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Abstract: Applying and adapting deep reinforcement learning (DRL) to tackle transportation problems is
an emerging interdisciplinary field. While rapidly growing, a comprehensive and synthetic review of
existing DRL applications and adaptations in transportation research remains missing. The objective of this
paper is to fill this gap. We expose the broad transportation research community to the methodological
fundamentals of DRL, and present what have been accomplished in the literature by reviewing a total of
155 relevant papers that have appeared between 2016 and 2020. Based on the review, we further synthesize
the applicability, strengths, shortcomings, issues, and directions for future DRL research in transportation,
along with a discussion on the available DRL research resources. We hope that this review will serve as a
useful reference for the transportation community to better understand DRL and its many potentials to

advance research, and to stimulate further explorations in this exciting area.
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1 Introduction

Moving people and freight in a safe, efficient, and sustainable manner involves a wide range of
decision-making tasks. Deep reinforcement learning (DRL), by integrating the power of deep learning and
reinforcement learning (RL), provides a generic and flexible framework for sequential decision-making
that is amenable to many transportation operation and planning problems. The potential of applying DRL
to tackling transportation problems has been broadened even further with the increasing availability of
computation power. As a result, DRL has been attracting soaring interests from the transportation research
community. Just within a few years, a large number of DRL based transportation studies have emerged,

with reported results outperforming existing benchmarks.

One salient feature of DRL is that high quality results can be generated at an extremely fast pace once
the DRL agent (which makes decisions) is trained, which is very crucial in highly dynamic environments
that demand real-time decisions, as are relevant to many transportation operations such as driving and traffic
control. In addition, the ability of DRL to solve large, complex problems makes it promising to tackle
planning aspects of transportation, for example vehicle routing, timetabling, and path following. It is
therefore not surprising that over 150 papers have appeared in the literature just between 2016 and 2020
(July) (Fig. 1). While the literature continues to grow, what we find missing is a comprehensive, synthetic

review of existing DRL applications and adaptations in transportation. This paper intends to fill the gap.

The objective of this review is to expose the broad transportation research community to the
methodological fundamentals of DRL, present what have been accomplished in applying/adapting DRL to
tackling various transportation problems in different domains, and synthesize the applicability, strengths,
shortcomings, common and application-specific issues, and directions for future DRL research in
transportation. Our compilation of papers comes primarily from search on Google Scholar as well as a few
existing surveys which have a narrower focus (Haydari and Yilmaz (2020) on DRL for intelligent
transportation systems, and Talpaert et al. (2019) and Kiran et al. (2021) on DRL for autonomous driving).
We begin the search with generic keywords including “deep reinforcement learning” and “transportation”,
to collect a laundry list of potentially relevant papers, from which an initial idea of the transportation
application domains are formed. Then, for each domain, we perform a more directed search with domain-
specific keywords. As an example, for the domain of autonomous driving, keywords “lane changing

behavior”, “autonomous control”, and “end-to-end autonomous driving” are used in addition to “deep

reinforcement learning” in the search.

The literature search leads to 155 papers collected from 2016 to July 2020. No relevant papers can be
found prior to 2016, which indicates the relative short history of DRL for tackling tranpsortaiton problems.

The 155 papers fall into seven application domains: 1) autonomous driving; 2) emergy efficient driving; 3)



adaptive traffic signal control; 4) other types of traffic control; 5) vehicle routing optimization; 6) rail
transportation; and 7) maritime transportation. Among these papers, 75 come from conference and
symposium proceedings, 55 are published in peer-reviewed journals, and the remaning 25 are unpublished
papers available in online archives. Fig. 1 shows the distribution of the 155 papers over the years and across
the seven domains. Note that for some papers which have an updated version after July 2020, our review is

based on the latest version at the time of our paper writing.
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Figure 1. Distribution of DRL papers in seven transportation domains.

The remainder of the paper is organized as follows. In section 2, we first offer a methodological
overview of DRL, starting from the fundamentals of RL and then moving on to DRL with focus on different
algorithms and extensions. Section 3 presents a comprehensive review of the existing literature on using
DRL to address a variety of transportation problems in the seven application domains. Based on the review,
a synthetic discussion of the applicability, strengths, shortcomings, issues, and directions for future DRL
research in transportation is conducted in section 4. We also provide information on avaialble resources,

particularly existing built-in platforms in section 5. Concluding remarks are given in section 6.

2 Methodological background

This section presents the methodological background of DRL. We first offer a brief discussion of RL,

based on which we describe how RL is enhanced by integrating deep learning, which gives birth to “Deep



Reinforcement Learning”. Both popular DRL algorithms that have been considered in transportation

research and extensions of these algorithms are covered.

2.1 Reinforcement learning

RL represents one of the three categories of machine learning (the other two are supervised learning
and unsupervised learning). The focus of RL is to train an agent such that the agent can optimize its behavior
by learning from its experiences of interacting with the environment. More specifically, RL is a sequential
decision process with the agent being the decision maker. At each decision point, the agent has information
about the current state of the environment and selects an action that deems the most appropriate based on
his experiences at that point. The action taken transitions the environment to a new state. Meanwhile, the

agent gets some reward, i.e., reinforcement, as a signal of how good or bad the action taken is.

To formulate the sequential decision process, RL employs Markov Decision Processes (MDP) as the
mathematical foundation to keep track of the progression of the decision process. To do so, the following
notations are introduced. Set S includes the possible states of the environment. Set A contains the possible
actions that the agent can take. Set R includes the possible rewards as a result of the agent taking an action
at a given state. At time step t, the environment is in state s; and from this state, the agent takes an action
a;. The action taken results in a transition of the environment to a new state s, ; at the next time step t + 1.
Meanwhile, the agent receives a reward r; as a result of the action taken. The reward is a function of state-

action pair: R(s;,a;) = 1;. This agent-environment interaction is further shown in Fig. 2.
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Figure 2. [llustration of agent-environment interaction.

Since actions are taken sequentially, the objective of the agent is to maximize the cumulative reward,
which is the expected return over the entire time period. At a time step t, the expected return R, is the sum

of rewards from the current time step onward till the last time step T":

Re=r+rygtrpp+rgs+ -+ 1y (1
If we consider that the reward is received over a long period, then a discount factor y may be

incorporated to reflect discounting. The expected return is:
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Exploration vs. exploitation: When taking an action, the agent needs to keep in mind the tradeoff between

taking the best action based on the experiences accumulated so far (exploit) and gathering new experiences
in order to make better actions in the future (explore). The agent must do both and try a variety of actions
to progressively favor those that appear to be best (Sutton and Barton, 2018). A common approach to
account for the tradeoff is the e-greedy strategy, under which the agent takes a random action with a
probability €. At the beginning of the training, ¢ is set to 1 to ensure that the agent starts by purely exploring
the environment. Over time, ¢ is gradually reduced with a decay rate, to allow for more exploitation as more

experiences are accumulated.

Model-based vs. model-free approach: Depending on the environment transition behavior, RL algorithms

can be classified into two classes: model-based and model-free. In model-based algorithms, given a state-
action pair (s, a;), a transition function T (S;44|S¢, a¢), which indicates the probability of state transition
given the current state s; and the action taken a;, is used to predict the next state s;, ;. As such, a model-
based algorithm decides on a course of actions by anticipating future situations before they actually occur
(Sutton and Barto, 2018). In contrast, for model-free algorithms the agent does not need any model or
transition function, but relies on a trial-and-error process. Model-free algorithms are relatively simple,
inexpensive, and widely applied in transportation research. Our review in this section mainly focuses on
model-free algorithms. Model-free algorithms can be further classified into three classes: 1) value-based
algorithms; 2) policy-based algorithms; and 3) actor-critic algorithms, the latter combining value-based and

policy-based algorithms. Below we provide a brief overview of these three classes.

2.1.1 Value-based algorithms

Value-based RL algorithms involve estimating the value (i.e., expected return) of a given state at a
given time. This is referred to as estimating the value function. A value function tells the agent how good
it is for the agent to: 1) be in a state at a given time, or 2) take an action from a state at a given time.
Accordingly, two types of value function exist: state-value function and action-value function. The state-
value function V,(s), defined by Eq. (3), gives the expected return when the environment starts in state s
and follows policy m = m(a|s) which is a mapping from states to probabilities of selecting each possible
action. On the other hand, the action-value function Q (s, a), expressed in Eq. (4), is the expected return

starting from state s, taking action a, and thereafter following a policy .

Ve(s) = En:(ﬁtlst =s) = Eg (Z ykrt+k+1 |se = 5) 3
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One of the most popular and widely used value-based RL algorithms is “Q-learning” (Watkins and
Dayan, 1992), which is an off-policy approach. Q-learning algorithm enables the agent to choose an action
a € A with the highest Q-value available from state s € § based on a Q matrix which is a mapping for a
discrete state-action space. The Q matrix is updated every time step following the Bellman optimality
equation as shown in Eq. (5), where r is the reward obtained and « is the learning rate which takes values
between 0 and 1. Here, off-policy means that regardless of the policy (as reflected by the Q matrix) being
used to direct the agent to take action a at the current state s, the agent will update Q-value of state-action

pair (s, a) using the transitioned state’s optimal Q-value, i.e., max Q(s’,a’). Thus, the selection of action
a'e

a at the current state s and selection of action a’ at the next state s’ are not from the same policy. This is
different from the on-policy approach, where action selection at the next state s follows the same policy as

in selecting action a at the current state s.
Q(s,@) — (1 - @Q(s,@) + a[r +ymaxQ(s', ") 5)
a

2.1.2 Policy-based algorithms
Unlike value-based algorithms, policy-based algorithms do not require estimating the value of a certain
state or state-action pair, but search for an optimal policy ™ directly. Typically, a parameterized policy mg

is chosen, with parameter 8 constantly updated towards maximizing the expected return:

Vn’e (s) = En'g <z ykrt+k+1 |se = S) (6)
k=0

Policy-based algorithms are particularly suitable for very large or infinite action space. To illustrate,
consider J(6) as some scalar performance measure. Policy-based RL algorithms seek to maximize
performance, by updating policy parameter 6 through either a gradient-free or a gradient-based approach

(Deisenroth et al., 2013). Under the gradient-based approach, the update is done by:

0' « 0+ avj(o) (7)

where VJ(0) is a stochastic estimate of the gradient of J(6) with respect to 6 (Sutton and Barto, 2018). A
popular policy-based algorithm is REINFORCE (Williams, 1992), in which update of 8 at time step t

involves only the action taken (a) from the current state (s):

0' « 6 + ay'R,Vinmy(als, 6) )



where R, is the expected return at time step t. Note that although the update only requires action taken,
REINFORCE uses the expected return from the current time step. Therefore, REINFORCE is well defined

only for a task that has a terminal state and only after all updates in an episode are complete.

2.1.3 Actor-critic algorithms

Value-based and policy-based algorithms both have limitations. For value-based algorithms, they
cannot handle problems that involve continuous (real-valued) and high-dimensional action space. For
policy-based algorithms, gradient estimators may have large variances (Konda and Tsitsiklis, 2000).
Moreover, with changes to policy, the new gradient is estimated irrespective of the previous policies.
Therefore, the agent is not learning with respect to the accumulation of previous information. To overcome
the limitations, an actor-critic approach has been suggested that combines the two classes of algorithms
(Konda and Tsitsiklis, 2000; Grondman et al., 2012). In the actor-critic approach, the agent is trained using
two estimators (Fig. 3). One is a critic function which approximates and updates the value function. The
other one is an actor function which controls the agent’s behavior based on policy. Based on the value
function derived from the critic function, the actor function’s policy parameter is updated in the direction
of performance improvement. While the actor function controls the agent’s behavior based on policy, the

critic function evaluates the selected action based on the value function.

. —

Figure 3. Conceptual framework for actor-critic algorithms.

2.2 Deep reinforcement learning

In this section, we move our discussions from RL to DRL. In principle, if the agent knows the optimal
Q-value Q, (s, a) for every state-action pair, then the objective of RL is achieved. For every state, the agent
will find the highest Q-value from the Q matrix and choose the corresponding action. However, such a table
of Q-value can only be developed by recursively solving Eq. (5) with a small state and action space. For
many real-world problems that are associated with a large state and action space, a tabular format becomes

computationally inefficient and even infeasible. To mitigate the “curse of dimensionality”, deep learning is



used as a function approximator and integrated with RL. A parameterized deep neural network (DNN)
approximates optimal Q-values instead of computing Q-values directly using Eq. (5). Different types of
artificial neural network, such as convolutional neural network (CNN) and recurrent neural network (RNN),

are used to deal with very large state and action space (LeCun et al., 2015).

2.2.1 DRL algorithms

This section presents two of the most popular DRL algorithms in transportation research: deep Q-
network (DQN) and deep deterministic policy gradient (DDPG). For DQN, two variants, namely double
DQN and dueling DQN, are also reviewed. Readers interested in further algorithmic development can refer
to methodological reviews (Li, 2018; Francois-Lavet et al., 2018; Arulkumaran et al., 2017) and online

resources (Weng, 2020).

2.2.1.1 Deep Q-network (DQN)

Proposed by Minh et al. (2015), DQN uses a DNN (e.g., CNN) as the function approximator to
approximate Q-value associated with a state-action pair. During training, DQN follows the e-greedy
strategy to choose an action between exploration and exploitation at each time step. A salient feature of
DQN training is experience replay, which involves a replay memory M that stores the agent’s experiences
during training. An experience is associated with the agent taking an action at a given state and time step,
observing the state transition, and getting a reward. Thus the experience is denoted as e, = (st, ag T, st+1).

Once M is full, the oldest experience is removed from M to create space for the next new experience.

In DQN, DNN is trained using a minibatch U (M) of a randomly selected sample (experiences) from
M. The employment of experience replay with minibatch sampling brings several advantages. First,
learning from random samples results in less correlation compared to learning directly from consecutive
samples, which increases the learning efficiency. Second, experience replay gives greater data efficiency
by allowing each experience to be used in many weight updates. Third, by averaging the behavior
distribution over many previous states, experience replay contributes to smoothing out learning and

avoiding oscillation or divergence in the parameters (Mnih et al., 2015).

After assigning a random weight 6 to the DNN, for each experience the input (state s) is allowed to
propagate through the DNN (first forward pass). The output Q(s, a; 8) is compared with the target optimal
Q-value Q. (s, a;) to estimate the loss. Ideally, based on the Bellman optimality equation, the expected

value of this target Q-value should equal r + y max Q.(s',a"). Thus, the loss function can be written as:
a'e

L(G) = Es,a,r,s'~U(M)
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In Eq. (9), the right-hand side has an unknown part Q,(s’, a’) which denotes the optimal Q-value of
the next iteration. One way to approximate this unknown quantity is to do a second forward pass in the
DNN before performing any gradient descent step, i.e., both first and second forward passes will be based
on the same DNN weight parameter. In the second forward pass, the transitioned state s’ of the
corresponding experience is taken as input in the same DNN (i.e., same weight parameters 6) to predict
state-action values Q(s’,a’:0),Va' € A. After performing these two forward passes and assuming
Q(s',a’;0) = Q.(s’,a’) in Eq. (9), the loss value can be calculated. However, there is a major drawback
in this two-forward pass procedure. Since the second forward pass is done in the same network with the
same network parameter 8, both Q-values and target Q-values will update in the same direction. As a result,
the correlation between the Q-values and target Q-values can be high, which may cause oscillation or

divergence of the policy during training.

To tackle this issue, Minh et al. (2015) propose a novel technique by creating a parallel network, called
target network, which is structurally cloned of the original DNN. At the beginning of training, the target
network parameter 6’ is set to be the same as the original DNN’s, i.e., 6. Unlike 8, 6’ is kept frozen for a
certain number of time steps before an update. Then, 8’ is updated to the current value of the DNN

parameter 8. The loss function is shown in Eq. (10), where r +y max Q.(s',a':8") denotes the target Q-
a'e

value. Then, 8 is updated through backpropagation and gradient descent.

L(Q) = Es,a,r,s’~U(M)

2
<r+yg}gi<Q*(s’,a’:9’) — Q(s,a:@)) ] (10)

Double DON

Double DQN is a modified version of DQN and tabular double Q-learning algorithms (van Hasselt et
al., 2010, 2016). To facilitate exposition, let yP2N denote the target Q-value. In Eq. (10), yP9V is:

yP% =r+ymaxQ(s',a’; 6 (11)
a'€eA
With this target Q-value, (greedy) action selection and action evaluation are performed using the same
network with parameter 6’, which may end up selecting overestimated policies that in turn leads to
overoptimistic value estimates. The idea of double DQN is to decouple action evaluation from action
selection, by using the target network as a second value function approximator. Consequently, the target Q-
value is estimated as:

yDoubleDQN =7 +yQ (S’, argmax Q (s, a’; 0); 6’) (12)

a'€eA



In Eq. (12), the action selection uses greedy policy based on the Q-network with parameter 8. The
evaluation of the action is based on the target network with parameter 6’. Numerical experimentation shows
that double DQN can provide more stable learning and find better policies than DQN (van Hasselt et al.,
2016).

Dueling DON

Dueling DQN is another modified DQN that follows a dueling network architecture (Wang et al.,
2016), which involve two sequences of fully connected convolution layers. The two sequences estimate the
state value function and the advantage function separately. The advantage function A™ (s, @), which is for
an action a~m(s) from a state s based on policy 7, is the difference between the Q-value associated with
this state-action pair Q™ (s, a) and the state value function V™(s). Combining the estimates of the state
value function and then advantage function from two separate sequences, a Q function is estimated as

follows:

Q(s,a;0,a,p) =V(s;0,B) + (A(s, a;0,a) — ﬁ;A(s, a’; 9,0()) (13)

where a and f§ are parameters of the two fully connected layers. The key idea behind the dueling network
architecture is to avoid unnecessary estimation of the value of every action choice from a state. Sometimes,
just knowing the value of the state suffices for the agent to identify the best action to take without knowing
the individual value for every action choice. Dueling DQN can be combined with double DQN. Double
dueling DQN with prioritized experience replay is the most updated variant of DQN.

2.2.1.2 Deep deterministic policy gradient (DDPG)

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) is an actor-critic based algorithm
which can operate on continuous action space. Based on the deterministic policy gradient algorithm (Silver
et al.,, 2014), DDPG employs a parameterized actor function (which stores the current policy) with a
parameterized critic function that approximates (using the Bellman optimality equation) and updates the
value function using samples. In this way, DDPG can tackle large variance in policy gradients of actor-only
methods. DDPG enables the agent to interact with the environment and employs gradient descent to
improve the policy using a minibatch collected from replay memory. Using sampled policy gradient, the

actor policy is updated using Eq. (14).

N
1
Vgu] = Nz Va.Q(s,a; 69) |s=si,a=u(si)v9”.“(52 Bu)lsi (14)

=1
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where N is the size of the minibatch and u(s; 8*) denotes the selected action based on the current policy.
At the beginning of training, parameters of the actor and the critic networks are initialized as 8* and 6€.
Parameters of the corresponding target networks (denoted as ¢’ and Q") are 6+ and 62, The critic network

is updated using gradient descent on the loss function £(69):

N
1
£69) =5 D (v~ Qs1,069)” (1)
i=1
where
v =1, +vQ' (s, u(s;; 0%);09) (16)

DDPG suggests employing two target networks cloning the actor and critic networks. However,
instead of directly copying policies (as done in DQN), DDPG uses a soft target update using Egs. (17)-(18)
where T < 1. The soft target update strategy enables more stable learning. The proposed soft target update
is performed at regular intervals, using duplicate actor and critic networks by slowly maintaining the learned

networks (target values).

09" « 702 + (1 —1)6¢ (17)

O+ — TOH + 1- 1)9“' (18)
Apart from DDPG, a few other algorithms using the actor-critic architecture such as Proximal Policy
Optimization (PPO) (Schulman et al., 2017), Asynchronous Advantage Actor-Critic (A3C; Mnih et al.,
2016), and Advantage Actor-Critic (A2C; OpenAl, 2017) have also seen increasing use in transportation

research.

2.2.2 Some extensions in DRL
2.2.2.1 Multi-agent systems

Sometimes, a system can have multiple agents each making its own decisions. It is possible for DRL
to incorporate multiple agents to interact with the environment and learn simultaneously. However, given
the interaction dynamics of the agents, the environment in a multi-agent system is not stationary and no
longer retains Markov property (Tan, 1993; Laurent et al., 2011; Now¢ et al., 2012). Instead, multi-agent
RL/DRL problems are usually formulated as a stochastic game (or Markov game) (Littman, 1994; Busoniu
et al., 2010). A stochastic game is characterized by (S,A44,.., Ay, P, R4,.., Ry) where N is the number of
agents; S denotes the state space of the environment; 4; (i = 1,.., N) is the set of actions available to agent
i; P is the state transition probability function; and R; (i = 1,.., N) is the reward function for agent i.
Further introducing joint action set A = A; X A, X --- Ay, the state transition probability function can be

defined as P:S X A — S. At a time step ¢, state transition and reward depend on the joint actions a; =

11



(au, Aty o) aN,t). Depending on specification of the agents’ reward functions, a multi-agent system can

be cooperative, competitive (adversarial), or mixed (Busoniu et al. 2010; Hernandez-Leal et al., 2019).

2.2.2.2 Hierarchical DRL

As mentioned earlier, a drawback of RL is the curse of dimensionality (Barto and Mahadevan, 2003).
Although DRL can deal with large state and action space, challenges remain as to performing DRL in a
computationally efficient manner. By creating a hierarchy of policies, hierarchical RL (HRL) increases both
learning efficiency and solution quality. By dividing policies into several sub-policies, the action space for
a subpolicy becomes smaller which aids in better exploration of the environment. One of the earliest HRL
uses is Feudal RL with a hierarchy of managers (Dayan and Hinton, 1993), where one level of managers
can control sub-managers and assign a goal to each sub-manager. Meanwhile, these managers are controlled
by super-managers. Another earlier use of HRL is the options framework (Sutton et al., 1999), which allows
higher level policies to focus on goals and lower level sub-policies to focus on learning of controls. With
the advent of DRL, several hierarchical DRL algorithms have been proposed. Kulkarni et al. (2016)
integrate DQN with HRL and propose the h-DQN framework. A deep RNN based approach is proposed by
Vezhnevets et al. (2016) to learn macro (high) level policies. Vezhnevets et al. (2017) propose FeUdal
Networks by taking a long short-term memory (LSTM) network on top of a representation learned by a

CNN as the baseline.

2.2.2.3 Asynchronous DRL

The robustness and efficiency of DRL training using DNN can be compromised due to the correlation
between updates in the sequential process of learning. While Minh et al. (2015) propose experience replay
in DQN to mitigate this, replay memory takes a toll on memory and computation power. As an alternative,
asynchronous methods are proposed and can perform parallel and independent computing processes. Minh
et al. (2016) propose asynchronous advantage actor-critic (A3C) which accommodates several actor-critic
agents to learn parallelly and independently. Every agent acts on a different part of the environment with a
different set of parameters. The updates from every agent are received by a global network and combined
asynchronously to achieve a global policy. Note that although multiple agents work parallelly in A3C, A3C
does not belong to multi-agent RL as agents in A3C are independent and do not interact. A synchronous
and deterministic variant of A3C is known as advantage actor-critic (A2C). Minh et al. (2016)’s

experiments show that A3C can achieve faster training than DQN.

2.2.2.4 Imitation learning and inverse RL
Imitation learning is a process of learning from demonstrations, also known as “apprenticeship
learning”. It is motivated by the following question: If the agent has no idea about the reward, how can the

agent learn about the environment to find the best policy? Using a set of expert demonstrations (typically

12



defined by humans), the agent tries to learn the best policy imitating the experts’ decisions. The expert
demonstrations are provided in the form of trajectories T = (SO, ap,S1,01, - ) One way to learn from expert
demonstrations is to extract reward signals, known as inverse RL (Ng and Russell, 2000). In inverse RL,
the agent first learns a reward signal from the expert demonstrations, and then uses this reward signal to
find the optimal policy (Sutton and Barto, 2018). Readers may refer to Stadie et al. (2017), Hester et al.
(2018), and Wulfmeier et al. (2015) for further details about imitation learning and inverse RL.

3 Deep reinforcement learning in transportation research

With a methodological background of DRL, in this section we conduct a comprehensive review of the
literature on using DRL algorithms to address a variety of transportation problems. The existing work is
grouped in seven categories by application domain: 1) autonomous driving; 2) energy efficient driving; 3)
adaptive traffic signal control; 4) other types of traffic control; 5) vehicle routing optimization; 6) rail
transportation; and 7) maritime transportation. For each application domain, our review focuses on the DRL
tasks involved, how state and action space and reward are characterized, and the DRL algorithms used. To

the extent possible, performance comparison of DRL with existing methods is also mentioned.

3.1 Autonomous driving

Autonomous driving consists of multiple tasks, including: sensing of surroundings, situation
perception, action selection based on perception, strategic planning for execution of the selected action, and
execution of the selected action (Talpaert et al., 2019; Kiran et al., 2020). The tasks are often divided into
those at the higher level and those at the lower level. Higher-level tasks pertain to decision-making based
on reasoning of the surrounding environment. Lower-level tasks relate to system control to execute the

decision (Mirchevska et al., 2018; Chen et al., 2018). DRL has produced promising results at both levels.

3.1.1 Lane changing

Lane changing is a higher-level decision in autonomous driving. It pertains to the autonomous agent
deciding whether to stay on the same lane or switch to a different lane, based on sensory inputs from the
surrounding environment. Various DRL algorithms have been employed to design safe and efficient lane
changing strategies, as shown in Table 1. Most existing work focuses on a single agent for an ego vehicle,
while a few consider multi-agent systems (Shalev-Shwartz et al., 2016; Y1, 2018; Chen et al., 2018). Wang
et al. (2019a) consider the environment as cooperative; Jiang et al. (2019) and Wang et al. (2020)
characterize a system as both adversarial and cooperative with respect to surrounding vehicles. To deal with
variable-size inputs, Huegle et al. (2019, 2020) incorporate a new DRL architecture called Deep Sets, which
outperforms CNN and RNN based DRL.
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The design of state space in existing lane changing studies is similar, including information on the
absolute position and speed of the ego vehicle, relative positions and relative speeds of ego and surrounding
vehicles, and distance and gap between vehicles. Depending on the number of vehicles considered, Chen
et al. (2018) argue that the dimension of the state space can be up to 20 to be comprehensive enough for
better decisions. For higher-level decision-making, the action space needs to have at least three actions:
turn to the left lane, turn to the right lane, and keep the current lane. While most studies consider only these
three lateral actions, a few further considers longitudinal actions, such as speed change by acceleration,

deceleration, and keeping the current speed in DRL rather than relying on rule-based models.

Given that safety, comfort, and efficiency are the three most important criteria for autonomous driving,
weighted attributing factors related to these criteria are used in the reward signal. Common attributing
factors are: velocity maximization, collision avoidance, lane change completion, and safe distance keeping.
Some additional factors, such as cooperation among surrounding vehicles (Wang et al., 2019a),
discouragement of near-crash actions (Wang et al., 2020; Bai et al., 2019), and avoidance of unnecessary
lane change (Alizadeh et al., 2019; Chen et al., 2018; Min et al., 2018; Makantasis et al 2019; Hoel et al.,

2019), are also considered.

Higher-level decision-making cannot guarantee a collision-free trajectory without a transfer
mechanism for the higher-level policy to be executed by lower-level motion control (Makantasis et al.,
2019). For example, the higher level can decide to turn to the left lane. But in order to turn, the extent to
which the steering angle needs to be changed needs to be determined by the lower level. To this end, several
studies have combined higher-level decision-making and lower-level motion control in a hierarchical DRL

architecture (Shi et al., 2019; Chen et al., 2019; Duan et al., 2020).

3.1.2 Motion control

Lower-level motion control concerns execution of the planned trajectory or decision taken at the higher
level. Traditionally, vehicle motion control is achieved by model predictive control (Paden et al., 2016).
Learning-based motion control is developed only recently. The actions involve longitudinal and lateral
adjustments by changing vehicle acceleration and steering angle. Since actions are continuous, policy-based
DRL algorithms in an actor-critic architecture are mostly used (Table 1). In designing the state space, most
studies consider relative positions of the front and rear axles, and the current steering angle. Vinitsky et al.
(2018a, 2018b) further include information of surrounding human-driven vehicle. Lin et al. (2019) design

the state space differently with a continuous function featuring gap-keeping error and delayed acceleration.

Reward signal design has a considerable variation in motion control. Although it is common to give
reward to a successful task and penalty to a failed one, the reward signal should reflect some overarching

goal as well. For instance, focusing on longitudinal motions, Buechel et al. (2018) design the reward signal
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with the longitudinal velocity difference. Vinitsky et al. (2018a) consider maximizing total throughput of a
bottleneck in reward. In Folkers et al. (2019), the goal is to explore a parking lot without facing obstacles.
As compared to the consideration of an overarching goal, a more recent approach is end-to-end autonomous
driving, whose policies refer to derivation of control signal from the raw image pixel as input feature
recorded by onboard cameras. A few related studies are shown in the last column of Table 1. The majority
of the studies in both lane changing and motion control consider the state to be fully observable, with a few

exception as shown in Table 1.

3.1.3 Miscellaneous tasks
Besides lane changing and motion control, other task-specific DRL applications also appear in the
literature, such as car-following, intersection navigation, ramp merging, and even consideration of

pedestrian safety. Relevant papers tackling these tasks are summarized in Table 2.
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Table 1. Exsting DRL applications to lane changing and motion control in autonomous driving.

Lane changing

Motion control

Lateral decision only

Lateral and longitudinal
decisions

Conversion of higher-level decision

to lower-level control

End-to-end driving

Mirchevska et al. (2018)
Feng et al. (2019)
Jiang et al. (2019)

Wolf et al. (2018)
Min et al. (2018)

Lee et al. (2019) (higher level),

DQN Wang et al. (2019a, ¢) Fayjie et al. (2018)
Chen et al. (2018) Li and Czarnecki (2019) Chen ctal. (2019b)
DQN and Alizadeh et al. (2019) Ye et al. (2019)
variants Li and Czarnecki (2019)
Zhang et al. (2019)
Hoel et al. (2018)
Double DON Nageshrao et. (2019)
Makantasis et al. (2019)
Dueling DQN Bai et al. (2019)
Paxton et al. (2017) (lower level)
Buechel et al. (2018)
DDPG An and Jung (2019) Lin et al. (2019) Yu et al. (2018)
A . Yi (2018) Bejar and Moran (2019) Sallab et al. (2016, 2017)
ctor-critic
architecture Lee et al. (2019) (lower level)
Wang et al. (2018b)
PPO Ye et al. (2020) Folkers et al. (2019)
TRPO Vinitsky et al. (2018a)
. Wang et al. (2020)
IRL Sharifzadeh et al. (2016) You et al. (2019)
Shi et al. (2019a)
HRL Chen et al. (2019a) Shalev-Shwartz et al. (2016) v\ i o1 (2018)
Nosrati et al. (2018)
Other types Duan et al. (2020)
Paxton et al. (2017) (higher level),
Deep QL Mukadam et al. (2017) Wang et al. (2018, 2019b)
AlphaGo Hoel et al. (2019)
Policy-based DRL Aradi et al. (2018)
Mirchevska et al. (2018), Ye et al. (2020)
Feng et al. (2019), Zhang et al. (2019) Mukadam Paxton et al. (2017)
Buechel et al. (2018)
Chen et al. (2018) et al. (2017) Lin et al. (2019)
State Full An and Jung (2019) Hoel et al. (2019) Nageshrao Xu et al '(20] 8)
observability 4 Wang et al. (2019a, ¢) et. (2019) iy ’

Alizadeh et al. (2019)
Shi et al. (2019a)
Duan et al. (2020)

Bai et al. (2019)
Fayjie et al. (2018) Makantasis
et al. (2019) Wolfet al. (2018)

Vinitsky et al. (2018a)
Folkers et al. (2019)
Bejar and Moran (2019)
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Partial

Jiang et al. (2019)
Chen et al. (2019a),

Hoel et al. (2019)

Lee et al. (2019)

Sallab et al. (2016, 2017)

Table 2. Summary of DRL applications to miscellaneous tasks in autonomous driving.

Task Reference | Method S.0.* | State space Action Reward
Zhu et al. DDPG Full F _ollowmg vehicle's speed, spacing, and velocity Acceleration Disparity between mmule}ted and
(2018) difference observed speed and spacing
Zhu et al. DDPG Full F F)llowmg vehicle's speed, spacing, and velocity Acceleration Function of tl'me to collision, headway,
(2019) difference and acceleration change
Car Wu et al. State of charge, distance, and speed of leader and . Function of distance and electricity
following (2019a) TRPO Full follower (EV) Acceleration consumption
8‘6268;1 L DDPG Full Speed, gap, and relative speed with leader Acceleration Function of speed and time gap
Bacchiani Multi- Full Visual (space, obstacle, path) and numerical (speed, | Acceleration, brake or Numerical reward for success and penalty
et al. (2019) | agent A3C target speed, elapsed time ratio, distance to goal) maintaining same speed for collision
Isele et al. Image snapshot indicating heading angle and velocity | Wait, move forward Numerical reward for success and penalty
DQN Full ST . .
(2018) (unsignalized intersection) slowly, and go for collision
Inte.r section Zhou ct al. DDPG Full Vehicle and signal specific information Acceleration Fupctlop of sp§ed, gap .and predicted
navigation | (2019a) arrival time at intersection
Kashihara . . . . . Moving up, down, left, and| Numerical reward for success and penalty
(2017) Deep QL | Full Image of roadway intersection (highway junction) right for collision
. -, Function of ego vehicle’s acceleration,
Wang and DON with Parial Spef:ds and positions of ego, gap front, and gap back Acceleration and steering | steering angle, speed, and distance to
Chan (2017) | LSTM vehicles . -
surrounding vehicles
. Function of ego vehicle’s acceleration,
Wang and Deep QL | Full Spgeds and positions of ego, gap front, and gap back Acceleration steering angle, speed, and distance to
Chan (2018) vehicles . "
surrounding vehicles
Ramp Nishi et al. Pass1ve. . | Full Speeds and positions of ego and gap back vehicles Acceleration Derlveq from value f unction and control
. (2019) actor-critic dynamics due to action
merging
Nassef et al. | Dueling Coordinates, speed, heading, acceleration, and size of Accelerate, decelerate, turn Inverse distance to merging point, and
Full . right, turn left, and do . .
(2020) DON ego, gap front, and gap back vehicles nothing inverse of speed and acceleration
S Double L . .
Nishitani . Images containing information on road shape, and ego . Average speed of all vehicles from
dueling Full . . Acceleration . . .
et al. (2020) DON and surrounding vehicles merging to reaching terminal area
Safety Chae et al. DON Full Relative position of obstacle (pedestrian) and vehicle's| No brake, weak brake, mid| Combination of two penalties for early
specific (2017) speed brake, and strong brake brake and actual collision

* S.0. means “state observability”.
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3.2 Energy efficient driving

Electric vehicles (EVs) have significant promise to reduce transportation fossil fuel use and emissions.
Among different types of EVs, hybrid EVs (HEVs) combine the benefits of internal combustion engines
and electric motors to reduce emission, at the same time addressing the low driving range issue. Designing
an energy management system for HEVs, which controls the combined use of electricity and fossil fuel to
achieve the best energy efficiency, is thus important. DRL has shown promising results in supporting energy
management for various types of HEVs, including series-parallel plug-in hybrid electric bus (Wu et al.,
2019b), power-split hybrid electric bus (Wu et al., 2018), hybrid electric tracked vehicle (Han et al., 2019),
multiple battery based EV (Chaoui et al., 2018), hybrid electric bus (Tan et al., 2019, Li et al., 2019b), plug-
in HEV (Hu et al., 2018), and series HEV (Li et al., 2018).

DRL research in HEV energy management aims to overcome some limitations of traditional rule- and
optimization-based approaches, which require inputs of expert knowledge, comprehensive information on
driving cycles and roads, and driving cycle prediction (Wu et al., 2019b). DRL trains the agent to optimally
determine electricity-fuel split based on vehicle dynamics and vehicle-road interactions. By imposing rules
during learning (e.g., always operating in the lower region of the brake-specific fuel consumption curve),
DRL learning and energy performance (fuel economy and energy management stability) can be further
enhanced (Lian et al., 2020). In terms of reward design, existing research considers energy use and savings,
by keeping track of fuel consumption rate and battery state-of-charge (SoC) (Qi et al., 2017, 2019; Liessner
et al., 2018a, 2018b, 2019; Li et al., 2018, 2019a, 2019b: Lian et al., 2020; Tan et al., 2019; Zhao et al.,
2018; Chaoui et al., 2018; Han et al., 2019; Hu et al., 2018; Wu et al., 2018, 2019b). Change in trip distance
has also been considered in reward design, in the context of HEV last-mile delivery (Wang et al., 2019d,
2019e).

In specifying the state space, the most important information for energy efficient driving includes
vehicle dynamics (velocity and acceleration) and energy state (power demand and SoC), which are
considered in all reviewed studies. Additional information has been incorporated as well. Tan et al. (2019)
and Wu et al. (2019b) keep track of vehicle velocities from previous states. A more granular level of vehicle
state representation, including wheel rotation and torque, gear configuration, battery temperature, and
derating effect, is presented in Liessner et al. (2018, 2019). Apart from the information that is internal to
the vehicle, the state space may include external information such as traveled distance (Wang et al., 2019d,
2019e; Wu et al., 2019b), distance to destination (Qi et al., 2019), expected future distance (in the context
of vehicle touring) (Wang et al., 2019d, 2019e), and road conditions related to terrain and slope (Li et al.,
2019b). All the reviewed DRL applications in energy efficient driving consider states to be fully observable.
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The design of the action space focuses on optimizing energy use between different power sources.
Some researchers consider changing power supply from internal combustion engines (Qi et al., 2019; Hu
et al., 2018; Han et al., 2019; Wu et al., 2018, 2019b; Lian et al., 2020), while a few others look into
changing energy output from the electric motor (Liessner et al., 2018a, 2019; Zhao et al., 2018). A third
approach aims to maintain a balance among multiple inputs (e.g., multiple batteries) of the same power
source (Li et al., 2019a, 2019b). To deal with continuous action space (changing power from different
sources), actor-critic based DDPG algorithms are employed (Liessner et al., 2018a, 2018b; Li et al., 2019a,
2019b; Lian et al., 2020; Wang et al., 2019d; Tan et al., 2019; Wu et al., 2019b). Successes are also reported
using DQN (Qi etal., 2017; Hu et al., 2018; Wu et al., 2018), dueling DQN (Qi et al., 2019; Li et al., 2018),
and double Q-learning (Wang et al., 2019e; Han et al., 2019). DRL training is mainly done in simulated
platforms, with some using real-world trip data (Qi et al., 2017, 2019; Wang et al., 2019d, 2019¢). A

summary of the DRL applications in energy efficient driving is provided in Table 3.
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Table 3. Summary of DRL applications in energy efficient driving.

Vehicle type Reference Method State Action Reward
Liessner et al. Vehicle dynamics, SoC, battery Power output for the electric .
(2018a), (2018b) DDPG temperature motor Negative of total energy used
Lian et al. DDPG with rule . . . . Fuel consumption of engine and
HEV (2020) interposition SoC, velocity, and acceleration Continuous engine power the cost of battery charge
Zhao et al. . Power demand, predicted power Discharge of battery pack, gear .
(2018) Deep Q-learning demand, velocity, SoC configuration Fuel consumption
Series Lietal. (2018), Ducling DON Engine power, SoC, velocity, . . Function of fuel consumption rate
(2018), DDPG . Change in engine power
HEV (2019a) acceleration and SoC
(2019a)
Hybrid Velocity (current and previous Speed and torque (continuous),
. three second), acceleration, SoC, . . .
Lietal. (2019b) | DDPG ) and four discrete powertrain Fuel consumption rate
state of clutch, and road terrain and
modes
slope
HE Bus DRL with actor- SoC,. velocities (current and Chapge in engine torque and Cost of fuel and electricity
Tan et al. (2019) o . previous three seconds), rotational speed, traction motor .
critic architecture . consumption
acceleration torque and clutch state
SoC, engine current power, . . .
Wu et al. (2018) | DQN velocity, and acceleration Change in engine power Function of fuel usage and SoC
HE Han et al. (2019) Double deep Q- SoC, power demand, longlmdlngl Change in rotating speed Function of fuel usage and SoC
tracked learning and angular speed, and acceleration
Qietal. (2017), | DQN (2017) Power demand, SoC, distance to Chanee in engine bower Function of power supply from
PHEV (2019) DDOQN (2019) destination & gmep internal combustion engine
Plug-in Hu et al. (2018) | Double Q-learning SoC, required torque Change in torque output Function of fuel consumption
Hybrid Wu et al. SoC, current past and future speed, Chagge in engine torque, engine Cost of fuel and electricity
PHE bus DDPG acceleration, number of passenger, | rotational speed, and traction .
(2019b) . consumption
and traveled distance motor torque
Double Q-learning . .
Extended | Wang et al. (2019d), DDPG S.OC’ Fuel usage, location, travelled Changing the expected trip Functlor_l Of.ﬁJel. usage, SoC,
. time and distance, and expected . change in trip distance and fuel
. range (2019d), (2019¢) | (2019e) with rule . distance .
Electric . . trip distance usage compensating factor
interposing
EV Chaoui et al. Double Q-learning SoC of every batteries Power splitting among batteries Function of deviation of SoCs of

(2018)

all batteries
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3.3 Adaptive traffic signal control

Adaptive traffic signal control makes signal timing decisions considering real-time traffic conditions
at one or multiple intersections. The constantly changing dynamics of traffic means that adaptive traffic
signal control is a challenging sequential decision-making problem with large search space. Applications
of DRL in this domain have produced promising results, in the context of both a single intersection and a
network of coordinated intersections. DQN is employed along with CNN which allows the state to be
represented as a stack of images or an image-like grid. Besides DQN, actor-critic based architectures, such
as DDPG (Canas, 2017), A2C (Coskun et al., 2018; Chu et al., 2019), and PPO (Lin et al., 2018a), are used
as well. Resaerch also integrates LSTM with policy networks to deal with partially observable environments
(Shi and Chen, 2018; Chu et al., 2019) and continuous motion of vehicles (Choe et al., 2018). Table 4
summarizes existing DRL research on adaptive traffic signal control, categorized by attributes including

problem setup, state and action space design, reward specification, and the algorithm used.

In general, a DRL agent of adaptive traffic signal control is trained so that it can optimally adjust traffic
signal timing in real time. The reward function is designed considering vehicle waiting or delay time, queue
length, and queue discharge. The most common characterization of state space is by including present
vehicle positions and speeds, and signal phase in an image-like grid representation. Research also covers
how to retrieve state information from raw pixels of intersection snapshots. Design of the action space
depends on intersection configuration and complexity of the simulations. With no provisions for left-, right,
and U-turns, the action space for a two-phase traffic signal system consists of only two actions: 1) green on
cast-west traffic; 2) green on north-south traffic. The action space becomes more elaborate for four-phase
intersections. Continuous action space is investigated as well, where instead of changing the phase at every

time step, the focus is on updating phase duration.

When adaptive traffic signal control is considered in a traffic network, intersection coordination is
needed to reduce overall waiting time. In this case, multi-agent DRL is appropriate where each intersection
is treated as an agent. Given that decisions are made at individual intersections, the design of state and
action space for an intersection is similar to the case of a single intersection. The difference is how to
combine rewards across intersections for coordination and cooperation, which is usually achieved by a
centralized global optimization. Intersection coordination has also been approached by using just one single
DRL agent. Interested readers may find additional information on both RL and DRL applications to traffic
signal control in Haydari and Yilmaz (2020).
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3.4 Other types of traffic control

Besides adaptive traffic signal control, DRL is used for other types of traffic control including: variable
speed limit control, ramp metering, and lane pricing. For variable speed limit control, the action space
consists of different speed limits that may be imposed. The state space captures the current traffic situation
of the roadway, represented by multiple continuous or discrete variables such as traffic density and flow at
various road sections (Nezafat, 2019; Ke et al., 2020a). The numbers of lanes in the upstream, mainline,
and on-ramp merging sections as well as occupancy of these sections are also suggested to be part of the
state space (Wu et al., 2020). The common objective of variable speed limit control is minimizing total
travel time or traffic delay (Wu et al., 2020; Nezafat, 2019, Ke et al., 2020a). Other considered objectives
include minimizing vehicle emission (Wu et al., 2020) and crash probability (Wu et al., 2020). Due to the
continuous nature of the action space (speed limit), actor-critic based policy gradient algorithms such as
DDPG (Wau et al., 2020) and A3C (Nezafat, 2019) are employed. Alternatively, when speed limits are
treated as discrete, double DQN is used (Ke et al., 2020a). Results show that DRL outperforms state-of-
the-art solutions using feedback control and Q-learning (Nezafat, 2019; Wu et al., 2020).

For ramp metering, DRL is reported to outperform state-of-the-practice ramp metering policy
ALINEA and achieve precise adaptive highway ramp metering without model calibration (Belletti et al.,
2017). Using a partial differential equation to simulate highway vehicle density, Belletti et al. (2017) adopt
DNN integrated REINFORCE algorithm to approximate optimal control policies for adaptive highway
ramp metering. For lane pricing, Pandey et al. (2020) apply DRL to dynamic tolling lanes. Considering the
environment as a partially observable MDP, a policy gradient approach is employed that enables changing
tolls with real-time observations. Tolls are modeled as continuous and stochastic variables, and are
determined using a feedforward neural network. DRL is found to outperform feedback control heuristics
by generating up to 9.5% higher revenues and reducing system travel time by up to 10.4%. A brief summary

of DRL applications in other types of traffic control is included in Table 5.
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Table 4. Summary of DRL applications in adaptive traffic signal control.

Attributes Single intersection Coordinated intersections
Gao et al. (2017), Genders and Razavi (2016), Li et al. (2016), Ha-li
Single-agent setting gﬁ:ﬁg 8813 éﬁ,ge :’ttai‘; 2(112131,21){ dﬁ;‘fa fs(az%ftg‘)ﬂc(ﬁgi 961;?"(‘30“1‘;‘1) Canas (2017), Liu et al. (2018), Lin et al. (2018a)
Problem
setup Coskun et al. (2018) ' .
Van der Pol and Oliehoek (2016), Liu et al. (2017), Calvo and
Multi-agent setting Dusparic (2018), Shi and Chen (2018), Gong et al. (2019), Chu
et al. (2019), Zhang et al. (2019), Ge et al. (2019)
E}i‘:’rsilc’fifsrga’gstﬁs . Mousavi etal. (2017), Garg et al. (2018)
State Gao et al. (2017),. Genders and Razavi (2016), Li et al. (2016), Ha-li IVan der Pol and Oliehoek (2916), Gong et al. (2.019), Tan et al.
space Vehicular information and Ke (2017), Liang et al. (2019), Muresan et al. (2019), Wan and (2919), Zhang et al. (20.1 9), Lin et al. (2018a), Liu et al. (;017),
IHwang (2018), Choe et al. (2018), Coskun et al. (2018), Shabestary Shi and Chen (2018), Liu et al. (2018), Calvo and Dusparic
and Abdulhai (2018), Calvo and Dusparic (2018) (2018), Ge et al. (2019),
Others Canas (2017) Chu et al. (2019), Canas (2017)
\Van der Pol and Oliehoek (2016), Gong et al. (2019), Chu et al.
Two-phase . . 2019), Zhang et al. (2019), Lin et al. (2018a), Liu et al. (2017),
intorsection Li ctal. (2016), Gao ctal. (2017), Mousavi et al. (2017) (Shi an)d Cheng(2018)(, Ge e)t al. (2019),( Calvo)and Duspar(ic )
Action (2018), Liu et al. (2018)
space Genders and Razavi (2016), Wan and Hwang (2018), Choe et al.
More than two phases |(2018), Coskun et al. (2018), Shabestary and Abdulhai (2018), Calvo  [Canas (2017)
and Dusparic (2018)
Phase update Liang et al. (2019), Canas (2017) I(El;;\i: zkég)izgér?:?foelt;)‘}' ((}ioelti)l" %‘(1) i‘g;i Chen (2018),
Genders and Razavi (2016), Gao et al. (2017), Choe et al. (2018),
'Waiting time/delay IMousavi et al. (2017), Shabestary and Abdulhai (2018), Wan and Lin et al. (2018a), Ge et al. (2019)
IHwang (2018), Liang et al. (2019)
Reward gﬁ;‘t‘}f/ discharge Muresan et al. (2019) Van der Pol and Oliehoek (2016), Tan et al. (2019),
Combination of both  |Li et al. (2016) Chu et al. (2019), Zhang et al. (2019)
Others Canas (2017) Canas (2017)
Gao et al. (2017), Li et al. (2016), Wan and Hwang (2018), Shabestary .
DON and Abdulhai (2018), Choe et al. (2018), Coskun et al. (2018), Genders é“g; g)er Poland Olichock (2016), Gong et al. (2019), Ge et al.
and Razavi (2016), Liang et al. (2019)
Algorithm  [DRL with CNN Ha-li and Ke (2017), Muresan et al. (2019)
|Actor-critic based Coskun et al. (2018), Canas (2017) Canas (2017), Lin et al. (2018a), Chu et al. (2019)
Others IMousavi et al. (2017), Shi and Chen (2018), Garg et al. (2018), Calvo  [Zhang et al. (2019), Shi and Chen (2018), Liu et al. (2017),
and Dusparic (2018) Calvo and Dusparic (2018)
State Gao et a}. (2017), Genders and Razavi (2016),.Li et al. (2016), . Van der Ppl and Oliehoek (2016), Gong et al. (2019), Tan et 5.11.
observability Full Mousavi et al. (2017), Garg et al. (2018), Ha-li and Ke (2017), Liang et |(2019), Lin et al. (2018a), Liu et al. (2017), Ge et al. (2019) Liu

al. (2019), Muresan et al. (2019), Wan and Hwang (2018), Shabestary

et al. (2018)
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and Abdulhai (2018), Coskun et al. (2018), Casas (2017), Calvo and
IDusparic (2018)

IPartial

Choe et al. (2018)

Zhang et al. (2019), Chu et al. (2019), Shi and Chen (2018),

Table 5: Summary of DRL applications in other types of traffic control.

Problem Reference Method S.0.* State Action Reward
Nezafat Traffic density at the bottlekneck Selection of speed limit from a .
(2019) A3C Full and network entrance discritized predefined range Delay reduction rate
Demand flow of upstream
Variable Keetal. malgllne, demand flow of on-ramp, Selection of speed limit from a Function of critical density and
.. Double DQN Full density at the downstream NS .
speed limit (2020a) ) . discritized predefined range downstream density
bottleneck; density at the upstream
control .
area, and density on the on-ramp
Wu et al. DDPG Full Ezﬁﬁire(;ildaréif;gsﬁin Selection of speed limit from a Funciton traffic flow, velocity at
(2020) P, discritized predefined range the bottleneck, and emission
occupancy rate
Ramp Belletti et al. REINFORCE Full Traffic density simulated by a Selection of incoming flow from Negative of deviation from
metering (2017) partial differntial equaiton discretized predefined range intended density
Lane pricin Pandey etal. | Vanilla policy Partial S:;lr CelI; tstior}lallllp Sealtles ?)I;C;I;lenﬁlber of Toll charged (continous but Function of total travel time and
p & (2020) gradient, PPO rounded) total revenue

transmission model

* S.0. means “state observability”.
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3.5 Vehicle routing optimization

Vehicle routing optimization is another area where the use and adaptation of DRL has been actively
pursued, including both travelling salesman problems (Bello et al., 2016; Khalil et al., 2017; Kool et al.,
2018) and vehicle routing problems (VRP) (Nazari et al., 2018; Kullman et al., 2019; Balaji et al., 2019;
Zhao et al., 2020; Zhang et al., 2020; Peng et al., 2020; Yu et al., 2019; Chen et al., 2019c¢). Several new
techniques are proposed to solve routing problems, including: 1) attention models based on an encoder-
decoder architecture (Zhang et al., 2020; Peng et al., 2020; Nazari et al., 2018; Zhao et al., 2020); 2) a graph
embedding network to represent the policy that captures the property of a node in the context of its graph
neighborhood (Khalil et al., 2017); and 3) an Atari-fied representation of the environment (Kullman et al.,
2019). Research has also been connected to practical contexts including urban freight deliveries and on-
demand ridesharing for passenger transportation. In the following three paragraphs, existing DRL papers
for urban freight delivery and on-demand ridesharing are reviewed. We also discuss a couple of papers
applying DRL to vehicle holding control, which is important in bus operations and can be viewed a modified
route optimization problem. A brief summary of the papers reviewed in this section is also included in

Table 6.

Practical urban freight delivery problems often involve capacity constraints of delivery vehicles,
distinction between pickup and delivery locations, and limited time windows for delivery. As a result, the
complexity of routing problems is augmented compared to classic VRP. Nazari et al. (2018) consider a
parameterized stochastic policy to solve VRP with limited vehicle capacity. A policy gradient DRL
algorithm is applied to optimize parameters of the stochastic policy. Yu et al. (2019) opt for a distributed
neural optimization strategy to solve a pickup and delivery problem with vehicle capacity and time window
constraints. The authors adopt a graph embedded pointer network to progressively develop a complete tour
for each vehicle. In a similar vein, Chen et al. (2019c) investigate a heterogeneous fleet of vehicles and
drones for scheduling same-day delivery service. Balaji et al. (2019) solve an on-demand delivery driver
model, which is essentially a VRP variant (stochastic dynamic VRP) using APE-X DQN algorithm. The
results show superiority of DQN over traditional approaches. Most recently, Ahamed et al. (2020) propose
DQN with proble-specific state representation, embedded heuristics, and rule-interposing to optimize

crowdsourced urban parcel deliveries.

DRL based on-demand ridesharing problems are examined from three perspectives: 1) order
dispatching, which aims to match rider requests with available vehicles (Wang et al., 2018c; Zhou et al.,
2019b; Qin et al., 2020; Ke et al., 2020b; Tang et al., 2019); 2) vehicle repositioning, to proactively
reposition idle vehicles from one zone to another zone to balance vehicle supply and rider demand (Al-

Abbasi et al., 2019; Oda and Joe-Wong, 2018; Oda and Tachibana, 2018; Shi et al., 2019b; Liu et al., 2020;
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Wen et al., 2017; Mao et al., 2020; Lin et al., 2018b); and 3) joint decisions on order dispatching and vehicle
repositioning (Singh et al., 2019; Kullman et al., 2020; Holler et al., 2020; Jin et al., 2019; Liang et al.,
2021). The majority of the existing works adopt a decentralized approach where each vehicle is considered
a DRL agent with limited or no coordination with other vehicles, although exceptions exist in which a DRL
agent plays the role of a central agency making routing decisions with a higher degree of coordination (Mao

et al., 2020; Liu et al., 2020).

Among the on-demand ridesharing studies, the common elements in state representation are current
location and destination of vehicles, time of the day, and rider demand and vehicle supply at the zonal level.
Anticipated future demand is also considered in some studies (Wen et al., 2017; Al-Abbasi et al., 2019; Ke
et al., 2020b; Kullman et al., 2020). More differences are present in the design of action space. For order
dispatching, actions pertain to assigning requests to vehicles. Vehicle repositioning is concerned about
moving empty vehicles between zones. Both types of actions are considered for joint decisions. The
specification of reward varies, including minimizing waiting time (Wen et al., 2017; Singh et al., 2019),
maximizing revenue (Wang et al., 2018c, Holler et al., 2019; Kullman et al., 2020; Qin et al., 2020), and
minimizing idle/en-route time (Oda and Joe-Wong, 2018; Al-Abbasi et al., 2019).

Vehicle holding control is an important issue in bus operations that can mitigate bunching (multiple
buses along the same route arriving at a stop at the same time). DRL has exhibited potential to address this
issue to determine holding time for buses at different locations. Considering each bus as a single agent,
multi-agent DRL is applied using prioritized double DQN (Alesiani et al., 2018) and PPO algorithms (Wang
and Sun, 2020). The objective is to optimize forward and backward bus headway while minimizing holding
time for every bus. The action pertains to determining holding time of each bus at every stop. In Wang and
Sun (2020), a comprehensive state space is presented where passenger and vehicle headway related

information is considered. The results show that DRL outperforms existing rule-based methods.
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Table 6: Summary of DRL applications in vehicle routing optimization.

Problem type Reference Method S.0.* |State characterization Action Reward
Balaji et . . . . . . . Value of all delivered requests
al. (2019) DQN Full |Pickup location, drivers and requests information |Wait, accept or pickup a request minus the cost
iaf;glzt) Actor-critic  |Full |[Customer location and demand 'Which node to visit next Negative tour length
Kullman Visual representation of vehicles and customers Wait at current location or
et al. D3OQN Full Al rep instruct vehicle to visit to a Negative tour length
location
(2019) customer node
Multi-agent . . - .
Zhang et DRL with Full Currept vehicle location and remaining vehicle |[Decoder outpgtg the next Negative tour length
al. (2020) . capacity customer to visit
attention
Urban freight delivery Peng et al. REINFORCE [Full Partial s_olutlon 1ns_tance aqd the features of each Which node to visit next Negative tour length
(2020) node using dynamic attention model
Available requests, charging stations, next stops Functlor} of number of dellvery
Yu et al. . . . . .. completion, travelled distance
A3C Full |of other vehicles in the system, battery charging [Which node to visit next . .
(2019) . and penalties for constraint
demand of each vehicle S
violation
Zhao et al. Actor-critic  |Full Vehlc_:le loc_a tion and capacity, customer demand 'Which node to visit next Negative of tour length
(2020) and time windows
Chen et al. Time, location of customers, and set of planned thther a reguest 1S accepted, Measured based on order
DQN Full and if so, which vehicle or drone . ..
(2019c¢) routes . . . assignment decision
will provide service
‘Wang et . . . . .
al. (2018¢) DOQN Full |Vehicle location and time Assignment Revenue from a trip
Grid index, number of idle vehicles, number of L . Function of accumulated driver
Zhou et al. |Deep Q- . s s Source grid index, target grid .
. Partial [requests, and distribution of requests . . . income and request response
(2019b)  |learning L index, order duration, and price
destinations rate
Qin et al. . . . Assignment of a request, or stay
Order (2020) Double DQN [Full |Vehicle location and time of the day dle Revenue
dispatching Multi-agent Number of unserved requests and idle vehicle,
Keetal. |DQN, PPO, Full expected arrival rate of new requests and Assignment of a request to a Function of delaved time
On-demand (2020b)  [A2C, actor- vehicle, request location, request waiting time  |vehicle, or delay the assignment Y
ridesharing critic and distance from matched vehicle
Tane et al Vehicle location, time of the day, supply-
@ 01g9) " IDRL Full |demand status, day of the week, driver service  [Request assignment or stay idle  [Revenue from a trip
statics, holiday indicator
Al-Abbasi Lo . 'Whether the vehicle under study
Vehicles’ current status, number of vehicles and . . .
et al. DQN Full redicted future demand for a time slot should pick up new riders; If yes, |Idle/en-route time and fuel use
Vehicle (2019) P which zone to go to
repositioning|0da and Nurpber ofpredlgted reqqests and .vehlc.les Dispatch vehicles to different Number of rejects and the
Joe-Wong (DQN Full [|available in a region, vehicle location, time of edions vehicles® idle cruising time
(2018) the day, day of the week & &
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Problem type Reference Method S.0.* |State characterization Action Reward
Oda and Individual vehicle’s state by current location, Dispatch agent vehicle to a target Collected fare during a given
Tachibana [DQN Partial current time, global supply and demand of a time " c{) cell £ £ ltime slot minus the working
(2018) interval & costs and cruising costs
. Concealed location of vehicles with differential . .. .
Shi et al. . . " Guide a cruising vehicle to one of
(2019b) DON Full |privacy, tlme and day, competition measure from the four adjacent cells Profit made for a passenger
nearby vehicles
. . . Discrete value depending on
882%)31' Double DQN ;:)illlelcalr? é(;f;tlﬁgé,:;ppgs:j demand of each Repositioning of vehicle supply-demand ratio in each
& £ zone
Wen et al. Distribution of idle and in-service vehicles and .. . L
(2017) DQN Full bredicted demand Decision on rebalancing Waiting time
Mao et al. Actor-critic  [Full Current.tlme 1nter.val, waiting passenger demand, Repositioning of all vehicles Negative of the total operational
(2020) and available vehicle count costs
Lin et al. Spatial distributions of available vehicles and Alloce}tmg the agent to one O.f s Averaged revenue of all agents
DON, A2C  |Full six neighboring grids or staying in| .. .
(2018b) requests the current grid arriving at the same grid
Singh et Vehicle status,.predlcted future demgnd an.d Which region to dispatch a Waiting time, gap betv&./een
al. (2019) DQN Full |[number of vehicles at each zone during a time vehicle supply demand, fleet size, and
) interval fuel consumption
i(tl;lllman gggi\l Full Current time, requests’ location, and vehicles Assignment, repositioning, or Bri)seoﬁir;glf tsoatliiliiriifance of
y ’ information recharging decision prop
(2020) D3QN the request
Holler et Driver location, time to order/reposition Single assignment or
Joint al. (2020) DQN, PPO  [Full completion repositioning Revenue
decision . . Nurpber of vehicles, number of relocatable. Ranking a weight vector to rank  |Sum of accumulated driver
Jinetal. [DDPG with . . [vehicle, number of requests, entropy (function of . .
Partial . A . and select the specific request or |income and request response
(2019) RNN vehicle availability), request features (price, . -
. relocatable vehicle's destination  |rate
duration)
Liane et ?/[(3;\11{.2313; Empty vehicle: current location and time Single assignment and Profit in terms of trin fare and
al (Zg()2 1) [DON and Full |Occupied vehicle: destination and time of arrival [repositioning drivine cost p
’ A2C at the destination &
Sle(szlgrllg)et grézg;;zle)%N Partial [Departure time, arrival time and headway Erzggﬁgéﬁfrég;scretlzed Function of headway difference
Vehicle holding control g;ng and PPO Full Passenger and vehicle headway related Holding time of each bus at every |Forward and backward bus
information stop headwa;
(2020) Y

* S.0. means “state observability”.
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3.6 Rail transportation

Using DRL, promising results have been reported in multiple rail transportation areas, including train
timetable rescheduling (Ning et al., 2019; Obara et al., 2018; Wang et al., 2019f; Yang et al., 2019),
automatic train operations (Zhou and Song, 2018; Zhou et al., 2020; Zhu et al., 2017), and train shunting
operations (Peer et al., 2018). For each of the problems, we review relevant publications and provide a
summary in Table 7. Train timetable rescheduling problems involve finding a feasible timetable of a train
either by re-routing, re-ordering, re-timing, or canceling in case of uncertain disturbances associated with
equipment/system failure along the railway line. In automatic train operations problems, the velocity and
trajectory of a high-speed train need to be determined based on uncertain situations (e.g., changing trip time
and waiting time due to passenger boarding). Train shunting operation problems pertain to matching
incoming and outgoing train timetables as well as scheduling maintenance and cleaning activities in a
shunting yard. The rail transportation problems are mainly approached by DQN and DDPG algorithms,
with a fully observable environment. Researchers often resort to simulated environments. Very limited
efforts try to incorporate real train track information in training (Peer et al., 2018; Yang et al., 2019; Zhou

et al., 2020).

In the case of a disruptive event, the goal of train timetable rescheduling is to recover a train’s
operational order by readjusting its timetable while minimizing delay (Ning et al., 2019; Wang et al., 2019f),
passenger dissatisfaction (Obara et al., 2018), or energy consumption (Yang et al., 2019). Ning et al. (2019)
and Wang et al. (2019f) consider actual arrival and departure times as state, reordering of departure
sequences as action, and negative average total delay as reward. Obara et al. (2018) describe train delay in
a graph environment and consider graph deformation in action space specification. The authors consider
delay, stoppage, driving time, frequency, and connection in the reward function. Focusing on reducing train
energy consumption, Yang et al. (2019) design their reward function considering both recovered energy

and traction energy. Ying et al. (2020) consider multiple trains in a train scheduling problem.

One of the objectives for automatic train operations is minimizing energy consumption (Zhou and
Song, 2018; Zhu et al., 2017), subject to delay (Zhu et al., 2017), punctuality, and riding comfort (Zhou et
al., 2020) constraints. In doing so, Zhou and Song (2018) and Zhou et al. (2020) define speed and train
position as state. The magnitude of acceleration and deceleration is considered as action. In terms of reward
specification, besides energy consumption, train delay is also included (Zhou et al., 2020). To minimize
profile tracking error and energy consumption, Zhu et al. (2017) specify reward considering speed deviation
from the target speed, based on which to make acceleration/deceleration decisions. For state
characterization, the authors include speed, position of the train, relative position from the front train, rail

wireless network strength, and a binary indicator of whether the train starts using the wireless network. To
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tackle train shunting operation problems, Peer et al. (2018) use arrival and departure train conditions in the
shunting yard to describe the state, and parking and departure decisions of each track as actions, to minimize

the error in train parking and departure from the yard.

30



Table 7: Summary of DRL applications in rail transportation.

Train timetable
rescheduling

sequences

Application Area | Reference Method State Action Reward
Obara et al. (2018) DQN Delay condition Rescheduling timetable l?elay, stoppage, dr1V1.ng
time, frequency of train
Ning et al. (2019) DQN Actual arrival and departure times Reordering of the departure Negative average of total

delay

Wang et al. (20191)

Monte Carlo
tree search

Actual arrival and departure times

Reordering of the departure
sequences

Negative average of total
delay

Number of the departing train and its last

Speed and the dwelling time of

Recover energy and the

operations

decisions

Yang et al. (2019) DDPG gglee:lrhrr:i Itllirllllg,trc;;r:nt speed and position of the the departing train rellelggl;e of traction
Speed, position of the train, relative position
from the front train, rail wireless network Accelerate or decelerate and Speed deviation from the
Zhu et al. (2017) DON strength, and a binary indicator of whether the their magnatude target speed
Automatic train train starts using the wireless network
operations Zhou and Song (2018) | DDPG Speed and train position Magnltude of acceleration and Energy consumption
deceleration
Zhou et al. (2020) DDPG Speed and train position Magmtude of acceleration and Energy consumption and
deceleration dealy
Train shunting Peer et al. (2018) DON Arrival and departure time Parking and departure Correct parking and

correct departure
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3.7 Maritime transportation

Most DRL applications in maritime transportation are in the context of Autonomous Ship (AS) driving,
more specifically in AS path following and collision avoidance. Given the dynamic and complex nature of
AS driving, existing analytical methods such as model predictive control are often not suitable for practical
applications (Zhao et al., 2019). DRL presents a promising alternative and has shown some success in

solving AS path following and simultaneous path following and collision avoidance problems (Table 4).

For AS path following problems, actions considered include rudder angle (Martinsen and Lekkas,
2018), course angle (Woo et al., 2019), and rudder angle with propeller rotation (Rejaili and Figueiredo,
2018). Reward is specified to reflect the extent to which a ship deviates from a predefined path. Martinsen
and Lekkas (2018) and Woo et al. (2019) define the reward function as cross-track error. Rejaili and
Figueiredo (2018) define reward as the negative of penalty for deviation. Path guideline, distance from the
ship mass center to the guideline, and the angle between the longitudinal axis of the ship and the guideline
are considered in representing the state. Ship speed and angular velocity are further considered in Martinsen

and Lekkas (2018) and Rejaili and Figueiredo (2018).

For simultaneous modeling of path following and collision avoidance, a number of control methods —
including model-based and model-free — have been investigated. DRL is mostly applied in the context of
model-free methods. One stream of research concerns static obstacle avoidance. Safety-related measures
are specified in reward. For example, Sawada (2019) uses safe passing distance from obstacles, while some
other researchers consider the number of collision instances (Amendola et al., 2019; Layek et al., 2017;
Shen et al., 2019; Zhang et al., 2019). In terms of the state space, information on ship position, orientation,
turning rate, and distance from the obstacle is always included. Distances from other ships and ship width
and length are further considered in Shen et al. (2019) and Sawada (2019). Rudder action, heading angle,
rudder angle, and turning rate are included in the action space (Layek et al., 2017; Amendola et al., 2019;

Shen et al., 2019; Zhang et al., 2019; Sawada, 2019).

Another stream of research deals with both static and dynamic obstacles (such as environmental
disturbances). Navigation decisions including rudder actions or course actions are made at every time step,
which are informed by state of the AS including positions of the ship and obstacles. Also considered in the
state space are speed (Cheng-bo et al., 2019; Wang et al., 2019), angular velocity (Cheng and Zhang, 2018;
Zhao et al., 2019; Zhao and Roh, 2019), surge, and sway (Cheng and Zhang, 2018). Except for Zhao and
Roh (2019), all studies consider navigation of a single ship using single-agent DQN.
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Table 8. Summary of DRL applications in maritime transportation.

Application area Reference Method State Action Reward
Martinsen and ... | Cross-track error, course and heading to the path, .
Lekkas (2018) Actor-critic surge, sway, yaw rate, and derivatives of the path Rudder angle Negative cross-track error
Path following R.e . a1l} and DQN and Distance and longitudinal axis of AS to guideline, Rudder angle Deviation from guideline and speed
Figueiredo . . . and propeller .
DDPG horizontal and vertical speed, and angular velocity . setpoint
(2018) rotation
Woo et al. (2019)| DDPG Position Course angle Deviation from route
éag le ;{) ctal. DDPG Position, orientation, and actual turning rate Turning rate Angle between ship and obstacles
Amendola et al. DON Distance between ship and channel centerline, Rudder angle Proximity of ship to destination, collision
(2019) course over ground, turn rate, and last rudder level & avoidance, and deviation from center
Stati . . i i i iati
atie Sawada (2019) | PPO Ship position, breadth, length, and speed Heading and Safe passing distance and deviation from
obstacles rudder angle route
Shen et al. (2019) DON Distance from obstacles and other ships Rudder angle | Obstacle avoidance
AS speed and course, position of obstacle and .
(Zzlz)aln 9% ctal DQN target point, distance between ship and obstacle, Heading angle ?VIL I;g:;‘;lé to target point and obstacle
and distance between AS and target point
Cheng and Zhang Ship position, heading, surge, sway, and angular .
(2018) DQN rate, and obstacle position Rudder angle | Obstacle avoidance and target approach
Path Cheng-bo et al. DON ship position, speed, and course, distance from Heading anele Proximity of ship to destination, collision
following (2019) target and obstacles, and obstacle position gang avoidance, and deviation from center
and .
.. Etemad et al. . . Approach to target point and obstacle
coll}s10n (2020) DQN Position Heading angle avoidance
avoidance
. Zhao and Roh Mu.l ti-agent | Ship position, VelOCl.tY’ and length, dl.s tance Proximity of ship to its destination,
Static (2019) policy-based| between current position and destination, and Rudder angle avoidine collision. and drift
and DRL relative angle between ship and destination & ’
d i . . .
onga 1(1:111;:5 Wang et al. DON Speed, position of obstacles and destination, and Rudder angle Approach to target point, obstacle
(2019g) distance of vessel from obstacles and destination & avoidance, and deviation from route
Zhao et al. Policy-based Ship position, Veloc1.t}f, and length, dl.s tance Proximity of ship to its destination,
between current position and destination, and Rudder angle L - .
(2019) DRL . . Jo avoiding collision, and drift
relative angle between ship and the destination
Guo et al. (2020) | Actor critic | Longitude and latitude Heading angle | Ap proach to target point and obstacle
and speed avoidance
Chen et al. " Approach to target point and obstacle
(2020) DQN Image of the current position Rudder angle avoidance
Port management Shen et al. (2017)] DQN Container loading condition at every time step Scheduhng A\./al.lablhty, reshuffling, and yard crane
container shifting
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Besides AS path planning and collision avoidance, DRL has been tried for port management. Shen et
al. (2017) employ DQN for quay and yard crane scheduling for Ningbo Port in China. Table 8 summarizes
the reviewed studies for AS path following, path following and collision avoidance, and port management.
The reviewed studies are categorized based on the application area, method used, and state, action, and
reward specifications. Regardless of the application area and methodology used, the exiting literature of

DRL applications in martime transportation always considers the environment to be fully observable.

4 Synthetic discussions

4.1 Applicability

While many DRL applications and adaptations have been reported as shown in section 3, there does
not exist a single, universal rule for DRL system design to tackle all transportation problems. To ensure
successful DRL use, one needs to have an in-depth understanding of the nature of the specific transportation
problem investigated as well as DRL. In principle, a DRL algorithm improves policies by having the agent
interact with the environment. As such, any problems whose solution can be improved by trial-and-error,
i.e., incorporating feedback from the environment from one trial to the next, can be suitable for DRL. Also,
problems that place importance to completing a full task rather than periodical success at intermediate steps
and entail delayed reward are suitable for DRL. An example of this, as we have seen, is end-to-end
autonomous driving where a collision before the end of the journey would overshadow earlier success in
lane changing. To model sequential decision-making, MDP offers an adequate framework for a fully
observable environment. Note that DRL can also be applied to environments with partially observable

MDP, by incorporating RNN as a function approximator (Heess et al., 2015; Hausknecht et al., 2015).

It is difficult to conclude which DRL algorithm is best for a specific transportation problem, although
candidate DRL algorithms can be identified. For example, problems where states can be incorporated as a
stack of images, DRL algorithms embedding CNN as a function approximator (e.g., DQN) are appropriate.
Problems like adaptive traffic signal control and end-to-end autonomous driving can adopt double dueling
DQN with prioritized experience replay. Both policy based and actor-critic based algorithms can deal with
continuous action space. The actor-critic architecture is preferred when optimal policy and its value are
both expected. In this regard, algorithms like DDPG and PPO can be used for energy management of hybrid
or electric vehicles and autonomous driving motion control. Asynchronous algorithms like A3C, which are
also based on the actor-critic architecture, can accelerate learning by parallel processing. Although better
solutions are generated using PPO in Atari gaming platform than using A3C, A3C may still be considered
given its fast speed in learning. DRL algorithms with attention and pointer networks are popular for

sequence-to-sequence modeling and adopted in vehicle routing optimization.
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Based on our review of the existing literature, a mapping of DRL algorithm and extension use to the
seven application domains is plotted in Fig. 4. The left column of the figure lists specific DRL algorithms.

All the full names corresponding to the acronyms can be found in section 2. The right column lists the

extensions. The middle column lists the application areas. The arrow widths are proportional to the number

of applications found in the literature.
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Figure 4. Mapping of DRL algorithm and extension use to transportation application domains.

Among the extensions used in DRL, three of them are worth highlighting: multi-agent, hierarchical,
and inverse DRL. First, a multi-agent DRL framework is especially amenable to tackling problems in a
distributed environment with agent interactions. As an example, a multi-agent framework can characterize
cooperative and adversarial intentions of neighboring vehicles in autonomous driving. Another case of

agent interactions which multi-agent DRL suits is traffic control among coordinated intersections.

Second, hierarchical DRL is useful when decisions can be decomposed into multiple layers. For
instance, if the action space can be divided into two levels: “what to do” and “how to do”, then a hierarchical
framework can make the overall learning and implementation very efficient. In vehicle routing optimization

problems, the type of neighborhood moves to select can be considered as a higher-level decision and how
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to actually implement the selected neighborhood move as a lower-level decision. Similarly, in autonomous
driving, the decision on what action to take can be viewed as a higher-level problem, while how to execute

the action is a lower-level control problem.

Third, inverse DRL can be used for problems that require optimization of multiple factors through a
common reward signal, which helps improving learning efficiency. In real-world problems, successful
completion of a task may depend on several factors with a need for parameterization for the reward function.
Weights of these parameters should be specified, but would involve intense tuning if done manually. For
example, the decision on lane changing depends on whether the agent successfully completes the task, but
also on marginal safety risk, smoothness, and comfortability of the lane change. Instead of explicitly
defining a reward function at the beginning of training, inverse DRL offers a way to extract a proper reward

signal to be used for seeking the optimal policy.

4.2 Strengths and shortcomings of DRL

This section discusses the strengths and shortcomings of DRL applications in tackling transportation
problems. Among the most remarkable strengths of DRL are: 1) ability to generate high-quality solutions
in a very short amount of time; and 2) generality and scalability in solving varying problem instances. On
the other hand, DRL is not without drawbacks. Shortcomings include: stability in training, computation

power requirement, and hyperparameter tuning. Below we provide further discussions.

Strengths: As its first strength, DRL can generate high-quality solutions fast. Through extensive
training, promising performance of DRL has been reported in guiding autonomous decision tasks (Minh et
al., 2015; Silver et al., 2016, 2017). The review in section 3 has shown that in many applications DRL
produces results with superior quality to existing benchmarks while taking only a matter of seconds to yield
good solutions, as compared to traditional methods such as heuristics which require considerably longer
computation time. It should be noted that training of DRL algorithms can be done offline, and thus has little

negative effect on problem solving time.

The second strength of DRL is its generality. While interacting with the environment, a DRL algorithm
accumulates and learns from experiences by encountering and trying to solve different problems. Thus,
once trained, DRL can produce sound solutions for varying problem instances including those not exactly
encountered. The ability of DRL to remain useful in “an uncharted territory” presents an advantage over
traditional optimization techniques. With deep learning further embedded, the scalability of DRL to solve
problems of different sizes is also enhanced. This has been testified by the considerably better results
obtained by DRL algorithms than existing benchmarks for problems with large state and action space (Minh

et al., 2015) and even with continuous action space (Lillicrap et al., 2016; Schulman et al., 2017).
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Shortcomings: A few shortcomings have been recognized in DRL training. The first one is training
stability, particularly for DQN, which involves a target network updated in regular intervals. At each update,
the values of different parameters could experience unstable jumps (Van der Pol and Oliehoek, 2016). Thus
it may be difficult to see a clear trend of learning improvement. The second shortcoming is interpretability
of DRL (Chakraborty et al., 2017; Zhang and Zhu, 2018). A lack of interpretability can make it difficult to
understand contributions of each component in the state to the final solution. Furthermore, DRL algorithms
are criticized for lack of reproducibility due to the use of simulated data (Henderson et al., 2018, Hoffman
et al., 2020). Also, inadequate training (e.g., overtrained in a particular environment) can give rise to the

issue of generality, which in turn compromises transferability of the DRL agent to other environments.

Another shortcoming of DRL — perhaps more of a challenge — is the significant computation power
required in training. DRL training involves updating weights of an artificial neural network by hundreds of
thousands of iterations over a large amount of data. The extensive training calls for very high computation
power. With state-of-the-art GPU, parallel processing can be leveraged as an efficient way of updating
weights in a neural network. But GPUs are expensive. Although deep learning platforms like Tensorflow
and PyTorch have built-in functionality to optimize the use between CPU and GPU, a tradeoff between

computational efficiency and financial capability needs to be made.

Apart from the above, an additional shortcoming of DRL pertains to hyperparameter tuning. Every
DRL algorithm involves a certain number of hyperparameters to be tuned. This tuning process is generally
very time consuming (Henderson et al., 2018), as it involves grid search of all hyperparameters. Given the
large number of combinations of possible hyperparameter values, hyperparameter tuning and consequently
neural network training are usually slow. For some problem instances, it can take days (Mnih et al., 2015;

Yu et al., 2019).

4.3 Issues and future research directions

With the understanding of DRL’s applicability, strengths, and shortcomings, this section discusses
issues present in DRL application/adaptation for tackling transportation problems, and suggest potential
future research directions. These discussions are organized in two parts. The first part focuses on issues and
research directions of DRL application/adaptation that are common in transportation research. In the second

part, we look into issues and research directions specific to different transportation domains.

4.3.1 Common issues and research directions

We highlight five common issues in DRL applications/adaptations to the transportation domain. The
first one pertains to the use of simulated platforms and synthetic data in DRL training and testing. As real-
world situations can be more complicated than simulated data, DRL algorithms trained based on simulated

platforms and synthetic data need to be validated before applying to real scenarios with confidence. The
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need for validation is particularly critical to applications for which safety is of paramount importance (e.g.,
driving related). It is possible that, no matter how many scenarios a DRL agent is exposed to in a simulated
environment, the agent cannot fully learn the complexity of real-world situations. Thus, a crucial research
direction is transferring training of a DRL agent from a simulated environment to the real world in a safe,
secured, and efficient manner. For exmaple, the trained DRL agent may need to be first tested in a physical
test bed and then in a controlled environment with rigorous fail safe, and satisfy existing benchmarks for
safety protocol in every tested scenario, before moving to real-world implementation. So far, only limited
efforts are made to transfer the trained DRL agent from a simulator to a physical test bed (Chalaki et al.,

2019).

The second common issue is the need for common platforms for evaluating different DRL algorithms
in solving specific types of transportation problems. With a common platform, the inputs and problem
instances for DRL training and testing are standardized, making it possible to perform “apple-to-apple”
comparison. For example, for shared taxi routing problems, comparing performance of different DRL
algorithms based on the same service area, fleet of shared taxis, and rider request density and distribution.
Having such common platforms is critical to understanding the advantages, limitations, and appropriateness
of different DRL algorithms and helping inform algorithm choice for particular problems. However, as such
common platforms remain lacking, research efforts are clearly needed for common platform development

for DRL algorithm evaluation.

As the third common issue, the existing studies focus on decision-making of either vehicles or
infrastructure (traffic signals, ramp metering, etc.). To our knowledge, no study exists in the literature that
simultaneously considers decision-making of both vehicles and infrastructure. Given that vehicles and
infrastructure are interdependent in transportation systems, fixing one part while optimizing the other would
likely yield suboptimal outcomes compared to explicit decision-making on both. This is especially relevant
to transportation, which is rapidly evolving towards ubiquitous connectivity between vehicles and
infrastructure. Yet vehicles and infrastructure may still possess some degree of operational autonomy and
independence. Thus, additional research is needed to better encompass the vehicle-infrastructure nexus in
full scale. A multi-agent DRL setting embedding cooperation, competition, and feedback among agents

will be of particular interest in this regard and warrant further investigation.

The fourth common issue is accommodation of constraints, which are common in transportation
optimization and control problems. To our knowledge, most existing works deal with constraints by
including penalty in the reward specification, which is appropriate if the constraints are “soft”, meaning
that they could be violated but incur a cost. However, for constraints that are “hard”, i.e., constraints must

be strictly met, introducing penalty to reward cannot eliminate constraint violation and thus is not a perfect
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solution. To our knowledge, how to appropriately account for hard constraints has not attracted enough
attention in the existing DRL research in the transportation domain. We note that an alternative way to deal
with hard constraints is by masking the constraints while designing the training environment, to keep the
exploration space away from constraint violation, as considered in autonomous driving (Mukadam et al.,
2018) and VRP (Nazari et al., 2018). Nonetheless, more research is still needed to further explore masking

and other techniques to cope with hard constraints in various transportation domains.

Finally, and especially from the practitioners’ standpoint, it is important that solutions generated by
DRL are robust to changes in data and the environment. This relates to the generality and transferability
issues discussed earlier in section 4.2. To ensure robustness, comprehensive sensitivity analysis of a trained
DRL agent to different data and/or environments is warranted. In this regard, a few attempts have been
made, including in traffic signal control (Calvo et al., 2018; Li et al., 2016; Ge, 2019), autonomous driving
(Duan et al., 2019; Feng et al., 2019; Hoel et al., 2018), rail transportation (Yang et al., 2019) and maritime
transportation (Etemad et al., 2020). Sensitivity analysis should be extended to other domains. For example,
DRL based energy efficient driving may consider a variety of vehicle driving cycles. For parcel delivery
and vehicle dispatching, a trained agent is expected be insensitive to changes in customer demand within a
reasonable range. If a trained agent turns out to be sensitive, then one needs to reexamine the DRL model
specification and training, including whether the design of the environment is appropriate and whether the

training data are adequate and sufficient (so that the DRL agent is not undertrained).

4.3.2 Application-specific issues and research directions

For autonomous driving, three issues are identified. First, some actions (such as acceleration and
speed) are treated as discrete, which is less realistic. Using policy based or actor-critic based algorithms,
these actions can be considered as continuous, but further explorations are needed. Second, sensing and
perceiving surrounding vehicles is critical. The existing literature has not paid much attention to distinguish
human-driven and autonomous vehicles, which have different behavior and are likely to coexist in
transportation systems for the foreseeable future (Noruzoliaee et al., 2018; Noruzoliace and Zou, 2021; Zou
etal., 2021). Research to refine the environment design needs to take this into account. Third, while existing
research mostly deals with one or two specific aspects of autonomous driving such as lane changing, motion
control, and collision avoidance, future modeling needs to be more comprehensive to ensure that DRL-

driven decision-making leads to safe, reliable, and efficient autonomous driving.

For energy efficient driving, an important issue is that the reward signal is usually designed based on
engine power supply. The relationship between fuel economy and engine power is complex. Most existing
work lacks proper characterization of the relationship (Hu et al., 2018). Moreover, the success of energy

management for an HEV depends not only on the state and dynamics of the vehicle and the surrounding
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environment, but on other factors that are paid less attention to, such as trip distance, trip time, average
achievable speed during the trip, and driver’s behavior that may vary during the trip. Precise information
on such factors may not be readily available at the time of decision-making, so some estimation or
expectations need to be made. Also, given that plug-in HEVs are gaining increasing popularity, more efforts

should be directed to energy management for plug-in HEVs.

For adaptive traffic signal control, three issues are identified. The first issue pertains to design of the
state space. Existing research does not adequately reflect vehicle acceleration and deceleration for incoming
traffic during yellow and red phases. This issue indeed is highlighted in an early adaptive traffic signal
control study (Genders and Razavi, 2016), but so far has not been addressed. The second issue relates to
research using a grid representation of traffic (a grid taking value 1 indicates vehicle presence and 0
otherwise), which usually assumes a uniform intersection environment with the same number of lanes at
every entry and exits, and the same occupied space and inter-vehicle spacing on each lane. This may not be
realistic in practice. Third, while most studies focus on optimizing system efficiency (e.g., minimizing
overall wait time at intersections), equity consideration is largely absent but equally important to ensure all

vehicles are fairly treated. More research is needed to address this issue.

In the case of other types of traffic control, we suggest two directions for further exploration. First,
future DRL research for variable speed limit control could consider separate speed limit thresholds for
different lanes of a roadway. For dynamic lane pricing, the existing literature assumes a macroscopic traffic
flow simulation that cannot capture the impact of lane changes on traffic. Instead, microscopic traffic flow

simulations have the potential to overcome this issue and thus could be considered in problem design.

Apart from autonomous driving, energy efficient driving, and traffic control, DRL applications in
vehicle routing optimization, rail, and maritime transportation also face some issues worth further
investigations. For vehicle routing optimization, as multiple objectives, e.g., minimizing total travel time,
minimizing unserved requests, or minimizing customer wait time, are involved, adequately specifying
reward is important. in addition, more methodological explorations are needed to enable and improve
coordinated routing of a fleet of vehicles. For rail transportation, scalability and lack of well-defined
benchmarks are two unresolved critical issues for assessing quality of DRL solutions. For maritime
transportation, environmental disturbances such as ocean current and wind speed can significantly affect
ship operations and should be included in state space design. Another promising direction is energy efficient

ship navigation, which can be informed by the body of similar work for ground vehicles.
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5 Available resources for DRL research

Finally, as DRL implementation is not a straightforward process, it is worth mentioning the available
resources that can be leveraged in DRL research. Existing built-in platforms that facilitate development of
new DRL algorithms or enable use and adaptation of existing DRL algorithms are of particular interest.
Among them, OpenAl Baselines is a set of high-quality implementations of DRL algorithms which allow
researchers to replicate different existing DRL algorithms, and refine and identify improvement ideas
(Dhariwal et al., 2017). Stable Baselines presents a significant improvement upon OpenAl Baselines,
featuring a platform for almost all DRL algorithms (Hill et al, 2017). Apart from OpenAl Baselines and
Stable Baselines, TensorForce provides a framework for DRL which is built on deep learning library
Tensorflow with several algorithm implementations (Kuhnle, 2017). In TensorFlow library, Tensorflow
Agents is a versatile RL platform where an agent takes charge of two main responsibilities: 1) defining a
policy to interact with the environment; and 2) learning the policy from collected experience (Guadarrama
et al., 2018). KerasRL implements some state-of-the-art RL algorithms in Python and seamlessly integrates
the algorithms with deep learning library Keras (Plappert, 2016). Also, deep Q-learning, policy gradients,
and Q-value policy gradients algorithm for small to medium scale research have been implemented in rlpyt
(Stooke and Abbeel, 2019). Table 5 provides a summary of the aforementioned platforms, the available
DRL algorithms, and the library used by each platform.

Table 9. Summary of platforms for DRL development, available DRL algorithms, and libraries used.
Platform Available DRL algorithms Library used

IA2C, Actor-Critic with Experience Replay, Actor-Critic using Kronecker-
OpenAl Baselines Factored Trust Region, DDPG, DQN, Generative Adversarial Imitation Tensorflow
Learning (GAIL), Hindsight Experience Replay, TRPO, PPO,

A2C, ACER, ACKTR, DDPG, GAIL, HER, PPO, TRPO, Soft Actor-Critic
(SAC), Double Dueling DQN with prioritized experience replay

Stable Baselines Tensorflow

Dueling and double DQN, Vanilla Policy Gradient (PG), Continuous DQN,
IA2C, A3C, TRPO, PPO

DQN, double DQN, DDPG, Twin Delayed DDPG, Simple Statistical
Tensorflow Agents Gradient-Following Algorithms for Connectionist Reinforcement Learning, [Tensorflow

TensorForce Tensorflow

PPO, SAC

KerasRL Dueling and double DQN, DDPG, Continuous DQN, Cross-Entropy Me‘[hod,Keras
Deep SARSA

rlpyt IA2C, PPO, Dueling and double DQN, DDPG, Twin Delayed DDPG, SAC |PyTorch

6 Conclusion

Although the introduction of DRL to transportation research is still nascent, the rapidly growing body

of literature has clearly demonstrated an interdisciplinary prospective of DRL applications and adaptation
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in tackling a variety of transportation problems, especially those with a sequential decision nature. In this
paper, a comprehensive and synthetic review of recent DRL research related to solving transportation
problems is conducted. As the review mainly targets the general audience of the transportation community,
we start by providing a methodological background of DRL, including the basic algorithms and extensions.
Then we delve into reviewing specific applications and adaptations of DRL in transportation in seven
identified domains, namely autonomous driving, energy efficient driving, adaptive traffic signal control,
other types of traffic control, vehicle routing optimization, rail transportation, and maritime transportation.
Built on the detailed review, a synthetic discussion on the applicability, strengths, and shortcomings of DRL
as it pertains to transportation research is provided. The discussion also identifies common and application-
specific issues, based on which future research directions are suggested. Finally, we provide information
on the available platforms and their features for actual DRL implementation. We hope that this review will
serve as a useful reference for the transportation research community to better understand what have been
accomplished to date and what are the issues, prospects, and potentials of DRL for transportation, to

stimulate further research in this exciting area.
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