and the latest delivery (e.g., 2 hours).
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On the other hand, by dedicating one’s time to crowdshipping, a crowdsourcee also has limited time
availability. The time information about requests and crowdsourcees, which changes as crowdsourcee
routes are constantly created and improved, is an inherent part of the system state that helps the DRL
agent make informed routing decisions, especially with respect to what requests need be considered
first and what crowdsourcee routes may be given higher priority given time availability and delivery
urgency. To this end, a novel representation of system states that leverages the notion of information
array is proposed which encompasses not only static location information of request pickup and
delivery nodes but information on crowdsourcee routing sequences, request-specific time availability,
and crowdsourcee-specific time and capacity availability.

The second contribution is on embedment of heuristics-guided action choice in DRL. The
combinatorial nature of the problem means that a very large number of different actions can be taken
to construct and improve crowdsourcee routing. But enumerating all possible actions would be neither
efficient nor practical in DRL training. To preserve training tractability, we abstract the action space
into five general types of actions for assigning or improving the assignment of requests to
crowdsourcees: 1) inserting an unassigned request to a crowdsourcee route (insertion); 2) moving an
assigned request to another place in the same crowdsourcee route (intra-route move); 3) moving an
assigned request to a different crowdsourcee route (inter-route move); 4) exchanging the positions of
two requests that are assigned to two different crowdsource routes (1-exchange); 5) do-nothing. As
many possibilities for taking a specific action still exist given an action type, heuristics that leverage
the information offered by our proposed state representation and are based on intuitive reasonings are
designed to guide the specific action to take. Thus, each time when an action needs to be taken, we
first employ the DQN algorithm to identify the action type. Then, the specific action given the action
type is executed using the corresponding heuristic. We show that the embedment of heuristics-guided
action choice significantly enhances DRL training efficiency and solution quality.

The third contribution is on integration of rule-interposing into DRL training and implementation.
The rules aim to prevent certain routes or node sequences from being visited repeatedly during
neighborhood moves (i.e., intra-route move, inter-route move, and 1-exchange) within a period of time,
as repeated visiting discourages exploring more actions and may get the routing sequence trapped in
local optimum, thus compromising the efficiency of DRL training. Specifically, we employ two rules
that: 1) set up and update a priority list of crowdsourcee routes for each neighborhood move, based on
criteria in line with the nature of the neighborhood moves. A crowdsourcee route that is chosen for a
neighborhood move will be removed from the priority list and not considered for some period of time;

2) introduce Tabu tenure for the relative positions of pickup and delivery nodes. Two nodes that were
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neighbored and are moved away are prohibited to be neighbored again for some period of time. With
the two rules, computation efforts involved in repeatedly visiting routes or node sequences during
neighborhood moves are spared, thereby enhancing the training efficiency by accelerating learning.

With the above three methodological contributions, the effectiveness of the proposed DRL-based
approach to solve the crowdshipping problems of our interest is demonstrated through extensive
numerical analysis. Our results show superiority of the trained DQN algorithm over existing methods
in solution quality, computation time, and scalability. In addition, the obtained solutions are reasonably
close to global optimum. Given that the training of DRL will be performed offline and a trained DRL
model can solve problems in a matter of seconds, the proposed approach has significant potential for
practical crowdshipping operations. Moreover, the proposed methodological framework, which in this
paper tackles a more complicated type of pickup and delivery problems with time constraints from
both “vehicles” (crowdsourcees) and “customers” (shipping requests), has the potential to be adapted
to solving similar types of routing-related problems.

The remainder of the paper is structured as follows. Section 2 reviews and synthesizes the relevant
literature. Section 3 provides a detailed presentation of the methodology including the fundamentals
of reinforcement learning (RL) and DRL; information array, representation of states, actions, and
rewards; the DQN algorithm for crowdshipping; and rule-interposing design. Section 4 implements the
DRL model and discusses the results from extensive numerical experiments. Summaries and

suggestions for future research are given in Section 5.

2 Literature review

Crowdshipping has garnered growing research attention in recent years (e.g., Wang et al., 2016;
Kafle et al., 2017; Le et al., 2019; Arslan et al., 2020). However, DRL has not been considered as a
way to guide request-crowdsourcee assignment. Given the focus of the paper on the methodological
aspects of DRL for crowdshipping and the relevance of our problem to other types of freight delivery
and passenger transportation problems that involve routing, in this section we review recent advances
of DRL in solving related problems. We will synthesize the problem characteristics and DRL
specifications in representative studies, based on which the uniqueness of our paper is then highlighted.

A basic version of routing problems is the traveling salesman problem concerning routing of a
single vehicle. Bello et al. (2016) probably make one of the first attempts to combine reinforcement
learning with neural networks to tackle traveling salesman problems. A pointer network comprising
two recurrent neural networks for encoding and decoding and an attention function is trained with

policy gradient. Kool et al. (2018) build on Bello et al.’s work and train an attention-based encoder-
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decoder DRL model. Dai et al. (2017) use a graph embedding network to represent the policy to capture
the property of a node in the context of its graph neighborhood. A fitted Q-learning is adopted to learn
a greedy policy that is parameterized by the graph embedding network. For the TSP problems
considered above, only spatial information of nodes is involved. Actions in DRL pertain to adding
nodes—one at a time—to progressively construct the vehicle route.

The complexity of routing problems is augmented when extended to multiple routes, with time
constraints, and with pickups and deliveries. For freight delivery problems, Nazari et al. (2018)
consider a parameterized stochastic policy to solve VRP with limited vehicle capacity. The authors
apply a policy gradient algorithm to optimize parameters of a stochastic policy. Chen et al. (2019) use
multi-agent RL to train a courier dispatch policy to deal with goods pickups with time windows. To
maintain the state-action space, RL is decentralized with each courier modeled as an agent. However,
a decentralized approach may compromise modeling of courier coordination in undertaking pickup
tasks. The problem considered in Yu et al. (2019), which deals with pickup and delivery with vehicle
capacity constraints and delivery deadline, is more similar to our paper. Like Chen et al. (2019), the
authors opt for a distributed neural optimization strategy with a pointer network and graph embedding
to progressively develop a complete tour of each vehicle. More recently, Duan et al. (2020) propose a
joint learning approach based on graph convolutional network with node feature (coordinates and
demand) and edge feature (distance) as inputs, to solve capacitated VRP.

On the passenger side, the interest in adopting DRL for VRP arises with the proliferation of
ridesharing. Oda and Joe-Wong (2018) propose a DQN-based framework that learns which zone an
idle vehicle should go to. The learning is independent for each vehicle, which is assumed to have at
most one rider onboard at any point in time. Singh et al. (2019) relax the assumption by allowing more
than one rider in a ridesharing vehicle. However, the training remains decentralized, i.e., each vehicle
solves its DQN problem without coordination with other vehicles in vicinity. In addition, it is possible
in the study that a rider transfers from one vehicle to another, which is undesirable and not common in
practice. Another distributed model-free algorithm using DQN to learn dispatch policies for each
vehicle individually is developed by Al-Abbasi et al. (2019), in which training of a vehicle’s
dispatching policy again does not consider coordination with other vehicles.

As shown in Table 1la, most of the multi-vehicle routing problems in the DRL literature are
different from the crowdshipping problem in this paper. Only Yu et al. (2019) on the freight side and
Al-Abbasi et al. (2019) on the passenger side consider pickup and delivery with the possibility of a
vehicle carrying multiple customers at the same time and without transfer. While vehicle capacity limit

is accounted for in some papers, customer time window constraints are mostly not, only in Chen et al.

5



158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

(2019) and Yu et al. (2019). Yet none takes into account limited time availability of vehicles, which is
an essential characteristic in our crowdshipping problem (where crowdsourcees are “vehicles”). Except
for Nazari et al. (2019) and Duan et al. (2020), all other works train each vehicle individually, probably
due to the substantially augmented action space and consequently complexity of DQN training if all
vehicles are considered together (note that in Duan et al. (2020), vehicle routes are constructed one at
a time sequentially rather than simultaneously). However, centralized DQN would be more appropriate
as a DSP has full control in request-crowdsourcee assignment.

Because of the richer features and centralized nature for crowdshipping, fully capturing the states
of a crowdshipping system requires more involved and elaborate representation. As shown in Table
1b, the existing studies mostly have vehicle and/or customer locations in state representation, with
limited consideration of time-related information for vehicles and customers. On the other hand, given
that both crowdsourcees and requests have limited time windows and that heuristics-guided action
choice embedded in our proposed DRL requires time-related information to proceed, incorporation of
time-related information is critical. Furthermore, for performing the heuristics, information on routing
sequence is needed, which is not included explicitly in any prior studies reviewed. Also related to the
heuristics-embedding feature, the specification of action space in our work is richer than in the existing

literature. Finally, no existing papers consider rule-interposing.



175

176
177

Table 1a: VRP characteristics considered in selected DRL studies and the present paper

Problem characteristics

Pickup and deliver Consider “vehicle” Considers limited Considers limited Centralized
P y capacity constraint | time of “customers” | time of “vehicles”
Oda and Joe-Wong | Yes, but one rider in a No No No No
5 | (2018) vehicle at a time
%ﬂ Singh et al. (2019) | Yes, but a rider may transfer | Yes No No No
2 between vehicles in a trip
2 | Al-Abbasi et al. Yes (ridesharing) Yes No No No
(2019)
Nazari et al. (2018) | No Yes No No Yes (but only 1 vehicle in
numerical analysis)
Chen et al. (2019) | No (pickup only) No Yes No No
Z
E Yu et al. Yes Yes Yes No No
(2019)
Duan et al. (2020) | No Yes No No Yes (but vehicle routes are
constructed one at a time)
| This paper | Yes | Yes Yes Yes | Yes

Note: The term “vehicle” is quoted because in crowdshipping, “vehicles” would refer to crowdsourcees. Similarly, the term “customers” is quoted as
“customers” would refer to shipping requests on the freight side.
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Table 1b: DRL specifications in solving VRP in selected studies and the present paper

State representation

| Action characterization

| Rule-interposing

Oda and Joe-Wong 1. Vehicle location Which zone for an idle vehicle No
(2018) 2. Occupied/idle status under study to go to
3. Destination of the vehicle
4. Number of available vehicles in each zone
5. Future demand of each zone
Singh et al. (2019) 1. Vehicle location (in which zone) Which zone to which vehicles No
g 2. Available seats of each vehicle are dispatched
?:;n 3. Rider pickup time
o 4. Rider destination
Q% 5. Number of vehicles in each zone
6. Predicted future rider demand
Al-Abbasi et al. (2019) 1. Vehicle location 1. Whether the vehicle under No
2. Number of available seats study should pick up new riders
3. Rider pickup time 2. If yes, which zone to go to
4. Rider destination
5. When an occupied vehicle becomes available
6. Future rider demand
Nazari et al. (2018) 1. Customer location Which node to visit by a vehicle | No
2. Customer demand
Chen et al. (2019) 1. Number of couriers and requests in each grid 1. Target grid No
2. Total price of requests in each grid 2. Maximum patrol time in the
3. Distance between neighboring grids grid
= 4. Score (percent of fulfilled price in total price)
%D Yuetal. (2019) 1. Available requests What is the next stop in the tour | No
i 2. Renewable energy generation points of the vehicle
3. Next stops of other vehicles in the system
4. Battery charging demand of each vehicle
Duan et al. (2020) 1. Coordinates and demand at each customer node What is the next node to visit No
2. Adjacency among customer nodes
3. Distance between any two customer nodes
This paper 1. Crowdsourcee starting locations 1. Inserting a request to a route Yes
2. Request pickup and delivery locations 2. Intra-route move of a request
3. Node precedence relation of crowdsourcee routes 3. Inter-route move of a request
4. Request slack time, unused service time, and occupation time | 4. 1-exchange move of two
5. Crowdsourcee routing duration and remaining available time | requests in two routes
6. Time and capacity violation of crowdsourcee routes 5. No action
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3 Methodology

This section describes the crowdshipping-adapted DRL methodology. First, we introduce the
fundamental ideas of RL and DRL. Then, we discuss how states, actions, and rewards which are
essential elements of DRL are specified in crowdshipping. Building on the specifications, we detail
the training process using DQN. Two key ideas are worth mentioning. First, DQN learns from how a
policy—a decision rule which directs what type of action to take given a state—performed on previous
instances and improves the policy over time. Knowing the action type, the specific action will be
determined by a corresponding heuristic that leverages time-related information from the state space.
By letting DQN focus on only a small set of abstracted action types, the heuristics-guided action choice
preserves training tractability and consequently contributes to the scalability of the proposed approach.
Second, solutions to a crowdshipping problem instance can be constructed progressively, one step at a

time, which is amenable to the DRL framework.

3.1 Fundamental idea

RL is one of the three categories of machine learning (the other two are supervised learning and
unsupervised learning) (Sutton and Barto, 2018). The tenet of RL is to train an agent such that the
agent can optimize its behavior by accumulating and learning from its experiences of interacting with
the environment. The optimality is measured as maximizing the total reward by taking consecutive
actions. At each decision point, the agent has information about the current state of the environment
and selects the best action based on his current experiences. The action taken transitions the
environment to a new state. The agent gets some reward, i.e., reinforcement, as a signal of how good
or bad the action taken is.

To formulate the decision process, RL employs MDP as the mathematical foundation to keep track
of the progression of the decision process. To do so, the following notations are introduced. S is the
set of states of the environment. A is the set of actions the agent can take. R is the set of possible
rewards as a result of the agent taking an action at a given state. To illustrate, the environment is in
state s; € S at time step t. The agent takes an action a; € A. The action transitions the environment to
a new state s;,, € S at the next time step t + 1. Meanwhile, the agent receives a reward r; € R. The

reward is a function of state-action pair: ;. (s;, a;) (Fig. 1).
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Fig. 1. Illustration of states, actions, and rewards

Since the actions are taken consecutively, the objective of the agent at any time step t is to

maximize the cumulative reward, i.e., the return G,, from t till the last time step T

Gt =Tt+1"t+1+"'+ TT. (1)

If we consider that the reward is received over a long period, a discount factor y € [0,1] is often

used to reflect discounting:

Ge =1+ YTy + 0+ Yty (2)

In RL, a policy 7 is a mapping from states to probabilities of selecting each possible action. A
value function V, expresses the expected return when starting in state s and following policy

thereafter. At time step t, the value function can be written as:

T—-t

VTL’(S) = ]Er[[thst = S] = ]Er[ [z )/th+k

k=0

S¢ = s]. 3)

Related to the value function, we define the value of taking action a in state s and following policy
7 thereafter, denoted as Q,(s,a). Q,(s,a) is termed action-value function, or “Q-function” of the

state-action pair (s, a). The letter “Q” represents the quality of this state-action pair:

T-t

Qn’(sf a) = Il'--‘:n:[GtISt =sa; = a] = IEn’ [Z ykrt+k

k=0

S; =5,a; = a]. 4)

10
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It is desired to seek an optimal policy * such that V-(s) = max Q. (s, a), where Q. (s, a) means
a

that the agent takes action a at state s and follows policy * thereafter. Clearly, if Q,(s, a) is known
for every state-action pair (s, a), then * is also known. The problem of finding the optimal policy
then becomes finding optimal Q-values Q,(s,a),V(s,a) € S X A. To do so, one of the prominent
algorithms is Q-learning (Watkins and Dayan, 1992). At a time step, the Q-function value (thereafter
simplified as “Q-value”) for a given state-action pair is updated using the following rule which is based

on the Bellman optimality equation:

Q(s,0) = (1~ @)Q(s,) + a[r(s, @) +y maxQ(s’,a)] 5)

where s’ is the transitioned state after taking action a at state s. r(s, a) is the associated reward. On
the left-hand side of Eq. (5) is the updated Q (s, a) value. On the right-hand side (RHS), Q(s, a) and
Q(s',a") come from the current Q-matrix, which is a mapping from a discrete state-action space to Q-
values. « is the learning rate taking values between 0 and 1. It can be shown that Q-learning converges
to the optimal Q-values with probability 1 as long as all actions are repeatedly sampled in all states and
state-action pairs are discrete (Watkins and Dayan, 1992).

The Q-learning algorithm works well to find the optimal policy when the state-action space is
small. However, it would become computationally inefficient and even infeasible to compute Q-values
for every state-action pair when the state-action space is large (just imagine Eq. (5) needs to be
repeatedly computed for a large number of state-action combinations, with constant updates of the Q-
matrix). This is where deep learning can help reduce the computational burden. Specifically, a
parameterized DNN can be integrated with an RL algorithm like Q-learning, to efficiently approximate
the optimal Q-values instead of maintaining and updating a Q-matrix while applying Eq. (5).

More specifically, we adapt the DQN algorithm, proposed by Minh et al. (2015), to the problem
considered in this paper. DQN is a relatively new DRL algorithm that uses a convolutional neural
network as a function approximator of the Q-function. DQN has excelled in video game environments
where the state-action space is very large. A prominent advantage of DQN is that it overcomes
instability and divergence that occur when a nonlinear function approximator such as a neural network
is used to represent the Q-function, by embedding two salient feature: experience replay and target
network, whose use will be discussed in subsection 3.3. Before getting into the details of DQN, below

we first describe our specifications of states, actions, and rewards in the context of crowdshipping.

11



260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

277
278

279
280
281

282
283
284
285
286

3.2 DRL formulation for crowdshipping

3.2.1 Information array

In this section, we propose a novel state and action space design as well as reward function
specification for crowdshipping. A key in this proposal is the creation of an information array that
contains the routing sequence of each crowdsourcee. Let /] and K denote respectively the sets of
shipping requests and crowdsourcees. The information array is a |K| X (2|/| + 1) matrix where
|K| and |]| denote respectively the numbers of crowdsourcees (which is equivalent to the number
of routes) and shipping requests. Each row indicates the routing sequence of one crowdsourcee.
The matrix has 2|J| + 1 columns to accommodate the extreme possibility that all || requests (2]]]
nodes) are assigned to a single crowdsourcee plus the origin node of the crowdsourcee (thus one
more node needs to be added). For example, if the kth row of the information array contains the
following tuple: (uy, p1,p2, d1, d2), it means that crowdsourcee k will leave his/her origin node
Uy, go to the pickup node of the first request p,, pick up the second request p,, then drop off the
first request d;, and finally drop off the second request d,. In this case, the cells of the first five

columns of the kth row are occupied, whereas the remaining cells in the row are empty (Fig. 2).

1 2 3 4 5 2|]J]| +1
1 U
k Uy P1 | %) dy d, 0
K| U]

Fig. 2. [llustration of the information array

The information array is constantly updated after every time step. Given that we consider a static
problem for the purpose of operation planning rather than real-time decision support, we assume that
all requests are unassigned (i.e., assigned to backup vehicles) at the beginning. Thus, initially each row

in the information array contains only the origin node of a crowdsourcee.

3.2.2 State representation using a three-tuple

The information array provides a foundation for specifying the state space. At each time step t,
the state of the crowdshipping environment is described by a three-tuple s, = {S%,S”, 5S¢} which
provides respectively: 1) location information of pickup and delivery nodes of requests and

crowdsourcee routing sequences; 2) request-specific time information; and 3) crowdsourcee-specific
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time and capacity information. With {S!,S",S¢}, the agent not only has a complete picture of the
crowdsourcee routing sequences, but can leverage the time-related information to perform heuristics-
guided actions, as described in subsection 3.2.3.

The first component in the three-tuple, S', is specified as follows:

§t={ny,n},ni,n;vi€e JUK,j €] k € K}

where
n; is the coordinate of node i;
n]p is the coordinate of the successor node of the pickup node of request j if j is assigned;
nf is the coordinate of the predecessor node of the delivery node of request j if j is assigned;
ne is the coordinate of the first node visited by crowdsourcee k if the crowdsourcee is assigned
k

(i.e., first node other than the crowdsourcee origin).

The second component in the three-tuple, S™, contains three pieces of request-specific time

information:
ST = {5]-,bj, 0j; Vj E]}
where
8; is the slack time of request j;
b; is the unused service time of request J;
0; is the occupation time of request ;.

For a request j, slack time .8; measures how urgent it needs to be assigned:

Il _ e )\ _ 7Tc -
8 = (tdj tl’f) Toja; 15 =0 (6)
M fi=1
where
ty ’ is the latest delivery time for request j;
ty i is the earliest pickup time for request j;

T,fj,dj is the direct travel time by crowdsourcee from pickup node p; to delivery node d;;
M is a very large number;

fi equals 1 if request j is assigned to a crowdsourcee, and 0 otherwise.

For an unassigned request j, its urgency is the difference between the largest amount of time

allowed for pickup and delivery (tflj - t{;’}.), and the minimum amount of time needed to do so by

crowdsourcee (Tlfj_dj). The larger the difference, the lower the urgency with which the request needs
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to be assigned. For an assigned request, a very large number M is given, which means that its urgency
is effectively zero (as it is already assigned). Using this urgency measure, the agent solving for the
assignments can prioritize assigning requests that have not been assigned to crowdsourcees.

The unused service time of a request j (b;) quantifies the gap between the latest delivery time tfij

and the actual delivery time ta; (Eq. (7). Conceptually, a larger b; means greater flexibility in altering

the way the request is picked up and delivered (e.g., by moving the request to a different position in

the assigned crowdsourcee route or to a different route).

b; = t(lij — lg; (7)

Note that in the case of an unassigned request, the request will be delivered by a backup vehicle
which departs from a pre-specified depot D. Assuming that the backup vehicle will leave the depot at
the earliest pickup time te],, the actual delivery time will be tq; = t,gj + T[l,’,pj + T;’j,dj where T[I,’,pj and
Tzf’j,dj denote respectively the travel time of the backup vehicle from the depot to the pickup node, and

from the pickup node directly to the delivery node.

The occupation time of a request (0;) quantifies the duration between pickup and delivery of a

request j.
Oj = td]- — tp]' (8)
where
ty; is the pickup time of request j by the assigned crowdsourcee.

For an unassigned request, ty; is equal to tf,]. + Tglpj. Thus, o; = T;?j,d,--
The third component in the three-tuple, namely S¢, contains four pieces of crowdsourcee-specific
time and capacity information:

SC = {bk'vk’rk’nk; Vk € K}

where
bi is the routing duration for crowdsourcee k;
Vg is the total delivery time violation of requests assigned to crowdsourcee route k;
Tk is the remaining available time for crowdsourcee k;
Nk is the total capacity violation along the route of crowdsourcee k.
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The calculation of b, is intuitive. v, is calculated using Eq. (9), where J¥ denote the set of
requests assigned to crowdsourcee k. The max operator is used when delivery is earlier than the latest

delivery time (i.e., ta; — téj < 0) such that it does not contribute to the violation:

Uy = z max(tdj - téj,O) (9)

jek
The remaining available time of crowdsourcee k, 7, is the difference between the crowdsourcee’s
total available time (t¥ 4 — tX..,) and the route duration (b), as shown in Eq. (10), where t¥ , and
tk . are the end and start of crowdsource k’s available time window. An underlying assumption is
that an assigned crowdsourcee will start routing at tX, .. If the total available time of a crowdsourcee

is less than the route duration, 7, < 0 means that crowdsourcee k’s time availability is violated when

finishing the last delivery on the route.

Ty = (t5q — t&ar) — b (10)

Given that a crowdsourcee has limited carrying capacity (measured in weight), the total capacity
violation along a crowdsourcee route 7, is the total number of capacity violation occurrences at each

pickup node:

Me = Z Op;» (11)

JeJk
where 6pj = 1 if the total weight carried right after picking up at node p; exceeds the carrying

capacity, and zero otherwise.
With the full specification of s, = {§%,S", S¢}, the dimension of the state space can be explicitly

expressed as a function of the dimensions of J and K. We show this in Remark 1 below.

Remark 1. The dimension of the state space is 11|/| + 8|K].
Proof. See Appendix A.

3.2.3 Action space design

As mentioned in Section 1, the combinatorial nature of the crowdshipping problem means that a

large number of different actions can be taken to construct and improve crowdsourcee routing.
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However, enumerating all possible actions would be neither efficient nor practical in DRL training. To
preserve training tractability, we abstract the action space into five types of actions. At each time step,
the agent may perform one action from the five types to alter an existing crowdsourcee route(s) or
create a new crowdsourcee route. The choice of an action type is informed by the DQN algorithm.
Once the action type is identified, the specific action to take is directed by the heuristics that leverage
time-related state information about crowdsourcees and requests (e.g., slack time of a request and
remaining available time of a crowdsourcee) so that assignment urgency, flexibility for routing
improvement, and shipping cost reduction potential are taken into account toward more efficient
crowdsourcee routing construction/improvement.

Among the five types of actions, the first type pertains to inserting an unassigned request to an
existing/new route. The other three types of actions: intra-route move, inter-route move, and 1-
exchange, are neighborhood moves of requests that have been previously placed in some existing
crowdsourcee routes. Here the term “neighborhood” means that a move makes only one change to the
solution, such that the solutions before and after the move remain quite similar to each other. Details
of performing the neighborhood moves are described in subsections 3.2.3.2-3.2.3.4 below. The last
action type is do-nothing, i.e., no action is taken. We consider do-nothing as an action for preserving
good solutions. Specifically, if a very good solution has been achieved, having the option of do-nothing
prevents taking another action that would move away from the solution to an inferior solution. It is
worth mentioning that other more complex actions can be realized using the proposed five action types,
in multiple time steps. In other words, our proposed action types are building blocks for other more
complex actions. For instance, a 3-way exchange of requests among three crowdsourcee routes in a
cyclic manner could be decomposed into and realized through two inter-route moves. Because of the
decomposition, it is possible that the inter-route moves are taken consecutively or with other actions

in between, therefore permitting more flexibility. Fig. 3 provides an illustration of the first four action

types.
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Fig. 3. Illustration of the four types of actions considered

[EEE: Backup vehicle route

For insertion, intra-route move, and inter-route move, routing feasibility after taking an action

needs to be checked by following Definition 1 below.
Definition 1. Feasibility of a crowdsourcee route. A crowdsourcee route k is feasible if the following

four conditions are met:
(1) request pickup is no earlier than the earliest pickup, for all requests on the route: ty; 2 tgj, vj € J¥;
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(2) request delivery is no later than the latest delivery, for all requests on the route: tq; < téj, vj € Jk;

(3) remaining available time of the crowdsourcee after completing the route is non-negative: t;, = 0;

(4) no violation of crowdsourcee capacity on the route: n, = 0.

Conceptually, the decision on what action to take at a time step proceeds in two stages. First, the

DQN algorithm identifies one of the five action types (insertion, intra-route move, inter-route move,

1-exchange, and do-nothing) as specified in the action space. Once the action type is identified, in the

second stage the specific action is executed using the corresponding heuristic, based on system state

information and intuitive reasonings. The remainder of this subsection describes in detail the heuristics

that guide the specific action to take under each action type (except for do-nothing). We also present

computational complexity of each heuristic as Remarks 1-4, with proofs provided in Appendix A.

3.2.3.1 Inserting an unassigned request in an existing/new route

For insertion, we need to determine which request to choose for insertion, and where to insert the

request. The action consists of three steps.

Step 1:

Step 2:

Step 3:

Select a request.
Among the unassigned requests, select one with the smallest slack time.
Insert the request to a route.

For the selected request, calculate the distances between the pickup node of the request
and each crowdsourcee. For an assigned crowdsourcee, the distance is to the end of the
crowdsourcee route. For an unassigned crowdsourcee, the distance is to the crowdsourcee
origin. Identify the smallest distance.

If the smallest distance occurs to an assigned crowdsourcee, insert the node to the end of
the crowdsourcee route. If the smallest distance occurs to an idle crowdsourcee, create a
new route: crowdsourcee origin — request pickup node — request delivery node.

Perform intra-route move.

If the request is inserted to an existing crowdsourcee route, explore moving the request to
earlier positions in the route. The move follows Step 2 of intra-route move below, but for
the inserted request only. Place the request at the position that is feasible and leads to the
smallest routing cost.

If it is not feasible to place the request anywhere in the inserted route, move to the route
with the second smallest distance, insert the request to the end of the route, and perform
intra-route move. If all routes are checked and a feasible placement cannot be found, move
to the unassigned request with the second smallest slack time. Repeat Step 2 and Step 3
described above. If it is not possible to feasibly insert any unassigned request, stop and
nothing is changed.
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In Step 1, the rationale for considering the unassigned request with the smallest slack time, the

information of which comes from 8; in S (second component in the three-tuple state representation),

is that we want to get the most urgent unassigned request assigned first. In Step 2, we perform insertion

to the nearest crowdsourcee as this incurs the smallest time loss between the crowdsourcee finishing

the currently assigned requests and picking up the request under study.

Remark 2. The computational complexity of insertion is O(|J|? log|J]).

Proof. See Appendix A.

3.2.3.2 Intra-route move

Intra-route move involves moving a later request to an earlier position in a route to reduce routing

cost. The action also consists of three steps.

Step 1:

Step 2:

Step 3:

Select a route.
Select the crowdsourcee route with the largest remaining available time.
Move examination.

Enumerate all feasible moves of a request to a different place. For a request, first move it
to the end of the route, i.e., having the last two nodes in a route as the pickup and delivery
nodes of the request. Then, examine all feasible moves of the request to an earlier place in
the route.

To illustrate, consider routing sequence (uy,p1,d1, - Pn-1, An-1, Pn, dn) and moving
request n (whose pickup and delivery nodes are already at the end of the route). Move p,,
to an earlier position, one place at a time, i.e., to the places right before d,,_;, right before
Pn_1,--., until right after u;.. For each new position of p,,, examine feasibility of holding
d,, at its initial place, moving it one place at a time to an earlier position, as long as d,, is
not before p,,. For each feasible (p,,, d,,) move, calculate the routing cost.

Repeat the above for every request in the route.
Identify the best move.

Among all the feasible moves in Step 2, pick the one with the smallest routing cost. If the
routing cost is smaller than the original routing cost, perform the move. If no move yields
a smaller routing cost or there is no feasible move, stop and nothing is changed.

In Step 1, the rationale for considering the route with the largest remaining available time, for

which the information comes from 7, in S¢, is that such a route has the greatest flexibility for moving

requests around.

Remark 3. The computational complexity of intra-route move is O (|/| log|/]).
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Proof. See Appendix A.

3.2.3.3 Inter-route move

Inter-route move picks a request from a route and moves it to another route by performing the

following three steps.

Step 1:

Step 2:

Step 3:

Select a request.
Among all assigned requests, select one with the largest occupation time.
Move the request to the end of a different route.

Insert request to another existing route or create a new route, following Step 2 of insertion.
Calculate the combined routing cost for the two routes involved in the inter-route move.

Perform intra-route move of the request.

If the request is inserted to an existing crowdsourcee route, explore moving the pickup and
delivery nodes of the request to earlier positions in the route to reduce routing cost. The
move follows Step 2 of intra-route move below, but for the inserted request only.

If there exist feasible intra-route moves that lead to lower routing cost than the cost after
Step 2, perform the intra-route move that leads to the lowest routing cost. If not and the
solution after Step 2 is feasible, perform only Steps 1-2. Otherwise, nothing is changed.

In Step 1, the rationale for considering the request with the largest occupation time, for which the

information comes from o; in §7, is that larger occupation time may suggest greater time (and thus

cost) reduction potential by moving the request to a different route.

Remark 4. The computational complexity of inter-route move is O(|J|log|/|).

Proof. See Appendix A.

3.2.3.4 I-exchange move

1-exchange move pertains to exchanging two requests which are on two crowdsourcee routes.

Performing the move has four steps.

Step 1:

Step 2:

Select the first request.

Among all assigned requests, select the first request that has the largest unused service
time.

Select the second request.

Excluding the route associated with the first selected request, select the second request that
has the largest unused service time among the remaining assigned requests.
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Step 3: Exchange the selected requests.

Remove the two requests from their routes. Add each request to the end of the other route.
Calculate the combined routing cost for the two routes involved in the 1-exchange move.

Step 4:  Perform intra-route move of the two requests.

For each of the two requests, this follows Step 2 of intra-route move. Place the request at
the position that is feasible and leads to the smallest routing cost. The associated routing
cost should be lower than the routing cost from Step 3. If this is not possible, leave the
request at the end of the route, i.e., do not perform Step 4.

In Steps 1 and 2, the rationale for choosing requests with the largest unused service time, for which
the information comes from b; in S™, is that such requests have the greatest flexibility to be moved
around. It should be noted that unlike the other three actions, we do not consider feasibility while
performing Step 3 in 1-exchange. This is intentional to help the search escape local optima (Nanry and

Barnes, 2000).

Remark 5. The computational complexity of 1-exchange move is O(]]|log|/]).

Proof. See Appendix A.

3.2.4 Reward specification
Given the state and the action at a time step, we specify the reward as the change in TSC as a
result of the action taken. If the action taken at time step t is inserting request j in crowdsourcee route

k, the reward is computed as:

Tt = Bcbk,t—l + Bb (TDb,p] + Tl?],d] +s+ TC?],D) - ﬁcbk,t (12)
where
pP is the unit cost of using a backup vehicle (in $/minute);
B¢ is the unit cost of using a crowdsourcee (in $/minute);

Drt—1  1s the route duration (in minutes) of crowdsourcee route k at time step t — 1;

Drt is the route duration (in minutes) of crowdsourcee route k at time step t;
s is the stopping time of a node (assumed one minutes);
T} D is the backup vehicle travel time from the delivery node of request j back to depot D.

InEq. (12), By ¢—1 is the cost of crowdsourcee route k at time step t — 1, which is before request

j is inserted. If the route does not exist before inserting j, this term will be zero. B (Tg_pj + Tlgjj,dj +
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Té’j'[,) is the cost of picking up and delivering the request by a backup vehicle. b, , is the cost of the

crowdsourcee route k at time step t, after request j is inserted. The calculation result using Eq. (12) is
measured in dollars.

If the action taken at time step t is a neighborhood move, let us use ¥; to denote the set of
crowdsourcee route(s) that are involved in the move. For intra-route move, ¥, will have just one route.
For inter-route move and 1-exchange, ¥; will have two routes. The reward is calculated as the

difference of the routing costs before and after the move:

e =ct —c? (13)

where ¢} and ¢? are routing costs for the route(s) in ¥, before and after the neighborhood move:

Ct1 = p° Z bre—1+70 Z Vge-1+7T Z Xki-1 T PP Z Nk,t-1 (14)

=B\ D Bt ) Vet T ) K+ PP ) e (1)
where
Drt is the route duration for crowdsourcee k at time step t;
Vit is the delivery time violation of requests assigned to crowdsourcee route k at time step t;
Xkt is the available time violation for crowdsourcee k at time step t;
Nt is the carrying capacity violation for crowdsourcee k at time step t;
Y is the penalty multiplier for delivery time violation;
T is the penalty multiplier for crowdsourcee overworking;
p is the penalty multiplier for crowdsourcee carrying capacity violation;
o) is the capacity violation-to-time conversion factor.

Here,9, 7, and p are unitless penalty parameters. ¢ has unit of minutes per capacity violation. The

calculation result of Eq. (13) is also in dollars.

3.3 DRL algorithm for crowdshipping

This subsection describes how DQN, which is our training algorithm, is adapted to the context of
crowdshipping. DQN is an off-policy RL approach, as it is based on Q-learning (Sutton and Barto,
2018). The training is offline with a simulator developed by ourselves. In DQN, the training of the

agent is through multiple episodes, each. Each episode is associated with a crowdshipping problem
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instance of a certain size, which is randomly generated and starts with an initial state that all
crowdsourcees are idle (unassigned). Training in an episode involves improving the solution by taking
actions described in subsection 3.2.3, one at a time in a number of time steps.

At each time step, an e-greedy strategy is employed to consider both exploration and exploitation
as the agent decides what type of action to take among insertion, intra-route move, inter-route move,
1-exchange move, and do-nothing. By exploration, it means that the agent takes a random action type,
with probability €. By exploitation, the agent takes one of the five action types above that is the best—
based on the experiences that the agent has learned so far (reflected in the current Q-values, as shown
in line 7 in Algorithm 1 at the end of this subsection), with probability 1 — €. Once the best action type
is chosen, the specific action follows the heuristics described in subsection 3.2.3 (line 8 in Algorithm
1). Consequently, a reward and a new state are observed.

While exploitation takes advantage of what have been learned in terms of the best action to take,
exploration is necessary to try to get the agent out of local optima toward even better action sequences,
to further reduce total shipping cost. At the beginning of an episode, ¢ takes value 1, i.e., the focus is
purely on exploration, which is intuitive as the agent has zero learned experience (thus nothing to
exploit) at this point. Then as time goes by, the agent gradually increases the probability of exploiting
learned actions. A decay rate of ¢ is used which describes the change in probabilities between two time

steps (Eq. (16)). € is a hyper parameter.

&1 = &1 —9) (16)

One salient feature of DQN is experience replay, for which a replay memory M is used to store
the agent’s experiences during training. Up to |M| experiences can be stored in the replay memory. An
experience is associated with taking an action at a given state and time step, observing a state transition,
and getting a reward. For example, at time step ¢, the agent performs an action a, which transforms

the state from s, to s;4, and yields a reward r;. The experience is denoted as e; = (S¢, @; 7%, Sgq1)- At

the beginning of the training, M is empty. As the training continues, experiences are accumulated and
added to replay memory M. Once |M| experiences are stored in M, adding a new experience requires
simultaneous removal of the oldest experience stored in M.

At each time step, a DNN is trained using a minibatch M, of samples that are randomly selected
from M. Note that in the beginning of the training, the number of accumulated experiences in M will
be fewer than |M,;,|. In this case, experiences will continuously be accumulated in M but DNN will

not be trained, until the replay memory has | Mg, | experiences. The employment of experience replay
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using randomly selected minibatch samples has multiple advantages. First, because the samples are
randomly selected, correlation between samples will be less than learning directly from consecutive
samples, thereby enhancing the efficiency of learning. Second, each experience can potentially be used
in many weight updates, thus allowing for greater data efficiency. Third, by experience replay the
behavior distribution is averaged over many previous states, which contributes to smoothing out
learning and avoiding oscillation or divergence in the parameters (Mnih et al., 2015).

For each selected experience (s,a,r,s’), state s is used as the input for the DNN (with weight
parameters 6) to generate state-action value Q(s, a: 8), or Q-value, which is the output of the DNN.2
Collectively for all the selected experiences, the prediction of Q (s, a: 8)’s comprises the first forward
pass. Q(s,a: 0) is then compared with the target optimal Q-value Q, (s, a) which gives the maximum
expected return achievable by following any DQN policy. Ideally, the target optimal Q-value should

satisfy the Bellman optimality equation:

Q.(s,a) = Ey [r +ymaxQ.(s’,a)|s, a] (17)

where 7 is the immediate reward by taking action a at station s.
The comparison of Q(s, a: 8) with Q. (s, a) is performed using a loss function. Assuming a square
form for the loss function and replacing Q, (s, a) by the RHS of Eq. (17), the loss function £, which

depends on DNN weight parameters 6, can be expressed as:

£(0) =

2
M| [+ maxe.a) - 0t a:0)] (18)

(s,a,r,s")EMgyp

Obviously, to calculate £(0), Q.(s',a’) is needed. However, Q,(s’,a’) is unknown (if Q,(s’, a")
was known, then the training would be done). One way to get an approximation of Q,(s’,a’) is to
perform another forward pass with the DNN, i.e., for state s’ in each experience (s, a,7,s’) along with
the same weight parameters 8 of the DNN, predict state-action values Q(s’,a’: 8),Va' € A using the

DNN. By approximating Q,(s’, a’) with Q(s’,a’: 8), Eq. (17) can be re-expressed as:

£0) - > [+rmaeciaio - esaof 19)

(s,a,r,s")EMgyp

|Msub|

2 In this paper, we use an architecture in which there is a separate output for each possible action. Only the state is the
input to the DNN. Thus, among the outputs for different actions, we choose the one corresponding to action a as

Q(s,a:0).
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After performing two forward passes as described above, the gradient of the loss in Eq. (19) is
used to update 8 by the Adam optimizer, a widely-used gradient descent-based algorithm for
minimizing the loss (Kingma and Ba, 2015). However, a main drawback exists in this two-forward
pass procedure. When 6 gets updated, the Q-values obtained from this network will also get updated
(in the next time step). So will the target Q-values as they are calculated using the same network
parameter. In other words, the direction of updates for the Q-values and the target Q-values will be
same. As a consequence, the correlation between the Q-values and the target Q-values can be high,
possibly leading to oscillation or divergence of the policy during training.

To tackle this issue, a second salient feature of DQN is that a parallel network, called the target
network, of the original DNN is created to preserve DNN parameter values for a period of time, so that
target Q-values do not get updated with the same frequency as the Q-values. The target network, which
is a clone of the original network, initializes its parameters 6’ using the original DNN: 8’ = 6 at the
beginning of the training. Then, instead of updating 8’ by 6 of the original DNN at every time step, 6’
is frozen for & time steps. Only after every § time steps, 8" gets updated to whatever is the present
value of the original network parameters 6. In this procedure, § is a hyper parameter.

The Q-value obtained from the target network Q(s’,a’: 8") is used to calculate the approximate

target Q-value r + y max Q(s’,a':8"). The loss function shown in Eq. (17) becomes:
a

£0) = 7 [r+ ymaxots.a0) - oG 0)] o)

(s,ar,s")EMgyp
In implementing DQN, we use a slightly modified version of the squared loss function called
Huber loss function. For each sample, the squared term is used only if the absolute error falls below a
threshold (here we choose the value 1). Otherwise, we use an absolute term as shown in Eq. (21). An
advantage of the Huber function form is that the loss is less sensitive to outliers than the square loss

for large errors, which prevents exploding gradients.

L) =

M| Ly <r + y max Q(s’,a':6") —Q(s,a: 0)) 1)

(s,a,r.s")EMgyn
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where

Ly <r +ymaxQ(s’,a:0") — Q(s, a: 9)) = 4
a'€eA

Finally, it should be mentioned that during an episode, we also accumulate the rewards that are

negative. If the accumulated negative reward in an episode falls below a threshold, then the training of

2
|(0.5 [r + ymaxQ(s’,a":0") — Q(s,a: 9)]
a'eA
if |r +ymaxQ(s’,a":0") — Q(s,a: 9)| <1
a'eA

|
ur +vy rr;eeli(Q(s’, a:0")—Q(s,a: 9)| — 0.5 otherwise
a

the episode is perceived as not promising and consequently terminates.

Summarizing, the overall learning algorithm is presented in Algorithm 1 and illustrated in Fig. 4

below.

Algorithm 1: Overall learning algorithm for the crowdshipping problem

1. Initialize replay memory M = @

2. Initialize the original DNN with random weight parameters 6

3. Initialize the target DNN with same structure as the original DNN and weight parameters 6’ = 6

4. for episode i = 1to I, do & [ is the number of episodes

5. Initialize state sy € S o in the initial state sy, all crowdsourcees are unassigned

6. for timestept =1to T, do o T is the number of time steps in an episode

7. Select a random action type a, with probability €; otherwise, set action type a; =
argmax Q(s;, a; )

a€cA

3. Execute a specific action under action type a;, as guided by the corresponding heuristic in
subsection 3.2.3. This results in 7, and sy, ¢

0. Store experience e = (S, 4, 13, Se+1) IN M

10. if [M| > |Mgyp|, do

11. if R, > K,do © R; is accumulated negative reward in the episode; K is a threshold

12. Randomly sample a minibatch M, of experiences from M

13. for each experience e; = (s}, a;, 7}, Sj41) in Mgy, do

14. Compute 7; + y max Q(sjt1,a":0")

15. end for

16. Calculate loss by Eq. (21)

17. Update weight parameters 6 by the Adam optimizer

18. Update 8’ = 6 every & time steps

19. else

20. break o if R; < XK, the training is perceived as not promising and stop

21. end if

22. end if

23. end for

24. end for
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Based on Algorithm 1 and the state and action space characterization, the complexity of DQN

training is examined, with results formalized as Remark 6 below.

Remark 6. The computational complexity of DQN training in the context of crowdshipping is
O([()J| + B)e + £e?]|Mgyp| + |J121og|JDHT), where £ is the number of hidden layers in the DNN,
e is the upper bound on the number of neurons in a hidden layer, |M,,| is minibatch size, I is the
number of episodes, and T is the upper bound on the number of time steps in an episode (note in line
20 of Algorithm 1 that training in an episode can stop earlier).

Proof. See Appendix A.
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Fig. 4. The architecture of the overall learning algorithm

3.4 Rule-interposing in DRL training and implementation

Whether in DRL training or in implementation of the trained policy, it is possible that some routes
or node sequences are repeatedly visited during neighborhood moves. This reduces the efficiency of
DRL training, as well as the efficiency in search for the best crowdsourcee-request assignment outcome
when a trained policy is applied to solve a problem instance (note that after DRL training is done, at a

given state s the optimal Q-value only provides what type of action to take, i.e., a* = argmax Q*(s, a)
a€A

where Q* denotes the optimal Q-value). In this subsection, we propose two rules that aim to prevent

such repeated visiting of routes and node sequences, by excluding a previously visited route or node
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sequence from being considered again in a number of subsequent actions. In what follows, the first

rule focuses on routes. The second rule focuses on node sequences.

3.4.1 Rule 1: Introducing priority lists for route selection

To avoid that actions are repeatedly exerted on one or a subset of crowdsourcee routes, the first
rule proposed relies on construction and use of three priority lists of crowdsourcee routes, with each
list corresponding to one of the three neighborhood move action types (intra-route move, inter-route
move, and 1-exchange) described in subsection 3.2.3. Specifically, when a neighborhood move action
type is chosen, we pick the crowdsourcee route(s) from the top of the corresponding priority list to
apply the action type. After the specific action is taken on the route(s), the route(s) are removed from
the list. Thus over time, routes will be continuously picked and removed from the priority list. The
priority list will be shortened, and eventually become empty. Then, we construct a new priority list of
all the crowdsourcee routes for the same action type. By doing so, during the life cycle of a priority
list, a route is considered only once for the associated action type. This allows more exploration of the
same action type on other routes. This construction-destruction of priority lists repeats throughout the
training and implementation of a trained DRL to solve a problem instance.

Each of the three priority lists is constructed based on some criterion. For intra-route move, the
priority list is constructed by sorting crowdsourcee routes in descending order based on the
crowdsourcee’s remaining available time, which is consistent with the rationale of Step 1 in subsection
3.2.3.2. For inter-route move, the priority list is constructed by sorting crowdsourcee routes in
descending order based on the occupation time of each crowdsourcee, measured as the duration
between the time of the last delivery and the time of the first pickup. This is in line with Step 1 in
subsection 3.2.3.3 (there we also consider the largest occupation time, though for requests). Thus,
request selection of Step 1 in subsection 3.2.3.3 will be only from the route with the highest priority.
After an inter-route move action is taken, that route is removed from the priority list. The occupation
time of the route to which the request is moved will be updated. The position of that route in the priority
list will also be updated, for which the computational complexity is O(log(N)) based on binary search,
with N being the number of crowdsourcee routes in the priority list. For 1-exchange move, the priority
list is constructed by sorting crowdsourcee routes in descending order based on unused service time,
which is consistent with Steps 1 and 2 in subsection 3.2.3.4. Thus, the selection of the first and the
second requests will be from the two routes with the highest and second highest priority respectively.

After a 1-exchange move action is taken, the two routes will be removed from the priority list.
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3.4.2 Rule 2: Imposing Tabu tenure for neighborhood moves

The second interposing rule is that after a request node (either pickup or delivery) is moved away
from an adjacent node (either right before or right after in the routing sequence) on a crowdsourcee
route, the former node cannot be moved back to the same location relative to the latter node over a
certain number of subsequent actions. This latter node can be of a different request, or of the same
request (i.e., the former node is the pickup node of a request, and the latter node is the delivery node
of the same request). Similar to Rule 1, this rule applies to the three types of neighborhood moves
(intra-route move, inter-route move, and 1-exchange). For each type of neighborhood move, a Tabu
tenure will be created to record for how many subsequent actions a request node cannot be neighbored
with another node. Similar to Rule 1, Tabu tenure allows neighborhood moves to explore more routing
sequences, rather than getting trapped in routing sequences that have been explored and only locally
optimal.

To operationalize Tabu tenure, two matrices are created and maintained. The first matrix, of
dimension 2|J| X 2|/|, indicates whether a node (indexed by the column. There are in total || requests
thus 2|/ | pickup and delivery nodes) preceding another node (indexed by the row) is Tabu-ed and for
how long. The second matrix, of dimension (|K| + 2|J|) X 2|J|, indicates whether a node (indexed by
the column) following another node (indexed by the row) is Tabu-ed and for how long. The second
matrix has |K| more rows which correspond to the origins of the |K| crowdsourcees, as a pickup node
can be placed right after the origin of a crowdsourcee. Given that the two matrices are relatively sparse,
we adopt a three-coordinate representation that records only the row number, column number, and
value of the non-zero elements (indicating for how many subsequent actions a position is Tabu-ed) of
a sparse matrix, rather than storing the entire matrix. For example, suppose we deal with the preceding
relationships of two requests (|/| = 2), which leads to a matrix of 4 X 4. If node 1 (pickup node of
request 1) preceding node 3 (pickup node of request 2) is Tabu-ed for the next two subsequent actions,
and node 2 (delivery node of request 1) preceding node 4 (delivery node of request 2) is Tabu-ed for
the next three subsequent actions, we record only two elements in each of three lists: Row list: [3, 4];
Column list: [1, 2]; and Data list: [2, 3]. In our numerical experiments in Section 4, this dealing with
sparse matrices is shown to significantly reduce DRL training time (by 14%). The precedence/
succession relationships are updated whenever an action is taken. Note that if a Tabu-ed position yields
a solution that is better than the best solution obtained so far for a problem, then the Tabu tenure will

be overridden.
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4 Numerical experiments

This section illustrates numerical implementation of the proposed methodology described in
Section 3. We primarily investigate two problem sizes: a medium size with 50 requests and 22
crowdsourcees, and a larger size with 200 requests and 70 crowdsourcees. In subsection 4.1, we first
present and discuss the results for the medium-size problems in detail, including problem setup,
training results, results comparison with full, partial, and no time-related information in the state space,
benefits of heuristics-guided action choice and rule-interposing, and results sensitivity to key
hyperparameters. To further gauge the performance of the DRL-based approach, benchmarking is
performed in subsection 4.2. This includes comparison with three popular heuristic methods as well as
with optimal solutions that can be obtained for a series of small-size problem instances. In subsection
4.3, to keep the paper length we briefly report implementation results for the larger-size problem
instances in terms of total shipping cost and computation time, in comparison with the three heuristics.
The DQN algorithm is coded and trained in the PyTorch environment. All numerical investigations are
conducted on a PC with Intel Core 19-10920X CPUs at 3.50GHz and 128GB RAM and NVIDIA Titan
RTX GPUs.

4.1 Medium-size problems: DRL training and application

4.1.1 Setup

As mentioned above, we consider a static problem of assigning 50 requests to 22 crowdsourcees.
Following Remark 1, the dimension of the state space is 11 X 50 + 8 X 22 = 726. The service area
has a square shape of 6 miles X 6 miles. For a problem instance in both training and testing, the pickup
and delivery locations of each request are randomly generated in the service area. So are the origins of
the crowdsourcees. The available time of a crowdsourcee is randomly drawn from a uniform
distribution of 1-2 hours. The weight of a shipping request is also randomly drawn from a uniform
distribution of 2-7 lbs. The carrying capacity of a crowdsourcee is 10 lbs. The earliest pickup time of
all requests is the present time. The latest delivery time of a request is randomly drawn from a uniform
distribution of 100-120 minutes. Crowdsourcees are assumed to bike to perform pickup and delivery
at a speed of 10 mph. Given that all problem instances are randomly generated, in the statistical sense
there should be no difference between instances for training and testing. On the other hand, as a very
large number of instances are used (e.g., 808 instances used in training), for illustration we only present
two randomly picked instances, one from training and one from testing, as shown in Appendix B. No

significant differences (apart from the effect due to randomness) among the instances can be discerned.
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If a request is not assigned to any crowdsourcees, it will be picked up and delivered by a backup
vehicle which leaves a depot located at the center of the service area and returns to the depot after
finishing the delivery. Given the small weight of a request relative to the typical carrying capacity of a
backup vehicle, capacity constraints are not considered for backup vehicles. We assume backup
vehicles travel at a speed of 20 mph. We follow Kafle et al. (2017) by setting the operating cost of a
backup vehicle to be $68/hour ($1.13/minute) and the pay rate for crowdsourcees to be $10/hour
($0.17/minute), which is considerably cheaper. Crowdsourcees get paid whenever carrying requests.

Following Mnih et al. (2015), values of hyperparameters, shown in Table 2, are selected by
performing an informal search. It should be noted that since these hyperparameter values are chosen
for our specific crowdshipping problems, they may not be the best hyperparameter values for other
problem settings. Nonetheless, if a new problem setting bears similarities with our crowdshipping
problems (e.g., a pickup and delivery problem with capacity constraints only or without constraints),
the hyperparameter values identified here could be a good start point for hyperparameter fine tuning.
We set T = 85 time steps as the upper bound on the length of an episode, the penalty parameters in
the reward specification to be 9 = 0.1, T = 0.2, and p¢p = 0.15 minutes/capacity violation, and the
length of Tabu tenure to be three consecutive actions. We choose a 6-layer (i.e., £ = 6) fully connected
feed-forward neural network as our DNN construction, where each hidden layer has 512 neurons (i.e.,

e = 512).

Table 2: Hyperparameter values

Hyperparameter Value
Replay memory size (|M]) 15,000
Minibatch size (|Mgyp|) 256
Target network update frequency (6) 400
Discount factor (y) 0.88
Learning rate («) 0.0001
Decay rate (§) 0.001
Episode termination threshold (X) -55

4.1.2 Training results

Fig. 5 plots the evolution of training over time steps, using four measures: (a) loss per time step.
The light purple curve reflects the actual values, while the red curve is the running average over three
time steps; (b) average Q-value, averaged over all state-action pairs in a minibatch. Similar to (a), the
light purple curve reflects the actual values, while the red curve is the running average over 65 time

steps; (c) accumulated reward between two terminations. As described in subsection 3.3, a termination
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occurs when the accumulated negative reward falls below threshold X (line 20 of Algorithm 1); (d)
cumulative penalty, which is the sum of the last three terms in the parentheses (multiplied by £€) in
Eq. (14)-(15) over all time steps from the start of the training. In (a) and (b), running averages are taken
to better illustrate the changes and trends. The training stops when the relative change in cumulative
penalty in the most recent 3,000 time steps is less than 5%. In total, 46,071 time steps (778 episodes)
are used in the DQN training. The training takes 49.3 minutes.

Fig. 5(a) illustrates that in the early stage of training, the loss value per time step experiences a
jump every 400 time steps (as made clearer in the zoom-in view), which corresponds to an update of
the target network. The jumps are particularly acute in the beginning since the agent has little learned
experience then. The magnitude of jumps diminishes as learning continues. In Fig. 5(b), the average
Q-value keeps improving till after 13,500 time steps. Before that, updates in the DNN considerably
improve the DQN algorithm which yields better solutions. Fig. 5(b) also shows a magnifier of the first
5,000 time steps. It is interesting to observe step-wise jumps every 400 time steps, which is again the
target network update frequency. In other words, whenever updating the target network, it leads to a
significant improvement in average Q-value. The magnitude of the jumps decreases over time steps,
suggesting that the marginal improvement of the DQN algorithm is diminishing as training continues.
In Fig. 5(c), the accumulated reward between two terminations tends to stabilize after around 42,000
time steps. Fig. 5(d) shows that the accumulative penalty over all time steps becomes stable a bit later:
after around 38,000 time steps, the DQN algorithm becomes well trained that taking actions suggested
by the DQN algorithm will cause little violation of time and capacity constraints (which incurs penalty)

during neighborhood moves.
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Fig. 5. Evolution of (a) loss; (b) average Q—V&lu@??:) accumulated reward between two terminations;
and (d) cumulative penalty in the course of DQN training

To further show the effectiveness of the DQN algorithm training, we apply the DQN algorithm
throughout its training to three randomly generated problem instances of the same size (50 requests
and 22 crowdsourcees). Fig. 6 shows the TSC results when applying the DQN algorithm with the most
up-to-date DNN weight parameters every 40 episodes. It can be seen that TSC will be drastically
reduced after the first 40 episodes. For example, for problem instance 1 TSC reduces by more than
three-quarters from 1,475 to less than 250. Afterwards, the improvement in TSC is more incremental
with some rebounds. After 640 episodes, TSC becomes very stable for all three problem instances (as

shown further in the zoom-in view).
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Fig. 6. Evolution of total shipping cost during training

4.1.3 Assessing the benefits of heuristics-guided action choice

Recall that one novelty of our proposed DRL algorithm lies in the embedment of heuristics-guided
action choice in DRL. At each time step, the DRL agent performs one of the five types of actions to
create new or change existing crowdsourcee routes. To compare the proposed DRL algorithm with a
DRL algorithm without heuristics-guided action choice, a neighborhood move will be randomly
chosen given any of the first four action types, as described in Appendix C. Similar to what we do in
Fig. 6, we apply the DQN algorithm throughout its training to two randomly generated problem
instances and present the TSC results using the most up-to-date DNN weight parameters every 40
episodes. For each problem instance, we train the DQN algorithm twice, one with heuristics-guided

action choice and the other without. The results are shown in Fig. 7.
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Fig. 7. Comparison of total shipping cost with and without
heuristics-guided action choice during training
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We observe that at the beginning of the training, the TSC curve with heuristics-guided action
choice (solid line) is higher than without heuristics-guided action choice (dashed line) for both problem
instances. However, for the rest of training, the TSC curves with heuristics-guided action choice are
well below the TSC curves without heuristics-guided action choice. At the end of training, a substantial
TSC gap remains. The final TSC without heuristics-guided action choice is 24.5 and 10.5% higher than
with heuristics-guided action choice, for the two problem instances respectively. The results clearly
show the advantage of heuristics-guided action choice in DQN training.

Fig. 8 presents comparisons of applying the trained DRL models to 20 randomly generated
problem instances. The reduction of TSC with heuristics-guided action choice is clearly observed.
Across the 20 problem instances, the average TSC reduction is 11.4% with a standard deviation of

9.6%. The largest reduction, which occurs to problem instance 8, is 35.5%.
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Fig. 8. Comparison of total shipping cost with and without
heuristics-guided action choice during testing
Fig. 9 reports further the DQN training time without and with heuristics-guided action choice. To
make sensible comparisons, we let training without heuristics-guided action choice run same number
of time steps. The results show that the training time with heuristics-guided action choice (49.3
minutes) is much larger than without heuristics-guided action choice (29.6 minutes). This suggests that
anon-trivial amount of added computation is needed during training for heuristics-guided action choice

to achieve lower TSC.
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Fig. 9. Comparison of training time with and without heuristics-guided action choice

4.1.4 Assessing the benefits of rule-interposing

In this subsection we evaluate the benefits of another novelty of the proposed DRL algorithm: the
integration of rule-interposing into DRL training and implementation. As in Fig. 7, we apply the DQN
algorithm throughout its training to the same two randomly generated problem instances, and present
the TSC results using the most up-to-date DNN weight parameters every 40 episodes. For each problem
instance, we train the DQN algorithm twice, one with rule-interposing and the other without. The
results are shown in Fig. 10.

For the first problem instance (in blue), although the TSC without the two rules appears to be
diminishing at the beginning of the training, the TSC value rebounds after 80 episodes, then declines
and meets the TSC curve when the two rules are used at around 240 episodes. Afterwards, the TSC
curve without the two rules experiences some fluctuations, surges after around 560 episodes, and
remains well above the TSC curve with the two rules. At the end of the training, the TSC without the
two rules is 24.3% higher than with the rules. For the second problem instance (in red), the TSC curve
without the two rules experiences greater fluctuations throughout the episodes. Overall, the results also

demonstrate the advantage of rule-interposing in DQN training.
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820 Fig. 11 presents comparisons of applying the trained DRL models to the same 20 randomly

821  generated problem instances as in subsection 4.1.3. We observe an overall TSC reduction with rule-
822  interposing. The average TSC reduction across all 20 instances is 9.2% with a standard deviation of
823  12.1%. The largest reduction, which occurs to problem instance 17, is 34.5%.
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828 Fig. 12 reports further the DQN training time with and without the two rules embedded. Again, to

829  make sensible comparisons, we allow the training without the two rules to run the same number of
830  time steps. The results show that the training time with rule-interposing (49.3 minutes) is only slightly
831  higher than without rule-interposing (47.1 minutes).
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4.1.5 Comparison with full, partial, and no time-related information in state space

A uniqueness of the state representation is the specification and inclusion of a variety of time
information that relate to both requests and crowdsourcees. A question arises as to how important such
information is in training the DRL agent. To this end, this subsection investigates the possibility of
having lower-dimension state space representation without part or all of the time-related information.
Specifically, three alternatives are investigated. The first alternative does not have request-related time
information, that is, we remove S” from the three-tuple state representation s, = {S%,S",5¢}. The
second alternative does not have crowdsourcee-related time information, that is, we remove S¢ from
the three-tuple except for n;,, which records violation of crowdsourcee carrying capacity. The third
alternative is an additive of the first two alternatives, i.e., the state space does not include any time
information related to requests and crowdsourcees. As a result of absent time information, a step in a
heuristic that is directed by time information will be performed randomly. For example, if request-
related information is removed, step 1 of insertion (subsection 3.2.3.1) would randomly select an
unassigned request, rather than selecting the request with the smallest slack time.

A DRL model is trained under each of the three alternatives, and then applied to 20 randomly
generated problem instances along with the DRL model trained with full time-related information as
in subsection 3.2.2. Fig. 13 below reports the results. It can be seen that time information plays a crucial
role in guiding crowdsourcee route construction and improvement to reduce total shipping cost.
Without any or with only partial time information, the total shipping cost would be higher—in many
problem instances significantly. The results clearly suggest the importance to have the full time-related

information while characterizing the state space.
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Fig. 13. Comparison of total shipping cost with full, partial, and no time-related
information in the state space

4.1.6 Sensitivity of DQN training to hyperparameter values

Finally, we investigate the sensitivity of DQN training to the values of four key hyperparameters:
(a) decay rate &; (b) learning rate a; (c) discount factor y; (d) target network update frequency 8. Fig.
14 presents the results. In each graph in Fig. 14, a curve corresponds to a specific value of the
hyperparameter under investigation and is obtained in a similar fashion as the curves in Fig. 6, for a
randomly generated problem instance. For a given graph, the three other hyperparameters not
investigated in the graph take their values in Table 2. While Fig. 14 reports TSC values of one problem
instance, we have also experimented with many other randomly generated problem instances and found
consistent results. It can be seen that, for all graphs in Fig. 14, the chosen value for each hyperparameter
produces more stable TSC curves than the alternative values. In addition, the final TSC using the
chosen hyperparameter value is always no worse than using alternative values, which reaffirms our

choice of the hyperparameter values.
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4.2 Benchmarking

To further gauge the performance of the DRL-based approach, benchmarking is performed in this
subsection. We first compare the DRL-based approach with three popular heuristic methods: simple
heuristic, reactive Tabu search (RTS), and simulated annealing (SA), for problem instances of the same
size as in subsection 4.1. We also compare the DRL-based approach against optimal solutions, which
come from formulating the problem as a mixed-integer linear program (MILP) and solving the MILP

by CPLEX. The sizes of the problem instances are smaller so that optimal solutions can be obtained

40



884
885

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

within a reasonable amount of time (as is shown in subsection 4.2.2, even for such small sizes CPLEX

still cannot yield a solution for some instances).

4.2.1 Comparison with heuristic methods

Among the three heuristic methods, the simple heuristic basically performs Steps 1-2 of the
insertion action described in subsection 3.2.3.1, and can generate solutions very fast. However, it does
not explore neighborhood moves. Therefore, the resulting solution can be far from optimum. RTS is a
hierarchical heuristic that dynamically adjusts search parameters and alternates between different
neighborhoods while seeking the optimal routing solution, based on the state and quality of the search.
Our implementation of RTS follows Nanry and Barnes (2000) with consideration of three types of
neighborhood moves (intra-route move, inter-route move, and 1-exchange). SA is based on the analogy
between the simulation of solids annealing and the problem of solving large combinatorial optimization
problems (Kirkpatrick et al., 1983; van Laarhoven and Aarts, 1987). Prior research shows that SA can
yield reasonably good solutions for large VRP instances and can be faster than other heuristics such as
Tabu search and genetic algorithm (Tan et al., 2001). At each temperature during cooling, an intra-
route move, an inter-route move, and an 1-exchange move as described in Ahamed and Zou (2020) are
performed in sequence, with each move followed by an evaluation that accepts not only an improved
solution, but also an inferior solution with certain probability. The parameter setting of SA follows
those in Kafle et al. (2017).

For the simple heuristic, it terminates when all feasible insertions of requests are performed. In
implementing RTS and SA, we allow for a sufficient number of iterations until the reduction in TSC
is not visible (TSC change is less than 2% in the last ten iterations). Fig. 15 presents the TSC results
using DRL and the three heuristics, for 20 randomly generated problem instances. DRL yields the best
solution in 18 out of the 20 problem instances. In contrast, the solutions using the simple heuristic are
the worst, despite small computation time as shown in Fig. 16. On the other hand, while the TSC results
from RTS and SA are closer to those using DRL, the computation time is much longer, by more than
an order of magnitude (20-40 minutes vs. mostly less than 1 second). Considering both solution quality

and time, the comparison clearly indicates the superiority of DRL.
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Fig. 15. Comparison of DRL with existing heuristics in terms of TSC (medium-size problems)
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Fig. 16. Comparison of DRL with existing heuristics in computation time (medium-size problems)

4.2.2 Benchmarking with optimal solutions

To further investigate how close the solutions obtained from our approach are from the optimal
solutions, we create two sets of benchmarking problem instances following the same procedure
described in subsection 4.1.1. However, these instances have smaller sizes: problem instances in the
first set each have six requests and three crowdsourcees. Problem instances in the second set each have
eight requests and four crowdsourcees. We consider the smaller-size instances so that they can be
solved to optimality using commercial solvers in a reasonable amount of time. These problem instances
are deposited in GitHub for potentially further use by other researchers.’

The comparison results are shown in Tables 3-4. The 20 problem instances in Table 3 are those

from the first set. The 15 problem instances in Table 4 correspond to the second set. Appendix D

3 https://github.com/tahame2/DRL_benchmarking_2021.git
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presents a Hamiltonian tour-based MILP formulation for the problems, which is solved by CPLEX
12.8 using the branch-and-bound method. Each problem instance is also solved by DRL. We report
both TSC and computation time using CPLEX and DRL. The last column in each table shows the

TSCprL—TSCcpLEX
TSCcpLEX

and TSC¢pygx is the TSC value using CPLEX.

optimality gap (%), calculated as X 100%, where TSCpgy, is the TSC value from DRL

For the first set of problem instances, the optimality gap is between -3% and 16%, with an average
of 5.4%. We note that this average is comparable with some reported average gaps using DRL (e.g., in
Nazari et al., 2018), though their context is solving general VRP rather than crowdshipping problems.
The negative optimality gap is because the solution produced by CPLEX may not be exactly optimal
due to: 1) gap tolerance (the difference the best upper and lower bounds); and 2) integrality toleration
for integer variables. The occurrence of the negative gap and very small positive gap suggests that in
those instances DRL can yield solutions that are very close to the exact optimal solutions. On the other
hand, the computation time using CPLEX is much longer, with an average of 12.7 seconds, as
compared to 0.07 seconds by DRL. A similar conclusion can be made for the second set of problem
instances in Table 4, with an average optimality gap of 6.2%. It should be noted that with the slight
increase in problem size, the computation time by CPLEX has increased substantially, from an average
of 12.7 seconds to 16.6 minutes. In contrast, the average computation time by DRL remains at 0.07

seconds, suggesting strong scalability of the DRL approach.
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947 Table 3: Comparison of solving 20 randomly generated problem instances

948 each with 6 requests and 3 crowdsourcees using CPLEX and DRL
CPLEX DRL Optimalit
Problem instances Total shipping Computation  Total shipping Computation Gg (%) y
cost ($) time (second) cost ($) time (second) p (7o
P63 1 29.6 27.0 315 0.04 6.4
P 632 24.6 3.4 243 0.10 12
P 633 27.8 5.7 29.2 0.09 5.0
P 634 28.0 40.0 30.4 0.06 8.6
P 635 30.8 6.0 30.7 0.08 0.3
P 636 25.8 4.0 25.8 0.07 0.0
P637 26.8 3.0 29.6 0.07 10.4
P 638 27.8 9.5 27.2 0.07 2.2
P 639 214 33 20.8 0.07 -2.8
P 6310 25.5 30.2 28.2 0.07 10.6
P 63 11 29.6 3.7 309 0.06 44
P 63 12 24.5 7.0 279 0.05 13.9
P 63 13 15.4 2.5 17.2 0.05 11.7
P 63 14 25.7 2.9 28.0 0.07 8.9
P63 15 19.5 3.0 20.9 0.07 7.2
P 63 16 37.4 54.5 36.6 0.06 -2.1
P63 17 19.5 33 19.4 0.06 0.5
P 63 18 21.2 2.5 222 0.06 4.7
P 6319 259 39.6 30.1 0.06 16.2
P 6320 21.1 3.0 229 0.06 8.5
Average 12.7 0.07 5.4
949
950 Table 4: Comparison of solving 15 randomly generated problem instances
951 each with 8 requests and 4 crowdsourcees using CPLEX and DRL
CPLEX DRL Optimalit
Problem instances Total shipping Computation  Total shipping Computation Gap (%) y
cost ($) time (min) cost (3) time (second)
P 841 37.1 27.9 39.9 0.07 7.5
P 842 36.2 124.1 37.6 0.07 3.9
P843 39.6 35 42.9 0.07 8.3
P 844 27.2 1.1 29.8 0.06 9.6
P845 27.6 7.3 31.3 0.06 13.4
P846 319 3.9 332 0.07 4.1
P847 31.6 6.5 33.2 0.07 5.1
P8438 31.8 7.1 34.1 0.06 7.2
P849 36.6 29.2 39.5 0.07 7.9
P 8410 29.6 4.1 29.5 0.06 0.3
P84 1l 26.0 1.4 25.6 0.09 1.5
P 8 4 12 35.7 31.5 37.3 0.07 4.5
P 8413 29.6 0.8 32.7 0.08 10.5
P84 14 27.7 0.1 27.7 0.06 0.0
P 8415 24.4 0.8 27.7 0.05 13.5
Average 16.6 0.07 6.2

952
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4.3 Larger-size problems

4.3.1 Setup

The larger-size problem instance considers problems of assigning 200 requests to 70
crowdsourcees, which are of comparable size to many pickup-and-delivery operation planning
problems investigated in the existing literature (Liu et al., 2015; Braekers and Kovacs, 2016; Ghilas et
al., 2016). Apart from a larger number of requests and crowdsourcees, other setups and problem
instance generation are the same as in the medium-size problems. With a larger problem size, it is
natural to expect a higher number of time steps per episode to insert all requests and perform
neighborhood moves of the requests. Therefore, we increase the length of an episode to 300 time steps.
Following a similar informal search as in subsection 4.1.1, the penalty parameters in the reward
specification are set to be 9 = 0.25, T = 0.15, and p¢p = 0.2, and the length of Tabu tenure to be 12
subsequent actions. The episode termination threshold K is decreased to -175. Decay rate ¢ is set as

0.002. Other hyperparameter values remain the same. The training time takes 3 hours and 22 minutes.

4.3.2 Comparison of solutions using DRL and heuristics

We compare performance of the DRL-based approach with the three same heuristics as in
subsection 4.2.1. 20 problem instances with 200 requests and 70 crowdsourcees are randomly
generated. Fig. 17 shows that DRL yields the best solution in 18 out of the 20 instances. Again, the
solutions from the simple heuristic are always the worst, despite small computation time (Fig. 18).
While the resulting TSC values from RTS and SA are closer to those from DRL, the computation time
is much longer (between 15-20 minutes vs. 2-3 seconds in most cases by DRL). By comparing the
change in computation time from the medium-size problem (Fig. 14), it is clear that DRL is much more

scalable than RTS or SA.
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Fig. 17. Comparison of DRL with existing heuristics in terms of TSC (larger-size problems)
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Fig. 18. Comparison of DRL with existing heuristics in computation time (larger-size problems)

5 Conclusion

Crowdshipping has gained increasing popularity for urban delivery given the low cost of hiring
ad hoc couriers to perform pickups and deliveries. In this paper, we propose a novel, deep
reinforcement learning-based approach to seek high-quality and computationally efficient assignment
of requests to crowdsourcees. In performing the assignment, we consider that requests have time
windows for pickup and delivery. In addition, crowdsourcees have limited time availability and
carrying capacity. The novelty of the proposed DRL approach lies in its new characterization of system
states, the embedment of heuristics-guided action choice, and the integration of rule-interposing into

DRL training and implementation. The computational complexities of the heuristics and the overall
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DQN training are investigated. The effectiveness of the approach is demonstrated through extensive
numerical analysis. The results show the benefits brought by the heuristics-guided action choice, rule-
interposing, and having time-related information in the state space in DRL training, the near-optimality
of the solutions obtained, and the superiority of the proposed approach over existing methods in terms
of solution quality, computation time, and scalability.

With its comprehensive and detailed specifications of states, actions, and rewards, the proposed
approach not only has the potential to improve the efficiency of crowdshipping operation planning, but
provides a new avenue that may be adapted to other pickup and delivery problems and vehicle routing
contexts. For example, another type of crowdshipping with all requests originating from a central
location (depot) can be viewed as a special case of the problems investigated in this paper. Also, while
we consider dedicated crowdsourcees in the paper, the proposed DRL-based approach can be
conveniently adapted to the context of opportunistic crowdsourcees given the origin and destination of
the original trip of each crowdsourcee.

For possible extension of the proposed approach, we suggest a few directions. First, future efforts
could be made to investigate a dynamic version of the problem. In this case, different initial states
should be considered for different problem instances. Each time right before an assignment, the system
state needs to reflect en-route crowdsourcees and idle crowdsourcees, the latter including those left
unassigned from the previous assignment and new arrivals. Similarly, system state needs to encompass
information of unassigned requests, including those left unassigned from the previous assignment and
new arrivals. Second, in the real world the pickup and delivery locations of shipping requests are
usually in different spatial distributions (e.g., the locations of restaurants/retail stores in a city may be
quite different from the locations of residential buildings), which gives rise to the need for proactively
relocating idle crowdsourcees to balance the spatial distribution of crowdsourcee supply and request
pickup demand. It will be interesting to explore how to incorporate relocation decisions in the DRL
framework. A third direction is to explore other DRL algorithms, including the effect of the state space
dimension on training efficiency of those algorithms as compared to DQN. Lastly, some behavioral
aspects, e.g., a crowdsourcee rejects an assigned request, could be added to further enrich the flexibility

of the DRL model.
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Appendix A: Proofs of Remarks 1-6

Proof of Remark 1. We look at the dimension of each component in the three-tuple of {S!, 5", 5¢}. S!
specifies: 1) the coordinate of each node; 2) the coordinate of the successor node of a pickup node (if
the request is assigned); 3) the coordinate of the predecessor node of a delivery node (if the request is
assigned); and 4) the coordinate of the first node visited by a crowdsourcee. The number of nodes is
2|J] + |K|. Thus, the dimension of S* is 2((2|]| + KD+ JI+ ]+ |K|) = 8|J| + 4|K|,where the
multiplication by 2 is because each coordinate contains longitude and latitude. For the second
component, S” specifies: 1) slack time of each request; 2) unused service time of each request; and 3)
occupation time of each request. The dimension of S” is |J| + |J| + |J| = 3|/|. For the third
component, S¢ specifies: 1) the routing duration for each crowdsourcee; 2) total delivery time violation
of each crowdsourcee route; 3) remaining available time for each crowdsourcee; and 4) capacity
violation of each crowdsourcee route. The dimension of S€ is |K| + |K| + |K| + |K| = 4|K|. So
overall, the dimension of the state space is 8|J| + 4|K| + 3|J| + 4|K| = 11|]| + 8|K|. m

Proof of Remark 2. We first investigate the computational complexity of insertion for each of the
three steps, based on which the overall computational complexity can be drawn. Step 1 requires
calculation of slack time of at most |J| requests, which will be directly extracted from the system state
thus taking a constant time. Selecting the request with the smallest slack time requires sorting, whose
complexity is O(|/]1og|/]). So the overall complexity of Step 1 is O(]/|log|/|).

Step 2 requires calculation of the distance between the selected request and the end of each
crowdsourcee routes. There are at most |K| crowdsourcee routes. Thu, the distance calculation has a
complexity of O(|K|). Once the distances are obtained, a sorting is needed to identify the smallest
distance, whose complexity is O(|K|log|K]). So the overall complexity of Step 2 is O(|K |log|K]).

Step 3 performs intra-route move. Given the limited number of requests a crowdsourcee can carry,
the computation time for intra-route operation is bounded by a constant (see proof of Remark 3). The
computation time for subsequent feasibility check is also bounded by a constant. The worst case is that
we check feasibility of inserting the request to all crowdsourcee routes and finds none is feasible for
the request. So the complexity is O (|K|).

In this worst case, we need to move to the next request in the sorted list from Step 1, and perform
Step 2 for the request. The overall worst case is that we check every request. Thus, the complexity of

Steps 2-3 combined is O(|/||K|log|K|). Given that |K| < |]| (i.e., the number of crowdsourcees is no
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more than the number of requests) and the complexity of Step 1 is O(|J]log|/|), the overall complexity
of insertion is O(|/|log|/|). m

Proof of Remark 3. Similar to the proof of Remark 1, we first look into the computational complexity
of each step in insertion. Step 1 requires sorting of at most |/| crowdsourcee routes based on each
route’s remaining available time (which comes directly from the system state). Thus, the complexity
of Step 1 is O(]/|log|/|). For Step 2, the computation time is bounded by a constant. This is because
the number of requests that can be accommodated by a route is bounded given the limited carrying
capacity of a crowdsourcee. Therefore, the number of possible moves in this step in a route is bounded.
For Step 3, it involves sorting of the moves based on routing cost and comparison with the original
routing cost. Again, given that the number of possible moves is bounded, the computation complexity

of this step is a constant. Thus, overall, the computational complexity of intra-route move is

0(l/Ilogl/]). m

Proof of Remark 4. Step 1 of an inter-route move requires sorting of the assigned requests based on
occupation time (which comes directly from the system state), thus having a computational complexity
of (|/]log|/]). The computational complexity of Step 2 is O(|K|log|K|), as it follow the same step in
insertion. Similar to the argument in intra-route move, the computation complexity of Step 3 is a
constant as the number of possible moves is bounded (because the number of requests that can be

accommodated by a route is bounded). Considering that |J| = |K|, the overall complexity is

0(l/|logl/1). m

Proof of Remark 5. Step 1 of a 1-exchange move involves sorting assigned requests based on unused
service time (which comes from the system state), thus having a computation complexity of
O0(]/|logl|]|). Step 2 does not involve further computation, as sorting is already done (excluding the
route associated with the first selected request does not require another sorting). Step 3 exchanges the
selected requests, which takes a constant time. Step 4 performs intra-route move of the two requests in
their respective new routes, whose computational complexity is a constant following the same

argument as in the proof of Remark 2. Thus, the overall complexity of 1-exchange is O(|/|log|/]). m

Proof of Remark 6. The complexity of DQN training depends on the number of parameters in the

DNN to be trained. First, recall from Remark 1 that the state space has a dimension of (11|/| + 8|K|).
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Thus, the first layer has up to (11|/| + 8|K| + 1)e parameters (since e is the upper bound on the
number of neurons in a hidden layer). The subsequent layers each have up to e? + e parameters. The
DNN outputs the Q-values for each of the five action types, thus associated with up to 5(e + 1)
parameters. Overall, the DNN has up to (11|]J| +8|K|+ 1)e+ (£ —1)(e?+¢e) +5(e+1) =
(11]]| + 8|K| + £ + 5)e + (£ — 1)e? + 5 parameters to update in each time step. Note also that in
each time step, a minibatch of |Mg,,| experiences are involved. In addition, a heuristic will be
performed to execute a specific action for the chosen action type. Among the five action types, the
greatest complexity occurs to insertion which has a complexity of O(|J|?log|/|) (see Remarks 2-5).
Further recognizing that |J| = |K|, the complexity of one time step is O([(|J| + £)e + £e?]|Mgy,| +
I/1?1og|/]). Given that training takes I episodes each with up to T time steps, the overall complexity of
DQN training is O ({[(|J| + #)e + £e?]|Mgyp| + |]|?log|J |}T).

Two points are worth mentioning. First, we keep both [(|J| + £)e + £e?]|Mg,| and |J|*log|/|
terms in the complexity expression, as it is not clear a priori which of the two terms dominates the
computation time. Second, the complexity expression is parameterized by the number of episodes I,
which typically cannot be determined before the training is carried out as it depends on the

characteristics of the instances used for learning. m

Appendix B: Illustration of problem instances used in training and testing
We randomly pick two instances, one from training and one from testing, to display the pickup
and delivery locations of requests and origins of crowdsourcees. Overall, no significant differences

(apart from the effect due to randomness) among the instances are discerned.

Training instance
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Fig. B1. Illustration of two randomly picked problem instances from training and testing

51



1112

1113

Appendix C: Identification of the specific action to take given the action

type under a DRL algorithm without heuristics-guided action choice

Insertion

Step 1:

Step 2:

Select a request.
Among the unassigned requests, randomly select an unassigned request.
Insert the request to a route.

Insert the request to the end of a randomly picked crowdsourcee route (which can be an
existing or a new route). If the insertion is not feasible, then randomly pick another
crowdsourcee route. If a feasible insertion cannot be found, then do nothing.

Intra-route move

Step 1:

Step 2:

Select a route.

Select the crowdsourcee route with the largest remaining available time (based on Rule
1 in subsection 3.4.1).

Move a request from the route to a different location on the same route.

Randomly pick a request from the route. Enumerate all feasible moves of the pickup
and delivery nodes of the request on the route. Pick the move with the maximum
reduced cost. If such a move does not exist, then randomly pick another request and do
the same. If such a move cannot be found after enumerating all requests on the route,
then do nothing.

Inter-route move

Step 1:

Step 2:

Select a request.

Select the crowdsourcee route with the largest occupation time (based on Rule 1 in
subsection 3.4.1).

Move the request to the end of a different route.

Randomly select a request from the route. Investigate moving the request to the end of a
different route that is also randomly picked. If the move if feasible, perform the move.
Otherwise, randomly pick another route and investigate moving the request to the end
of the route. If the request cannot be moved to the end of any different route, then do
nothing.

1-exchange

Step 1:

Step 2:

Select two routes.

Select the two crowdsourcee routes with the largest and the second largest unused
service time (based on Rule 1 in subsection 3.4.1).

Select requests from the two routes and exchange.

Randomly select a request from each routes and exchange their locations.
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Note that for intra-route move, inter-route move, and 1-exchange, we do not consider Rule 2 of

subsection 3.4.2 since the rule is related to heuristics-guided action choice.

Appendix D: MILP formulation of the crowdshipping problem

The crowdshipping problem is a pickup and delivery problem with time and capacity constraints.
We consider the following MILP model which is based on Hamiltonian tour formulation (Lu and
Dessouky, 2004). In the formulation, request nodes are ordered such that the first || nodes are pickup
nodes, and the remaining nodes are delivery nodes which follow the same order as their associated
pickup nodes. Recall that in the paper the set of request nodes is J. Then we use J* = {1,2, ..., ]|} to
denote the set of pickup nodes, and J~ = {|J| + 1, |J| + 2, ...,2]]|} to denote the set of delivery nodes.
We further introduce set N = J U K = J* U J~ U K, which contains in sequence nodes in /¥, nodes in
J~, and crowdsourcee origin nodes in K = {2|]| + 1,2|J| + 2, ...,2|J| + |K|}.

Among the parameters, q; denotes the weight of request at node j € J. gq; > 0 if j is a pickup
node, and q; < 0 if j is a delivery node. ¢;; and t;; denote respectively the cost and time while a
crowdsourcee traverses link (i, j). Because crowdsourcee routes are constructed sequentially based on
Hamiltonian tour formulation, ¢;; =0 if i €] and j € K. C denotes carrying capacity of a
crowdsourcee.

The MILP model has four set of decision variables: 1) x = {xl- L EN I # j}, which are binary
indicating whether node i is right before node j in the Hamiltonian tour; 2) y = {yi pLjENI# j},
which are also binary indicating whether node i is before node j in the Hamiltonian tour; 3) Q =
{Q;; i € J}, which are continuous variables deciding the carrying load of a crowdsourcee right after
visiting a request node i; and 4) T = {T;; i € J}, which are continuous variables deciding the departure

time of a crowdsourcee from a request node i.
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Routing sequence constraints
Ex” =1 VjEN (G2)
ieN

Xij = 1 Vi EN (G3)
JEN
Vii < yij + (1 —xy5) Vi,j,k € Nandj # 2|]| + 1 (G4)
Vi = v+ (x; — 1) Vi,j,k € Nandj # 2|J| +1 (G5)
X < vy Vi,j €N (G7)
Yiy+i =1 vie]* (G8)
Yyl+ii = 0 vie]* (G9)
Yij = Yiji+ij Vie]*jEK (G10)
yy =1 Vi,j € Kandi < j (G11)
Yy =0 Vi,j € Kandi>j (G12)
Capacity constraints
Qi+q;—Q <M(1—xy) Vi,j EN (G13)
Qi+q;—Q; =M(x; — 1) vi,jEN (G14)
Q=¢C Vj€]J (G15)
Delivery time window and crowdsourcee time availability constraints
Ti+t;+s—T < M(1—x;) VieN,jE] (G16)
T,+t;+s—T = M(x;—1) VieN,j €] (G17)
T; < tfz,- VieN,je]~ (G18)
Ty =t VieN,je]J* (G19)
Ty+i2Ti vieJ* (G20)
T; = teng < M (1= Xijern) Vi€, k€ K\{2/| + K]} (G21)
T, — 2V < M (1 — x5 40)  ViEJ™ (G22)
T; > thar Vi EK (G23)
Integrality, non-negativity, and fixed-value constraints
x;; €{0,1} Vi,j EN (G24)
yij € {0,1} Vi,j EN (G25)
Q;:=0 Vie] (G26)
Q;=0 VieK (G27)
T, =20 Vie] (G28)

The objective function (G1) minimizes total routing cost. The constraints are organized in four
groups. The first group relates to routing sequence. Constraints (G2)-(G3) stipulate that each node is
visited exactly once in the Hamiltonian tour. Constraints (G4)-(G5) ensure that the precedence

relationship of a node k with respect to two connected nodes (i and j with x;; = 1) should be

consistent, i.e., ¥x; = Y. Since the origin of crowdsourcee 1 is the start of the Hamiltonian tour, it is
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meaningless to talk about its preceding node (that is why j # 2[J| + 1). The case of (i,j) =
Q2|J1 + IK],2|J] + 1) is excluded since the end of crowdsourcee |K|’s route will be artificially
connected to crowdsourcee 1’s origin (since it is a Hamiltonian tour). (G7) says that the case of
immediate precedence is more restricted than general precedence. (G8)-(G9) specifies that for a
request, the pickup node must be visited before the delivery node. (G10) specifies that a
crowdsourcee’s origin cannot be in between the pickup and delivery nodes of a request. Constraints
(G11)-(G12) the precedence relationship between two crowdsourcees’ origins follow their orders in
K.

For the second group, capacity-related constraints, (G13)-(G14) updates the carrying load by a
crowdsourcee for two consecutively visited nodes. (G15) constrains that the carrying load does not
exceed the carrying capacity of a crowdsourcee. For the third group, time-related constraints, (G16)-
(G17) calculates the departure time from a node j based on the departure time from its immediate
preceding node i, travel time from i to j, and stopping time at j. (G18) says that the actual delivery
time (arrival time) at a delivery node j should be no later than the latest delivery time. Similarly, (G19)
says that the actual pickup time at a pickup node j should be no earlier than the earliest pickup time.
(G20) means that the time of visiting a delivery node should be no earlier than the time of visiting the
corresponding pickup node. (G21)-(G22) stipulate that a crowdsourcee route needs to end earlier than
the end of the crowdsourcee’s available time. (G22) is written separately for the last crowdsourcee |K |
because, based on the Hamiltonian tour formulation, the end of crowdsourcee |K|’s route connects
back to crowdsourcee 1’s origin. Furthermore, the leaving time from the origin should be no earlier
than the start of the available time of a crowdsourcee (constraint (G23)). With these constraints, the
feasibility of crowdsourcee routes as presented in Definition 1 is ensured. The final group of constraints
specifies the integrality, non-negativity, and fixed-value constraints of the decision variables. In

particular, at the origin, a crowdsourcee does not carry loads (constraint (G27)).
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