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Abstract: Applying and adapting deep reinforcement learning (DRL) to tackle transportation problems is 

an emerging interdisciplinary field. While rapidly growing, a comprehensive and synthetic review of 

existing DRL applications and adaptations in transportation research remains missing. The objective of this 

paper is to fill this gap. We expose the broad transportation research community to the methodological 

fundamentals of DRL, and present what have been accomplished in the literature by reviewing a total of 

155 relevant papers that have appeared between 2016 and 2020. Based on the review, we further synthesize 

the applicability, strengths, shortcomings, issues, and directions for future DRL research in transportation, 

along with a discussion on the available DRL research resources. We hope that this review will serve as a 

useful reference for the transportation community to better understand DRL and its many potentials to 

advance research, and to stimulate further explorations in this exciting area. 
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1 Introduction 

Moving people and freight in a safe, efficient, and sustainable manner involves a wide range of 

decision-making tasks. Deep reinforcement learning (DRL), by integrating the power of deep learning and 

reinforcement learning (RL), provides a generic and flexible framework for sequential decision-making 

that is amenable to many transportation operation and planning problems. The potential of applying DRL 

to tackling transportation problems has been broadened even further with the increasing availability of 

computation power. As a result, DRL has been attracting soaring interests from the transportation research 

community. Just within a few years, a large number of DRL based transportation studies have emerged, 

with reported results outperforming existing benchmarks. 

One salient feature of DRL is that high quality results can be generated at an extremely fast pace once 

the DRL agent (which makes decisions) is trained, which is very crucial in highly dynamic environments 

that demand real-time decisions, as are relevant to many transportation operations such as driving and traffic 

control. In addition, the ability of DRL to solve large, complex problems makes it promising to tackle 

planning aspects of transportation, for example vehicle routing, timetabling, and path following. It is 

therefore not surprising that over 150 papers have appeared in the literature just between 2016 and 2020 

(July) (Fig. 1). While the literature continues to grow, what we find missing is a comprehensive, synthetic 

review of existing DRL applications and adaptations in transportation. This paper intends to fill the gap. 

The objective of this review is to expose the broad transportation research community to the 

methodological fundamentals of DRL, present what have been accomplished in applying/adapting DRL to 

tackling various transportation problems in different domains, and synthesize the applicability, strengths, 

shortcomings, common and application-specific issues, and directions for future DRL research in 

transportation. Our compilation of papers comes primarily from search on Google Scholar as well as a few 

existing surveys which have a narrower focus (Haydari and Yilmaz (2020) on DRL for intelligent 

transportation systems, and Talpaert et al. (2019) and Kiran et al. (2021) on DRL for autonomous driving). 

We begin the search with generic keywords including “deep reinforcement learning” and “transportation”, 

to collect a laundry list of potentially relevant papers, from which an initial idea of the transportation 

application domains are formed. Then, for each domain, we perform a more directed search with domain-

specific keywords. As an example, for the domain of autonomous driving, keywords “lane changing 

behavior”, “autonomous control”, and “end-to-end autonomous driving” are used in addition to “deep 

reinforcement learning” in the search.  

The literature search leads to 155 papers collected from 2016 to July 2020. No relevant papers can be 

found prior to 2016, which indicates the relative short history of DRL for tackling tranpsortaiton problems. 

The 155 papers fall into seven application domains: 1) autonomous driving; 2) emergy efficient driving; 3) 
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adaptive traffic signal control; 4) other types of traffic control; 5) vehicle routing optimization; 6) rail 

transportation; and 7) maritime transportation. Among these papers, 75 come from conference and 

symposium proceedings, 55 are published in peer-reviewed journals, and the remaning 25 are unpublished 

papers available in online archives. Fig. 1 shows the distribution of the 155 papers over the years and across 

the seven domains. Note that for some papers which have an updated version after July 2020, our review is 

based on the latest version at the time of our paper writing.  

 

Figure 1. Distribution of DRL papers in seven transportation domains. 

The remainder of the paper is organized as follows. In section 2, we first offer a methodological 

overview of DRL, starting from the fundamentals of RL and then moving on to DRL with focus on different 

algorithms and extensions. Section 3 presents a comprehensive review of the existing literature on using 

DRL to address a variety of transportation problems in the seven application domains. Based on the review, 

a synthetic discussion of the applicability, strengths, shortcomings, issues, and directions for future DRL 

research in transportation is conducted in section 4. We also provide information on avaialble resources, 

particularly existing built-in platforms in section 5. Concluding remarks are given in section 6. 

2 Methodological background 

This section presents the methodological background of DRL. We first offer a brief discussion of RL, 

based on which we describe how RL is enhanced by integrating deep learning, which gives birth to “Deep 
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Reinforcement Learning”. Both popular DRL algorithms that have been considered in transportation 

research and extensions of these algorithms are covered.  

2.1 Reinforcement learning 

RL represents one of the three categories of machine learning (the other two are supervised learning 

and unsupervised learning). The focus of RL is to train an agent such that the agent can optimize its behavior 

by learning from its experiences of interacting with the environment. More specifically, RL is a sequential 

decision process with the agent being the decision maker. At each decision point, the agent has information 

about the current state of the environment and selects an action that deems the most appropriate based on 

his experiences at that point. The action taken transitions the environment to a new state. Meanwhile, the 

agent gets some reward, i.e., reinforcement, as a signal of how good or bad the action taken is.  

To formulate the sequential decision process, RL employs Markov Decision Processes (MDP) as the 

mathematical foundation to keep track of the progression of the decision process. To do so, the following 

notations are introduced. Set 𝑺 includes the possible states of the environment. Set 𝑨 contains the possible 

actions that the agent can take. Set 𝑹 includes the possible rewards as a result of the agent taking an action 

at a given state. At time step 𝑡, the environment is in state 𝑠𝑡 and from this state, the agent takes an action 

𝑎𝑡. The action taken results in a transition of the environment to a new state 𝑠𝑡+1 at the next time step 𝑡 + 1. 

Meanwhile, the agent receives a reward 𝑟𝑡 as a result of the action taken. The reward is a function of state-

action pair: ℛ(𝑠𝑡 , 𝑎𝑡) →  𝑟𝑡. This agent-environment interaction is further shown in Fig. 2.  

 

Figure 2. Illustration of agent-environment interaction. 

Since actions are taken sequentially, the objective of the agent is to maximize the cumulative reward, 

which is the expected return over the entire time period. At a time step 𝑡, the expected return 𝑅̅𝑡 is the sum 

of rewards from the current time step onward till the last time step 𝑇:  

𝑅̅𝑡 =  𝑟𝑡 + 𝑟𝑡+1 + r𝑡+2 + 𝑟𝑡+3 + ⋯ +  𝑟𝑇 (1) 

If we consider that the reward is received over a long period, then a discount factor 𝛾 may be 

incorporated to reflect discounting. The expected return is: 
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𝑅̅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑟𝑡+3 + ⋯ =  ∑ 𝛾𝑘𝑟𝑡+k

∞

𝑘=0

 (2) 

Exploration vs. exploitation: When taking an action, the agent needs to keep in mind the tradeoff between 

taking the best action based on the experiences accumulated so far (exploit) and gathering new experiences 

in order to make better actions in the future (explore). The agent must do both and try a variety of actions 

to progressively favor those that appear to be best (Sutton and Barton, 2018). A common approach to 

account for the tradeoff is the 𝜀-greedy strategy, under which the agent takes a random action with a 

probability 𝜀. At the beginning of the training, 𝜀 is set to 1 to ensure that the agent starts by purely exploring 

the environment. Over time, 𝜀 is gradually reduced with a decay rate, to allow for more exploitation as more 

experiences are accumulated.  

Model-based vs. model-free approach: Depending on the environment transition behavior, RL algorithms 

can be classified into two classes: model-based and model-free. In model-based algorithms, given a state-

action pair (𝑠𝑡 , 𝑎𝑡), a transition function 𝒯(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), which indicates the probability of state transition 

given the current state 𝑠𝑡 and the action taken 𝑎𝑡, is used to predict the next state 𝑠𝑡+1. As such, a model-

based algorithm decides on a course of actions by anticipating future situations before they actually occur 

(Sutton and Barto, 2018). In contrast, for model-free algorithms the agent does not need any model or 

transition function, but relies on a trial-and-error process. Model-free algorithms are relatively simple, 

inexpensive, and widely applied in transportation research. Our review in this section mainly focuses on 

model-free algorithms. Model-free algorithms can be further classified into three classes: 1) value-based 

algorithms; 2) policy-based algorithms; and 3) actor-critic algorithms, the latter combining value-based and 

policy-based algorithms. Below we provide a brief overview of these three classes. 

2.1.1 Value-based algorithms 

Value-based RL algorithms involve estimating the value (i.e., expected return) of a given state at a 

given time. This is referred to as estimating the value function. A value function tells the agent how good 

it is for the agent to: 1) be in a state at a given time, or 2) take an action from a state at a given time. 

Accordingly, two types of value function exist: state-value function and action-value function. The state-

value function 𝑉𝜋(𝑠), defined by Eq. (3), gives the expected return when the environment starts in state 𝑠 

and follows policy 𝜋 = 𝜋(𝑎|𝑠) which is a mapping from states to probabilities of selecting each possible 

action. On the other hand, the action-value function 𝑄𝜋(𝑠, 𝑎), expressed in Eq. (4), is the expected return 

starting from state 𝑠, taking action 𝑎, and thereafter following a policy 𝜋. 

𝑉𝜋(𝑠) = 𝐸𝜋(𝑅̅𝑡|𝑠𝑡 = 𝑠) =  𝐸𝜋 (∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠) (3) 
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𝑄𝜋(𝑠,  𝑎) = 𝐸𝜋(𝑅̅𝑡  |𝑠𝑡 = 𝑠,  𝑎𝑡 = 𝑎) =  𝐸𝜋 (∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (4) 

One of the most popular and widely used value-based RL algorithms is “Q-learning” (Watkins and 

Dayan, 1992), which is an off-policy approach. Q-learning algorithm enables the agent to choose an action 

𝑎 ∈ 𝑨 with the highest Q-value available from state 𝑠 ∈ 𝑺 based on a Q matrix which is a mapping for a 

discrete state-action space. The Q matrix is updated every time step following the Bellman optimality 

equation as shown in Eq. (5), where 𝑟 is the reward obtained and 𝛼 is the learning rate which takes values 

between 0 and 1. Here, off-policy means that regardless of the policy (as reflected by the Q matrix) being 

used to direct the agent to take action 𝑎 at the current state 𝑠, the agent will update Q-value of state-action 

pair (𝑠, 𝑎) using the transitioned state’s optimal Q-value, i.e., max
𝑎′∈𝑨

𝑄(𝑠′, 𝑎′). Thus, the selection of action 

𝑎 at the current state 𝑠 and selection of action 𝑎′ at the next state 𝑠′ are not from the same policy. This is 

different from the on-policy approach, where action selection at the next state 𝑠′ follows the same policy as 

in selecting action 𝑎 at the current state 𝑠.  

𝑄(𝑠, 𝑎) ⟵ (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max
𝑎′∈𝑨

𝑄(𝑠′, 𝑎′)] (5) 

 

2.1.2 Policy-based algorithms 

Unlike value-based algorithms, policy-based algorithms do not require estimating the value of a certain 

state or state-action pair, but search for an optimal policy 𝜋∗ directly. Typically, a parameterized policy 𝜋𝜃 

is chosen, with parameter 𝜃 constantly updated towards maximizing the expected return:  

𝑉𝜋𝜃
(𝑠) = 𝐸𝜋𝜃

(∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠) (6) 

Policy-based algorithms are particularly suitable for very large or infinite action space. To illustrate, 

consider 𝐽(𝜃) as some scalar performance measure. Policy-based RL algorithms seek to maximize 

performance, by updating policy parameter 𝜃 through either a gradient-free or a gradient-based approach 

(Deisenroth et al., 2013). Under the gradient-based approach, the update is done by:  

𝜃′ ← 𝜃 + 𝛼∇𝐽(𝜃)̂ (7) 

where ∇𝐽(𝜃)̂ is a stochastic estimate of the gradient of 𝐽(𝜃) with respect to 𝜃 (Sutton and Barto, 2018). A 

popular policy-based algorithm is REINFORCE (Williams, 1992), in which update of 𝜃 at time step 𝑡 

involves only the action taken (𝑎) from the current state (𝑠): 

𝜃′ ← 𝜃 + 𝛼𝛾𝑡𝑅̅𝑡∇ln𝜋𝜃(𝑎|𝑠, 𝜃) (8) 
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where 𝑅̅𝑡 is the expected return at time step 𝑡. Note that although the update only requires action taken, 

REINFORCE uses the expected return from the current time step. Therefore, REINFORCE is well defined 

only for a task that has a terminal state and only after all updates in an episode are complete.   

2.1.3 Actor-critic algorithms 

Value-based and policy-based algorithms both have limitations. For value-based algorithms, they 

cannot handle problems that involve continuous (real-valued) and high-dimensional action space. For 

policy-based algorithms, gradient estimators may have large variances (Konda and Tsitsiklis, 2000). 

Moreover, with changes to policy, the new gradient is estimated irrespective of the previous policies. 

Therefore, the agent is not learning with respect to the accumulation of previous information. To overcome 

the limitations, an actor-critic approach has been suggested that combines the two classes of algorithms 

(Konda and Tsitsiklis, 2000; Grondman et al., 2012). In the actor-critic approach, the agent is trained using 

two estimators (Fig. 3). One is a critic function which approximates and updates the value function. The 

other one is an actor function which controls the agent’s behavior based on policy. Based on the value 

function derived from the critic function, the actor function’s policy parameter is updated in the direction 

of performance improvement. While the actor function controls the agent’s behavior based on policy, the 

critic function evaluates the selected action based on the value function.  

 
Figure 3. Conceptual framework for actor-critic algorithms. 

 

2.2 Deep reinforcement learning 

In this section, we move our discussions from RL to DRL. In principle, if the agent knows the optimal 

Q-value 𝑄∗(𝑠, 𝑎) for every state-action pair, then the objective of RL is achieved. For every state, the agent 

will find the highest Q-value from the Q matrix and choose the corresponding action. However, such a table 

of Q-value can only be developed by recursively solving Eq. (5) with a small state and action space. For 

many real-world problems that are associated with a large state and action space, a tabular format becomes 

computationally inefficient and even infeasible. To mitigate the “curse of dimensionality”, deep learning is 
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used as a function approximator and integrated with RL. A parameterized deep neural network (DNN) 

approximates optimal Q-values instead of computing Q-values directly using Eq. (5). Different types of 

artificial neural network, such as convolutional neural network (CNN) and recurrent neural network (RNN), 

are used to deal with very large state and action space (LeCun et al., 2015).  

2.2.1 DRL algorithms 

This section presents two of the most popular DRL algorithms in transportation research: deep Q-

network (DQN) and deep deterministic policy gradient (DDPG). For DQN, two variants, namely double 

DQN and dueling DQN, are also reviewed. Readers interested in further algorithmic development can refer 

to methodological reviews (Li, 2018; François-Lavet et al., 2018; Arulkumaran et al., 2017) and online 

resources (Weng, 2020).  

2.2.1.1 Deep Q-network (DQN) 

Proposed by Minh et al. (2015), DQN uses a DNN (e.g., CNN) as the function approximator to 

approximate Q-value associated with a state-action pair. During training, DQN follows the 𝜀-greedy 

strategy to choose an action between exploration and exploitation at each time step. A salient feature of 

DQN training is experience replay, which involves a replay memory 𝑴 that stores the agent’s experiences 

during training. An experience is associated with the agent taking an action at a given state and time step, 

observing the state transition, and getting a reward. Thus the experience is denoted as 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). 

Once 𝑴 is full, the oldest experience is removed from 𝑴 to create space for the next new experience.  

In DQN, DNN is trained using a minibatch 𝑈(𝑀) of a randomly selected sample (experiences) from 

𝑴. The employment of experience replay with minibatch sampling brings several advantages. First, 

learning from random samples results in less correlation compared to learning directly from consecutive 

samples, which increases the learning efficiency. Second, experience replay gives greater data efficiency 

by allowing each experience to be used in many weight updates. Third, by averaging the behavior 

distribution over many previous states, experience replay contributes to smoothing out learning and 

avoiding oscillation or divergence in the parameters (Mnih et al., 2015).  

After assigning a random weight 𝜃 to the DNN, for each experience the input (state 𝑠) is allowed to 

propagate through the DNN (first forward pass). The output 𝑄(𝑠, 𝑎; 𝜃) is compared with the target optimal 

Q-value 𝑄∗(𝑠𝑡 , 𝑎𝑡) to estimate the loss. Ideally, based on the Bellman optimality equation, the expected 

value of this target Q-value should equal 𝑟 + 𝛾 max
𝑎′∈𝑨

𝑄∗(𝑠′, 𝑎′). Thus, the loss function can be written as: 

ℒ(𝜃) = 𝐸𝑠,𝑎,𝑟,𝑠′~𝑈(𝑀) [(𝑟 + 𝛾 max
𝑎′∈𝐴

𝑄∗(𝑠′, 𝑎′) −  𝑄(𝑠, 𝑎: 𝜃))

2

] (9) 
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In Eq. (9), the right-hand side has an unknown part 𝑄∗(𝑠′, 𝑎′) which denotes the optimal Q-value of 

the next iteration. One way to approximate this unknown quantity is to do a second forward pass in the 

DNN before performing any gradient descent step, i.e., both first and second forward passes will be based 

on the same DNN weight parameter. In the second forward pass, the transitioned state 𝑠′ of the 

corresponding experience is taken as input in the same DNN (i.e., same weight parameters 𝜃) to predict 

state-action values 𝑄(𝑠′, 𝑎′: 𝜃), ∀𝑎′ ∈ 𝐴. After performing these two forward passes and assuming 

𝑄(𝑠′, 𝑎′; 𝜃) ≈ 𝑄∗(𝑠′, 𝑎′) in Eq. (9), the loss value can be calculated. However, there is a major drawback 

in this two-forward pass procedure. Since the second forward pass is done in the same network with the 

same network parameter 𝜃, both Q-values and target Q-values will update in the same direction. As a result, 

the correlation between the Q-values and target Q-values can be high, which may cause oscillation or 

divergence of the policy during training.  

To tackle this issue, Minh et al. (2015) propose a novel technique by creating a parallel network, called 

target network, which is structurally cloned of the original DNN. At the beginning of training, the target 

network parameter 𝜃′ is set to be the same as the original DNN’s, i.e., 𝜃. Unlike 𝜃, 𝜃′ is kept frozen for a 

certain number of time steps before an update. Then, 𝜃′ is updated to the current value of the DNN 

parameter 𝜃. The loss function is shown in Eq. (10), where 𝑟 + 𝛾 max
𝑎′∈𝐴

𝑄∗(𝑠′, 𝑎′: 𝜃′) denotes the target Q-

value. Then, 𝜃 is updated through backpropagation and gradient descent. 

ℒ(𝜃) = 𝐸𝑠,𝑎,𝑟,𝑠′~𝑈(𝑀) [(𝑟 + 𝛾 max
𝑎′∈𝐴

𝑄∗(𝑠′, 𝑎′: 𝜃′) −  𝑄(𝑠, 𝑎: 𝜃))

2

] (10) 

Double DQN 

Double DQN is a modified version of DQN and tabular double Q-learning algorithms (van Hasselt et 

al., 2010, 2016). To facilitate exposition, let 𝑦𝐷𝑄𝑁 denote the target Q-value. In Eq. (10), 𝑦𝐷𝑄𝑁 is: 

𝑦𝐷𝑄𝑁 = 𝑟 + 𝛾 max
𝑎′∈𝑨

𝑄(𝑠′, 𝑎′;  𝜃′) (11) 

With this target Q-value, (greedy) action selection and action evaluation are performed using the same 

network with parameter 𝜃′, which may end up selecting overestimated policies that in turn leads to 

overoptimistic value estimates. The idea of double DQN is to decouple action evaluation from action 

selection, by using the target network as a second value function approximator. Consequently, the target Q-

value is estimated as: 

𝑦𝐷𝑜𝑢𝑏𝑙𝑒𝐷𝑄𝑁 = 𝑟 + 𝛾𝑄 (𝑠′, argmax
𝑎′∈𝑨

𝑄 (𝑠′, 𝑎′; 𝜃); 𝜃′) (12) 
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In Eq. (12), the action selection uses greedy policy based on the Q-network with parameter 𝜃. The 

evaluation of the action is based on the target network with parameter 𝜃′. Numerical experimentation shows 

that double DQN can provide more stable learning and find better policies than DQN (van Hasselt et al., 

2016). 

Dueling DQN 

Dueling DQN is another modified DQN that follows a dueling network architecture (Wang et al., 

2016), which involve two sequences of fully connected convolution layers. The two sequences estimate the 

state value function and the advantage function separately. The advantage function 𝐴𝜋(𝑠, 𝑎), which is for 

an action  𝑎~𝜋(𝑠) from a state 𝑠 based on policy 𝜋, is the difference between the Q-value associated with 

this state-action pair 𝑄𝜋(𝑠, 𝑎) and the state value function 𝑉𝜋(𝑠). Combining the estimates of the state 

value function and then advantage function from two separate sequences, a Q function is estimated as 

follows: 

𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛽) + (𝐴(𝑠, 𝑎; 𝜃, 𝛼) −
1

|𝑨|
∑ 𝐴(𝑠, 𝑎′; 𝜃, 𝛼)

𝑎′

) (13) 

where 𝛼 and 𝛽 are parameters of the two fully connected layers. The key idea behind the dueling network 

architecture is to avoid unnecessary estimation of the value of every action choice from a state. Sometimes, 

just knowing the value of the state suffices for the agent to identify the best action to take without knowing 

the individual value for every action choice. Dueling DQN can be combined with double DQN. Double 

dueling DQN with prioritized experience replay is the most updated variant of DQN. 

2.2.1.2 Deep deterministic policy gradient (DDPG) 

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) is an actor-critic based algorithm 

which can operate on continuous action space. Based on the deterministic policy gradient algorithm (Silver 

et al., 2014), DDPG employs a parameterized actor function (which stores the current policy) with a 

parameterized critic function that approximates (using the Bellman optimality equation) and updates the 

value function using samples. In this way, DDPG can tackle large variance in policy gradients of actor-only 

methods. DDPG enables the agent to interact with the environment and employs gradient descent to 

improve the policy using a minibatch collected from replay memory. Using sampled policy gradient, the 

actor policy is updated using Eq. (14).   

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎𝑄(𝑠, 𝑎; 𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠; 𝜃𝜇)|𝑠𝑖

𝑁

𝑖=1

 (14) 



11 

 

where 𝑁 is the size of the minibatch and 𝜇(𝑠; 𝜃𝜇) denotes the selected action based on the current policy. 

At the beginning of training, parameters of the actor and the critic networks are initialized as 𝜃𝜇 and 𝜃𝑄. 

Parameters of the corresponding target networks (denoted as 𝜇′ and 𝑄′) are 𝜃𝜇′
 and 𝜃𝑄′

. The critic network 

is updated using gradient descent on the loss function ℒ(𝜃𝑄): 

ℒ(𝜃𝑄) =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖; 𝜃𝑄))

2
𝑁

𝑖=1

 (15) 

where 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖
′, 𝜇(𝑠𝑖

′; 𝜃𝜇′
); 𝜃𝑄′

) (16) 

DDPG suggests employing two target networks cloning the actor and critic networks. However, 

instead of directly copying policies (as done in DQN), DDPG uses a soft target update using Eqs. (17)-(18) 

where 𝜏 ≪ 1. The soft target update strategy enables more stable learning. The proposed soft target update 

is performed at regular intervals, using duplicate actor and critic networks by slowly maintaining the learned 

networks (target values). 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 (17) 

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

 (18) 

Apart from DDPG, a few other algorithms using the actor-critic architecture such as Proximal Policy 

Optimization (PPO) (Schulman et al., 2017), Asynchronous Advantage Actor-Critic (A3C; Mnih et al., 

2016), and Advantage Actor-Critic (A2C; OpenAI, 2017) have also seen increasing use in transportation 

research.   

2.2.2 Some extensions in DRL 

2.2.2.1 Multi-agent systems 

Sometimes, a system can have multiple agents each making its own decisions. It is possible for DRL 

to incorporate multiple agents to interact with the environment and learn simultaneously. However, given 

the interaction dynamics of the agents, the environment in a multi-agent system is not stationary and no 

longer retains Markov property (Tan, 1993; Laurent et al., 2011; Nowé et al., 2012). Instead, multi-agent 

RL/DRL problems are usually formulated as a stochastic game (or Markov game) (Littman, 1994; Busoniu 

et al., 2010). A stochastic game is characterized by (𝑆, 𝑨𝟏, . . , 𝑨𝑵, 𝑃, 𝑅1, . . , 𝑅𝑁) where 𝑁 is the number of 

agents; 𝑆 denotes the state space of the environment; 𝑨𝒊 (𝑖 = 1, . . , 𝑁) is the set of actions available to agent 

𝑖; 𝑃 is the state transition probability function; and 𝑅𝑖 (𝑖 = 1, . . , 𝑁) is the reward function for agent 𝑖. 

Further introducing joint action set 𝑨 = 𝑨1 × 𝑨2 × ⋯ 𝑨𝑁, the state transition probability function can be 

defined as 𝑃: 𝑆 × 𝑨 → 𝑆. At a time step 𝑡, state transition and reward depend on the joint actions 𝒂𝑡 =
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(𝑎1,𝑡, 𝑎2,𝑡 , … , 𝑎𝑁,𝑡). Depending on specification of the agents’ reward functions, a multi-agent system can 

be cooperative, competitive (adversarial), or mixed (Buşoniu et al. 2010; Hernandez-Leal et al., 2019). 

2.2.2.2 Hierarchical DRL 

As mentioned earlier, a drawback of RL is the curse of dimensionality (Barto and Mahadevan, 2003). 

Although DRL can deal with large state and action space, challenges remain as to performing DRL in a 

computationally efficient manner. By creating a hierarchy of policies, hierarchical RL (HRL) increases both 

learning efficiency and solution quality. By dividing policies into several sub-policies, the action space for 

a subpolicy becomes smaller which aids in better exploration of the environment. One of the earliest HRL 

uses is Feudal RL with a hierarchy of managers (Dayan and Hinton, 1993), where one level of managers 

can control sub-managers and assign a goal to each sub-manager. Meanwhile, these managers are controlled 

by super-managers. Another earlier use of HRL is the options framework (Sutton et al., 1999), which allows 

higher level policies to focus on goals and lower level sub-policies to focus on learning of controls. With 

the advent of DRL, several hierarchical DRL algorithms have been proposed. Kulkarni et al. (2016) 

integrate DQN with HRL and propose the h-DQN framework. A deep RNN based approach is proposed by 

Vezhnevets et al. (2016) to learn macro (high) level policies. Vezhnevets et al. (2017) propose FeUdal 

Networks by taking a long short-term memory (LSTM) network on top of a representation learned by a 

CNN as the baseline.  

2.2.2.3 Asynchronous DRL 

The robustness and efficiency of DRL training using DNN can be compromised due to the correlation 

between updates in the sequential process of learning. While Minh et al. (2015) propose experience replay 

in DQN to mitigate this, replay memory takes a toll on memory and computation power. As an alternative, 

asynchronous methods are proposed and can perform parallel and independent computing processes. Minh 

et al. (2016) propose asynchronous advantage actor-critic (A3C) which accommodates several actor-critic 

agents to learn parallelly and independently. Every agent acts on a different part of the environment with a 

different set of parameters. The updates from every agent are received by a global network and combined 

asynchronously to achieve a global policy. Note that although multiple agents work parallelly in A3C, A3C 

does not belong to multi-agent RL as agents in A3C are independent and do not interact. A synchronous 

and deterministic variant of A3C is known as advantage actor-critic (A2C). Minh et al. (2016)’s 

experiments show that A3C can achieve faster training than DQN.  

2.2.2.4 Imitation learning and inverse RL 

Imitation learning is a process of learning from demonstrations, also known as “apprenticeship 

learning”. It is motivated by the following question: If the agent has no idea about the reward, how can the 

agent learn about the environment to find the best policy? Using a set of expert demonstrations (typically 
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defined by humans), the agent tries to learn the best policy imitating the experts’ decisions. The expert 

demonstrations are provided in the form of trajectories 𝜏 = (𝑠0, 𝑎0,𝑠1, 𝑎1, … ). One way to learn from expert 

demonstrations is to extract reward signals, known as inverse RL (Ng and Russell, 2000). In inverse RL, 

the agent first learns a reward signal from the expert demonstrations, and then uses this reward signal to 

find the optimal policy (Sutton and Barto, 2018). Readers may refer to Stadie et al. (2017), Hester et al. 

(2018), and Wulfmeier et al. (2015) for further details about imitation learning and inverse RL. 

3 Deep reinforcement learning in transportation research 

With a methodological background of DRL, in this section we conduct a comprehensive review of the 

literature on using DRL algorithms to address a variety of transportation problems. The existing work is 

grouped in seven categories by application domain: 1) autonomous driving; 2) energy efficient driving; 3) 

adaptive traffic signal control; 4) other types of traffic control; 5) vehicle routing optimization; 6) rail 

transportation; and 7) maritime transportation. For each application domain, our review focuses on the DRL 

tasks involved, how state and action space and reward are characterized, and the DRL algorithms used. To 

the extent possible, performance comparison of DRL with existing methods is also mentioned.  

3.1 Autonomous driving 

Autonomous driving consists of multiple tasks, including: sensing of surroundings, situation 

perception, action selection based on perception, strategic planning for execution of the selected action, and 

execution of the selected action (Talpaert et al., 2019; Kiran et al., 2020). The tasks are often divided into 

those at the higher level and those at the lower level. Higher-level tasks pertain to decision-making based 

on reasoning of the surrounding environment. Lower-level tasks relate to system control to execute the 

decision (Mirchevska et al., 2018; Chen et al., 2018). DRL has produced promising results at both levels.  

3.1.1 Lane changing 

Lane changing is a higher-level decision in autonomous driving. It pertains to the autonomous agent 

deciding whether to stay on the same lane or switch to a different lane, based on sensory inputs from the 

surrounding environment. Various DRL algorithms have been employed to design safe and efficient lane 

changing strategies, as shown in Table 1. Most existing work focuses on a single agent for an ego vehicle, 

while a few consider multi-agent systems (Shalev-Shwartz et al., 2016; Yi, 2018;  Chen et al., 2018). Wang 

et al. (2019a) consider the environment as cooperative; Jiang et al. (2019) and Wang et al. (2020) 

characterize a system as both adversarial and cooperative with respect to surrounding vehicles. To deal with 

variable-size inputs, Huegle et al. (2019, 2020) incorporate a new DRL architecture called Deep Sets, which 

outperforms CNN and RNN based DRL.  
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The design of state space in existing lane changing studies is similar, including information on the 

absolute position and speed of the ego vehicle, relative positions and relative speeds of ego and surrounding 

vehicles, and distance and gap between vehicles. Depending on the number of vehicles considered, Chen 

et al. (2018) argue that the dimension of the state space can be up to 20 to be comprehensive enough for 

better decisions. For higher-level decision-making, the action space needs to have at least three actions: 

turn to the left lane, turn to the right lane, and keep the current lane. While most studies consider only these 

three lateral actions, a few further considers longitudinal actions, such as speed change by acceleration, 

deceleration, and keeping the current speed in DRL rather than relying on rule-based models.  

Given that safety, comfort, and efficiency are the three most important criteria for autonomous driving, 

weighted attributing factors related to these criteria are used in the reward signal. Common attributing 

factors are: velocity maximization, collision avoidance, lane change completion, and safe distance keeping. 

Some additional factors, such as cooperation among surrounding vehicles (Wang et al., 2019a), 

discouragement of near-crash actions (Wang et al., 2020; Bai et al., 2019), and avoidance of unnecessary 

lane change (Alizadeh et al., 2019; Chen et al., 2018; Min et al., 2018; Makantasis et al 2019; Hoel et al., 

2019), are also considered.  

Higher-level decision-making cannot guarantee a collision-free trajectory without a transfer 

mechanism for the higher-level policy to be executed by lower-level motion control (Makantasis et al., 

2019). For example, the higher level can decide to turn to the left lane. But in order to turn, the extent to 

which the steering angle needs to be changed needs to be determined by the lower level. To this end, several 

studies have combined higher-level decision-making and lower-level motion control in a hierarchical DRL 

architecture (Shi et al., 2019; Chen et al., 2019; Duan et al., 2020).  

3.1.2  Motion control 

Lower-level motion control concerns execution of the planned trajectory or decision taken at the higher 

level. Traditionally, vehicle motion control is achieved by model predictive control (Paden et al., 2016). 

Learning-based motion control is developed only recently. The actions involve longitudinal and lateral 

adjustments by changing vehicle acceleration and steering angle. Since actions are continuous, policy-based 

DRL algorithms in an actor-critic architecture are mostly used (Table 1). In designing the state space, most 

studies consider relative positions of the front and rear axles, and the current steering angle. Vinitsky et al. 

(2018a, 2018b) further include information of surrounding human-driven vehicle. Lin et al. (2019) design 

the state space differently with a continuous function featuring gap-keeping error and delayed acceleration.  

Reward signal design has a considerable variation in motion control. Although it is common to give 

reward to a successful task and penalty to a failed one, the reward signal should reflect some overarching 

goal as well. For instance, focusing on longitudinal motions, Buechel et al. (2018) design the reward signal 
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with the longitudinal velocity difference. Vinitsky et al. (2018a) consider maximizing total throughput of a 

bottleneck in reward. In Folkers et al. (2019), the goal is to explore a parking lot without facing obstacles. 

As compared to the consideration of an overarching goal, a more recent approach is end-to-end autonomous 

driving, whose policies refer to derivation of control signal from the raw image pixel as input feature 

recorded by onboard cameras. A few related studies are shown in the last column of Table 1. The majority 

of the studies in both lane changing and motion control consider the state to be fully observable, with a few  

exception as shown in Table 1. 

3.1.3 Miscellaneous tasks 

Besides lane changing and motion control, other task-specific DRL applications also appear in the 

literature, such as car-following, intersection navigation, ramp merging, and even consideration of 

pedestrian safety. Relevant papers tackling these tasks are summarized in Table 2. 
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Table 1. Exsting DRL applications to lane changing and motion control in autonomous driving. 
  Lane changing Motion control 

    Lateral decision only 
Lateral and longitudinal 

decisions 

Conversion of higher-level decision 

to lower-level control 
End-to-end driving 

DQN and 

variants 

DQN 

Mirchevska et al. (2018)  

Feng et al. (2019) 

Jiang et al. (2019)  

Wang et al. (2019a, c)  

Chen et al. (2018) 

Alizadeh et al. (2019) 

Li and Czarnecki (2019)  

Wolf et al. (2018)  

Min et al. (2018)  

Fayjie et al. (2018)  

Li and Czarnecki (2019) 

Ye et al. (2019) 

Lee et al. (2019) (higher level),  

Chen et al. (2019b) 
 

Double DQN  

Zhang et al. (2019)  

Hoel et al. (2018) 

Nageshrao et. (2019) 

Makantasis et al. (2019) 

  

Dueling DQN  Bai et al. (2019)   

Actor-critic 

architecture 

DDPG 
An and Jung (2019)  

Yi (2018) 
 

Paxton et al. (2017) (lower level)  

Buechel et al. (2018) 

Lin et al. (2019) 

Bejar and Morán (2019)  

Lee et al. (2019) (lower level) 

Wang et al. (2018b) 

Yu et al. (2018)  

Sallab et al. (2016, 2017) 

PPO  Ye et al. (2020) Folkers et al. (2019)  

TRPO   Vinitsky et al. (2018a)  

Other types 

IRL Sharifzadeh et al. (2016) 
Wang et al. (2020)  

You et al. (2019) 
  

HRL 

Shi et al. (2019a) 

Chen et al. (2019a)  

Duan et al. (2020) 

Shalev-Shwartz et al. (2016) 

Nosrati et al. (2018) 
Xu et al. (2018)  

Deep QL  Mukadam et al. (2017)  
Paxton et al. (2017) (higher level), 

Wang et al. (2018a, 2019b) 
 

AlphaGo  Hoel et al. (2019)   

Policy-based DRL    Aradi et al. (2018) 

State 

observability 
Full 

Mirchevska et al. (2018), 

Feng et al. (2019),  

Chen et al. (2018)  

An and Jung (2019) 

Wang et al. (2019a, c) 

Alizadeh et al. (2019) 

Shi et al. (2019a) 

Duan et al. (2020) 

Ye et al. (2020) 

Zhang et al. (2019) Mukadam 

et al. (2017) 

Hoel et al. (2019) Nageshrao 

et. (2019) 

Bai et al. (2019) 

Fayjie et al. (2018) Makantasis 

et al. (2019) Wolf et al. (2018)  

Paxton et al. (2017) 

Buechel et al. (2018) 

Lin et al. (2019) 

Xu et al. (2018) 

Vinitsky et al. (2018a) 

Folkers et al. (2019) 

Bejar and Morán (2019)  
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Partial 
Jiang et al. (2019) 

Chen et al. (2019a),  
Hoel et al. (2019)  Lee et al. (2019) Sallab et al. (2016, 2017) 

 

Table 2. Summary of DRL applications to miscellaneous tasks in autonomous driving. 
Task Reference Method S.O.* State space Action Reward 

Car 

following 

Zhu et al. 

(2018) 
DDPG Full 

Following vehicle's speed, spacing, and velocity 

difference 
Acceleration 

Disparity between simulated and 

observed speed and spacing  

Zhu et al.  

(2019) 
DDPG Full 

Following vehicle's speed, spacing, and velocity 

difference 
Acceleration 

Function of time to collision, headway, 

and acceleration change 

Wu et al.  

(2019a) 
TRPO Full 

State of charge, distance, and speed of leader and 

follower (EV) 
Acceleration 

Function of distance and electricity 

consumption  

Qu et al.  

(2020) 
DDPG Full Speed, gap, and relative speed with leader Acceleration Function of speed and time gap 

Bacchiani  

et al. (2019) 

Multi-

agent A3C 
Full 

Visual (space, obstacle, path) and numerical (speed, 

target speed, elapsed time ratio, distance to goal) 

Acceleration, brake or 

maintaining same speed 

Numerical reward for success and penalty 

for collision 

Intersection 

navigation 

Isele et al.  

(2018) 
DQN Full 

Image snapshot indicating heading angle and velocity 

(unsignalized intersection) 

Wait, move forward 

slowly, and go 

Numerical reward for success and penalty 

for collision 

Zhou et al. 

(2019a) 
DDPG Full Vehicle and signal specific information Acceleration 

Function of speed, gap and predicted 

arrival time at intersection 

Kashihara 

 (2017) 
Deep QL Full Image of roadway intersection (highway junction) 

Moving up, down, left, and 

right 

Numerical reward for success and penalty 

for collision 

Ramp 

merging 

Wang and  

Chan (2017) 

DQN with 

LSTM 
Parial 

Speeds and positions of ego, gap front, and gap back 

vehicles 
Acceleration and steering 

Function of ego vehicle’s acceleration, 

steering angle, speed, and distance to 

surrounding vehicles 

Wang and  

Chan (2018) 
Deep QL Full 

Speeds and positions of ego, gap front, and gap back 

vehicles 
Acceleration 

Function of ego vehicle’s acceleration, 

steering angle, speed, and distance to 

surrounding vehicles 

Nishi et al.  

(2019) 

Passive 

actor-critic 
Full Speeds and positions of ego and gap back vehicles Acceleration 

Derived from value function and control 

dynamics due to action 

Nassef et al.  

(2020) 

Dueling 

DQN 
Full 

Coordinates, speed, heading, acceleration, and size of 

ego, gap front, and gap back vehicles 

Accelerate, decelerate, turn 

right, turn left, and do 

nothing 

Inverse distance to merging point, and 

inverse of speed and acceleration 

Nishitani  

et al. (2020) 

Double 

dueling 

DQN 

Full 
Images containing information on road shape, and ego 

and surrounding vehicles 
Acceleration 

Average speed of all vehicles from 

merging to reaching terminal area 

Safety 

specific 

Chae et al.  

(2017) 
DQN Full 

Relative position of obstacle (pedestrian) and vehicle's 

speed  

No brake, weak brake, mid 

brake, and strong brake 

Combination of two penalties for early 

brake and actual collision 

* S.O. means “state observability”. 
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3.2 Energy efficient driving 

Electric vehicles (EVs) have significant promise to reduce transportation fossil fuel use and emissions. 

Among different types of EVs, hybrid EVs (HEVs) combine the benefits of internal combustion engines 

and electric motors to reduce emission, at the same time addressing the low driving range issue. Designing 

an energy management system for HEVs, which controls the combined use of electricity and fossil fuel to 

achieve the best energy efficiency, is thus important. DRL has shown promising results in supporting energy 

management for various types of HEVs, including series-parallel plug-in hybrid electric bus (Wu et al., 

2019b), power-split hybrid electric bus (Wu et al., 2018), hybrid electric tracked vehicle (Han et al., 2019), 

multiple battery based EV (Chaoui et al., 2018), hybrid electric bus (Tan et al., 2019, Li et al., 2019b), plug-

in HEV (Hu et al., 2018), and series HEV (Li et al., 2018). 

DRL research in HEV energy management aims to overcome some limitations of traditional rule- and 

optimization-based approaches, which require inputs of expert knowledge, comprehensive information on 

driving cycles and roads, and driving cycle prediction (Wu et al., 2019b). DRL trains the agent to optimally 

determine electricity-fuel split based on vehicle dynamics and vehicle-road interactions. By imposing rules 

during learning (e.g., always operating in the lower region of the brake-specific fuel consumption curve), 

DRL learning and energy performance (fuel economy and energy management stability) can be further 

enhanced (Lian et al., 2020). In terms of reward design, existing research considers energy use and savings, 

by keeping track of fuel consumption rate and battery state-of-charge (SoC) (Qi et al., 2017, 2019; Liessner 

et al., 2018a, 2018b, 2019; Li et al., 2018, 2019a, 2019b: Lian et al., 2020; Tan et al., 2019; Zhao et al., 

2018; Chaoui et al., 2018; Han et al., 2019; Hu et al., 2018; Wu et al., 2018, 2019b). Change in trip distance 

has also been considered in reward design, in the context of HEV last-mile delivery (Wang et al., 2019d, 

2019e).  

In specifying the state space, the most important information for energy efficient driving includes 

vehicle dynamics (velocity and acceleration) and energy state (power demand and SoC), which are 

considered in all reviewed studies. Additional information has been incorporated as well. Tan et al. (2019) 

and Wu et al. (2019b) keep track of vehicle velocities from previous states. A more granular level of vehicle 

state representation, including wheel rotation and torque, gear configuration, battery temperature, and 

derating effect, is presented in Liessner et al. (2018, 2019). Apart from the information that is internal to 

the vehicle, the state space may include external information such as traveled distance (Wang et al., 2019d, 

2019e; Wu et al., 2019b), distance to destination (Qi et al., 2019), expected future distance (in the context 

of vehicle touring) (Wang et al., 2019d, 2019e), and road conditions related to terrain and slope (Li et al., 

2019b). All the reviewed DRL applications in energy efficient driving consider states to be fully observable.  
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The design of the action space focuses on optimizing energy use between different power sources. 

Some researchers consider changing power supply from internal combustion engines (Qi et al., 2019; Hu 

et al., 2018; Han et al., 2019; Wu et al., 2018, 2019b; Lian et al., 2020), while a few others look into 

changing energy output from the electric motor (Liessner et al., 2018a, 2019; Zhao et al., 2018). A third 

approach aims to maintain a balance among multiple inputs (e.g., multiple batteries) of the same power 

source (Li et al., 2019a, 2019b). To deal with continuous action space (changing power from different 

sources), actor-critic based DDPG algorithms are employed (Liessner et al., 2018a, 2018b; Li et al., 2019a, 

2019b; Lian et al., 2020; Wang et al., 2019d; Tan et al., 2019; Wu et al., 2019b). Successes are also reported 

using DQN (Qi et al., 2017; Hu et al., 2018; Wu et al., 2018), dueling DQN (Qi et al., 2019; Li et al., 2018), 

and double Q-learning (Wang et al., 2019e; Han et al., 2019). DRL training is mainly done in simulated 

platforms, with some using real-world trip data (Qi et al., 2017, 2019; Wang et al., 2019d, 2019e). A 

summary of the DRL applications in energy efficient driving is provided in Table 3.    
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Table 3. Summary of DRL applications in energy efficient driving.  
Vehicle type Reference Method State Action Reward 

Hybrid 

HEV 

Liessner et al. 

(2018a), (2018b) 
DDPG 

Vehicle dynamics, SoC, battery 

temperature 

Power output for the electric 

motor 
Negative of total energy used 

Lian et al. 

(2020) 

DDPG with rule 

interposition 
SoC, velocity, and acceleration Continuous engine power 

Fuel consumption of engine and 

the cost of battery charge 

Zhao et al. 

(2018) 
Deep Q-learning 

Power demand, predicted power 

demand, velocity, SoC 

Discharge of battery pack, gear 

configuration 
Fuel consumption 

Series 

HEV 

Li et al. (2018), 

(2019a) 

Dueling DQN 

(2018), DDPG 

(2019a) 

Engine power, SoC, velocity, 

acceleration 
Change in engine power 

Function of fuel consumption rate 

and SoC 

HE Bus 

Li et al. (2019b) DDPG 

Velocity (current and previous 

three second), acceleration, SoC, 

state of clutch, and road terrain and 

slope 

Speed and torque (continuous), 

and four discrete powertrain 

modes 

Fuel consumption rate 

Tan et al. (2019) 
DRL with actor-

critic architecture 

SoC, velocities (current and 

previous three seconds), 

acceleration 

Change in engine torque and 

rotational speed, traction motor 

torque and clutch state 

Cost of fuel and electricity 

consumption 

Wu et al. (2018) DQN 
SoC, engine current power, 

velocity, and acceleration 
Change in engine power Function of fuel usage and SoC 

HE 

tracked 
Han et al. (2019) 

Double deep Q-

learning 

SoC, power demand, longitudinal 

and angular speed, and acceleration 
Change in rotating speed Function of fuel usage and SoC 

Plug-in 

Hybrid 

PHEV 

Qi et al. (2017), 

(2019) 

DQN (2017) 

DDQN (2019) 

Power demand, SoC, distance to 

destination 
Change in engine power 

Function of power supply from 

internal combustion engine 

Hu et al. (2018) Double Q-learning SoC, required torque Change in torque output Function of fuel consumption 

PHE bus 
Wu et al. 

(2019b) 
DDPG 

SoC, current past and future speed, 

acceleration, number of passenger, 

and traveled distance 

Change in engine torque, engine 

rotational speed, and traction 

motor torque 

Cost of fuel and electricity 

consumption 

Electric 

Extended 

range 

Wang et al. 

(2019d), (2019e) 

Double Q-learning 

(2019d), DDPG 

(2019e) with rule 

interposing 

SoC, Fuel usage, location, travelled 

time and distance, and expected 

trip distance 

Changing the expected trip 

distance 

Function of fuel usage, SoC, 

change in trip distance and fuel 

usage compensating factor 

EV 
Chaoui et al. 

(2018) 
Double Q-learning SoC of every batteries Power splitting among batteries 

Function of deviation of SoCs of 

all batteries 
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3.3 Adaptive traffic signal control 

Adaptive traffic signal control makes signal timing decisions considering real-time traffic conditions 

at one or multiple intersections. The constantly changing dynamics of traffic means that adaptive traffic 

signal control is a challenging sequential decision-making problem with large search space. Applications 

of DRL in this domain have produced promising results, in the context of both a single intersection and a 

network of coordinated intersections. DQN is employed along with CNN which allows the state to be 

represented as a stack of images or an image-like grid. Besides DQN, actor-critic based architectures, such 

as DDPG (Canas, 2017), A2C (Coşkun et al., 2018; Chu et al., 2019), and PPO (Lin et al., 2018a), are used 

as well. Resaerch also integrates LSTM with policy networks to deal with partially observable environments 

(Shi and Chen, 2018; Chu et al., 2019) and continuous motion of vehicles (Choe et al., 2018). Table 4 

summarizes existing DRL research on adaptive traffic signal control, categorized by attributes including 

problem setup, state and action space design, reward specification, and the algorithm used.  

In general, a DRL agent of adaptive traffic signal control is trained so that it can optimally adjust traffic 

signal timing in real time. The reward function is designed considering vehicle waiting or delay time, queue 

length, and queue discharge. The most common characterization of state space is by including present 

vehicle positions and speeds, and signal phase in an image-like grid representation. Research also covers 

how to retrieve state information from raw pixels of intersection snapshots. Design of the action space 

depends on intersection configuration and complexity of the simulations. With no provisions for left-, right, 

and U-turns, the action space for a two-phase traffic signal system consists of only two actions: 1) green on 

east-west traffic; 2) green on north-south traffic. The action space becomes more elaborate for four-phase 

intersections. Continuous action space is investigated as well, where instead of changing the phase at every 

time step, the focus is on updating phase duration. 

When adaptive traffic signal control is considered in a traffic network, intersection coordination is 

needed to reduce overall waiting time. In this case, multi-agent DRL is appropriate where each intersection 

is treated as an  agent. Given that decisions are made at individual intersections, the design of state and 

action space for an intersection is similar to the case of a single intersection. The difference is how to 

combine rewards across intersections for coordination and cooperation, which is usually achieved by a 

centralized global optimization. Intersection coordination has also been approached by using just one single 

DRL agent. Interested readers may find additional information on both RL and DRL applications to traffic 

signal control in Haydari and Yilmaz  (2020).  
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3.4 Other types of traffic control 

Besides adaptive traffic signal control, DRL is used for other types of traffic control including: variable 

speed limit control, ramp metering, and lane pricing. For variable speed limit control, the action space 

consists of different speed limits that may be imposed. The state space captures the current traffic situation 

of the roadway, represented by multiple continuous or discrete variables such as traffic density and flow at 

various road sections (Nezafat, 2019; Ke et al., 2020a). The numbers of lanes in the upstream, mainline, 

and on-ramp merging sections as well as occupancy of these sections are also suggested to be part of the 

state space (Wu et al., 2020). The common objective of variable speed limit control is minimizing total 

travel time or traffic delay (Wu et al., 2020; Nezafat, 2019, Ke et al., 2020a). Other considered objectives 

include minimizing vehicle emission (Wu et al., 2020) and crash probability (Wu et al., 2020). Due to the 

continuous nature of the action space (speed limit), actor-critic based policy gradient algorithms such as 

DDPG (Wu et al., 2020) and A3C (Nezafat, 2019) are employed. Alternatively, when speed limits are 

treated as discrete, double DQN is used (Ke et al., 2020a). Results show that DRL outperforms state-of-

the-art solutions using feedback control and Q-learning (Nezafat, 2019; Wu et al., 2020). 

For ramp metering, DRL is reported to outperform state-of-the-practice ramp metering policy 

ALINEA and achieve precise adaptive highway ramp metering without model calibration (Belletti et al., 

2017). Using a partial differential equation to simulate highway vehicle density, Belletti et al. (2017) adopt 

DNN integrated REINFORCE algorithm to approximate optimal control policies for adaptive highway 

ramp metering. For lane pricing, Pandey et al. (2020) apply DRL to dynamic tolling lanes. Considering the 

environment as a partially observable MDP, a policy gradient approach is employed that enables changing 

tolls with real-time observations. Tolls are modeled as continuous and stochastic variables, and are 

determined using a feedforward neural network. DRL is found to outperform feedback control heuristics 

by generating up to 9.5% higher revenues and reducing system travel time by up to 10.4%. A brief summary 

of DRL applications in other types of traffic control is included in Table 5. 
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Table 4. Summary of DRL applications in adaptive traffic signal control. 
Attributes Single intersection Coordinated intersections 

Problem 

setup 

Single-agent setting 

Gao et al. (2017), Genders and Razavi (2016), Li et al. (2016), Ha-li 

and Ke (2017), Liang et al. (2019), Muresan et al. (2019), Wan and 

Hwang (2018), Shabestary and Abdulhai (2018), Choe et al. (2018), 

Coşkun et al. (2018) 

Canas (2017), Liu et al. (2018), Lin et al. (2018a) 

Multi-agent setting  
Van der Pol and Oliehoek (2016), Liu et al. (2017), Calvo and 

Dusparic (2018), Shi and Chen (2018), Gong et al. (2019), Chu 

et al. (2019), Zhang et al. (2019), Ge et al. (2019) 

State 

space 

Raw pixels from the 

intersection snapshot 
Mousavi et al. (2017), Garg et al. (2018)  

Vehicular information 

Gao et al. (2017), Genders and Razavi (2016), Li et al. (2016), Ha-li 

and Ke (2017), Liang et al. (2019), Muresan et al. (2019), Wan and 

Hwang (2018), Choe et al. (2018), Coşkun et al. (2018), Shabestary 

and Abdulhai (2018), Calvo and Dusparic (2018) 

Van der Pol and  Oliehoek (2016), Gong et al. (2019), Tan et al. 

(2019), Zhang et al. (2019), Lin et al. (2018a), Liu et al. (2017), 

Shi and Chen (2018), Liu et al. (2018), Calvo and Dusparic 

(2018), Ge et al. (2019),  

Others Canas (2017) Chu et al. (2019), Canas (2017) 

Action 

space 

Two-phase 

intersection 
Li et al. (2016), Gao et al. (2017), Mousavi et al. (2017) 

Van der Pol and Oliehoek (2016), Gong et al. (2019), Chu et al. 

(2019), Zhang et al. (2019), Lin et al. (2018a), Liu et al. (2017), 

Shi and Chen (2018), Ge et al. (2019), Calvo and Dusparic 

(2018), Liu et al. (2018) 

More than two phases 

Genders and Razavi (2016), Wan and Hwang (2018), Choe et al. 

(2018), Coşkun et al. (2018), Shabestary and Abdulhai (2018), Calvo 

and Dusparic (2018) 

Canas (2017) 

Phase update Liang et al. (2019), Canas (2017)  
Liu et al. (2017), Gong et al. (2019), Shi and Chen (2018), 

Calvo and Dusparic (2018), Ge et al. (2019) 

Reward 

Waiting time/delay 

Genders and Razavi (2016), Gao et al. (2017), Choe et al. (2018), 

Mousavi et al. (2017), Shabestary and Abdulhai (2018), Wan and 

Hwang (2018), Liang et al. (2019) 

Lin et al. (2018a), Ge et al. (2019) 

Queue 

length/discharge 
Muresan et al. (2019) Van der Pol and  Oliehoek (2016), Tan et al. (2019),  

Combination of both Li et al. (2016) Chu et al. (2019), Zhang et al. (2019) 

Others Canas (2017) Canas (2017) 

Algorithm 

DQN 

Gao et al. (2017), Li et al. (2016), Wan and Hwang (2018), Shabestary 

and Abdulhai (2018), Choe et al. (2018), Coşkun et al. (2018), Genders 

and Razavi (2016), Liang et al. (2019) 

Van der Pol and  Oliehoek (2016), Gong et al. (2019), Ge et al. 

(2019) 

DRL with CNN Ha-li and Ke (2017), Muresan et al. (2019)  

Actor-critic based Coşkun et al. (2018), Canas (2017) Canas (2017), Lin et al. (2018a), Chu et al. (2019) 

Others 
Mousavi et al. (2017), Shi and Chen (2018), Garg et al. (2018), Calvo 

and Dusparic (2018) 

Zhang et al. (2019), Shi and Chen (2018), Liu et al. (2017), 

Calvo and Dusparic (2018)  

State 

observability 
Full 

Gao et al. (2017), Genders and Razavi (2016), Li et al. (2016), 

Mousavi et al. (2017), Garg et al. (2018), Ha-li and Ke (2017), Liang et 

al. (2019), Muresan et al. (2019), Wan and Hwang (2018), Shabestary 

Van der Pol and  Oliehoek (2016), Gong et al. (2019), Tan et al. 

(2019), Lin et al. (2018a), Liu et al. (2017), Ge et al. (2019) Liu 

et al. (2018) 
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and Abdulhai (2018), Coşkun et al. (2018), Casas (2017), Calvo and 

Dusparic (2018) 

Partial Choe et al. (2018) Zhang et al. (2019), Chu et al. (2019),  Shi and Chen (2018), 

 

Table 5: Summary of DRL applications in other types of traffic control. 
Problem Reference Method S.O.* State Action Reward 

Variable 

speed limit 

control 

Nezafat 

(2019) 
A3C Full 

Traffic density at the bottlekneck 

and network entrance 

Selection of speed limit from a 

discritized predefined range 
Delay reduction rate 

Ke et al. 

(2020a) 
Double DQN Full 

Demand flow of upstream 

mainline, demand flow of on-ramp, 

density at the downstream 

bottleneck; density at the upstream 

area, and density on the on-ramp 

Selection of speed limit from a 

discritized predefined range 

Function of critical density and 

downstream density 

Wu et al. 

(2020) 
DDPG Full 

Number of lane in upstream 

mainline and on-ramp, and 

occupancy rate 

Selection of speed limit from a 

discritized predefined range 

Funciton traffic flow, velocity at 

the bottleneck, and emission 

Ramp 

metering 

Belletti et al. 

(2017) 
REINFORCE Full 

Traffic density simulated by a 

partial differntial equaiton  

Selection of incoming flow from 

discretized  predefined range 

Negative of deviation from 

intended density 

Lane pricing 
Pandey et al. 

(2020) 

Vanilla policy 

gradient, PPO  
Partial 

Current toll update and number of 

vehicles in all cells of a cell 

transmission model 

Toll charged (continous but 

rounded) 

Function of total travel time and 

total revenue 

* S.O. means “state observability”. 
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3.5 Vehicle routing optimization 

Vehicle routing optimization is another area where the use and adaptation of DRL has been actively 

pursued, including both travelling salesman problems (Bello et al., 2016; Khalil et al., 2017; Kool et al., 

2018) and vehicle routing problems (VRP) (Nazari et al., 2018; Kullman et al., 2019; Balaji et al., 2019; 

Zhao et al., 2020; Zhang et al., 2020; Peng et al., 2020; Yu et al., 2019; Chen et al., 2019c). Several new 

techniques are proposed to solve routing problems, including: 1) attention models based on an encoder-

decoder architecture (Zhang et al., 2020; Peng et al., 2020; Nazari et al., 2018; Zhao et al., 2020); 2) a graph 

embedding network to represent the policy that captures the property of a node in the context of its graph 

neighborhood (Khalil et al., 2017); and 3) an Atari-fied representation of the environment (Kullman et al., 

2019). Research has also been connected to practical contexts including urban freight deliveries and on-

demand ridesharing for passenger transportation. In the following three paragraphs, existing DRL papers 

for urban freight delivery and on-demand ridesharing are reviewed. We also discuss a couple of papers 

applying DRL to vehicle holding control, which is important in bus operations and can be viewed a modified 

route optimization problem. A brief summary of the papers reviewed in this section is also included in 

Table 6.  

Practical urban freight delivery problems often involve capacity constraints of delivery vehicles, 

distinction between pickup and delivery locations, and limited time windows for delivery. As a result, the 

complexity of routing problems is augmented compared to classic VRP. Nazari et al. (2018) consider a 

parameterized stochastic policy to solve VRP with limited vehicle capacity. A policy gradient DRL 

algorithm is applied to optimize parameters of the stochastic policy. Yu et al. (2019) opt for a distributed 

neural optimization strategy to solve a pickup and delivery problem with vehicle capacity and time window 

constraints. The authors adopt a graph embedded pointer network to progressively develop a complete tour 

for each vehicle. In a similar vein, Chen et al. (2019c) investigate a heterogeneous fleet of vehicles and 

drones for scheduling same-day delivery service. Balaji et al. (2019) solve an on-demand delivery driver 

model, which is essentially a VRP variant (stochastic dynamic VRP) using APE-X DQN algorithm. The 

results show superiority of DQN over traditional approaches. Most recently, Ahamed et al. (2020) propose 

DQN with proble-specific state representation, embedded heuristics, and rule-interposing to optimize 

crowdsourced urban parcel deliveries.  

DRL based on-demand ridesharing problems are examined from three perspectives: 1) order 

dispatching, which aims to match rider requests with available vehicles (Wang et al., 2018c; Zhou et al., 

2019b; Qin et al., 2020; Ke et al., 2020b; Tang et al., 2019); 2) vehicle repositioning, to proactively 

reposition idle vehicles from one zone to another zone to balance vehicle supply and rider demand (Al-

Abbasi et al., 2019; Oda and Joe-Wong, 2018; Oda and Tachibana, 2018; Shi et al., 2019b; Liu et al., 2020; 
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Wen et al., 2017; Mao et al., 2020; Lin et al., 2018b); and 3) joint decisions on order dispatching and vehicle 

repositioning (Singh et al., 2019; Kullman et al., 2020; Holler et al., 2020; Jin et al., 2019; Liang et al., 

2021). The majority of the existing works adopt a decentralized approach where each vehicle is considered 

a DRL agent with limited or no coordination with other vehicles, although exceptions exist in which a DRL 

agent plays the role of a central agency making routing decisions with a higher degree of coordination (Mao 

et al., 2020; Liu et al., 2020).  

Among the on-demand ridesharing studies, the common elements in state representation are current 

location and destination of vehicles, time of the day, and rider demand and vehicle supply at the zonal level. 

Anticipated future demand is also considered in some studies (Wen et al., 2017; Al-Abbasi et al., 2019; Ke 

et al., 2020b; Kullman et al., 2020). More differences are present in the design of action space. For order 

dispatching, actions pertain to assigning requests to vehicles. Vehicle repositioning is concerned about 

moving empty vehicles between zones. Both types of actions are considered for joint decisions. The 

specification of reward varies, including minimizing waiting time (Wen et al., 2017; Singh et al., 2019), 

maximizing revenue (Wang et al., 2018c, Holler et al., 2019; Kullman et al., 2020; Qin et al., 2020), and 

minimizing idle/en-route time (Oda and Joe-Wong, 2018; Al-Abbasi et al., 2019).  

Vehicle holding control is an important issue in bus operations that can mitigate bunching (multiple 

buses along the same route arriving at a stop at the same time). DRL has exhibited potential to address this 

issue to determine holding time for buses at different locations. Considering each bus as a single agent, 

multi-agent DRL is applied using prioritized double DQN (Alesiani et al., 2018) and PPO algorithms (Wang 

and Sun, 2020). The objective is to optimize forward and backward bus headway while minimizing holding 

time for every bus. The action pertains to determining holding time of each bus at every stop. In Wang and 

Sun (2020), a comprehensive state space is presented where passenger and vehicle headway related 

information is considered. The results show that DRL outperforms existing rule-based methods.  
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Table 6: Summary of DRL applications in vehicle routing optimization.   
Problem type Reference Method S.O.* State characterization Action Reward 

Urban freight delivery 

Balaji et 

al. (2019) 
DQN Full Pickup location, drivers and requests information Wait, accept or pickup a request 

Value of all delivered requests 

minus the cost 

Nazari et 

al. (2018) 
Actor-critic Full Customer location and demand Which node to visit next Negative tour length 

Kullman 

et al. 

(2019) 

D3QN Full 
Visual representation of vehicles and customers 

location 

Wait at current location or 

instruct vehicle to visit to a 

customer node 

Negative tour length 

Zhang et 

al. (2020) 

Multi-agent 

DRL with 

attention 

Full 
Current vehicle location and remaining vehicle 

capacity 

Decoder outputs the next 

customer to visit 
Negative tour length 

Peng et al. 

(2020) 
REINFORCE Full 

Partial solution instance and the features of each 

node using dynamic attention model 
Which node to visit next Negative tour length 

Yu et al. 

(2019) 
A3C Full 

Available requests, charging stations, next stops 

of other vehicles in the system, battery charging 

demand of each vehicle 

Which node to visit next 

Function of number of delivery 

completion, travelled distance 

and penalties for constraint 

violation 

Zhao et al. 

(2020) 
Actor-critic Full 

Vehicle location and capacity, customer demand 

and time windows 
Which node to visit next Negative of tour length 

Chen et al. 

(2019c) 
DQN Full 

Time, location of customers, and set of planned 

routes 

Whether a request is accepted, 

and if so, which vehicle or drone 

will provide service 

Measured based on order 

assignment decision 

On-demand 

ridesharing 

Order 

dispatching 

Wang et 

al. (2018c) 
DQN Full Vehicle location and time Assignment Revenue from a trip 

Zhou et al. 

(2019b) 

Deep Q-

learning 
Partial 

Grid index, number of idle vehicles, number of 

requests, and distribution of requests’ 

destinations 

Source grid index, target grid 

index, order duration, and price 

Function of accumulated driver 

income and request response 

rate 

Qin et al. 

(2020) 
Double DQN Full Vehicle location and time of the day 

Assignment of a request, or stay 

idle 
Revenue 

Ke et al. 

(2020b) 

Multi-agent 

DQN, PPO, 

A2C, actor-

critic 

Full 

Number of unserved requests and idle vehicle, 

expected arrival rate of new requests and 

vehicle, request location, request waiting time 

and distance from matched vehicle 

Assignment of a request to a 

vehicle, or delay the assignment 
Function of delayed time 

Tang et al. 

(2019) 
DRL Full 

Vehicle location, time of the day, supply-

demand status, day of the week, driver service 

statics, holiday indicator 

Request assignment or stay idle Revenue from a trip 

Vehicle 

repositioning 

Al-Abbasi 

et al. 

(2019) 

DQN Full 
Vehicles’ current status, number of vehicles and 

predicted future demand for a time slot 

Whether the vehicle under study 

should pick up new riders; If yes, 

which zone to go to 

Idle/en-route time and fuel use 

Oda and 

Joe-Wong 

(2018) 

DQN Full 

Number of predicted requests and vehicles 

available in a region, vehicle location, time of 

the day, day of the week 

Dispatch vehicles to different 

regions 

Number of rejects and the 

vehicles’ idle cruising time 
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Problem type Reference Method S.O.* State characterization Action Reward 

Oda and 

Tachibana 

(2018) 

DQN Partial 

Individual vehicle’s state by current location, 

current time, global supply and demand of a time 

interval 

Dispatch agent vehicle to a target 

grid cell 

Collected fare during a given 

time slot minus the working 

costs and cruising costs 

Shi et al. 

(2019b) 
DQN Full 

Concealed location of vehicles with differential 

privacy, time and day, competition measure from 

nearby vehicles 

Guide a cruising vehicle to one of 

the four adjacent cells 
Profit made for a passenger 

Liu et al. 

(2020) 
Double DQN  

Vehicle location, supply and demand of each 

zone and neighboring zones 
Repositioning of vehicle 

Discrete value depending on 

supply-demand ratio in each 

zone 

Wen et al. 

(2017) 
DQN Full 

Distribution of idle and in-service vehicles and 

predicted demand 
Decision on rebalancing Waiting time 

Mao et al. 

(2020) 
Actor-critic Full 

Current time interval, waiting passenger demand, 

and available vehicle count 
Repositioning of all vehicles 

Negative of the total operational 

costs 

Lin et al. 

(2018b) 
DQN, A2C Full 

Spatial distributions of available vehicles and 

requests 

Allocating the agent to one of its 

six neighboring grids or staying in 

the current grid 

Averaged revenue of all agents 

arriving at the same grid 

Joint 

decision 

Singh et 

al. (2019) 
DQN Full 

Vehicle status, predicted future demand and 

number of vehicles at each zone during a time 

interval 

Which region to dispatch a 

vehicle 

Waiting time, gap between 

supply demand, fleet size, and 

fuel consumption 

Kullman 

et al. 

(2020) 

DQN, 

DDQN, 

D3QN 

Full 
Current time, requests’ location, and vehicles 

information 

Assignment, repositioning, or 

recharging decision 

Base fare plus a charge 

proportional to the distance of 

the request 

Holler et 

al. (2020) 
DQN, PPO Full 

Driver location, time to order/reposition 

completion 

Single assignment or 

repositioning 
Revenue 

Jin et al. 

(2019) 

DDPG with 

RNN 
Partial 

Number of vehicles, number of relocatable 

vehicle, number of requests, entropy (function of 

vehicle availability), request features (price, 

duration) 

Ranking a weight vector to rank 

and select the specific request or 

relocatable vehicle's destination 

Sum of accumulated driver 

income and request response 

rate 

Liang et 

al. (2021) 

DQN, A2C; 

Mean-field 

DQN and 

A2C 

Full 

Empty vehicle: current location and time 

Occupied vehicle: destination and time of arrival 

at the destination 

Single assignment and 

repositioning 

 

Profit in terms of trip fare and 

driving cost 

Vehicle holding control 

Alesiani et 

al. (2018) 

Prioritized 

Double DQN 
Partial Departure time, arrival time and headway 

Holding time (discretized 

predefined time) 
Function of headway difference 

Wang and 

Sun 

(2020) 

PPO Full 
Passenger and vehicle headway related 

information 

Holding time of each bus at every 

stop 

Forward and backward bus 

headway 

* S.O. means “state observability”. 
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3.6 Rail transportation 

Using DRL, promising results have been reported in multiple rail transportation areas, including train 

timetable rescheduling (Ning et al., 2019; Obara et al., 2018; Wang et al., 2019f; Yang et al., 2019), 

automatic train operations (Zhou and Song, 2018; Zhou et al., 2020; Zhu et al., 2017), and train shunting 

operations (Peer et al., 2018). For each of the problems, we review relevant publications and provide a 

summary in Table 7. Train timetable rescheduling problems involve finding a feasible timetable of a train 

either by re-routing, re-ordering, re-timing, or canceling in case of uncertain disturbances associated with 

equipment/system failure along the railway line. In automatic train operations problems, the velocity and 

trajectory of a high-speed train need to be determined based on uncertain situations (e.g., changing trip time 

and waiting time due to passenger boarding). Train shunting operation problems pertain to matching 

incoming and outgoing train timetables as well as scheduling maintenance and cleaning activities in a 

shunting yard. The rail transportation problems are mainly approached by DQN and DDPG algorithms, 

with a fully observable environment. Researchers often resort to simulated environments. Very limited 

efforts try to incorporate real train track information in training (Peer et al., 2018; Yang et al., 2019; Zhou 

et al., 2020). 

In the case of a disruptive event, the goal of train timetable rescheduling is to recover a train’s 

operational order by readjusting its timetable while minimizing delay (Ning et al., 2019; Wang et al., 2019f), 

passenger dissatisfaction (Obara et al., 2018), or energy consumption (Yang et al., 2019). Ning et al. (2019) 

and Wang et al. (2019f) consider actual arrival and departure times as state, reordering of departure 

sequences as action, and negative average total delay as reward. Obara et al. (2018) describe train delay in 

a graph environment and consider graph deformation in action space specification. The authors consider 

delay, stoppage, driving time, frequency, and connection in the reward function. Focusing on reducing train 

energy consumption, Yang et al. (2019) design their reward function considering both recovered energy 

and traction energy. Ying et al. (2020) consider multiple trains in a train scheduling problem. 

One of the objectives for automatic train operations is minimizing energy consumption (Zhou and 

Song, 2018; Zhu et al., 2017), subject to delay (Zhu et al., 2017), punctuality, and riding comfort (Zhou et 

al., 2020) constraints. In doing so, Zhou and Song (2018) and Zhou et al. (2020) define speed and train 

position as state. The magnitude of acceleration and deceleration is considered as action. In terms of reward 

specification, besides energy consumption, train delay is also included (Zhou et al., 2020). To minimize 

profile tracking error and energy consumption, Zhu et al. (2017) specify reward considering speed deviation 

from the target speed, based on which to make acceleration/deceleration decisions. For state 

characterization, the authors include speed, position of the train, relative position from the front train, rail 

wireless network strength, and a binary indicator of whether the train starts using the wireless network. To 



30 

 

tackle train shunting operation problems, Peer et al. (2018) use arrival and departure train conditions in the 

shunting yard to describe the state, and parking and departure decisions of each track as actions, to minimize 

the error in train parking and departure from the yard. 
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Table 7: Summary of DRL applications in rail transportation. 
Application Area Reference  Method State Action  Reward 

Train timetable 

rescheduling 

Obara et al. (2018) DQN Delay condition Rescheduling timetable 
Delay, stoppage, driving 

time, frequency of train 

Ning et al. (2019) DQN Actual arrival and departure times 
Reordering of the departure 

sequences 

Negative average of total 

delay 

Wang et al. (2019f) 
Monte Carlo 

tree search 
Actual arrival and departure times 

Reordering of the departure 

sequences 

Negative average of total 

delay 

Yang et al. (2019) DDPG 

Number of the departing train and its last 

dwelling time, current speed and position of the 

other running trains 

Speed and the dwelling time of 

the departing train 

Recover energy and the 

negative of traction 

energy 

Automatic train 

operations 

Zhu et al. (2017) DQN 

Speed, position of the train, relative position 

from the front train, rail wireless network 

strength, and a binary indicator of whether the 

train starts using the wireless network 

Accelerate or decelerate and 

their magnatude 

Speed deviation from the 

target speed 

Zhou and Song (2018) DDPG Speed and train position 
Magnitude of acceleration and 

deceleration 
Energy consumption 

Zhou et al. (2020) DDPG Speed and train position 
Magnitude of acceleration and 

deceleration 

Energy consumption and 

dealy 

Train shunting 

operations 
Peer et al. (2018) DQN Arrival and departure time 

Parking and departure 

decisions 

Correct parking and 

correct departure 

 

 



32 

 

3.7 Maritime transportation 

Most DRL applications in maritime transportation are in the context of Autonomous Ship (AS) driving, 

more specifically in AS path following and collision avoidance. Given the dynamic and complex nature of 

AS driving, existing analytical methods such as model predictive control are often not suitable for practical 

applications (Zhao et al., 2019). DRL presents a promising alternative and has shown some success in 

solving AS path following and simultaneous path following and collision avoidance problems (Table 4). 

For AS path following problems, actions considered include rudder angle (Martinsen and Lekkas, 

2018), course angle (Woo et al., 2019), and rudder angle with propeller rotation (Rejaili and Figueiredo, 

2018). Reward is specified to reflect the extent to which a ship deviates from a predefined path. Martinsen 

and Lekkas (2018) and Woo et al. (2019) define the reward function as cross-track error. Rejaili and 

Figueiredo (2018) define reward as the negative of penalty for deviation. Path guideline, distance from the 

ship mass center to the guideline, and the angle between the longitudinal axis of the ship and the guideline 

are considered in representing the state. Ship speed and angular velocity are further considered in Martinsen 

and Lekkas (2018) and Rejaili and Figueiredo (2018). 

For simultaneous modeling of path following and collision avoidance, a number of control methods – 

including model-based and model-free – have been investigated. DRL is mostly applied in the context of 

model-free methods. One stream of research concerns static obstacle avoidance. Safety-related measures 

are specified in reward. For example, Sawada (2019) uses safe passing distance from obstacles, while some 

other researchers consider the number of collision instances (Amendola et al., 2019; Layek et al., 2017; 

Shen et al., 2019; Zhang et al., 2019). In terms of the state space, information on ship position, orientation, 

turning rate, and distance from the obstacle is always included. Distances from other ships and ship width 

and length are further considered in Shen et al. (2019) and Sawada (2019). Rudder action, heading angle, 

rudder angle, and turning rate are included in the action space (Layek et al., 2017; Amendola et al., 2019; 

Shen et al., 2019; Zhang et al., 2019; Sawada, 2019). 

Another stream of research deals with both static and dynamic obstacles (such as environmental 

disturbances). Navigation decisions including rudder actions or course actions are made at every time step, 

which are informed by state of the AS including positions of the ship and obstacles. Also considered in the 

state space are speed (Cheng-bo et al., 2019; Wang et al., 2019), angular velocity (Cheng and Zhang, 2018; 

Zhao et al., 2019; Zhao and Roh, 2019), surge, and sway (Cheng and Zhang, 2018). Except for Zhao and 

Roh (2019), all studies consider navigation of a single ship using single-agent DQN. 
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Table 8. Summary of DRL applications in maritime transportation. 
Application area Reference Method State Action Reward 

Path following 

Martinsen and 

Lekkas (2018) 
Actor-critic 

Cross-track error, course and heading to the path, 

surge, sway, yaw rate, and derivatives of the path 
Rudder angle Negative cross-track error 

Rejaili and 

Figueiredo 

(2018) 

DQN and 

DDPG 

Distance and longitudinal axis of AS to guideline, 

horizontal and vertical speed, and angular velocity 

Rudder angle 

and propeller 

rotation 

Deviation from guideline and speed 

setpoint 

Woo et al. (2019) DDPG Position Course angle Deviation from route 

Path 

following 

and 

collision 

avoidance 

Static 

obstacles 

Layek et al. 

(2017) 
DDPG Position, orientation, and actual turning rate Turning rate Angle between ship and obstacles 

Amendola et al. 

(2019) 
DQN 

Distance between ship and channel centerline, 

course over ground, turn rate, and last rudder level 
Rudder angle 

Proximity of ship to destination, collision 

avoidance, and deviation from center 

Sawada (2019) PPO Ship position, breadth, length, and speed 
Heading and 

rudder angle 

Safe passing distance and deviation from 

route 

Shen et al. (2019) DQN Distance from obstacles and other ships Rudder angle Obstacle avoidance 

Zhang et al. 

(2019) 
DQN 

AS speed and course, position of obstacle and 

target point, distance between ship and obstacle, 

and distance between AS and target point 

Heading angle 
Approach to target point and obstacle 

avoidance 

Static 

and 

dynamic 

obstacles 

Cheng and Zhang 

(2018) 
DQN 

Ship position, heading, surge, sway, and angular 

rate, and obstacle position 
Rudder angle Obstacle avoidance and target approach 

Cheng-bo et al. 

(2019) 
DQN 

ship position, speed, and course, distance from 

target and obstacles, and obstacle position 
Heading angle 

Proximity of ship to destination, collision 

avoidance, and deviation from center 

Etemad et al. 

(2020) 
DQN Position Heading angle 

Approach to target point and obstacle 

avoidance 

Zhao and Roh 

(2019) 

Multi-agent 

policy-based 

DRL 

Ship position, velocity, and length, distance 

between current position and destination, and 

relative angle between ship and destination 

Rudder angle 
Proximity of ship to its destination, 

avoiding collision, and drift 

Wang et al. 

(2019g) 
DQN 

Speed, position of obstacles and destination, and 

distance of vessel from obstacles and destination 
Rudder angle 

Approach to target point, obstacle 

avoidance, and deviation from route 

Zhao et al. 

(2019) 

Policy-based 

DRL 

Ship position, velocity, and length, distance 

between current position and destination, and 

relative angle between ship and the destination 

Rudder angle 
Proximity of ship to its destination, 

avoiding collision, and drift 

Guo et al. (2020) Actor critic Longitude and latitude 
Heading angle 

and speed 

Approach to target point and obstacle 

avoidance 

Chen et al. 

(2020) 
DQN Image of the current position  Rudder angle  

Approach to target point and obstacle 

avoidance  

Port management Shen et al. (2017) DQN Container loading condition at every time step 
Scheduling 

container 

Availability, reshuffling, and yard crane 

shifting 
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Besides AS path planning and collision avoidance, DRL has been tried for port management. Shen et 

al. (2017) employ DQN for quay and yard crane scheduling for Ningbo Port in China. Table 8 summarizes 

the reviewed studies for AS path following, path following and collision avoidance, and port management. 

The reviewed studies are categorized based on the application area, method used, and state, action, and 

reward specifications. Regardless of the application area and methodology used, the exiting literature of 

DRL applications in martime transportation always considers the environment to be fully observable.   

4 Synthetic discussions 

4.1 Applicability 

While many DRL applications and adaptations have been reported as shown in section 3, there does 

not exist a single, universal rule for DRL system design to tackle all transportation problems. To ensure 

successful DRL use, one needs to have an in-depth understanding of the nature of the specific transportation 

problem investigated as well as DRL. In principle, a DRL algorithm improves policies by having the agent 

interact with the environment. As such, any problems whose solution can be improved by trial-and-error, 

i.e., incorporating feedback from the environment from one trial to the next, can be suitable for DRL. Also, 

problems that place importance to completing a full task rather than periodical success at intermediate steps 

and entail delayed reward are suitable for DRL. An example of this, as we have seen, is end-to-end 

autonomous driving where a collision before the end of the journey would overshadow earlier success in 

lane changing. To model sequential decision-making, MDP offers an adequate framework for a fully 

observable environment. Note that DRL can also be applied to environments with partially observable 

MDP, by incorporating RNN as a function approximator (Heess et al., 2015; Hausknecht et al., 2015).  

  It is difficult to conclude which DRL algorithm is best for a specific transportation problem, although 

candidate DRL algorithms can be identified. For example, problems where states can be incorporated as a 

stack of images, DRL algorithms embedding CNN as a function approximator (e.g., DQN) are appropriate. 

Problems like adaptive traffic signal control and end-to-end autonomous driving can adopt double dueling 

DQN with prioritized experience replay. Both policy based and actor-critic based algorithms can deal with 

continuous action space. The actor-critic architecture is preferred when optimal policy and its value are 

both expected. In this regard, algorithms like DDPG and PPO can be used for energy management of hybrid 

or electric vehicles and autonomous driving motion control. Asynchronous algorithms like A3C, which are 

also based on the actor-critic architecture, can accelerate learning by parallel processing. Although better 

solutions are generated using PPO in Atari gaming platform than using A3C, A3C may still be considered 

given its fast speed in learning. DRL algorithms with attention and pointer networks are popular for 

sequence-to-sequence modeling and adopted in vehicle routing optimization.  
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Based on our review of the existing literature, a mapping of DRL algorithm and extension use to the 

seven application domains is plotted in Fig. 4. The left column of the figure lists specific DRL algorithms. 

All the full names corresponding to the acronyms can be found in section 2. The right column lists the 

extensions. The middle column lists the application areas. The arrow widths are proportional to the number 

of applications found in the literature. 

 
Figure 4. Mapping of DRL algorithm and extension use to transportation application domains. 

 

Among the extensions used in DRL, three of them are worth highlighting: multi-agent, hierarchical, 

and inverse DRL. First, a multi-agent DRL framework is especially amenable to tackling problems in a 

distributed environment with agent interactions. As an example, a multi-agent framework can characterize 

cooperative and adversarial intentions of neighboring vehicles in autonomous driving. Another case of 

agent interactions which multi-agent DRL suits is traffic control among coordinated intersections. 

Second, hierarchical DRL is useful when decisions can be decomposed into multiple layers. For 

instance, if the action space can be divided into two levels: “what to do” and “how to do”, then a hierarchical 

framework can make the overall learning and implementation very efficient. In vehicle routing optimization 

problems, the type of neighborhood moves to select can be considered as a higher-level decision and how 
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to actually implement the selected neighborhood move as a lower-level decision. Similarly, in autonomous 

driving, the decision on what action to take can be viewed as a higher-level problem, while how to execute 

the action is a lower-level control problem. 

Third, inverse DRL can be used for problems that require optimization of multiple factors through a 

common reward signal, which helps improving learning efficiency. In real-world problems, successful 

completion of a task may depend on several factors with a need for parameterization for the reward function. 

Weights of these parameters should be specified, but would involve intense tuning if done manually. For 

example, the decision on lane changing depends on whether the agent successfully completes the task, but 

also on marginal safety risk, smoothness, and comfortability of the lane change. Instead of explicitly 

defining a reward function at the beginning of training, inverse DRL offers a way to extract a proper reward 

signal to be used for seeking the optimal policy. 

4.2 Strengths and shortcomings of DRL 

This section discusses the strengths and shortcomings of DRL applications in tackling transportation 

problems. Among the most remarkable strengths of DRL are: 1) ability to generate high-quality solutions 

in a very short amount of time; and 2) generality and scalability in solving varying problem instances. On 

the other hand, DRL is not without drawbacks. Shortcomings include: stability in training, computation 

power requirement, and hyperparameter tuning. Below we provide further discussions. 

Strengths: As its first strength, DRL can generate high-quality solutions fast. Through extensive 

training, promising performance of DRL has been reported in guiding autonomous decision tasks (Minh et 

al., 2015; Silver et al., 2016, 2017). The review in section 3 has shown that in many applications DRL 

produces results with superior quality to existing benchmarks while taking only a matter of seconds to yield 

good solutions, as compared to traditional methods such as heuristics which require considerably longer 

computation time. It should be noted that training of DRL algorithms can be done offline, and thus has little 

negative effect on problem solving time.  

The second strength of DRL is its generality. While interacting with the environment, a DRL algorithm 

accumulates and learns from experiences by encountering and trying to solve different problems. Thus, 

once trained, DRL can produce sound solutions for varying problem instances including those not exactly 

encountered. The ability of DRL to remain useful in “an uncharted territory” presents an advantage over 

traditional optimization techniques. With deep learning further embedded, the scalability of DRL to solve 

problems of different sizes is also enhanced. This has been testified by the considerably better results 

obtained by DRL algorithms than existing benchmarks for problems with large state and action space (Minh 

et al., 2015) and even with continuous action space (Lillicrap et al., 2016; Schulman et al., 2017). 
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Shortcomings: A few shortcomings have been recognized in  DRL training. The first one is training 

stability, particularly for DQN, which involves a target network updated in regular intervals. At each update, 

the values of different parameters could experience unstable jumps (Van der Pol and Oliehoek, 2016). Thus 

it may be difficult to see a clear trend of learning improvement. The second shortcoming is interpretability 

of DRL (Chakraborty et al., 2017; Zhang and Zhu, 2018). A lack of interpretability can make it difficult to 

understand contributions of each component in the state to the final solution. Furthermore, DRL algorithms 

are criticized for lack of reproducibility due to the use of simulated data (Henderson et al., 2018, Hoffman 

et al., 2020). Also, inadequate training (e.g., overtrained in a particular environment) can give rise to the 

issue of generality, which in turn compromises transferability of the DRL agent to other environments.  

Another shortcoming of DRL – perhaps more of a challenge – is the significant computation power 

required in training. DRL training involves updating weights of an artificial neural network by hundreds of 

thousands of iterations over a large amount of data. The extensive training calls for very high computation 

power. With state-of-the-art GPU, parallel processing can be leveraged as an efficient way of updating 

weights in a neural network. But GPUs are expensive. Although deep learning platforms like Tensorflow 

and PyTorch have built-in functionality to optimize the use between CPU and GPU, a tradeoff between 

computational efficiency and financial capability needs to be made.  

Apart from the above, an additional shortcoming of DRL pertains to hyperparameter tuning. Every 

DRL algorithm involves a certain number of hyperparameters to be tuned. This tuning process is generally 

very time consuming (Henderson et al., 2018), as it involves grid search of all hyperparameters. Given the 

large number of combinations of possible hyperparameter values, hyperparameter tuning and consequently 

neural network training are usually slow. For some problem instances, it can take days (Mnih et al., 2015; 

Yu et al., 2019).   

4.3 Issues and future research directions  

With the understanding of DRL’s applicability, strengths, and shortcomings, this section discusses 

issues present in DRL application/adaptation for tackling transportation problems, and suggest potential 

future research directions. These discussions are organized in two parts. The first part focuses on issues and 

research directions of DRL application/adaptation that are common in transportation research. In the second 

part, we look into issues and research directions specific to different transportation domains.  

4.3.1 Common issues and research directions 

We highlight five common issues in DRL applications/adaptations to the transportation domain. The 

first one pertains to the use of simulated platforms and synthetic data in DRL training and testing. As real-

world situations can be more complicated than simulated data, DRL algorithms trained based on simulated 

platforms and synthetic data need to be validated before applying to real scenarios with confidence. The 
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need for validation is particularly critical to applications for which safety is of paramount importance (e.g., 

driving related). It is possible that, no matter how many scenarios a DRL agent is exposed to in a simulated 

environment, the agent cannot fully learn the complexity of real-world situations. Thus, a crucial research 

direction is transferring training of a DRL agent from a simulated environment to the real world in a safe, 

secured, and efficient manner. For exmaple, the trained DRL agent may need to be first tested in a physical 

test bed and then in a controlled environment with rigorous fail safe, and satisfy existing benchmarks for 

safety protocol in every tested scenario, before moving to real-world implementation. So far, only limited 

efforts are made to transfer the trained DRL agent from a simulator to a physical test bed (Chalaki et al., 

2019).  

The second common issue is the need for common platforms for evaluating different DRL algorithms 

in solving specific types of transportation problems. With a common platform, the inputs and problem 

instances for DRL training and testing are standardized, making it possible to perform “apple-to-apple” 

comparison. For example, for shared taxi routing problems, comparing performance of different DRL 

algorithms based on the same service area, fleet of shared taxis, and rider request density and distribution. 

Having such common platforms is critical to understanding the advantages, limitations, and appropriateness 

of different DRL algorithms and helping inform algorithm choice for particular problems. However, as such 

common platforms remain lacking, research efforts are clearly needed for common platform development 

for DRL algorithm evaluation.  

As the third common issue, the existing studies focus on decision-making of either vehicles or 

infrastructure (traffic signals, ramp metering, etc.). To our knowledge, no study exists in the literature that 

simultaneously considers decision-making of both vehicles and infrastructure. Given that vehicles and 

infrastructure are interdependent in transportation systems, fixing one part while optimizing the other would 

likely yield suboptimal outcomes compared to explicit decision-making on both. This is especially relevant 

to transportation, which is rapidly evolving towards ubiquitous connectivity between vehicles and 

infrastructure. Yet vehicles and infrastructure may still possess some degree of operational autonomy and 

independence. Thus, additional research is needed to better encompass the vehicle-infrastructure nexus in 

full scale. A multi-agent DRL setting embedding cooperation, competition, and feedback among agents 

will be of particular interest in this regard and warrant further investigation. 

The fourth common issue is accommodation of constraints, which are common in transportation 

optimization and control problems. To our knowledge, most existing works deal with constraints by 

including penalty in the reward specification, which is appropriate if the constraints are “soft”, meaning 

that they could be violated but incur a cost. However, for constraints that are “hard”, i.e., constraints must 

be strictly met, introducing penalty to reward cannot eliminate constraint violation and thus is not a perfect 
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solution. To our knowledge, how to appropriately account for hard constraints has not attracted enough 

attention in the existing DRL research in the transportation domain. We note that an alternative way to deal 

with hard constraints is by masking the constraints while designing the training environment, to keep the 

exploration space away from constraint violation, as considered in autonomous driving (Mukadam et al., 

2018) and VRP (Nazari et al., 2018). Nonetheless, more research is still needed to further explore masking 

and other techniques to cope with hard constraints in various transportation domains. 

Finally, and especially from the practitioners’ standpoint, it is important that solutions generated by 

DRL are robust to changes in data and the environment. This relates to the generality and transferability 

issues discussed earlier in section 4.2. To ensure robustness, comprehensive sensitivity analysis of a trained 

DRL agent to different data and/or environments is warranted. In this regard, a few attempts have been 

made, including in traffic signal control (Calvo et al., 2018; Li et al., 2016; Ge, 2019), autonomous driving 

(Duan et al., 2019; Feng et al., 2019; Hoel et al., 2018), rail transportation (Yang et al., 2019) and maritime 

transportation (Etemad et al., 2020). Sensitivity analysis should be extended to other domains. For example, 

DRL based energy efficient driving may consider a variety of vehicle driving cycles. For parcel delivery 

and vehicle dispatching, a trained agent is expected be insensitive to changes in customer demand within a 

reasonable range. If a trained agent turns out to be sensitive, then one needs to reexamine the DRL model 

specification and training, including whether the design of the environment is appropriate and whether the 

training data are adequate and sufficient (so that the DRL agent is not undertrained).  

4.3.2 Application-specific issues and research directions 

For autonomous driving, three issues are identified. First, some actions (such as acceleration and 

speed) are treated as discrete, which is less realistic. Using policy based or actor-critic based algorithms, 

these actions can be considered as continuous, but further explorations are needed. Second, sensing and 

perceiving surrounding vehicles is critical. The existing literature has not paid much attention to distinguish 

human-driven and autonomous vehicles, which have different behavior and are likely to coexist in 

transportation systems for the foreseeable future (Noruzoliaee et al., 2018; Noruzoliaee and Zou, 2021; Zou 

et al., 2021). Research to refine the environment design needs to take this into account. Third, while existing 

research mostly deals with one or two specific aspects of autonomous driving such as lane changing, motion 

control, and collision avoidance, future modeling needs to be more comprehensive to ensure that DRL-

driven decision-making leads to safe, reliable, and efficient autonomous driving.  

For energy efficient driving, an important issue is that the reward signal is usually designed based on 

engine power supply. The relationship between fuel economy and engine power is complex. Most existing 

work lacks proper characterization of the relationship (Hu et al., 2018). Moreover, the success of energy 

management for an HEV depends not only on the state and dynamics of the vehicle and the surrounding 
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environment, but on other factors that are paid less attention to, such as trip distance, trip time, average 

achievable speed during the trip, and driver’s behavior that may vary during the trip. Precise information 

on such factors may not be readily available at the time of decision-making, so some estimation or 

expectations need to be made. Also, given that plug-in HEVs are gaining increasing popularity, more efforts 

should be directed to energy management for plug-in HEVs. 

For adaptive traffic signal control, three issues are identified. The first issue pertains to design of the 

state space. Existing research does not adequately reflect vehicle acceleration and deceleration for incoming 

traffic during yellow and red phases. This issue indeed is highlighted in an early adaptive traffic signal 

control study (Genders and Razavi, 2016), but so far has not been addressed. The second issue relates to 

research using a grid representation of traffic (a grid taking value 1 indicates vehicle presence and 0 

otherwise), which usually assumes a uniform intersection environment with the same number of lanes at 

every entry and exits, and the same occupied space and inter-vehicle spacing on each lane. This may not be 

realistic in practice. Third, while most studies focus on optimizing system efficiency (e.g., minimizing 

overall wait time at intersections), equity consideration is largely absent but equally important to ensure all 

vehicles are fairly treated. More research is needed to address this issue. 

In the case of other types of traffic control, we suggest two directions for further exploration. First, 

future DRL research for variable speed limit control could consider separate speed limit thresholds for 

different lanes of a roadway. For dynamic lane pricing, the existing literature assumes a macroscopic traffic 

flow simulation that cannot capture the impact of lane changes on traffic. Instead, microscopic traffic flow 

simulations have the potential to overcome this issue and thus could be considered in problem design. 

Apart from autonomous driving, energy efficient driving, and traffic control, DRL applications in 

vehicle routing optimization, rail, and maritime transportation also face some issues worth further 

investigations. For vehicle routing optimization, as multiple objectives, e.g., minimizing total travel time, 

minimizing unserved requests, or minimizing customer wait time, are involved, adequately specifying 

reward is important. in addition, more methodological explorations are needed to enable and improve 

coordinated routing of a fleet of vehicles. For rail transportation, scalability and lack of well-defined 

benchmarks are two unresolved critical issues for assessing quality of DRL solutions. For maritime 

transportation, environmental disturbances such as ocean current and wind speed can significantly affect 

ship operations and should be included in state space design. Another promising direction is energy efficient 

ship navigation, which can be informed by the body of similar work for ground vehicles. 
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5 Available resources for DRL research  

Finally, as DRL implementation is not a straightforward process, it is worth mentioning the available 

resources that can be leveraged in DRL research. Existing built-in platforms that facilitate development of 

new DRL algorithms or enable use and adaptation of existing DRL algorithms are of particular interest. 

Among them, OpenAI Baselines is a set of high-quality implementations of DRL algorithms which allow 

researchers to replicate different existing DRL algorithms, and refine and identify improvement ideas 

(Dhariwal et al., 2017). Stable Baselines presents a significant improvement upon OpenAI Baselines, 

featuring a platform for almost all DRL algorithms (Hill et al, 2017). Apart from OpenAI Baselines and 

Stable Baselines, TensorForce provides a framework for DRL which is built on deep learning library 

Tensorflow with several algorithm implementations (Kuhnle, 2017). In TensorFlow library, Tensorflow 

Agents is a versatile RL platform where an agent takes charge of two main responsibilities: 1) defining a 

policy to interact with the environment; and 2) learning the policy from collected experience (Guadarrama 

et al., 2018). KerasRL implements some state-of-the-art RL algorithms in Python and seamlessly integrates 

the algorithms with deep learning library Keras (Plappert, 2016). Also, deep Q-learning, policy gradients, 

and Q-value policy gradients algorithm for small to medium scale research have been implemented in rlpyt 

(Stooke and Abbeel, 2019). Table 5 provides a summary of the aforementioned platforms, the available 

DRL algorithms, and the library used by each platform. 

Table 9. Summary of platforms for DRL development, available DRL algorithms, and libraries used. 

Platform Available DRL algorithms Library used 

OpenAI Baselines 

A2C, Actor-Critic with Experience Replay, Actor-Critic using Kronecker-

Factored Trust Region, DDPG, DQN, Generative Adversarial Imitation 

Learning (GAIL), Hindsight Experience Replay, TRPO, PPO,  

Tensorflow 

Stable Baselines 
A2C, ACER, ACKTR, DDPG, GAIL, HER, PPO, TRPO, Soft Actor-Critic 

(SAC), Double Dueling DQN with prioritized experience replay 
Tensorflow 

TensorForce 
Dueling and double DQN, Vanilla Policy Gradient (PG), Continuous DQN, 

A2C, A3C, TRPO, PPO 
Tensorflow 

Tensorflow Agents 

DQN, double DQN, DDPG, Twin Delayed DDPG, Simple Statistical 

Gradient-Following Algorithms for Connectionist Reinforcement Learning, 

PPO, SAC 

Tensorflow 

KerasRL 
Dueling and double DQN, DDPG, Continuous DQN, Cross-Entropy Method, 

Deep SARSA 
Keras 

rlpyt A2C, PPO, Dueling and double DQN, DDPG, Twin Delayed DDPG, SAC PyTorch 

 

6 Conclusion  

Although the introduction of DRL to transportation research is still nascent, the rapidly growing body 

of literature has clearly demonstrated an interdisciplinary prospective of DRL applications and adaptation 
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in tackling a variety of transportation problems, especially those with a sequential decision nature. In this 

paper, a comprehensive and synthetic review of recent DRL research related to solving transportation 

problems is conducted. As the review mainly targets the general audience of the transportation community, 

we start by providing a methodological background of DRL, including the basic algorithms and extensions. 

Then we delve into reviewing specific applications and adaptations of DRL in transportation in seven 

identified domains, namely autonomous driving, energy efficient driving, adaptive traffic signal control, 

other types of traffic control, vehicle routing optimization, rail transportation, and maritime transportation. 

Built on the detailed review, a synthetic discussion on the applicability, strengths, and shortcomings of DRL 

as it pertains to transportation research is provided. The discussion also identifies common and application-

specific issues, based on which future research directions are suggested. Finally, we provide information 

on the available platforms and their features for actual DRL implementation. We hope that this review will 

serve as a useful reference for the transportation research community to better understand what have been 

accomplished to date and what are the issues, prospects, and potentials of DRL for transportation, to 

stimulate further research in this exciting area.  

Acknowledgement 

This work presented in this paper was funded in part by the National Science Foundation CMMI-

1663411. The support is gratefully acknowledged.   



43 

 

Reference 

1. Ahamed, T., Zou, B., Farazi, N., and Tulabandhula, T. (2021). Deep reinforcement learning for crowdsourced urban delivery: 

System states characterization, heuristics-guided action choice, and rule-interposing integration. arXiv preprint 

arXiv:2011.14430. 

2. Al-Abbasi, A. O., Ghosh, A., and Aggarwal, V. (2019). Deeppool: Distributed model-free algorithm for ride-sharing using 

deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 20(12), 4714-4727. 

3. Alesiani, F., & Gkiotsalitis, K. (2018). Reinforcement learning-based bus holding for high-frequency services. In 2018 21st 

International Conference on Intelligent Transportation Systems (ITSC) (pp. 3162-3168). IEEE. 

4. Alizadeh, A., Moghadam, M., Bicer, Y., Ure, N. K., Yavas, U., and Kurtulus, C. (2019). Automated Lane Change Decision 

Making using Deep Reinforcement Learning in Dynamic and Uncertain Highway Environment. In 2019 IEEE Intelligent 

Transportation Systems Conference (ITSC) (pp. 1399-1404). IEEE. 

5. Amendola, J., Tannuri, E. A., Cozman, F. G., and Reali Costa, A. H. (2019). Port Channel Navigation Subjected to 

Environmental Conditions Using Reinforcement Learning. In International Conference on Offshore Mechanics and Arctic 

Engineering (Vol. 58844, p. V07AT06A042). American Society of Mechanical Engineers. 

6. An, H., and Jung, J. I. (2019). Decision-making system for lane change using deep reinforcement learning in connected and 

automated driving. Electronics, 8(5), 543. 

7. Aradi, S., Becsi, T., and Gaspar, P. (2018). Policy gradient based reinforcement learning approach for autonomous highway 

driving. In 2018 IEEE Conference on Control Technology and Applications (CCTA) (pp. 670-675). IEEE. 

8. Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A brief survey of deep reinforcement 

learning. arXiv preprint arXiv:1708.05866. 

9. Bacchiani, G., Molinari, D., and Patander, M. (2019). Microscopic traffic simulation by cooperative multi-agent deep 

reinforcement learning. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems 

(pp. 1547-1555). International Foundation for Autonomous Agents and Multiagent Systems. 

10. Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv 

preprint arXiv:1409.0473. 

11. Bai, Z., Shangguan, W., Cai, B., and Chai, L. (2019). Deep Reinforcement Learning Based High-level Driving Behavior 

Decision-making Model in Heterogeneous Traffic. In 2019 Chinese Control Conference (CCC) (pp. 8600-8605). IEEE. 

12. Balaji, B., Bell-Masterson, J., Bilgin, E., Damianou, A., Garcia, P.M., Jain, A., Luo, R., Maggiar, A., Narayanaswamy, B. and 

Ye, C. (2019). ORL: Reinforcement Learning Benchmarks for Online Stochastic Optimization Problems. arXiv preprint 

arXiv:1911.10641. 

13. Barto, A. G., and Mahadevan, S. (2003). Recent advances in hierarchical reinforcement learning. Discrete event dynamic 

systems, 13(1-2), 41-77. 

14. Bejar, E., and Morán, A. (2019). Reverse parking a car-like mobile robot with deep reinforcement learning and preview 

control. In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0377-0383). 

IEEE. 

15. Belletti, F., Haziza, D., Gomes, G., and Bayen, A. M. (2017). Expert level control of ramp metering based on multi-task deep 

reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1198-1207. 

16. Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial optimization with reinforcement 

learning. arXiv preprint arXiv:1611.09940. 

17. Brackstone, M., and McDonald, M. (1999). Car-following: a historical review. Transportation Research Part F: Traffic 

Psychology and Behaviour, 2(4), 181-196. 

18. Buechel, M., and Knoll, A. (2018). Deep reinforcement learning for predictive longitudinal control of automated vehicles. In 

2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 2391-2397). IEEE. 

19. Buşoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement learning: An overview. In Innovations in 

multi-agent systems and applications-1 (pp. 183-221). Springer, Berlin, Heidelberg. 

20. Calvo, J. A., & Dusparic, I. (2018). Heterogeneous Multi-Agent Deep Reinforcement Learning for Traffic Lights Control. 

In AICS (pp. 2-13). 

21. Casas, N. (2017). Deep deterministic policy gradient for urban traffic light control. arXiv preprint arXiv:1703.09035. 

22. Chae, H., Kang, C. M., Kim, B., Kim, J., Chung, C. C., and Choi, J. W. (2017). Autonomous braking system via deep 

reinforcement learning. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1-6). 

IEEE. 

23. Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A., Julier, S., 

Rao, R.M. and Kelley, T.D. (2017). Interpretability of deep learning models: a survey of results. In 2017 IEEE SmartWorld, 

Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud 

and Big Data Computing, Internet of People and Smart City Innovation 

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1-6). IEEE. 



44 

 

24. Chalaki, B., Beaver, L., Remer, B., Jang, K., Vinitsky, E., Bayen, A., and Malikopoulos, A. A. (2019). Zero-shot autonomous 

vehicle policy transfer: From simulation to real-world via adversarial learning. arXiv preprint arXiv:1903.05252. 

25. Chaoui, H., Gualous, H., Boulon, L., and Kelouwani, S. (2018). Deep reinforcement learning energy management system for 

multiple battery based electric vehicles. In 2018 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-6). IEEE. 

26. Chen, C., Ma, F., Liub, J., Negenborn, R. R., Liu, Y., & Yan, X. (2020). Controlling a cargo ship without human experience 

based on deep Q-network. Journal of Intelligent & Fuzzy Systems,vol. 39, no. 5, pp. 7363-7379. 

27. Chen, C., Qian, J., Yao, H., Luo, J., Zhang, H., and Liu, W. (2018). Towards comprehensive maneuver decisions for lane 

change using reinforcement learning. NIPS Workshop on Machine Learning for Intelligent Transportation Systems (MLITS). 

28. Chen, I. M., Zhao, C., and Chan, C. Y. (2019b). A Deep Reinforcement Learning-Based Approach to Intelligent Powertrain 

Control for Automated Vehicles. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 2620-2625). IEEE. 

29. Chen, X., Ulmer, M. W., and Thomas, B. W. (2019c). Deep Q-Learning for Same-Day Delivery with a Heterogeneous Fleet 

of Vehicles and Drones. arXiv preprint arXiv:1910.11901. 

30. Chen, Y., Dong, C., Palanisamy, P., Mudalige, P., Muelling, K., and Dolan, J. M. (2019a). Attention-based Hierarchical Deep 

Reinforcement Learning for Lane Change Behaviors in Autonomous Driving. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition Workshops (pp. 0-0). 

31. Cheng, Y., and Zhang, W. (2018). Concise deep reinforcement learning obstacle avoidance for underactuated unmanned 

marine vessels. Neurocomputing, 272, 63-73. 

32. Cheng-bo, W. A. N. G., Xin-yu, Z. H. A. N. G., Jia-wei, Z. H. A. N. G., Zhi-guo, D. I. N. G., and Lan-xuan, A. N. (2019). 

Navigation behavioural decision-making of MASS based on deep reinforcement learning and artificial potential field. 

In Journal of Physics: Conference Series (Vol. 1357, No. 1, p. 012026). IOP Publishing. 

33. Choe, C. J., Baek, S., Woon, B., & Kong, S. H. (2018). Deep Q Learning with LSTM for Traffic Light Control. In 2018 24th 

Asia-Pacific Conference on Communications (APCC) (pp. 331-336). IEEE. 

34. Chu, T., Wang, J., Codecà, L., and Li, Z. (2019). Multi-agent deep reinforcement learning for large-scale traffic signal 

control. IEEE Transactions on Intelligent Transportation Systems. 

35. Coşkun, M., Baggag, A., & Chawla, S. (2018). Deep reinforcement learning for traffic light optimization. In 2018 IEEE 

International Conference on Data Mining Workshops (ICDMW) (pp. 564-571). IEEE. 

36. Dayan, P., and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in neural information processing 

systems (pp. 271-278). 

37. Deisenroth, M. P., Neumann, G., and Peters, J. (2013). A survey on policy search for robotics. now publishers. 

38. Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu, Y. and Zhokhov, P., 

(2017). Openai baselines. 

39. Duan, J., Li, S. E., Guan, Y., Sun, Q., and Cheng, B. (2020). Hierarchical reinforcement learning for self-driving decision-

making without reliance on labelled driving data. IET Intelligent Transport Systems. 

40. Etemad, M., Zare, N., Sarvmaili, M., Soares, A., Machado, B. B., & Matwin, S. (2020, May). Using Deep Reinforcement 

Learning Methods for Autonomous Vessels in 2D Environments. In Canadian Conference on Artificial Intelligence (pp. 220-

231). Springer, Cham. 

41. Fayjie, A. R., Hossain, S., Oualid, D., and Lee, D. J. (2018). Driverless car: Autonomous driving using deep reinforcement 

learning in urban environment. In 2018 15th International Conference on Ubiquitous Robots (UR) (pp. 896-901). IEEE. 

42. Feng, X., Hu, J., Huo, Y., and Zhang, Y. (2019). Autonomous Lane Change Decision Making Using Different Deep 

Reinforcement Learning Methods. In CICTP 2019 (pp. 5563-5575). 

43. Folkers, A., Rick, M., and Büskens, C. (2019). Controlling an Autonomous Vehicle with Deep Reinforcement Learning. In 

2019 IEEE Intelligent Vehicles Symposium (IV) (pp. 2025-2031). IEEE. 

44. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018). An introduction to deep reinforcement 

learning. arXiv preprint arXiv:1811.12560. 

45. Gao, J., Shen, Y., Liu, J., Ito, M., and Shiratori, N. (2017). Adaptive traffic signal control: Deep reinforcement learning 

algorithm with experience replay and target network. arXiv preprint arXiv:1705.02755. 

46. Garg, D., Chli, M., and Vogiatzis, G. (2018). Deep reinforcement learning for autonomous traffic light control. In 2018 3rd 

IEEE International Conference on Intelligent Transportation Engineering (ICITE) (pp. 214-218). IEEE. 

47. Ge, H., Song, Y., Wu, C., Ren, J., & Tan, G. (2019). Cooperative deep Q-learning with Q-value transfer for multi-intersection 

signal control. IEEE Access, 7, 40797-40809. 

48. Genders, W., and Razavi, S. (2016). Using a deep reinforcement learning agent for traffic signal control. arXiv preprint 

arXiv:1611.01142. 

49. Gong, Y., Abdel-Aty, M., Cai, Q., and Rahman, M. S. (2019). Decentralized network level adaptive signal control by multi-

agent deep reinforcement learning. Transportation Research Interdisciplinary Perspectives, 1, 100020. 

50. Grondman, I., Busoniu, L., Lopes, G. A., and Babuska, R. (2012). A survey of actor-critic reinforcement learning: Standard 

and natural policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(6), 

1291-1307. 



45 

 

51. Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman, S., Wang, K., Gonina, E., Harris, C., Vanhoucke, 

V. and Brevdo, E., 2018. TF-Agents: A library for reinforcement learning in tensorflow. 

52. Guo, S., Zhang, X., Zheng, Y., and Du, Y. (2020). An Autonomous Path Planning Model for Unmanned Ships Based on Deep 

Reinforcement Learning. Sensors, 20(2), 426. 

53. Ha-li, P., and Ke, D. (2017). An intersection signal control method based on deep reinforcement learning. In 2017 10th 

International Conference on Intelligent Computation Technology and Automation (ICICTA) (pp. 344-348). IEEE. 

54. Han, X., He, H., Wu, J., Peng, J., and Li, Y. (2019). Energy management based on reinforcement learning with double deep 

Q-learning for a hybrid electric tracked vehicle. Applied Energy, 254, 113708. 

55. Hausknecht, M., and Stone, P. (2015). Deep recurrent q-learning for partially observable mdps. In 2015 AAAI Fall Symposium 

Series. 

56. Haydari, A., & Yilmaz, Y. (2020). Deep reinforcement learning for intelligent transportation systems: A survey. IEEE 

Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2020.3008612. 

57. Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. (2015). Memory-based control with recurrent neural networks. arXiv 

preprint arXiv:1512.04455. 

58. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018). Deep reinforcement learning that matters. 

In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). 

59. Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2019). A survey and critique of multiagent deep reinforcement 

learning. Autonomous Agents and Multi-Agent Systems, 33(6), 750-797. 

60. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Dan, H., Quan, J., Sendonaris, A., Osband, I., Dulac-

Arnold, G., Agapiou, J., Leibo, J. Z., Gruslys, A. (2018). Deep q-learning from demonstrations. In Thirty-Second AAAI 

Conference on Artificial Intelligence. 

61. Hill, A., Raffin, A., Ernestus, M., Gleave, A., Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M. and 

Radford, A., 2018. Stable baselines. GitHub repository. 

62. Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. 

63. Hoel, C. J., Driggs-Campbell, K., Wolff, K., Laine, L., and Kochenderfer, M. (2019). Combining planning and deep 

reinforcement learning in tactical decision making for autonomous driving. IEEE Transactions on Intelligent Vehicles. 

64. Hoel, C. J., Wolff, K., and Laine, L. (2018). Automated speed and lane change decision making using deep reinforcement 

learning. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 2148-2155). IEEE. 

65. Hoffman, M., Shahriari, B., Aslanides, J., Barth-Maron, G., Behbahani, F., Norman, T., Abdolmaleki, A., Cassirer, A., Yang, 

F., Baumli, K. and Henderson, S. (2020). Acme: A Research Framework for Distributed Reinforcement Learning. arXiv 

preprint arXiv:2006.00979. 

66. Holler, J., Vuorio, R., Qin, Z., Tang, X., Jiao, Y., Jin, T., Singh, S., Wang, C. and Ye, J. (2019). Deep Reinforcement Learning 

for Multi-Driver Vehicle Dispatching and Repositioning Problem. arXiv preprint arXiv:1911.11260. 

67. Hu, Y., Li, W., Xu, K., Zahid, T., Qin, F., and Li, C. (2018). Energy management strategy for a hybrid electric vehicle based 

on deep reinforcement learning. Applied Sciences, 8(2), 187. 

68. Huegle, M., Kalweit, G., Mirchevska, B., Werling, M., and Boedecker, J. (2019). Dynamic Input for Deep Reinforcement 

Learning in Autonomous Driving. arXiv preprint arXiv:1907.10994. 

69. Huegle, M., Kalweit, G., Werling, M., & Boedecker, J. (2020). Dynamic interaction-aware scene understanding for 

reinforcement learning in autonomous driving. In 2020 IEEE International Conference on Robotics and Automation 

(ICRA) (pp. 4329-4335). IEEE. 

70. Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate 

shift. arXiv preprint arXiv:1502.03167. 

71. Isele, D., Rahimi, R., Cosgun, A., Subramanian, K., and Fujimura, K. (2018). Navigating occluded intersections with 

autonomous vehicles using deep reinforcement learning. In 2018 IEEE International Conference on Robotics and Automation 

(ICRA) (pp. 2034-2039). IEEE. 

72. Jiang, S., Chen, J., and Shen, M. (2019). An Interactive Lane Change Decision Making Model With Deep Reinforcement 

Learning. In 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA) (pp. 370-376). IEEE. 

73. Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., Jiao, Y., Tang, X., Wang, C., Wang, J. and Wu, G. (2019). Coride: joint 

order dispatching and fleet management for multi-scale ride-hailing platforms. In Proceedings of the 28th ACM International 

Conference on Information and Knowledge Management (pp. 1983-1992). 

74. Kashihara, K. (2017). Deep Q learning for traffic simulation in autonomous driving at a highway junction. In 2017 IEEE 

International Conference on Systems, Man, and Cybernetics (SMC) (pp. 984-988). IEEE. 

75. Ke, Z., Li, Z., Cao, Z., & Liu, P. (2020a). Enhancing Transferability of Deep Reinforcement Learning-Based Variable Speed 

Limit\endgraf Control Using Transfer Learning. IEEE Transactions on Intelligent Transportation Systems. 

76. Ke, J., Xiao, F., Yang, H., & Ye, J. (2020b). Learning to delay in ride-sourcing systems: a multi-agent deep reinforcement 

learning framework. IEEE Transactions on Knowledge and Data Engineering. 

77. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combinatorial optimization algorithms over graphs. 

In Advances in Neural Information Processing Systems (pp. 6348-6358). 



46 

 

78. Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A.A., Yogamani, S. and Pérez, P., (2021). Deep reinforcement 

learning for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems. DOI: 

10.1109/TITS.2021.3054625. 

79. Konda, V. R., and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural information processing systems (pp. 

1008-1014). 

80. Kool, W., Hoof, H. V., and Welling, M. (2018). Attention solves your TSP, approximately. Statistics, 1050, 22. 

81. Koutník, J., Cuccu, G., Schmidhuber, J., and Gomez, F. (2013). Evolving large-scale neural networks for vision-based 

reinforcement learning. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 1061-

1068). 

82. Kuhnle, A., Schaarschmidt, M., and Fricke, K. (2017). Tensorforce: a tensorflow library for applied reinforcement learning. 

Web page. 

83. Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical deep reinforcement learning: Integrating 

temporal abstraction and intrinsic motivation. In Advances in neural information processing systems (pp. 3675-3683). 

84. Kullman, N. D., Mendoza, J. E., Cousineau, M., and Goodson, J. C. (2019). Atari-fying the Vehicle Routing Problem with 

Stochastic Service Requests. arXiv preprint arXiv:1911.05922. 

85. Kullman, N., Cousineau, M., Goodson, J., and Mendoza, J. (2020). Dynamic Ridehailing with Electric Vehicles. INFORMS. 

86. Laurent, G. J., Matignon, L., and Fort-Piat, L. (2011). The world of independent learners is not Markovian. International 

Journal of Knowledge-based and Intelligent Engineering Systems, 15(1), 55-64. 

87. Layek, A., Vien, N. A., and Chung, T. (2017). Deep reinforcement learning algorithms for steering an underactuated ship. 

In 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) (pp. 602-607). 

IEEE 

88. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. 

89. Lee, J., Balakrishnan, A., Gaurav, A., Czarnecki, K., and Sedwards, S. (2019). Wisemove: A framework for safe deep 

reinforcement learning for autonomous driving. arXiv preprint arXiv:1902.04118. 

90. Li, C., and Czarnecki, K. (2019). Urban driving with multi-objective deep reinforcement learning. In Proceedings of the 18th 

International Conference on Autonomous Agents and MultiAgent Systems (pp. 359-367). International Foundation for 

Autonomous Agents and Multiagent Systems. 

91. Li, L., Lv, Y., and Wang, F. Y. (2016). Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of 

Automatica Sinica, 3(3), 247-254. 

92. Li, Y. (2018). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274. 

93. Li, Y., He, H., Khajepour, A., Wang, H., and Peng, J. (2019b). Energy management for a power-split hybrid electric bus via 

deep reinforcement learning with terrain information. Applied Energy, 255, 113762. 

94. Li, Y., He, H., Peng, J., and Wang, H. (2019a). Deep Reinforcement Learning-Based Energy Management for a Series Hybrid 

Electric Vehicle Enabled by History Cumulative Trip Information. IEEE Transactions on Vehicular Technology, 68(8), 7416-

7430. 

95. Li, Y., He, H., Peng, J., and Wu, J. (2018). Energy Management Strategy for a Series Hybrid Electric Vehicle Using Improved 

Deep Q-network Learning Algorithm with Prioritized Replay. DEStech Transactions on Environment, Energy and Earth 

Sciences, (iceee). 

96. Lian, R., Peng, J., Wu, Y., Tan, H., and Zhang, H. (2020). Rule-interposing deep reinforcement learning based energy 

management strategy for power-split hybrid electric vehicle. Energy, 117297. 

97. Liang, X., Du, X., Wang, G., and Han, Z. (2019). A deep reinforcement learning network for traffic light cycle control. IEEE 

Transactions on Vehicular Technology, 68(2), 1243-1253. 

98. Liang, E., Wen, K., Lam, W. H., Sumalee, A., & Zhong, R. (2021). An Integrated Reinforcement Learning and Centralized 

Programming Approach for Online Taxi Dispatching. IEEE Transactions on Neural Networks and Learning Systems. 

99. Liessner, R., Dietermann, A. M., and Bäker, B. (2018b). Safe deep reinforcement learning hybrid electric vehicle energy 

management. In International Conference on Agents and Artificial Intelligence (pp. 161-181). Springer, Cham. 

100. Liessner, R., Schmitt, J., Dietermann, A., and Bäker, B. (2019). Hyperparameter Optimization for Deep Reinforcement 

Learning in Vehicle Energy Management. In ICAART 2019. 

101. Liessner, R., Schroer, C., Dietermann, A. M., and Bäker, B. (2018a). Deep Reinforcement Learning for Advanced Energy 

Management of Hybrid Electric Vehicles. In ICAART (2) (pp. 61-72). 

102. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and Wierstra, D. (2015). Continuous control 

with deep reinforcement learning. arXiv preprint arXiv:1509.02971. 

103. Lin, K., Zhao, R., Xu, Z., & Zhou, J. (2018b). Efficient large-scale fleet management via multi-agent deep reinforcement 

learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 

1774-1783). 

104. Lin, Y., Dai, X., Li, L., & Wang, F. Y. (2018a). An efficient deep reinforcement learning model for urban traffic control. 

arXiv preprint arXiv:1808.01876. 



47 

 

105. Lin, Y., McPhee, J., and Azad, N. L. (2019). Longitudinal dynamic versus kinematic models for car-following control using 

deep reinforcement learning. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 1504-1510). IEEE. 

106. Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Proceedings of the 11th 

international conference on machine learning (pp. 157–163). New Brunswick, NJ, USA 

107. Littman, M. L. (2001). Value-function reinforcement learning in Markov games. Cognitive Systems Research, 2(1), 55–66 

108. Liu, M., Deng, J., Xu, M., Zhang, X., & Wang, W. (2017). Cooperative deep reinforcement learning for tra ic signal control. 

In The 7th International Workshop on Urban Computing (UrbComp 2018). 

109. Liu, X. Y., Ding, Z., Borst, S., & Walid, A. (2018). Deep reinforcement learning for intelligent transportation systems. arXiv 

preprint arXiv:1812.00979. 

110. Liu, Z., Li, J., & Wu, K. (2020). Context-Aware Taxi Dispatching at City-Scale Using Deep Reinforcement Learning. IEEE 

Transactions on Intelligent Transportation Systems. 

111. Makantasis, K., Kontorinaki, M., and Nikolos, I. (2019). A deep reinforcement learning driving policy for autonomous road 

vehicles. arXiv preprint arXiv:1905.09046.Martinsen, A. B., and Lekkas, A. M. (2018). Curved path following with deep 

reinforcement learning: Results from three vessel models. In OCEANS 2018 MTS/IEEE Charleston (pp. 1-8). IEEE. 

112. Mao, C., Liu, Y., & Shen, Z. J. M. (2020). Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning 

approach. Transportation Research Part C: Emerging Technologies, 115, 102626. 

113. Martinsen, A. B., & Lekkas, A. M. (2018, October). Curved path following with deep reinforcement learning: Results from 

three vessel models. In OCEANS 2018 MTS/IEEE Charleston (pp. 1-8). IEEE. 

114. Min, K., and Kim, H. (2018). Deep q learning based high level driving policy determination. In 2018 IEEE Intelligent Vehicles 

Symposium (IV) (pp. 226-231). IEEE. 

115. Mirchevska, B., Pek, C., Werling, M., Althoff, M., and Boedecker, J. (2018). High-level decision making for safe and 

reasonable autonomous lane changing using reinforcement learning. In 2018 21st International Conference on Intelligent 

Transportation Systems (ITSC) (pp. 2156-2162). IEEE. 

116. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D. and Kavukcuoglu, K. (2016). Asynchronous 

methods for deep reinforcement learning. In International conference on machine learning (pp. 1928-1937). 

117. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with 

deep reinforcement learning. arXiv preprint arXiv:1312.5602. 

118. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., 

Ostrovski, G. and Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533. 

119. Mousavi, S. S., Schukat, M., and Howley, E. (2017). Traffic light control using deep policy-gradient and value-function-based 

reinforcement learning. IET Intelligent Transport Systems, 11(7), 417-423. 

120. Mukadam, M., Cosgun, A., Nakhaei, A., and Fujimura, K. (2017). Tactical decision making for lane changing with deep 

reinforcement learning. Proceedings of the Conference on Neural Information Processing Systems (NIPS). 

121. Muresan, M., Fu, L., and Pan, G. (2019). Adaptive traffic signal control with deep reinforcement learning an exploratory 

investigation. arXiv preprint arXiv:1901.00960. 

122. Nageshrao, S., Tseng, H. E., and Filev, D. (2019). Autonomous highway driving using deep reinforcement learning. In 2019 

IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp. 2326-2331). IEEE. 

123. Nassef, O., Sequeira, L., Salam, E., & Mahmoodi, T. (2020, October). Deep Reinforcement Learning in Lane Merge 

Coordination for Connected Vehicles. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile 

Radio Communications (pp. 1-7). IEEE. 

124. Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. (2018). Reinforcement learning for solving the vehicle routing problem. 

In Advances in Neural Information Processing Systems (pp. 9839-9849). 

125. Nezafat, R. V. (2019). Deep Reinforcement Learning Approach for Lagrangian Control: Improving Freeway Bottleneck 

Throughput Via Variable Speed Limit. 

126. Ng, A. Y., and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In Icml (Vol. 1, p. 2). 

127. Ning, L., Li, Y., Zhou, M., Song, H., and Dong, H. (2019). A Deep Reinforcement Learning Approach to High-speed Train 

Timetable Rescheduling under Disturbances. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 3469-

3474). IEEE. 

128. Nishi, T., Doshi, P., and Prokhorov, D. (2019). Merging in congested freeway traffic using multipolicy decision making and 

passive actor-critic learning. IEEE Transactions on Intelligent Vehicles, 4(2), 287-297. 

129. Nishitani, I., Yang, H., Guo, R., Keshavamurthy, S., & Oguchi, K. (2020). Deep Merging: Vehicle Merging Controller Based 

on Deep Reinforcement Learning with Embedding Network. In 2020 IEEE International Conference on Robotics and 

Automation (ICRA) (pp. 216-221). IEEE. 

130. Noruzoliaee, M., and Zou, B. (2021). One-to-many matching and section-based formulation of autonomous ridesharing 

equilibrium. Under review. 

131. Noruzoliaee, M., Zou, B., and Liu, Y. (2018). Roads in transition: integrated modeling of a manufacturer-traveler-road 

infrastructure system in a mixed autonomous/human driving environment. Transportation Research Part C: Emerging 

Technologies, 90, 307-333. 



48 

 

132. Nosrati, M.S., Abolfathi, E.A., Elmahgiubi, M., Yadmellat, P., Luo, J., Zhang, Y., Yao, H., Zhang, H. and Jamil, A. (2018). 

Towards practical hierarchical reinforcement learning for multi-lane autonomous driving. 2018 NIPS MLITS Workshop, 

2018. 

133. Nowé, A., Vrancx, P., and De Hauwere, Y. M. (2012). Game theory and multi-agent reinforcement learning. In Reinforcement 

Learning (pp. 441-470). Springer, Berlin, Heidelberg. 

134. Obara, M., Kashiyama, T., and Sekimoto, Y. (2018). Deep Reinforcement Learning Approach for Train Rescheduling 

Utilizing Graph Theory. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 4525-4533). IEEE 

135. Oda, T., and Joe-Wong, C. (2018). MOVI: A model-free approach to dynamic fleet management. In IEEE INFOCOM 2018-

IEEE Conference on Computer Communications (pp. 2708-2716). IEEE. 

136. Oda, T., and Tachibana, Y. (2018). Distributed fleet control with maximum entropy deep reinforcement learning. 2018 NIPS 

MLITS Workshop, 2018. 

137. OpenAI. 2017.  OpenAI Baselines: ACKTR & A2C.   https://openai.com/blog/baselines-acktr-a2c/ 

138. Paden, B., Čáp, M., Yong, S. Z., Yershov, D., & Frazzoli, E. (2016). A survey of motion planning and control techniques for 

self-driving urban vehicles. IEEE Transactions on intelligent vehicles, 1(1), 33-55. 

139. Pandey, V., Wang, E., & Boyles, S. D. (2020). Deep reinforcement learning algorithm for dynamic pricing of express lanes 

with multiple access locations. Transportation Research Part C: Emerging Technologies, 119, 102715. 

140. Papageorgiou, M., Hadj-Salem, H., and Middelham, F. (1997). ALINEA local ramp metering: Summary of field 

results. Transportation research record, 1603(1), 90-98. 

141. Paxton, C., Raman, V., Hager, G. D., and Kobilarov, M. (2017). Combining neural networks and tree search for task and 

motion planning in challenging environments. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS) (pp. 6059-6066). IEEE. 

142. Peer, E., Menkovski, V., Zhang, Y., and Lee, W. J. (2018). Shunting trains with deep reinforcement learning. In 2018 ieee 

international conference on systems, man, and cybernetics (smc) (pp. 3063-3068). IEEE. 

143. Peng, B., Wang, J., and Zhang, Z. (2019). A Deep Reinforcement Learning Algorithm Using Dynamic Attention Model for 

Vehicle Routing Problems. In International Symposium on Intelligence Computation and Applications (pp. 636-650). 

Springer, Singapore. 

144. Plappert, M. (2016). Keras-rl. GitHub Repository. 

145. Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., and Barth, M. (2019). Deep reinforcement learning enabled self-learning control 

for energy efficient driving. Transportation Research Part C: Emerging Technologies, 99, 67-81. 

146. Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., and Barth, M. J. (2017). Deep reinforcement learning-based vehicle energy 

efficiency autonomous learning system. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 1228-1233). IEEE. 

147. Qin, Z., Tang, X., Jiao, Y., Zhang, F., Xu, Z., Zhu, H., & Ye, J. (2020). Ride-hailing order dispatching at DiDi via 

reinforcement learning. INFORMS Journal on Applied Analytics, 50(5), 272-286. 

148. Qu, X., Yu, Y., Zhou, M., Lin, C. T., and Wang, X. (2020). Jointly dampening traffic oscillations and improving energy 

consumption with electric, connected and automated vehicles: A reinforcement learning based approach. Applied 

Energy, 257, 114030. 

149. Rejaili, R. P. A., and Figueiredo, J. M. P. (2018). Deep reinforcement learning algorithms for ship navigation in restricted 

waters. Mecatrone, 3(1). 

150. Sabri, M. F. M., Danapalasingam, K. A., and Rahmat, M. F. (2016). A review on hybrid electric vehicles architecture and 

energy management strategies. Renewable and Sustainable Energy Reviews, 53, 1433-1442. 

151. Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2016). End-to-end deep reinforcement learning for lane keeping assist. 

arXiv preprint arXiv:1612.04340. 

152. Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017). Deep reinforcement learning framework for autonomous 

driving. Electronic Imaging, 2017(19), 70-76. 

153. Sawada, R. (2019). Automatic Collision Avoidance Using Deep Reinforcement Learning with Grid Sensor. In Symposium on 

Intelligent and Evolutionary Systems (pp. 17-32). Springer, Cham. 

154. Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv preprint arXiv:1511.05952.  

155. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms. arXiv 

preprint arXiv:1707.06347. 

156. Shabestary, S. M. A., & Abdulhai, B. (2018). Deep learning vs. discrete reinforcement learning for adaptive traffic signal 

control. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 286-293). IEEE. 

157. Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-agent, reinforcement learning for autonomous driving. 

arXiv preprint arXiv:1610.03295. 

158. Sharifzadeh, S., Chiotellis, I., Triebel, R., and Cremers, D. (2016). Learning to drive using inverse reinforcement learning and 

deep q-networks. arXiv preprint arXiv:1612.03653. 

159. Shen, H., Hashimoto, H., Matsuda, A., Taniguchi, Y., Terada, D., and Guo, C. (2019). Automatic collision avoidance of 

multiple ships based on deep Q-learning. Applied Ocean Research, 86, 268-288. 



49 

 

160. Shen, Y., Zhao, N., Xia, M., and Du, X. (2017). A deep q-learning network for ship stowage planning problem. Polish 

Maritime Research, 24(s3), 102-109. 

161. Shi, D., Ding, J., Errapotu, S. M., Yue, H., Xu, W., Zhou, X., and Pan, M. (2019b). Deep Q -Network-Based Route Scheduling 

for TNC Vehicles With Passengers’ Location Differential Privacy. IEEE Internet of Things Journal, 6(5), 7681-7692. 

162. Shi, S., & Chen, F. (2018). Deep Recurrent Q-learning Method for Area Traffic Coordination Control. Journal of Advances 

in Mathematics and Computer Science, 1-11. 

163. Shi, T., Wang, P., Cheng, X., Chan, C. Y., and Huang, D. (2019a). Driving Decision and Control for Automated Lane Change 

Behavior based on Deep Reinforcement Learning. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 

2895-2900). IEEE. 

164. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., 

Panneershelvam, V., Lanctot, M. and Dieleman, S. (2016). Mastering the game of Go with deep neural networks and tree 

search. nature, 529(7587), 484. 

165. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic policy gradient algorithms. 

166. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. 

and Chen, Y. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354-359. 

167. Singh, A., Al-Abbasi, A., and Aggarwal, V. (2019). A reinforcement learning based algorithm for multi-hop ride-sharing: 

Model-free approach. In Neural Information Processing Systems (Neurips) Workshop. 

168. Stadie, B. C., Abbeel, P., and Sutskever, I. (2017). Third-person imitation learning. arXiv preprint arXiv:1703.01703. 

169. Stooke, A., and Abbeel, P. (2019). rlpyt: A research code base for deep reinforcement learning in pytorch. arXiv preprint 

arXiv:1909.01500. 

170. Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in 

reinforcement learning. Artificial intelligence, 112(1-2), 181-211. 

171. Talpaert, V., Sobh, I., Kiran, B. R., Mannion, P., Yogamani, S., El-Sallab, A., and Perez, P. (2019). Exploring applications of 

deep reinforcement learning for real-world autonomous driving systems. arXiv preprint arXiv:1901.01536. 

172. Tan, H., Zhang, H., Peng, J., Jiang, Z., and Wu, Y. (2019). Energy management of hybrid electric bus based on deep 

reinforcement learning in continuous state and action space. Energy Conversion and Management, 195, 548-560. 

173. Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth 

international conference on machine learning (pp. 330-337). 

174. Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., and Wang, J. (2019). Cooperative deep reinforcement learning for large-scale 

traffic grid signal control. IEEE transactions on cybernetics. 

175. Tang, X., Qin, Z., Zhang, F., Wang, Z., Xu, Z., Ma, Y., Zhu, H. and Ye, J., (2019). A deep value-network based approach for 

multi-driver order dispatching. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery 

& data mining (pp. 1780-1790). 

176. Van der Pol, E., and Oliehoek, F. A. (2016). Coordinated deep reinforcement learners for traffic light control. Proceedings of 

Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016). 

177. Van Hasselt, H.  (2010). Double Q-learning. In Advances in neural information processing systems (pp. 2613-2621). 

178. Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-learning. In Thirtieth AAAI 

conference on artificial intelligence. 

179. Vezhnevets, A., Mnih, V., Osindero, S., Graves, A., Vinyals, O., and Agapiou, J. (2016). Strategic attentive writer for learning 

macro-actions. In Advances in neural information processing systems (pp. 3486-3494). 

180. Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and Kavukcuoglu, K. (2017). Feudal networks 

for hierarchical reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 

70 (pp. 3540-3549). JMLR. org. 

181. Vinitsky, E., Kreidieh, A., Le Flem, L., Kheterpal, N., Jang, K., Wu, C., Wu, F., Liaw, R., Liang, E. and Bayen, A.M. (2018b). 

Benchmarks for reinforcement learning in mixed-autonomy traffic. In Conference on Robot Learning (pp. 399-409). 

182. Vinitsky, E., Parvate, K., Kreidieh, A., Wu, C., and Bayen, A. (2018a). Lagrangian control through deep-rl: Applications to 

bottleneck decongestion. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 759-765). 

IEEE. 

183. Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in neural information processing systems 

(pp. 2692-2700). 

184. Wan, C. H., and Hwang, M. C. (2018). Value-based deep reinforcement learning for adaptive isolated intersection signal 

control. IET Intelligent Transport Systems, 12(9), 1005-1010. 

185. Wang, C., Zhang, X., Cong, L., Li, J., and Zhang, J. (2019g). Research on intelligent collision avoidance decision-making of 

unmanned ship in unknown environments. Evolving Systems, 10(4), 649-658. 

186. Wang, G., Hu, J., Li, Z., and Li, L. (2019a). Cooperative Lane Changing via Deep Reinforcement Learning. arXiv preprint 

arXiv:1906.08662. 

187. Wang, J., & Sun, L. (2020). Dynamic holding control to avoid bus bunching: A multi-agent deep reinforcement learning 

framework. Transportation Research Part C: Emerging Technologies, 116, 102661. 



50 

 

188. Wang, J., Zhang, Q., Zhao, D., and Chen, Y. (2019c). Lane Change Decision-making through Deep Reinforcement Learning 

with Rule-based Constraints. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE.  

189. Wang, P., and Chan, C. Y. (2017). Formulation of deep reinforcement learning architecture toward autonomous driving for 

on-ramp merge. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1-6). IEEE. 

190. Wang, P., and Chan, C. Y. (2018). Autonomous ramp merge maneuver based on reinforcement learning with continuous 

action space. arXiv preprint arXiv:1803.09203. 

191. Wang, P., Chan, C. Y., and de La Fortelle, A. (2018a). A reinforcement learning based approach for automated lane change 

maneuvers. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 1379-1384). IEEE. 

192. Wang, P., Chan, C. Y., and Li, H. (2019b). Automated Driving Maneuvers under Interactive Environment based on Deep 

Reinforcement Learning. Accepted at the 98th Annual Meeting of the Transportation Research Board (TRB). 

193. Wang, P., Li, Y., Shekhar, S., and Northrop, W. F. (2019d). Actor-Critic based Deep Reinforcement Learning Framework for 

Energy Management of Extended Range Electric Delivery Vehicles. In 2019 IEEE/ASME International Conference on 

Advanced Intelligent Mechatronics (AIM) (pp. 1379-1384). IEEE. 

194. Wang, P., Li, Y., Shekhar, S., and Northrop, W. F. (2019e). A deep reinforcement learning framework for energy management 

of extended range electric delivery vehicles. In 2019 IEEE Intelligent Vehicles Symposium (IV) (pp. 1837-1842). IEEE. 

195. Wang, P., Liu, D., Chen, J., Li, H., and Chan, C. Y. (2020). Human-like Decision Making for Autonomous Driving via 

Adversarial Inverse Reinforcement Learning. arXiv, arXiv-1911. 

196. Wang, R., Zhou, M., Li, Y., Zhang, Q., and Dong, H. (2019f). A Timetable Rescheduling Approach for Railway based on 

Monte Carlo Tree Search. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (pp. 3738-3743). IEEE. 

197. Wang, S., Jia, D., and Weng, X. (2018b). Deep reinforcement learning for autonomous driving. arXiv preprint 

arXiv:1811.11329. 

198. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. (2016). Dueling network architectures for 

deep reinforcement learning. arXiv preprint arXiv:1511.06581. 

199. Wang, Z., Qin, Z., Tang, X., Ye, J., & Zhu, H. (2018c). Deep reinforcement learning with knowledge transfer for online rides 

order dispatching. In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 617-626). IEEE. 

200. Wen, J., Zhao, J., and Jaillet, P. (2017). Rebalancing shared mobility-on-demand systems: A reinforcement learning approach. 

In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 220-225). IEEE. 

201. Weng, L. (2020). A (Long) Peek into Reinforcement Learning. https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-

into-reinforcement-learning.html 

202. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine 

learning, 8(3-4), 229-256. 

203. Williams, R. J., and Peng, J. (1991). Function optimization using connectionist reinforcement learning algorithms. Connection 

Science, 3(3), 241-268. 

204. Wolf, P., Kurzer, K., Wingert, T., Kuhnt, F., and Zollner, J. M. (2018). Adaptive behavior generation for autonomous driving 

using deep reinforcement learning with compact semantic states. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 993-

1000). IEEE. 

205. Woo, J., Yu, C., and Kim, N. (2019). Deep reinforcement learning-based controller for path following of an unmanned surface 

vehicle. Ocean Engineering, 183, 155-166. 

206. Wu, C., Parvate, K., Kheterpal, N., Dickstein, L., Mehta, A., Vinitsky, E., and Bayen, A. M. (2017). Framework for control 

and deep reinforcement learning in traffic. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems 

(ITSC) (pp. 1-8). IEEE. 

207. Wu, J., He, H., Peng, J., Li, Y., & Li, Z. (2018). Continuous reinforcement learning of energy management with deep Q 

network for a power split hybrid electric bus. Applied energy, 222, 799-811. 

208. Wu, J., He, H., Peng, J., Li, Y., and Li, Z. (2018). Continuous reinforcement learning of energy management with deep Q 

network for a power split hybrid electric bus. Applied energy, 222, 799-811. 

209. Wu, Y., Tan, H., Peng, J., and Ran, B. (2019a). A Deep Reinforcement Learning Based Car Following Model for Electric 

Vehicle. 智能城市应用, 2(5). 

210. Wu, Y., Tan, H., Peng, J., Zhang, H., and He, H. (2019b). Deep reinforcement learning of energy management with continuous 

control strategy and traffic information for a series-parallel plug-in hybrid electric bus. Applied energy, 247, 454-466. 

211. Wu, Y., Tan, H., Qin, L., & Ran, B. (2020). Differential variable speed limits control for freeway recurrent bottlenecks via 

deep actor-critic algorithm. Transportation  research part C: emerging technologies, 117, 102649.  

212. Wulfmeier, M., Ondruska, P., and Posner, I. (2015). Maximum entropy deep inverse reinforcement learning. arXiv preprint 

arXiv:1507.04888. 

213. Xu, Z., Tang, C., and Tomizuka, M. (2018). Zero-shot deep reinforcement learning driving policy transfer for autonomous 

vehicles based on robust control. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 

2865-2871). IEEE. 

214. Yang, G., Zhang, F., Gong, C., and Zhang, S. (2019). Application of a Deep Deterministic Policy Gradient Algorithm for 

Energy-Aimed Timetable Rescheduling Problem. Energies, 12(18), 3461. 



51 

 

215. Ye, F., Cheng, X., Wang, P., and Chan, C. Y. (2020). Automated Lane Change Strategy using Proximal Policy Optimization-

based Deep Reinforcement Learning. arXiv preprint arXiv:2002.02667. 

216. Ye, Y., Zhang, X., and Sun, J. (2019). Automated vehicle’s behavior decision making using deep reinforcement learning and 

high-fidelity simulation environment. Transportation Research Part C: Emerging Technologies, 107, 155-170. 

217. Yi, H. (2018). Deep deterministic policy gradient for autonomous vehicle driving. In Proceedings on the International 

Conference on Artificial Intelligence (ICAI) (pp. 191-194). The Steering Committee of The World Congress in Computer 

Science, Computer Engineering and Applied Computing (WorldComp). 

218. Ying, C. S., Chow, A. H., & Chin, K. S. (2020). An actor-critic deep reinforcement learning approach for metro train 

scheduling with rolling stock circulation under stochastic demand. Transportation Research Part B: Methodological, 140, 210-

235. 

219. You, C., Lu, J., Filev, D., and Tsiotras, P. (2019). Advanced planning for autonomous vehicles using reinforcement learning 

and deep inverse reinforcement learning. Robotics and Autonomous Systems, 114, 1-18. 

220. Yu, J. J. Q., Yu, W., and Gu, J. (2019). Online vehicle routing with neural combinatorial optimization and deep reinforcement 

learning. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3806-3817. 

221. Yu, L., Shao, X., Wei, Y., and Zhou, K. (2018). Intelligent land-vehicle model transfer trajectory planning method based on 

deep reinforcement learning. Sensors, 18(9), 2905. 

222. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017). Deep sets. In Advances 

in neural information processing systems (pp. 3391-3401). 

223. Zhang, K., Li, M., Zhang, Z., Lin, X., and He, F. (2020). Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-

Agent Reinforcement Learning Approach. arXiv preprint arXiv:2002.05513. 

224. Zhang, Q. S., and Zhu, S. C. (2018). Visual interpretability for deep learning: a survey. Frontiers of Information Technology 

and Electronic Engineering, 19(1), 27-39. 

225. Zhang, S., Peng, H., Nageshrao, S., and Tseng, E. (2019). Discretionary Lane Change Decision Making using Reinforcement 

Learning with Model-Based Exploration. In 2019 18th IEEE International Conference On Machine Learning And 

Applications (ICMLA) (pp. 844-850). IEEE. 

226. Zhang, X., Wang, C., Liu, Y., and Chen, X. (2019). Decision-making for the autonomous navigation of maritime autonomous 

surface ships based on scene division and deep reinforcement learning. Sensors, 19(18), 4055. 

227. Zhang, Z., Yang, J., and Zha, H. (2019). Integrating independent and centralized multi-agent reinforcement learning for traffic 

signal network optimization. arXiv preprint arXiv:1909.10651. 

228. Zhao, J., Mao, M., Zhao, X., & Zou, J. (2020). A hybrid of deep reinforcement learning and local search for the vehicle routing 

problems. IEEE Transactions on Intelligent Transportation Systems. 

229. Zhao, L., and Roh, M. I. (2019). COLREGs-compliant multiship collision avoidance based on deep reinforcement learning. 

Ocean Engineering, 191, 106436. 

230. Zhao, L., Roh, M. I., and Lee, S. J. (2019). Control method for path following and collision avoidance of autonomous ship 

based on deep reinforcement learning. Journal of Marine Science and Technology, 27(4), 293-310. 

231. Zhao, P., Wang, Y., Chang, N., Zhu, Q., and Lin, X. (2018). A deep reinforcement learning framework for optimizing fuel 

economy of hybrid electric vehicles. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 

196-202). IEEE. 

232. Zhou, M., Yu, Y., and Qu, X. (2019a). Development of an efficient driving strategy for connected and automated vehicles at 

signalized intersections: A reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems. 

233. Zhou, M., Jin, J., Zhang, W., Qin, Z., Jiao, Y., Wang, C., Wu, G., Yu, Y. and Ye, J. (2019b). Multi-agent reinforcement 

learning for order-dispatching via order-vehicle distribution matching. In Proceedings of the 28th ACM International 

Conference on Information and Knowledge Management (pp. 2645-2653). 

234. Zhou, R., and Song, S. (2018). Optimal automatic train operation via deep reinforcement learning. In 2018 Tenth International 

Conference on Advanced Computational Intelligence (ICACI) (pp. 103-108). IEEE. 

235. Zhou, R., Song, S., Xue, A., You, K., and Wu, H. (2020). Smart Train Operation Algorithms based on Expert Knowledge and 

Reinforcement Learning. arXiv preprint arXiv:2003.03327. 

236. Zhu, L., He, Y., Yu, F. R., Ning, B., Tang, T., and Zhao, N. (2017). Communication-based train control system performance 

optimization using deep reinforcement learning. IEEE Transactions on Vehicular Technology, 66(12), 10705-10717. 

237. Zhu, M., Wang, X., and Wang, Y. (2018). Human-like autonomous car-following model with deep reinforcement 

learning. Transportation research part C: emerging technologies, 97, 348-368. 

238. Zhu, M., Wang, Y., Pu, Z., Hu, J., Wang, X., and Ke, R. (2019). Safe, Efficient, and Comfortable Velocity Control based on 

Reinforcement Learning for Autonomous Driving. arXiv preprint arXiv:1902.00089. 

239. Zou, B., Choobchian, P., and Rozenberg, J. (2021). Cyber resilience of autonomous mobility systems: Cyber-attacks and 

resilience-enhancing strategies. Journal of Transportation Security, in press. DOI: https://doi.org/10.1007/s12198-021-00230-

w.  

https://doi.org/10.1007/s12198-021-00230-w
https://doi.org/10.1007/s12198-021-00230-w

