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Abstract: Despite the rapid growth of online shopping and research interest in the relationship between 10 

online and in-store shopping, national-level modeling and investigation of the demand for online shopping 11 

with a prediction focus remain limited in the literature. This paper differs from prior work and leverages 12 

two recent releases of the U.S. National Household Travel Survey (NHTS) data for 2009 and 2017 to 13 

develop machine learning (ML) models, specifically gradient boosting machine (GBM), for predicting 14 

household-level online shopping purchases. The NHTS data allow for not only conducting nationwide 15 

investigation but also at the level of households, which is more appropriate than at the individual level given 16 

the connected consumption and shopping needs of members in a household. We follow a systematic 17 

procedure for model development including employing Recursive Feature Elimination algorithm to select 18 

input variables (features) in order to reduce the risk of model overfitting and increase model explainability. 19 

Among several ML models, GBM is found to yield the best prediction accuracy. Extensive post-modeling 20 

investigation is conducted in a comparative manner between 2009 and 2017, including quantifying the 21 

importance of each input variable in predicting online shopping demand, and characterizing value-22 

dependent relationships between demand and the input variables. In doing so, two latest advances in 23 

machine learning techniques, namely Shapley value-based feature importance and Accumulated Local 24 

Effects plots, are adopted to overcome inherent drawbacks of the popular techniques in current ML 25 

modeling. The modeling and investigation are performed at the national level, with a number of findings 26 

obtained. The models developed and insights gained can be used for online shopping-related freight demand 27 

generation and may also be considered for evaluating the potential impact of relevant policies on online 28 

shopping demand. 29 
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1 Introduction 58 

Demand for online shopping is rapidly growing. In the U.S., between 2018 and 2019 the number of 59 

online transactions has increased by $76.46 billion, from $523.64 to $600.10 billion. In 2020, U.S. 60 

consumers were projected to spend $794.5 billion online, for which part of the growth is due to COVID-19  61 

(Intelligence 2020). The rapid growth of online shopping has profound impacts on transportation. First, 62 

online shopping may substitute, complement, or modify personal travel to stores (Mokhtarian 2002; Cao 63 

2009; Shi et al. 2019) and thus have implications for changing personal vehicle miles traveled (VMT). For 64 

example, one stream of research argues that reduction in personal VMT as a result of online shopping can 65 

be important in low-density areas where travel for shopping takes long distance (e.g., Farag et al. 2003; 66 

Goodchild and Wygonik 2015). An earlier study in the UK estimates that a direct substitution of car trips 67 

by delivery van trips could reduce vehicle-km by 70% or more (Cairns 2005). Yet another stream of 68 

research supports a complementary effect, i.e., people frequently buying or searching online tend to make 69 

more shopping trips (e.g., Cao 2012; Zhou and Wang 2014; Lee et al. 2017). On the other hand, the increase 70 

in truck/van traffic for goods deliveries as a result of online shopping growth has raised many concerns, 71 

causing greater traffic congestion, shortage in freight parking space, and aggravated road wear-and-tear, 72 

particularly in dense urban areas where online shopping demand is high (Crainic et al 2004; Bates et al. 73 

2018; Jaller and Pahwa 2020).  74 

Delivery of online shopped goods also presents significant contributions to CO2 emissions and climate 75 

change. In the European Union, for example, urban freight delivery accounts for 25% in the total 76 

transportation-related CO2 emissions (Nocera and Cavallaro 2017). Yet, on the other hand, online shopping 77 

is perceived to be environmentally friendlier than traditional means of customers traveling to and shopping 78 

in stores. Brown and Guiffrida (2014) show that CO2 emissions of last-mile delivery derived from online 79 

shopping is lower than CO2 emissions of personal shopping trips to stores, if an area has sufficient 80 

customers. Rosqvist and Hiselius (2016) find that in Sweden, the anticipated increase in online shopping 81 

activities could result in 22% reduction in CO2 emissions in 2030 compared to 2012, even after taking into 82 

account population growth. 83 

To meet the increasing delivery requirements from online shopping – in both volume and delivery 84 

speed, logistics service providers have been rethinking and renovating logistics strategies, such as relocating 85 

warehouses and expanding the network of distribution centers (Houde et al. 2017; Rodrigue 2020), 86 

employing crowdshipping (Kafle et al. 2017; Hong et al. 2019; Ahamed et al., 2021), and testing drones 87 

for contactless delivery (Chiang et al. 2019; Kim et al. 2020). Freight demand derived from online shopping 88 

is exerting increasing influences on the planning and operation of freight transportation systems. As such, 89 

the ability to predict online shopping demand is important to designing ways to maintain and enhance the 90 

performance of freight and overall transportation systems. Moreover, understanding the importance of the 91 
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input variables used for prediction, and the nature of the dependence of online shopping demand on values 92 

of input variables is critical in informing transportation planning and policy-making.  93 

While a body of research has appeared toward understanding online shopping behavior (see Section 2 94 

for a review of the literature), some important gaps remain. First, most of the existing studies focus on the 95 

interactive relationship between online and in-store shopping with ample but diverse empirical evidences 96 

(Shi et al. 2019). However, the ability to predict the volume of online shopping with reasonable accuracy 97 

has not attracted much attention despite its practical importance for transportation planning. Almost all 98 

existing research resorts to econometric or statistical models. Based on the reported goodness-of-fit, many 99 

of those models would not be adequate for online shopping demand prediction purposes (although 100 

prediction is not the main intent of those models). Second, the vast majority of the existing work relies on 101 

relatively small and local data samples, lacking a broader understanding of demand pattern from a national 102 

perspective. On the other hand, thanks to the recent release of online shopping information in national-level 103 

databases, we can build models to learn, on a national scale, how online shopping demand and its 104 

influencing factors have evolved over time and vary in different locations.  105 

In addition, as most data in the existing work come from surveys of individuals, research related to 106 

modeling online shopping demand from the household perspective is insufficient, which should be 107 

emphasized as it may be more appropriate than at the individual level because online purchases are often 108 

made for the needs of the household. Online shopping involves both items consumed by the individual who 109 

made the purchase and items consumed collectively by the household and by other members of the 110 

household. Items consumed collectively by a household can include grocery, furniture, home appliance, 111 

and electronics products (e.g., a TV). For example, in 2017 furniture and homeware sales accounted for 112 

14.64% in total e-retail sales in the US (Statista 2021). For items purchased by an individual for another 113 

household member, it can be that parents shop for children (e.g., school supplies) and elderly parents helped 114 

by their adult sons and daughters (Selwyn et al. 2016). Given these considerations, modeling online 115 

shopping at the household level seems more appropriate.  116 

This research attempts to fill the above gaps. The contributions of this work are two-folds: empirical 117 

and methodological. On the empirical side, this paper leverages two most recent releases of the U.S. 118 

National Household Travel Survey (NHTS) – for 2009 and 2017 – to develop machine learning (ML) 119 

models for predicting household-level online shopping purchases with input variables encompassing 120 

socioeconomic, trip, and land use characteristics and Internet use of household members. We are 121 

particularly interested in one type of ML models, gradient boosting machine (GBM), which has several 122 

strengths (Friedman 2001; Elith et al. 2008; Ding et al. 2018, Barua and Zou 2021) and shows superior 123 

prediction performance in comparison with several alternative prediction techniques for the purpose of the 124 

study. After the GBM models are trained, validated, and tested, we further investigate the modeling results 125 
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by 1) quantifying the importance (i.e., contribution) of each input variable in the models in predicting online 126 

shopping demand; and 2) characterizing the relationships between predicted online shopping demand and 127 

the input variables. Unlike the existing econometric/statistical approaches which rely on pre-defined model 128 

specifications (e.g., linear), our characterization is purely data-driven thus allowing the relationships to vary 129 

with input variable values. Results from the investigation are compared between 2009 and 2017, a period 130 

in which online shopping has experienced an unprecedent growth, to shed lights on the changes and trends 131 

of the factors influencing household online shopping demand.  132 

The contributions also come from the methodological perspective. First, given a large pool of 133 

candidate input variables, a systematic procedure for input variable selection based on Recursive Feature 134 

Elimination algorithm is employed to reduce the risk of model overfitting and increase model explainability. 135 

Second, in quantifying the importance of each input variables, a recently developed method termed Shapley 136 

value-based feature importance (Lundberg and Lee 2017) is adopted to address possible quantification bias 137 

in importance among input variables of different types. Third, instead of using partial dependence plots, a 138 

prevalent method for characterizing the relationships between response and input variables which can be 139 

problematic when input variables are correlated, we employ a new approach called Accumulated Local 140 

Effects plots developed by Apley and Zhu (2020) that explicitly accounts for the presence of correlation of 141 

input variables and is also computationally less expensive.   142 

The remainder of the paper proceeds as follows. Section 2 reviews the relevant literature of online 143 

shopping. GBM model development is presented in Sections 3, followed by a description of the data used 144 

in the study in Section 4. Section 5 describes model implementation. Section 6 performs post-modeling 145 

analysis, including quantifying the importance of the input variables and the relationships between the input 146 

and response variables. Finally, Section 7 concludes and suggests directions for future research. 147 

2 Literature Review 148 

Our review of the literature is organized based on the data used: 1) dedicated survey data for local 149 

areas; 2) data as part of a larger travel survey for a metropolitan area; and 3) national-level data. Most of 150 

the studies on online shopping behavior are conducted using dedicated surveys conducted at specific 151 

locations. Farag et al. (2005) collect a data sample of 826 respondents from four municipalities in the 152 

Netherlands to investigate the effects of gender, age, income, land use characteristics, and car ownership 153 

on the relationship among frequencies of online searching, online buying, and nondaily shopping trips. Path 154 

analysis is conducted. The study is extended by Farag et al. (2007) in which structural equation modeling 155 

(SEM) is used. Using data of 392 Internet users from the Columbus metropolitan area in Ohio, Ren and 156 

Kwan (2009) estimate a negative binomial and a linear regression model to reexamine the effects of 157 

accessibility to local shops and the residential context on the adoption of e-shopping and the frequency of 158 
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buying online. Age, gender, work hours, income, education, adult percentage in the household, Internet use, 159 

race, local population density, and shopping opportunity are included as input variables. Weltevreden and 160 

Rietbergen (2007) study the impact of online shopping on in-store shopping based on a dataset of 3,074 161 

Internet users who shop at eight city centers in the Netherlands. The authors use multinomial regression 162 

and binomial logistic regression models and find that age, owning a credit card, Internet access and use, 163 

and car accessibility value at city centers have significant effects on online shopping. Using data of 539 164 

adult Internet users in the Minneapolis-St. Paul metropolitan area, Cao et al. (2012) investigate the effects 165 

of age, the number of vehicles in the household, gender, driving license, income, education, occupation, 166 

and employment status on online shopping. It is found that online searching frequency has positive impacts 167 

on both online and in-store shopping frequencies and online buying positively affects in-store shopping. 168 

For further reviews of the earlier studies, readers may refer to Cao (2009). 169 

Among the more recent research, Lee et al. (2017) use survey data from more than 2,000 residents in 170 

Davis, California to explore the effect of personal characteristics, attitudes, perceptions, and the built 171 

environment on the frequency of shopping online within three distinct shopping settings. Both univariate 172 

ordered response models and pairwise copula-based ordered response models are estimated. The authors 173 

find a complementary relationship between online and in-store shopping, even after controlling for 174 

demographic variables and attitudes. Using 952 Internet users from two cities in northern California, Zhai 175 

et al. (2017) examine the interactions between e-shopping and store-shopping for search goods (books) and 176 

experience goods (clothing). The authors find that, among other things, clothing is more likely than books 177 

to be associated with store visiting for Internet users. Maat and Konings (2018) investigate whether 178 

innovation diffusion or accessibility gains drive the replacement of physical shopping by online shopping, 179 

by estimating fractional logit models based on a survey of 534 respondents in Leiden, the Netherlands. 180 

Focusing on e-shopping behavior in China, Ding and Lu (2017) use a data sample of 791 respondents from 181 

a GPS-based activity travel diary in the Shangdi area of Beijing and develop SEM to investigate the 182 

relationships between online shopping, in-store shopping, and other dimensions of activity travel behavior. 183 

Similarly, SEM is performed to examine the interaction between e-shopping and in-store shopping using a 184 

data sample of 1,032 respondents in the city of Nanjing (Xi et al. 2020). Shi et al. (2019) perform regression 185 

analysis using data from interviews with 710 respondents in Chengdu. It is found that e-shopping behavior 186 

is significantly affected by sociodemographics, Internet experience, car ownership, and location factors. In 187 

addition, the results suggest that e-shopping has a substitution effect on the frequency of shopping trips. 188 

The association of spatial attributes with e-shopping is studied in Zhen et al. (2018). 189 

As online shopping is gaining increasing popularity, online shopping information has been 190 

incorporated into metropolitan area travel surveys. The use of the information for understanding online 191 

shopping behavior is explored by several researchers. Ferrell (2004; 2005) use the San Francisco Bay Area 192 
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Travel Survey 2000 data to investigate the relationship between home-based teleshopping and shopping 193 

travel. In Ferrell (2004), the relationship between travel behavior (number of trips, travel distance, and trip 194 

chaining) and home-based teleshopping is explored using linear regression. In Ferrell (2005), the impacts 195 

of age, car availability, household income, Internet, homeownership, driving license, education, and health 196 

condition of an individual on home-based teleshopping are explored by using SEM. Dias et al. (2020) use 197 

the 2017 Puget Sound Household Travel Survey data to explore the relationship between online and in-198 

person engagement in the shopping domain while distinguishing between shopping for non-grocery goods, 199 

grocery goods, and ready-to-eat meals. The effects of the number of adults, employment status, population 200 

density, household tenure, household type, vehicle availability, and household income on household-level 201 

online shopping are explored. 202 

As mentioned in Section 1, due to the scarcity of data and perhaps also unawareness among researchers 203 

of the online shopping-related information that has been added to national data sources, national-level 204 

research of online shopping behavior remains more limited than studies using dedicated local surveys or 205 

metropolitan area travel surveys reviewed above. We are aware of four studies in which national-level 206 

datasets are used. Three of them relate to the NHTS data. Zhou and Wang (2014) explore the relationship 207 

between online shopping and shopping trips by analyzing the travel pattern-related variables (number of 208 

shopping trips, total number of trips, average travel time, gas price) from the 2009 NHTS data. Using the 209 

same dataset, Wang and Zhou (2015) develop a binary choice model and a censored negative binomial 210 

model to investigate the effects of the Internet, education, age, gender, race, household size, number of 211 

household vehicles, home type, population density, rural, and urban size on home delivery frequency. 212 

Ramirez (2019) performs negative binomial regression using the 2017 NHTS data to explore the impacts 213 

of gender, age, household income, race, education, job category, urban/rural, and the number of drivers in 214 

the household on online shopping demand. Besides NHTS data, another national-level data source is the 215 

2016 American Time Use Survey, which is used in Jaller and Pahwa (2020) to investigate the environmental 216 

impacts of online shopping. Factors including gender, age, education, employment status, household 217 

income, population density, and season are considered to understand their effect on online shopping 218 

decisions.  219 

Table 1 summarizes the above reviewed studies with a U.S. focus, given that our interest in this paper 220 

is in U.S. online shopping. In the table, we present the data sources, sample types, modeling techniques, 221 

and the relationships found. It can be seen that there is no consensus on the input variable choice among 222 

these studies. In general, variables related to income, Internet use, gender, education, shopping trips, and 223 

living in urban vs. rural areas are frequently used. Household size, vehicle ownership, home ownership, 224 

population density, age, and having children are also considered in some studies. These studies provide a 225 

starting point for determining what could be the relevant input variables in our study.  226 
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All these studies in Table 1 resort to econometric or statistical modeling. Many focus on the 227 

relationship between online shopping and in-store shopping, whereas the ability to predict online shopping 228 

demand with reasonable accuracy has not been paid attention to despite its importance for transportation 229 

planning. In addition, while econometric/statistical modeling techniques often give an estimate of the effect 230 

of an input variable as a single number, the effect could vary by the value of the input variable. The 231 

constrained, single number-based effect estimates in turn limit the ability of the models to serve demand 232 

prediction purposes. Also, as online shopping is continuously developing, there is a need but no research 233 

for understanding the evolving influence of different input variables on online shopping over time at the 234 

national as well as local levels. By leveraging ML and some of its latest advances, our research tries to fill 235 

these gaps. 236 
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Table 1 Summary of reviewed U.S.-based online shopping studies 237 

Studies Data source Sample type Modeling technique Relationships found 
Ren and Kwan (2009) Survey data from the 

Columbus metropolitan area 
Individual Negative binomial and linear 

regression 
Accessibility to shopping center (-), white race (+), 
history of Internet use (+), number of shopping trips (+) 

Cao et al. (2012) Survey data from the 
Minneapolis-St. Paul 
metropolitan area 

Individual SEM Income (+), education (+), living in urban areas (+), 
frequency of Internet use (+), intrinsic affection toward 
shopping (+) 

Lee et al. (2017) Survey data from Davis, 
California 

Individual Copula model Income (+), Internet use while traveling (+), car 
availability (-), homemaker (+), attitude towards 
technology (+) 

Zhai et al. (2017) Survey data from northern 
California 

Individual Binary logit  Time on Internet for personal use (+), years in using 
Internet (+), information search to review a product on 
Internet (+), proximity to store (-), female (+)  

Ferrell (2005) 2000 San Francisco Bay Area 
Travel Survey 

Individual SEM Number of shopping trips (-), amount of time spent in 
home (+), time starved female (+), shop accessibility 
(+), income (+) 

Dias et al. (2020) 2017 Puget Sound Household 
Travel Survey 

Household Ordered Probit model Income (+), living in urban areas (+), frequency of in-
store grocery shopping trips (-), frequency of in-store 
non-grocery shopping trips (+), homeowner (-), car 
availability (-) 

Zhou and Wang (2014) 2009 NHTS Individual SEM Number of shopping trips (-), living in urban areas  (+), 
renter (+), population density (+), state GDP (+), 
household size (-), age (-), income (+), education (+) 

Wang and Zhou (2015) 2009 NHTS Individual Binary Choice  Frequency of Internet use (+), education (+), female 
(+), white race (+), income (+), 

Ramirez (2019) 2017 NHTS Individual Negative binomial regression  Housing unit density (+), living in rural areas (+), 
having children (+), vehicle (+)  

Jaller and Pahwa (2020) 2016 American Time Use 
Survey 

Individual Multinomial Logit Female (+), income (+), education (+), household with 
multiple drivers (+), number of shopping trips (+) 

Note: (+) indicates a positive impact and (-) indicates a negative impact.238 
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3 Model development 239 

In this study, we develop GBM models for predicting household-level online shopping demand. GBM 240 

is a supervised ML technique that repeatedly fits a weak classifier – typically a decision tree, and ensembles 241 

the trees to make the final prediction (Regue and Recker 2014, Barua et al. 2020, Barua et al. 2021). GBM 242 

has several strengths over other ML techniques (Friedman 2001; Elith et al. 2008; Ding et al. 2018, Barua 243 

and Zou 2021). First, GBM works very well with high-dimensional mixed-type inputs of numerical and 244 

categorical variables. Second, the performance of GBM is invariant to transformations of the input variables 245 

and insensitive to outliers. Third, the selection of input variables is internalized in the decision tree, making 246 

the algorithm robust to irrelevant input variables. Fourth, GBM is a tree-based model which is not affected 247 

by correlation of input variables (Ogutu et al. 2011; Mrsic et al. 2020; Zhang et al. 2021). Each time a tree 248 

is split, only one input variable is chosen. Thus, even if two input variables are highly correlated and one 249 

gets selected for splitting the tree, the other variable is not affected by the split.  250 

With these strengths, GBM has been reported to yield better prediction than traditional statistical 251 

models (e.g., linear regression and ARIMA) and other ML models (e.g., Random Forest (RF), and SVM) 252 

on a number of prediction tasks (Ogutu et al. 2011; Zhang and Haghani 2015). The GBM model 253 

development follows three steps: training, validation, and testing. Accordingly, the data used for model 254 

development are split into three portions in a 60-20-20 way. Details about model training, validation, and 255 

testing can be found in Appendix A.  256 

 257 
Step 1: Model training. Use the first portion (60%) of data to train GBM models under different 

combinations of model hyperparameters. 
Step 2: Model validation. Use the second portion (20%) of data for model validation. This step 

involves selecting a trained model with the best prediction accuracy but not subject to 
overfitting. 

Step 3: Model testing. Use the remaining portion (20%) of data to further test the prediction accuracy 
of the selected GBM model. 

 258 

4 Data 259 

The NHTS data of 2009 and 2017 are used in this study (FHWA 2012; 2017). NHTS data are collected 260 

from a stratified random sample of U.S. households providing detailed information on individual- and 261 

household-level travel behavior along with socioeconomic, demographic, and geographic factors that 262 

influence travel decisions. The 2009 NHTS survey interviewed 150,147 households which include 308,901 263 

individuals. The 2017 NHTS survey interviewed 129,696, which include 264,234 individuals. A new 264 

feature of 2009 and 2017 NHTS data that does not exist in previous versions is the inclusion of information 265 
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on the number of online purchases made by an individual that are delivered to home in the month prior to 266 

the survey date. Since the focus of this study is at the household level, we aggregate online purchases of 267 

individuals in the month prior to the survey date to the household level, and use household online purchases 268 

as the response variable. If the online purchase record for a member in a household is missing, then the 269 

household is not included in our dataset. Also, a household is not included in our dataset if any member in 270 

the household skipped, refused to answer, or answered “don’t know” for any input variable in the GBM 271 

model. A two-sample Kolmogorov-Smirnov test is performed between the distributions of household online 272 

purchases before and after the data cleaning. The D-statistic values are 0.0013 and 0.0052 for 2009 and 273 

2017 respectively, which are smaller than the respective D-critical values of 0.011 and 0.0060 at 0.05 level 274 

of significance. Therefore, the data cleaning does not seem to cause significant differences in the 275 

distribution of household online purchases.  276 

After aggregation and removal, the distributions of household online purchases in 2009 and 2017 are 277 

shown in Fig. 1. We have 27,026 observations for 2009 and 95,519 observations for 2017. We conduct a 278 

Chi-square test to see if the distributions of household online purchases between the two years are 279 

significant. We find that the difference is indeed significant at 0.05 level (Appendix D provides further 280 

details). 281 

 282 

 283 
Fig. 1 Distribution of household online purchases in 2009 and 2017 (source: NHTS data) 284 

 285 
Besides the new information on individual online purchases, the 2009 and 2017 NHTS data also 286 

contain rich information about individual- and household-level socioeconomic, travel, and other 287 

characteristics. Specifically, the NHTS data consist of four data files for both 2009 and 2017: household 288 

file, person file, vehicle file, and trip file. As their names imply, each file contains a different set of 289 

variables. In this study, these files are merged and processed to generate household-specific variables. The 290 

final dataset used for this study contains four categories of household-level variables: socioeconomic 291 

characteristics, trip characteristics, land use characteristics, and Internet use.  292 
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As the starting point, we consider 48 candidate input variables for each year. The full lists of the 293 

variables are provided in Appendices B and C. Note that some minor differences exist in the list of variables 294 

between 2009 and 2017, due to the differences in data provision from NHTS. In 2009, four categorical 295 

variables about house type (duplex; townhouse; apartment or condominium; and mobile home or trailer) 296 

are included, but not the 2017 list. On the other hand, unique in the 2017 are: 1) percentage of members in 297 

a household with excellent health conditions; 2) percentage of members in a household with poor health 298 

conditions; 3) indicator of whether all household members use smartphones daily; and 4) indicator of 299 

whether all household members use laptop/desktop daily. The extent to which these variables affect online 300 

purchases will be examined along with other candidate variables that are common in 2009 and 2017 NHTS 301 

data in subsection 5.1.  302 

5 Model implementation and results 303 

5.1 Input variable selection   304 

Given the large number (48) of candidate input variables, it will be desirable to build less complex 305 

models with fewer features, by deciding which input variables are essential for prediction and which are 306 

not. This can be useful when one wants to reduce the risk of overfitting and increase model explainability 307 

(Guyon et al. 2002; Burkov 2019). To this end, some feature selection procedure needs to be performed. 308 

The idea is to discard input variables that make limited contributions to model predictability. In this paper, 309 

we consider Recursive Feature Elimination (RFE) algorithm, which requires moderate computation efforts 310 

(Guyon et al. 2002) and is shown to perform better than other feature selection techniques such as least 311 

absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA), especially in 312 

the case where input features demonstrate strong nonlinear, interactive, or polynomial relationships (Xue 313 

et al. 2018).  314 

RFE recursively removes one feature at a time with the least importance, retrains the model, re-ranks 315 

the remaining features, and then removes the next feature with the least importance. Initially, for each of 316 

the two years we perform model training and validation as described in subsections 3.1 and 3.2 (without 317 

performing 𝑘-fold cross validation) to come up with the best GBM model with the full list of 48 candidate 318 

input variables. A 10-fold cross validation is then performed on the model. The average 𝑅2 from applying 319 

the model to 10 different testing subsets is recorded, termed as the 10-fold cross validation score of the 320 

model. Then, the importance of each feature is computed following the procedure described later in 321 

subsection 6.1, based on which we remove the feature with the lowest feature importance. We start the next 322 

iteration and repeat the same procedure, with 47 input variables. The iterations continue until the 10-fold 323 
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cross validation scores of models from two consecutive iterations is greater than a predefined threshold 324 

(stopping criteria), which we set as 0.01. Summarizing, RFE algorithm is represented as follows:   325 

 326 
RFE Algorithm 
1. Initialization: Data (𝑦, 𝒙)  
2. Repeat 
3. Train and identify the best trained GBM model using (𝑦, 𝒙) 
4. Compute 10-fold cross validation score for the model 
5. Determine feature importance 
6. Identify and remove input variable 𝑥′ with the least importance 
7. Update input variables 𝒙 ← 𝒙 − 𝑥′ 
8. Until stopping criteria is met 

 327 
After implementing RFE algorithm, 16 input variables are retained for both 2009 and 2017. 328 

Interestingly, the 16 input variables are the same for both years, as listed in Table 2  below. Table 3 provides 329 

summary statistics of these variables.  330 

 331 
Table 2 Variable categories, names, and definitions 332 

Category Variable name Definition 

Response 
variable 

Online purchases Number of purchases over the Internet by a household in the last 30 
days from the survey date 

Socioeconomic 
characteristics 

Average member age Average age of household members 
Male percentage Percentage of male members in a household 
Household size Number of household members 
Household income Household annual income (in $000) 
Adult percentage Percentage of adults (age ≥ 18) in a household 
No high school percentage Percentage of household members without a high school degree 
Bachelor’s degree percentage Percentage of household members with a bachelor’s degree 
Number of vehicles Number of vehicles in a household 
Home ownership Indicator of whether a household owns the home property 

Trip 
characteristics 

Number of trips per day Number of trips made by all household members in a travel day 
Travel time per day Total travel time of all household members in a travel day, in minutes 
Gas price Gas price in a travel day, in cents/gallon 
Shopping trip percentage Percentage of shopping trips in total trips made by a household in a 

travel day 
Land use 
characteristics 

Urban area Indicator of whether a household lives in an urban area 
Population density Population density in the census tract of the household location 

Internet use Daily Internet use Indicator of whether all household members use the Internet daily 
Note: In NHTS data, household income and population density are recorded as ranges. We take the middle of the 333 
corresponding range as the value for each observation.  334 

 335 
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Table 3 Descriptive statistics of variables 336 

Category Variable Type 2009 2017 
Min Max Mean Std. dev. Min Max Mean Std. Dev. 

Response 
variable Online purchases Continuous 0 265 3.4 6.3 0 198 4.2 6.4 

Socioeconomic 
characteristics 

Average member age Continuous 18 92 52.7 14.2 18 92 57.6 23.8 
Male percentage Continuous 0 100 44.2 33.2 0 100 45.2 34.6 
Household size Continuous 1 14 2.6 1.3 1 10 1.7 0.7 
Household income ($000) Discrete  5 100  64.4 29.7 10 2,000 72.7 53.2 
Adult percentage Continuous 11.1 100 86.2 21.7 33.3 100 89.1 5.4 
No high school percentage Continuous 0 100 2.7 14.3 0 100 3.7 15.9 
Bachelor’s degree percentage Continuous 0 100 25.2 37.4 0 100 24.8 37.7 
Number of vehicles Continuous 0 27 2.3 1.1 0 12 1.9 1.2 
Home ownership Binary 0 1 0.9 0.3 0 1 0.8 0.4 

Trip 
characteristics 

Number of trips per day Continuous 1 52 7.4 4.7 1 60 7.3 4.5 
Travel time per day (minutes) Continuous 0.2 1,230 21.8 30 0.4 2,040 42.9 60.1 
Gas price (cents/gallon) Continuous 149.5 446 285.6 94.5 201.3 295.1 240.3 22.8 
Shopping trip percentage Continuous 0 100 23.8 25.5 0 100 9.9 13.9 

Land use 
characteristics 

Urban area Binary   0 1 0.1 0.3 0 1 0.1 0.3 
Population density Discrete 50 30,000 3,146.4 4,577 50 30,000 3,770 5,365 

Internet use Daily Internet use Binary   0 1 0.8 0.4 0 1 0.9 0.3 

337 
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5.2 Prediction performance of the GBM models 338 

With the 16 input variables, two GBM models are developed, one for 2009 and the other for 2017. 339 

Table 4 shows 𝑅2 values from applying the GBM models to training, validation, and testing datasets. Also 340 

reported in the table are the mean and standard deviation of 𝑅2 values associated with the testing subsets in 341 

cross validation (in parentheses). The generally high 𝑅2 values indicate good fit of the trained models. We 342 

observe small differences between the mean 𝑅2 values from cross validation and the 𝑅2 values using the 343 

training datasets. The 𝑅2 values using the testing datasets are also high, suggesting a high level of prediction 344 

accuracy when the models are applied to new datasets. 345 

 346 
Table 4 𝑅2 of the GBM models when applying to different datasets 347 

Datasets Training Validation Cross validation Testing 
2009 0.77 0.73 0.73 (0.05) 0.72 
2017 0.75 0.70 0.70 (0.04) 0.71 

 348 
The RMSE values presented in Table 5 tell a similar story. Smaller RMSE values are obtained for 349 

2009 and 2017 datasets. Considering that the number of online purchases ranges from 0 to 198, an RMSE 350 

of 2.78 for 2009 and 2.93 for 2017 using the testing datasets corroborate the good performance of the trained 351 

GBM models when applied to new datasets. 352 

 353 
Table 5 RMSEs of the GBM models when applying to different datasets 354 

Datasets Training Validation Testing 
2009 2.57 2.76 2.78 
2017 2.83 2.98 2.93 

 355 
To further examine the prediction performance of the GBM models, we compare the models with 356 

several alternative models including linear regression, quadratic regression, SVM, and RF, using the same 357 

response and input variables. Specification of the linear regression model is straightforward. For quadratic 358 

regression, the input variables along with their squared and cross-product terms are included. In developing 359 

SVM and RF, tuning hyperparameters is critical. For SVM, three hyperparameters (kernel, regularization 360 

parameter, and kernel coefficient) need to be tuned. Three types of kernel functions are tested: linear, 361 

polynomial, and radial basis functions. Regularization parameter is tuned from 0.1 to 1000. Kernel 362 

coefficient is tested from 0.0001 to 1. After tuning, we find that the radial basis function kernel with a 363 

regularization parameter of 10 and a kernel coefficient of 0.01 yields the highest 𝑅2 using the testing data 364 

for both 2009 and 2017. For RF, three hyperparameters to be tuned are: the number of trees, the maximum 365 

number of features used for splitting a tree, and the minimum sample leaf size (the minimum number of 366 

samples required for a leaf node). A large number of combinations of hyperparameter values are tested. We 367 

tune the number of trees from 1 to 1000, the maximum number of features from 1 to 16 (the number of 368 
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input variables), and the minimum sample leaf size from 1 to 40. We find that RF models with 450 trees, a 369 

maximum number of features of 16, and a minimum sample leaf size of 25 yield the highest 𝑅2 using the 370 

testing data for both 2009 and 2017.  371 

Table 6 compares the 𝑅2 and RMSE values of linear regression, quadratic regression, SVM, RF, and 372 

GBM using the same testing data. The results indicate that the order of performance is: linear regression < 373 

quadratic regression < SVM < RF < GBM. The order is consistent for both years and under both 𝑅2 and 374 

RMSE. The results corroborate the superior prediction performance of GBM.  375 

 376 
Table 6 𝑅2 and RMSE for different prediction models 377 

Prediction models 𝑅2 RMSE 
2009 2017 2009 2017 

Linear regression 0.11 0.11 13.28 14.70 
Quadratic regression 0.13 0.12 11.93 12.04 
SVM 0.59 0.56 4.55 5.16 
RF 0.66 0.65 3.64 3.76 
GBM 0.72 0.71 2.78 2.93 

 378 

6 Post-modeling analysis  379 

In our study, we aim to gain an understanding of the influence of the input variables and their 380 

interactions on online purchases. In this section, we use Shapley values to quantify the importance of each 381 

input variable in predicting online purchases of a household and the accumulated local effects plots to 382 

interpret the underlying relationships between different input variables and online purchases. 383 

6.1 Quantifying importance of input variables 384 

Method 385 

To quantify the importance of input variables, the most commonly employed method for tree-based 386 

models (such as GBM) is based on Gini importance (Strobl et al. 2007; Zhou and Hooker 2021), for which 387 

the relative importance of an input variable in each decision tree is the sum of improvements in the squared 388 

error from the splits involving the input variable (Hastie et al. 2009). The relative importance is then 389 

averaged over all decision trees to obtain the relative importance of the input variable. However, the Gini 390 

importance has a drawback. It is known to be biased towards input variables with continuous and discrete 391 

variable with high cardinality (Zhou and Hooker 2021; Aldrich 2020; Gómez-Ramírez et al. 2020), as these 392 

variables provide high possibilities for tree splitting. To address this issue, Lundberg and Lee (2017) 393 

propose a method that is based on Shapley values (Hur et al. 2017; Aldrich 2020). Stemming from game 394 

theory, Shapley values provide a theoretically justified way to fairly allocate a coalition’s output among 395 

members in the coalition (Shapley 1953). In the context of this paper, coalition members are input variables 396 
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which collectively produce the GBM model output. The Shapley value-based method is adopted to quantify 397 

importance of the input variables.  398 

In calculating the Shapley values, it is assumed that coalition members join a game in sequence. The 399 

sequence of joining is important especially when members may have similar skills. Conceptually, if two 400 

members have overlapping skills, then the member joining the game earlier is expected to make greater 401 

contribution to the coalition’s output than the other member who joins later. In view of this, Shapley values 402 

characterize each member’s contribution to the coalition’s output as the averaged value over every possible 403 

sequence of coalition members. Now we apply this idea to quantifying input variable importance. Consider 404 

that a GBM model has 𝑑 input variables. Let 𝒙𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑑
𝑖 ) denote the value of the input variables 405 

for the 𝑖 th observation. Each input variable in the observation is viewed as a coalition member. The 406 

contribution of the input variable 𝑗 of observation 𝑖, termed Shapley value ∅𝑗
𝑖 (𝑣), is calculated as: 407 

 408 

∅𝑗
𝑖 = ∑

|𝑆|! (𝑑 − |𝑆| − 1)!

𝑑!
𝑆⊆{𝑥1

𝑖 ,…,𝑥𝑗−1
𝑖 ,𝑥𝑗+1

𝑖 ,…𝑥𝑑
𝑖 }

(𝐹(𝑆 ∪ {𝑥𝑗
𝑖}) − 𝐹(𝑆)) (1) 

 409 
In Eq. (1), 𝑆 can be any subset of the full set of input variables excluding 𝑥𝑗

𝑖. 𝐹(∙) denotes the trained 410 

GBM model. 𝐹(𝑆 ∪ {𝑥𝑗
𝑖}) is trained with input variables being 𝑆 ∪ {𝑥𝑗

𝑖}, and 𝐹(𝑆) is trained with input 411 

variables being 𝑆. The difference of 𝐹(𝑆 ∪ {𝑥𝑗
𝑖}) and 𝐹(𝑆) then provides an indication of the contribution 412 

of 𝑥𝑗
𝑖  to the predicted value of 𝐹(∙). The contribution is weighted considering the sequence of input 413 

variables, for which 𝑥𝑗
𝑖 is placed in the (|𝑆| + 1)th place and the calculation of contribution only involves 414 

input variables up to 𝑥𝑗
𝑖  in the sequence. Thus, given subset 𝑆 which is placed at the beginning of the 415 

sequence followed by 𝑥𝑗
𝑖 , there are |𝑆|! (𝑑 − |𝑆| − 1)! possible sequences. On the other hand, the total 416 

number of all possible sequences is 𝑑!. Thus, the weight is |𝑆|!(𝑑−|𝑆|−1)!

𝑑!
. We then sum over all possible 417 

subsets to obtain the Shapley value of input variable 𝑗 of observation 𝑖.  418 

The Shapley value of input variable 𝑗, which is denoted as 𝐼𝑗  and measures the importance of the 419 

variable, is obtained by summing ∅𝑗
𝑖 ’s over all observations: 420 

 421 

𝐼𝑗 = ∑ ∅𝑗
𝑖 (𝑣)

𝑁

𝑖=1

 (2) 

 422 
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Results  423 

By applying the Shapley value-based method, the importance of all input variables in the GBM models 424 

for 2009 and 2017 is computed with results displayed in Fig. 2 (ranked based on importance in 2017). We 425 

also present the change in the ranking of importance of the input variables between 2009 and 2017 in Fig. 426 

3, where blue arrows indicate no change in ranking, red arrows denote ranking drops, and green arrows 427 

represent ranking rises. For the discussions below, we focus on the ranking and ranking changes of the 428 

input variables.  429 

 430 

 431 
Fig. 2 Importance of input variables  432 

 433 
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 434 
Fig. 3 Change in the ranking of input variable importance from 2009 to 2017 435 

 436 
Household income is the most important variable for online shopping for both 2009 and 2017, with a 437 

higher Shapley value in 2017. The variable that indicates whether all household members use the Internet 438 

daily is the second most important variable in 2009, whereas its importance drops to the fifth place in 2017. 439 

This may suggest that people in 2009 depended more on daily Internet use in making online shopping 440 

decisions than in 2017. As the Internet has become widespread over time, it is reasonable to see the decline 441 

in the importance of the daily Internet use.  442 

Besides household income and daily Internet use, the percentage of male members in a household is 443 

the third most important input variable in 2009, whereas its importance is very low in 2017. The difference 444 

may be explained from the perspective that technology use related to online shopping was evaluated more 445 

differently by gender in 2009, as supported by prior research (Venkatesh and Morris 2000). On the other 446 

hand, with continuous penetration of the Internet in people’s lives, its acceptance among women has 447 

increased between 2009 and 2017 thus largely filling the gender gap in Internet use (Morahan-Martin 2009; 448 

Pew Research Center 2019). As a result, we observe much lower importance of gender in 2017. Other than 449 

gender, gas price ranks fourth in both years with a similar Shapley value. Gas price is important as it affects 450 

the cost of going to stores for shopping. Also, people of different ages may have quite different tendency 451 

for shopping online. As such, it is not surprising that the average age of household members is the second 452 

most important variable in 2017, though in 2009 it ranks fifth. 453 

The ensuing input variables in the 2009 ranking are mostly related to household trip characteristics, 454 

including total travel time of all household members per day, the number of trips made by a household per 455 

day, percentage of shopping trips, and the number of vehicles in a household. As both travel and online 456 

shopping consume time and online shopping can be competing and/or complementary with traveling to 457 

stores for shopping, characteristics related to trip-making are obvious predictors of online purchases. Fig. 458 
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3 shows that the four input variables have quite consistent importance between the two years. Travel time 459 

per day and the number of trips per day are the sixth and seventh most important features in both 2009 and 460 

2017, with close Shapley values. The percentage of shopping trips ranks eighth in 2009, while its 461 

importance goes down to the ninth in 2017. The importance of the number of vehicles in a household has 462 

increased between the two years, with a higher Shapley value in 2017. 463 

Besides male percentage, the other most significant change in Shapley value ranking occurs to 464 

household size, from the 12th in 2009 to the 3rd in 2017, with the Shapley value increased from 0.18 to 465 

around 0.78. This may be explained by the fact that online shopping has become a routine for households 466 

in 2017 compared to 2009. As a result, the number of online purchases in a household is critically dependent 467 

on the size of the household. Population density holds the eleventh place in both years with similar Shapley 468 

values. Adult percentage, urban area, home ownership, and no high school percentage have even smaller 469 

importance in predicting household online purchases for both 2009 and 2017. 470 

6.2 Understanding the relationships between input and response variables 471 

While Shapley values provide a single number for each input variable in a model to represent the 472 

importance of the input variable in driving model prediction, more investigation is needed if one wants to 473 

further understand how predicted online purchases are affected by input variables at different values. For 474 

this purpose, partial dependence plots (PDP) has been most commonly used, which is a graphical rendering 475 

of the predicted response variable value as a function of one or multiple input variables while accounting 476 

for the average effects of the other input variables (Friedman 2001; Zhao and Hastie 2019). PDP works by 477 

marginalizing the model response over the distribution of the variables other than the input variable under 478 

evaluation (Hastie et al. 2009). For input variable 𝑗 of observation 𝑙 (𝑥𝑙,𝑗), its partial dependence value is 479 

calculated as 𝑓𝑗̅(𝑥𝑙,𝑗) =
1

𝑁
∑ 𝑓(𝑥𝑙,𝑗, 𝒙𝑖,\𝑗)𝑁

𝑖=1 , where 𝑁 is the total number of observations and 𝑥𝑖,\𝑗 is the 480 

vector of values for the other input variables of observation 𝑖. 481 

An underlying, often untested assumption of PDP is that the variable under evaluation is not correlated 482 

with the other input variables, which is a strong assumption and presents a serious issue because input 483 

variables almost always bear some degree of correlation, as is our case (Appendix E presents the correlation 484 

matrices for the 16 input variables for 2009 and 2017). To make this more clear, in the equation above some 485 

combinations of 𝑥𝑙,𝑗 with 𝒙𝑖,\𝑗 can result in artificial data instances that are unlikely based on the actual 486 

observations (e.g., a household has a very low income and a very large number of vehicles), which biases 487 

the estimated input variable effect (Molnar 2019). 488 

 To address this issue, this study adopts a recently developed technique, termed Accumulated Local 489 

Effects (ALE) plot (Apley and Zhu 2020), as an alternative. In addition to accounting for correlation among 490 

input variables, ALE plots are computationally less expensive than PDP (Apley and Zhu 2020). The 491 
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construction of the ALE estimator for an input variable proceeds as follows. Let 𝑥𝑖,𝑗 denote a continuous 492 

input variable 𝑗  of observation 𝑖 . 𝒙𝑖,\𝑗  represents the remaining input variables of observation 𝑖 . To 493 

calculate ALE of input variable 𝑗 , the value range of {𝑥𝑖,𝑗: 𝑖 = 1,2, … , 𝑁}  (in total 𝑁  observations) is 494 

partitioned into 𝐾  intervals: (𝑧𝑘−1,𝑗, 𝑧𝑘,𝑗]: 𝑘 = 1,2, … , 𝐾  where 𝑧𝑘,𝑗  is the (𝑘/𝐾 )-quantile value of the 495 

empirical distribution of {𝑥𝑖,𝑗: 𝑖 = 1,2, … , 𝑁}. 𝑧0,𝑗 is chosen just below the smallest observed 𝑥𝑖,𝑗 value, and 496 

𝑧𝐾,𝑗  chosen the largest observed 𝑥𝑖,𝑗  value, for input variable 𝑗 . We let 𝑛𝑗(𝑘)  denote the number of 497 

observations that fall into the 𝑘th interval (𝑧𝑘−1,𝑗, 𝑧𝑘,𝑗]. For a particular observation 𝑥𝑙,𝑗, 𝑙 = 1,2, … , 𝑁 for 498 

input variable 𝑗 , let 𝑘𝑗(𝑥𝑙,𝑗)  denote the index of the interval into which 𝑥𝑙,𝑗  falls, i.e., 𝑥𝑙,𝑗 ∈499 

(𝑧𝑘𝑗(𝑥𝑙,𝑗)−1,𝑗, 𝑧𝑘𝑗(𝑥𝑙,𝑗),𝑗]. 500 

With the above notations, we first compute the uncentered ALE 𝑔𝑗,𝐴𝐿𝐸(𝑥𝑙,𝑗) for 𝑥𝑙,𝑗: 501 

 502 

𝑔𝑗,𝐴𝐿𝐸(𝑥𝑙,𝑗) = ∑
1

𝑛𝑗(𝑘)
∑ {𝑓(𝑧𝑘,𝑗, 𝒙𝑖,\𝑗) − 𝑓(𝑧𝑘−1,𝑗, 𝒙𝑖,\𝑗)}

{𝑖:𝑥𝑖,𝑗∈(𝑧𝑘−1,𝑗,𝑧𝑘,𝑗]}

𝑘𝑗(𝑥𝑙,𝑗)

𝑘=1

 (3) 

 503 
In Eq. (3), 𝑓(𝑧𝑘,𝑗, 𝒙𝑖,\𝑗) − 𝑓(𝑧𝑘−1,𝑗, 𝒙𝑖,\𝑗) is the difference of the predicted response variable value for 504 

observation 𝑖, when input variable 𝑗 takes the upper and lower bounds of interval 𝑘: (𝑧𝑘−1,𝑗, 𝑧𝑘,𝑗]. We sum 505 

over all observations 𝑖 ’s of which 𝑥𝑖,𝑗  falls into this interval, and divide the sum by the number of 506 

observations in the interval 𝑛𝑗(𝑘). Thus, 1

𝑛𝑗(𝑘)
∑ {𝑓(𝑧𝑘,𝑗, 𝒙𝑖,\𝑗) − 𝑓(𝑧𝑘−1,𝑗 , 𝒙𝑖,\𝑗)}{𝑖:𝑥𝑖,𝑗∈(𝑧𝑘−1,𝑗,𝑧𝑘,𝑗]}  gives the 507 

averaged incremental effect of input variable 𝑗 changing from 𝑧𝑘−1,𝑗 to 𝑧𝑘,𝑗. We then sum the incremental 508 

effects over all intervals up to the one to which 𝑥𝑙,𝑗 falls into, to obtain the accumulated effect of 𝑥𝑙,𝑗. 509 

For a continuous input variable, the actual value in ALE plots is demeaned, i.e., the value of Eq. (3) is 510 

reduced by the mean value. Eq. (4) gives the centered ALE 𝑓𝑗,𝐴𝐿𝐸(𝑥𝑙,𝑗) for 𝑥𝑙,𝑗: 511 

 512 

𝑓𝑗,𝐴𝐿𝐸(𝑥𝑙,𝑗) = 𝑔𝑗,𝐴𝐿𝐸(𝑥𝑙,𝑗) −
1

𝑁
∑ 𝑛𝑗(𝑘) ∙ 𝑔𝑗,𝐴𝐿𝐸(𝑧𝑘,𝑗

𝐾

𝑘=1

) (4) 

 513 
In the above ALE computation, the correlation is accounted for by partitioning the value range of input 514 

variable 𝑗 into 𝐾 intervals and considering combinations of 𝑧𝑘,𝑗 and 𝑧𝑘−1,𝑗 with only observed 𝒙𝑖,\𝑗 values 515 

from the correspoinding interval. This largely avoids unrealistic combinations of 𝑥𝑙,𝑗 with 𝒙𝑖,\𝑗 values that 516 

are not observed in the data. Note that if the input variable of interest 𝑗 is a binary variable, then there will 517 
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be just one interval [𝑧0,𝑗, 𝑧1,𝑗] for Eq. (3), where 𝑧0,𝑗 = 0 and 𝑧1,𝑗 = 1. Demeaning (Eq. (4)) is not needed. 518 

Interested readers may refer to Apley and Zhu (2020) for further theoretical details.  519 

In what follows, we present the ALE plots in four subsections (6.2.1-6.2.4) each corresponding to one 520 

category of input variables shown in Table 2. In each category, the input variables are arranged in the order 521 

of their feature importance in 2017 (shown on the right column in Fig. 3). 522 

Socioeconomic characteristics 523 

The ALE plots for input variables in the socioeconomic characteristics category is presented in Fig. 4. 524 

For household income, we observe that in 2009 online shopping purchases of a household slightly decreases 525 

when household income increases from $2,500 to around $15,000 and then increases more monotonically. 526 

For 2017, a more homogeneous increasing trend is observed. The drop in online purchases as household 527 

income increases at the beginning may be a reflection of the preference of low-income households for in-528 

store shopping. As income increases, greater affordability for transportation could prompt households to 529 

switch from online to in-store shopping, though the effect is quite small. On the other hand, the positive 530 

relationship of online purchases with household income is intuitive, consistent with prior empirical 531 

evidences (e.g., Ferrell 2005; Wang and Zhou 2015; Lee et al. 2017), and can be attributed to three factors. 532 

First, more affluent households tend to purchase more (either online or in stores). Second, the time value 533 

of more affluent households is higher. Everything else being equal, such households tend to prefer the 534 

option of online shopping which demands less of their time. Third, more affluent households are less 535 

sensitive to additional cost of shipping than households with lower income.  536 

The average age of household members has an overall negative effect on online purchases in both 537 

2009 and 2017, which reflects the fact that young people are more interested than more senior people in 538 

online shopping. Such a negative relationship between age and online purchases is also identified in Zhou 539 

and Wang (2014). This can be explained by the fact that computer use skills, which are essential for online 540 

shopping, are more easily learned among younger people, as suggested by earlier work (Czaja et al. 1989; 541 

Hernández et al. 2011). In addition, young people usually possess greater experience with the Internet, and 542 

their attitude toward using new technology holds greater importance in decision-making processes related 543 

to technology adoption (Morris and Venkatesh 2000). In contrast, earlier research reveal that more senior 544 

people perceive the Internet with greater risks and place more importance on the perception of self-efficacy 545 

(Trocchia and Janda 2000) – in this context, shopping without relying on the Internet.  546 

 547 
  548 
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Fig. 4 ALE plots for input variables in the socioeconomic characteristics category 549 

 550 
The number of online purchases has a positive relationship with household size, which is opposite to 551 

the finding in Zhou and Wang (2014), except for the household size below five in 2009 for which online 552 

purchases are almost invariant to household size. The generally positive relationship is not surprising: more 553 

people in a household typically means higher demand for shopping. Everything else being equal, this will 554 

translate to more online purchases. For most household sizes, the number of online purchases is greater in 555 

2017 than in 2009, supporting the argument that online shopping has gained greater popularity in 2017. 556 

Online purchases tend to be invariant to the number of vehicles in a household – up to four vehicles in 2009 557 

and two vehicles in 2017 – and then increase with the number of vehicles, which is different from a negative 558 

relationship between car availability and online purchases found in Dias et al. (2020). Since most 559 

households in the dataset have no more than four vehicles (the percentage is 96% for 2009 and 97% for 560 

2017), the ALE plot suggests that online purchases are not sensitive to vehicle ownership for most 561 

households. For the positive relationship when the number of vehicles is large, a possible explanation is 562 

that these households could be engaged in vehicle-dependent or related businesses, e.g., second-hand car 563 

sale, auto lease or rental. The vehicles are typically not used for household shopping purposes. In addition, 564 
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with a large vehicle fleet to handle, a household engaged in vehicle businesses may have a constrained 565 

schedule for in-store shopping.   566 

Turning to the two education related variables, the percentage of household members with a bachelor’s 567 

degree does not give a clear-cut message. In both years, the highest online purchases occur when a 568 

household has part of its members with a bachelor’s degree. While some prior investigations support that 569 

higher education increases one’s Internet use capability, which enables and encourages online shopping 570 

(Farag et al. 2007; Cao et al. 2012), the non-monotonic relationship found here is more in line with the 571 

arguments in other existing research that education background has no, negative, or mixed effects on online 572 

shopping and that online shopping is actually a relatively easy task that does not require higher education 573 

(Mahmood et al. 2004; Zhou et al. 2007). Nonetheless, we speculate that some basic Internet literacy is still 574 

needed. A too shallow education background may still affect a household’s propensity for online shopping. 575 

This is supported by the overall negative relationship between online purchases and the percentage of 576 

household members without a high school degree. It is also interesting to observe that the lowest propensity 577 

is achieved when members without a high school degree dominate a household (50%), and remain the same 578 

low level as the percentage increases. 579 

The gender (im)balance and adult percentage in a household show some interesting results. In 2009, a 580 

household with a more balanced male/female composition tends to have the highest Internet purchases. On 581 

the other hand, the role of gender largely diminishes in 2017, with a slight trend that online purchases 582 

decrease with greater male percentage in the household, which is consistent with the feature importance 583 

results in subsection 6.1.2 and with findings in prior work (Lee et al. 2015; Hernández et al. 2011). For the 584 

percentage of adults in a household, in 2009, online purchases decrease with adult percentage, up to 40%. 585 

A possible explanation is that at that time non-adults, especially teenagers might be more familiar with 586 

online shopping than adults. After eight years, in 2017 those Internet-versed teenagers had grown up as 587 

adults, leading to the change in the trend. For the decline of online purchases in the range of 80-100% 588 

adults, it may be reflective of a large number of such households consisting of senior/retired household 589 

members, who are more traditional and still go to stores for shopping.  590 

Finally, the ALE plot shows that owning home property tends to encourage online purchases. As 591 

compared to this, Dias et al. (2020) also suggests that homeowner tend to make more online purchases. The 592 

difference is even amplified in 2017 compared to 2009. A possible reason for the renting-owning difference 593 

is that owning a home property (e.g., owning a single-family house as opposed to renting an apartment unit) 594 

gives a household a sense of permanency and possibly more space (a single-family house is likely to be 595 

larger than an apartment unit), and consequently makes the household purchase more to improve the living 596 

place (buying appliances, decorations, etc.), whereas such motivation would be less if just temporarily 597 

renting a place.   598 
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Trip characteristics  599 

The ALE plots for input variables in the trip characteristics category are presented in Fig. 5. First, the 600 

ALE of gas price shows some interesting results. In 2009, online purchases decrease when gas price 601 

increases from $1.5/gallon to around $2.25/gallon, and then stay roughly constant when the gas price is 602 

between $2.25/gallon and about $4.0/gallon. But online purchases start to increase as gas price goes beyond 603 

$4.0/gallon. The initial decline seems counterintuitive at first sight. A possible explanation, following Ma 604 

et al. (2011), is that as the initial gas price increases from a low base price, the dominant factor affecting 605 

online purchases may be the reduction in the budget allocatable for shopping, which leads to a decline in 606 

online purchases. On the other hand, the increasing trend when gas price is over $4.0/gallon is also 607 

understandable: as gas price increases, driving to stores becomes more expensive (Ramcharran 2013; 608 

Sunitha and Gnanadhas 2014; Frias 2015). Consequently, online shopping becomes more attractive. In 609 

contrast to 2009, the overall trend of online shopping varies less in 2017 over a narrower range of gas price, 610 

though with some fluctuations. The difference in the range coverage of gas price in the two years is due to 611 

less variation of gas price in 2017 than in 2009. In general, households seem to be less sensitive to gas price 612 

when purchasing online in 2017. 613 

 614 

  

  
Fig. 5 ALE plots for input variables in the trip characteristics category 615 

 616 
Turning to the ALE plot for travel time of household members per day, the two curves for 2009 and 617 

2017 both follow an overall increasing trend. As a household spends more time traveling, household 618 

members are likely to have less time for shopping. Consequently, they will be more inclined to purchase 619 
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over the Internet which requires less time (Wolfinbarger and Gilly 2001; Visser and Lanzendorf 2004). We 620 

also note that when household travel time is near zero, the ALE values are actually not, or even close to the 621 

lowest. Our speculation is that people with almost no travel at all will spend most of the time at home, thus 622 

likely taking care of things including shopping through the Internet as much as possible.  623 

Following the same argument as for the time use by trips, online purchases are positively related with 624 

the number of trips made by a household in a day in 2009. In 2017, the increase continues up to about 17 625 

trips, after which online purchases start to decline. A possible explanation is that more trips could involve 626 

buying things from stores on the way (although the main purpose of such trips is not necessarily shopping), 627 

thus reducing the need for online shopping (Visser and Lanzendorf  2004). Online purchases with respect 628 

to the percentage of shopping trips follows a more consistent increasing trend in 2009 (up to about 22 trips 629 

per day), which supports a broad claim of complementary association between online and in-store shopping 630 

found in earlier work (e.g., Farag et al. 2005; 2007; Cao et al. 2012; Lee et al. 2017; Xi et al. 2020). On the 631 

other hand, a sudden drop is observed in 2017 when shopping trip percentage is around 20%, which may 632 

suggest the existence of substitution at some point as a household increases shopping percentage in total 633 

trips. Also, as shopping trips change from zero to non-zero, some online purchases would likely be 634 

substituted by in-store buying. This effect seems more evident for 2017.  635 

Land use characteristics  636 

The ALE plots for the input variables in the category of land use characteristics are presented in Fig. 637 

6. For population density, we observe a “V” shape, or a first-decreasing-then-increasing trend, which can 638 

be explained as follows. When population density is very low, it probably would require a long trip to get 639 

to a nearby store for shopping (Wilde et al. 2014). In this case, shopping over the Internet would be more 640 

convenient saving households a substantial amount of shopping-related travel time. As population density 641 

increases, the time spent in going to stores is decreased. As a result, households will be more willing to 642 

shop in stores. As population density continues to increase, households again become more inclined to 643 

online shopping, which may be attributed to two factors. First, greater population density means greater 644 

human interactions in working, social, and other contexts, reducing the time available for in-store shopping 645 

(Hawley 2012; Van den Berg et al. 2014). Second, previous research has argued that people living in dense 646 

areas tend to have greater access to the Internet (Loomis and Taylor 2012), which is essential to online 647 

shopping. Related to this, households in an urban location tend to shop more than in non-urban areas, as 648 

also found in Farag et al. (2007), Zhou and Wang (2014), and Cao et al. (2012). Between the two years, the 649 

effects of population density and urban location are stronger in 2017 than in 2009. 650 

 651 
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Fig. 6 ALE plots for input variables in the land use characteristics category 652 

 653 

Internet use 654 

The ALE plot for the binary input variable indicating whether all members in a household use the 655 

Internet daily is presented in Fig. 7. Since the variable is binary, ALE is presented in two bars for each year, 656 

one with daily Internet use and the other without. The plot clearly shows that daily Internet usage has a 657 

significant impact on online purchases for both 2009 and 2017, which supports the argument that more 658 

frequent use of the Internet enables more online shopping. This positive relationship between Internet use 659 

and online purchases has been observed in a number of previous studies (e.g., Ren and Kwan 2009; Cao et 660 

al. 2012; Lee et al. 2017; Zhai et al. 2017). This may also be attributed to additional online shopping demand 661 

that is “induced” from more frequent Internet use, a phenomenon that has been seen in other transportation 662 

contexts (e.g., Cervero and Hansen 2002; Zou and Hansen 2012). With daily Internet use, the average 663 

number of online purchases in a household in a 30-day period will be about 1.1 higher than otherwise. In 664 

2017, the difference is slightly smaller (about 0.9).  665 

 666 

 667 
Fig. 7 ALE plot for household daily Internet use 668 

  669 

7 Conclusions 670 

While online shopping behavior has been quite extensively studied in the existing literature, national-671 

level investigation with a focus on predictive modeling and analysis remains limited. Different from the 672 
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existing studies, this paper leverages the two most recent releases of the NHTS data in the U.S. to develop 673 

ML models, specifically GBM to predict online shopping purchases with extensive comparative analysis 674 

of the modeling results between 2009 and 2017. The NHTS data allow us not only to conduct national-level 675 

investigation but also at the household level, which is more appropriate than at the individual level given 676 

the connected consumption and shopping needs of members in a household. The comparative analysis 677 

includes quantifying the importance of each input variable in predicting online shopping demand, and 678 

characterizing the relationships between the predicted online shopping demand and the input variables, with 679 

the relationships flexible enough that can vary with the values of the input variables. The modeling employs 680 

a systematic procedure based on Recursive Feature Elimination algorithm to reduce the risk of model 681 

overfitting and increase model explainability. In performing the analysis, two latest advances in ML 682 

techniques, Shapley value-based feature importance and Accumulated Local Effects plots, are adopted 683 

which overcome the drawback of the prevalent techniques.  684 

The modeling results show that GBM yields much higher prediction accuracy than several other ML 685 

(including regression) models. We find that household income contributes the most to predicting online 686 

shopping demand. Over time, the importance of Internet use and gender diminishes, while household 687 

member age and household size become more important. By employing the ALE technique, value-688 

dependent effects of the input variables on predicted online shopping demand are estimated, which provide 689 

richer insights than single-number estimates as in prior research. The estimates show that the effect of the 690 

percentage of household members receiving higher education is not monotonic. The generation that grew 691 

up with online shopping significantly influence the effect of adult percentage in a household. Households 692 

owning home property tend to buy more online than if renting a living place. Total travel time of a 693 

household has an overall positive relationship with online purchases. However, the number of trips has a 694 

non-monotonic effect, with an explanation that more trips not only reduce the available time for shopping 695 

but also increase the chance of buying things on the way. The ALE plot for shopping trip percentage 696 

provides a mixed effect, suggesting that complementary and substitution relationships may both exist 697 

between online and in-store shopping. The relationship between population density of the living 698 

neighborhood and online purchases follows a “V” shape with plausible influencing factors being in-store 699 

shopping distance, social interactions, and Internet access. Living in an urban area and having daily Internet 700 

use encourage online shopping. As online shopping becomes more prevalent over time, the ALE plots 701 

further reveal the differences between 2009 and 2017.  702 

This paper presents a beginning of taking a machine learning approach for predicting household-level 703 

online shopping demand, and for revealing the importance of influencing factors and their relationships 704 

with the demand. The models developed and insights gained can be used for online shopping-related freight 705 

demand generation and may also be considered for evaluating the potential impact on online shopping 706 
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demand of relevant policies, e.g., land use planning, gasoline pricing, and transportation demand 707 

management to reduce trip-making. The proposed modeling approach could be further used as future 708 

releases of NTHS or similar data become available, which will help gain more in-depth understanding of 709 

the evolution of input variable importance and their relationships with household online shopping demand. 710 

The modeling and analysis could be extended with more advanced approaches, e.g., by combining GBM 711 

and a support vector classifier which first classifies household locations so that even higher prediction 712 

accuracy could be achieved.   713 
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Appendix A: Technical details of the model development 950 

Model training 951 

Function estimation 952 

Let us use {𝑦𝑖, 𝒙𝑖}1
𝑁  to denote the training sample of known (𝑦, 𝒙)-values, where 𝑦𝑖  refers to the 953 

response variable and 𝒙𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑑) the input variables of the 𝑖th observation. The goal of model 954 

training is to reconstruct the unknown functional dependence 𝒙
𝐹
→ 𝑦 with our estimate 𝐹̂(𝒙), such that the 955 

expected value of some specified loss function 𝐿(𝑦, 𝐹(𝒙)) over the joint distribution of all (𝑦, 𝒙)-values is 956 

minimized:  957 

 958 
𝐹∗ = argmin

𝐹
𝐸𝑦,𝒙𝐿(𝑦, 𝐹(𝒙))  (A.1) 

 959 
where 𝐿(𝑦, 𝐹) is the loss function associated with 𝑦 and 𝐹 (e.g., squared error (𝑦 − 𝐹)2). Thus, the goal of 960 

model training can be approximately viewed as minimizing the model prediction error.  961 

The response variable 𝑦  may come from different distributions. In ML theory, the different 962 

distributions naturally lead to different specifications for the loss function 𝐿(𝑦, 𝐹). Given that online 963 

shopping demand is a continuous response variable, the 𝐿2 square loss function: 𝐿(𝑦, 𝐹)𝐿2
=

1

2
(𝑦 − 𝐹)2 964 

and the robust regression Huber loss function 𝐿(𝑦, 𝐹)Huber,𝛿 are often used (Natekin and Knoll, 2013). We 965 

choose the Huber loss function, which captures not only 𝐿2 square loss but also mean absolute error 𝐿1. As 966 

shown in Eq. (A.2), 𝐿(𝑦, 𝐹)Huber,𝛿 is 𝐿(𝑦, 𝐹)𝐿2
 when the absolute error of prediction |𝑦 − 𝐹| is smaller 967 

than or equal to 𝛿, but becomes 𝐿(𝑦, 𝐹)𝐿1
= |𝑦 − 𝐹| with a multiplier 𝛿 minus a constant term 𝛿

2

2
 when the 968 

absolute error of prediction is greater. 969 

 970 

𝐿(𝑦, 𝐹)Huber,𝛿 = {

1

2
(𝑦 − 𝐹)2                  if |𝑦 − 𝐹| ≤ 𝛿

|𝑦 − 𝐹|𝛿 −
𝛿2

2
          if  |𝑦 − 𝐹| > 𝛿

 (A.2) 

 971 
Following the common procedure in GBM, we parameterize 𝐹(𝒙) as 𝐹(𝒙; 𝑷) where 𝑷 = {𝑃1, 𝑃2, … } 972 

is a finite set of parameters. Choosing a parameterized function 𝐹(𝒙; 𝑷) then changes to the following 973 

problem of parameter optimization: 974 

 975 

𝑷∗ = argmin
𝑷

𝐸𝑦,𝒙𝐿(𝑦, 𝐹(𝒙; 𝑷))   (A.3) 

 976 
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Consequently, 𝐹∗(𝒙) = 𝐹(𝒙; 𝑷∗). 977 

To determine 𝑷∗, we employ steepest descent as the numerical minimization method, which iteratively 978 

updates 𝑷∗ as in Eq. (A.4): 979 

 980 

𝑷𝑚 = 𝑷𝑚−1 − 𝛾𝑚 {[
𝜕𝐸𝑦,𝒙𝐿(𝑦,𝐹(𝒙;𝑷))

𝜕𝑃𝑗
]

𝑷=𝑷𝑚−1

}   (A.4) 

 981 
where 𝑃𝑗 is the 𝑗th element in P. 𝛾𝑚 is obtained from line search as follows: 982 

 983 

𝛾𝑚 = argmin
𝛾

𝐸𝑦,𝒙𝐿 (𝑦, 𝐹 (𝒙; 𝑷𝑚−1 − 𝛾 {[
𝜕𝐸𝑦,𝒙𝐿(𝑦,𝐹(𝒙;𝑷))

𝜕𝑃𝑗
]

𝑷=𝑷𝑚−1

}))   (A.5) 

 984 
Note that the minimization problem of (5) only involves one decision variable 𝛾. 985 

Numerical optimization with training data 986 

GBM views each point in 𝒙  as a “parameter” (so there are 𝑁  “parameters”). Then, the iterative 987 

relationship in steepest descent that corresponds to (A.4) becomes: 988 

 989 

𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) − 𝜌𝑚 {[
𝜕𝐿(𝑦,𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
}   (A.6) 

 990 

where 𝜌𝑚 = argmin
𝜌

𝐿 (𝑦, 𝐹𝑚−1(𝒙) − 𝜌 {[
𝜕𝐿(𝑦,𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
}). 991 

However, there is a key difference here that prevents direct application of the above steepest descent. 992 

That is, the gradient is defined only at the data points {𝒙𝑖}1
𝑁 but cannot be generalized to other x-values. 993 

One way of generalization, according to Friedman (2001), is to parameterize 𝐹(𝒙) as: 994 

 995 

𝐹(𝒙; {𝜌𝑚, 𝒂𝑚}1
𝑀) = ∑ 𝜌𝑚ℎ(𝒙; 𝒂𝑚)

𝑀

𝑚=1

 (A.7) 

 996 
where {𝜌𝑚, 𝒂𝑚}1

𝑀  are parameters. 𝑀  is the maximum number of iterations in performing the GBM-997 

equivalent steepest descent. The generic functions ℎ(𝒙; 𝒂𝑚) , 𝑚 = 1,2, … , 𝑀  are usually simple 998 

parameterized functions of the input variables 𝒙, characterized by parameters 𝒂𝑚 = {𝑎𝑚
1 , 𝑎𝑚

2 , … }. In GBM, 999 

ℎ(𝒙; 𝒂𝑚) is called a “base learner” and is often a classification tree. In this paper, we consider the following 1000 

regress trees specification for ℎ(𝒙; 𝒂𝑚): 1001 

 1002 
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ℎ(𝒙; 𝒂𝑚) = ℎ (𝒙; {𝑏𝑚
𝑗

, 𝑅𝑚
𝑗

}
1

𝐽
) = ∑ 𝑏𝑚

𝑗
1(𝒙 ∈ 𝑅𝑚

𝑗
)

𝐽
𝑗=1   (A.8) 

 1003 
where 𝒂𝑚 = {𝑏𝑚

𝑗
, 𝑅𝑚

𝑗
}

1

𝐽
. {𝑅𝑚

𝑗
}

1

𝐽
 are disjoint regions that collectively cover the space of all joint values of 1004 

𝒙. These regions are represented by the terminal nodes of the corresponding tree. The indicator function 1005 

1(∙) takes value 1 if the argument is true, and 0 otherwise. 𝑏𝑚
𝑗 ’s are parameters of the base learner. 1006 

 Comparing the iterative expression (6) and Eq. (A.7), the question in the 𝑚th iteration is to identify 1007 

𝒂𝑚 such that ℎ(𝒙; 𝒂𝑚) is most parallel to (i.e., most highly correlated with) {− [
𝜕𝐿(𝑦,𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
}

1

𝑁

. 1008 

This can be obtained from the following least-square minimization problem, the reason being that solutions 1009 

to least-square minimization problems have been well studied and thus can follow standard procedures.  1010 

 1011 

𝒂𝑚 = argmin
𝒂,𝛽 

∑ [− [
𝜕𝐿(𝑦, 𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)

− 𝛽ℎ(𝒙𝑖; 𝒂)]

2𝑁

𝑖=1

 (A.9) 

 1012 
The obtained ℎ(𝒙; 𝒂𝑚)  is then used to replace − [

𝜕𝐿(𝑦,𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
 in the steepest descent 1013 

procedure. Specifically, the new line search can be expressed as: 1014 

 1015 
𝜌𝑚 = argmin

𝜌
𝐿(𝑦, 𝐹𝑚−1(𝒙) + 𝑣𝜌ℎ(𝒙; 𝒂𝑚))  (A.10) 

 1016 
which is used to update 𝐹(𝒙): 1017 

 1018 
𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) + 𝑣𝜌𝑚ℎ(𝒙; 𝒂𝑚)  (A.11) 

 1019 
where 𝑣 ∈ (0,1] is the learning rate, a hyperparameter in the GBM model. Considering a learning rate less 1020 

than one attempts to prevent overfitting by “shrinking” the update of 𝐹(𝒙). Previous numerical experiments 1021 

revealed that a small 𝑣 can result in better prediction performance of GBM models.  1022 

In ML, the process represented by (A.9)-(A.11) is called “boosting”. The overall procedure thus gets 1023 

the name of “gradient boosting”. Overall, the GBM algorithm can be summarized as follows: 1024 

 1025 
GBM Algorithm  
1. Initialization: 𝐹0(𝒙) = argmin𝜌 ∑ 𝐿(𝑦𝑖 , 𝜌)𝑁

𝑖=1 ; set hyperparameter values 
2. For 𝑚 = 1 to 𝑀 do: 

3.       𝒂𝑚 = argmin
𝒂,𝛽 

∑ [− [
𝜕𝐿(𝑦,𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
− 𝛽ℎ(𝒙𝑖; 𝒂)]

2

𝑁
𝑖=1    
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4.       𝜌𝑚 = argmin
𝜌

𝐿(𝑦, 𝐹𝑚−1(𝒙) + 𝑣𝜌ℎ(𝒙; 𝒂𝑚)) 

5.       𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) + 𝑣𝜌𝑚ℎ(𝒙; 𝒂𝑚) 
6. End for 

 1026 
Note that four hyperparameters are involved in GBM model training: the number of regression trees 1027 

(𝑀), the maximum depth of a tree, the minimum sample leaf of a tree (i.e., the minimum number of 1028 

observations a node needs to have to be considered for splitting), and the learning rate (𝑣). Grid search is 1029 

performed to enumerate possible value combinations for the four hyperparameters. Each combination 1030 

results in one trained GBM model. 1031 

Model validation 1032 

Model validation consists of identifying the combination of hyperparameter values that yields the best 1033 

model fit without overfitting. To select the GBM model with the highest prediction accuracy, 𝑅2 is used.  1034 

 1035 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 (A.12) 

 1036 
where 𝑦𝑖 denotes the observed value of the 𝑖th observation, 𝑦̂𝑖 is the corresponding predicted value, 𝑦̅ is the 1037 

mean of the observed values: 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑁
𝑖=1 .  1038 

We calculate 𝑅2 for each trained model and sort the models in descending order based on 𝑅2. These 1039 

models are then evaluated one by one starting from the one with the highest 𝑅2, as follows. We apply a 1040 

trained model to the validation dataset to generate predicted values and calculate 𝑅2. If the difference 1041 

between this 𝑅2 and the 𝑅2 associated with the training dataset is less than a threshold (0.1 in this study), 1042 

then the model is selected as the best model. Otherwise, the difference in 𝑅2  suggests presence of 1043 

overfitting. Then the model is discarded and the next model for evaluation is studied. In the end, the best 1044 

combination of hyperparameter values, which correspond to the first encountered model without 1045 

overfitting, is identified. 1046 

To further assure that the selected hyperparameter values lead to a good GBM model, 𝑘-fold cross 1047 

validation is also performed. Specifically, the training and validation datasets are merged and randomly 1048 

divided into 𝑘  subsets. Then, 𝑘 − 1 subsets are selected for training a GBM model using the selected 1049 

hyperparameter values. The trained model is then used for prediction using the remaining subset. 𝑅2’s of 1050 

the training subset and the testing subset are calculated. This process is repeated 𝑘 times. If the average 𝑅2 1051 

associated with model validation is much lower than with model training, then the hyperparameter values 1052 

are discarded. The next best combination of hyperparameter values (based on description of the previous 1053 

paragraph) is evaluated. Otherwise, the selected hyperparameters and associated GBM model are kept. 1054 
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In addition to 𝑅2, we use root-mean-square error (RMSE) to measure the prediction accuracy. As 1055 

shown in Eq. (A.13), RMSE is defined as the square root of the average of squared differences between 1056 

predicted and observed values over all observations. A lower RMSE value means a smaller average 1057 

difference between 𝑦𝑖 and 𝑦̂𝑖, thus a better fit of the model. 1058 

 1059 

𝑅𝑀𝑆𝐸 = √
1

𝑁′
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑁′

𝑖

 (A.13) 

 1060 

Model testing 1061 

Given the selected GBM model, the model testing step is to provide an understanding about how 1062 

accurate the model prediction could be on new data. Specifically, after model training and validation, the 1063 

remaining 20% of the data not used in the previous two steps are used to check if the model can still yield 1064 

good accuracy in prediction. Again, we use 𝑅2 and RMSE to measure prediction accuracy.  1065 

Appendix B: Candidate input variables for 2009 1066 

Socioeconomic characteristics 1067 

1. Average age of the household 1068 

2. Education  1069 

o Percentage of members in the household not having high school degree 1070 

o Percentage of members in the household having only high school  1071 

o Percentage of members in the household having bachelor's degree 1072 

o Percentage of members in the household having graduate degree 1073 

3. Percentage of male in the household 1074 

4. Percentage of race in the household 1075 

o White 1076 

o Black or African American 1077 

o Asian 1078 

o American Indian or Alaska Native 1079 

o Native Hawaiian or other Pacific Islander 1080 

o Multiple race 1081 

o Some other race 1082 

5. Number of vehicles in the household 1083 
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6. Household income 1084 

7. Household size 1085 

8. Percentage of workers in the household 1086 

9. Percentage of drivers in the household 1087 

10. Percentage of full-time worker in the household 1088 

11. Percentage of part time worker in the household 1089 

12. Percentage of adults in the household 1090 

Trip characteristics 1091 

1. Total travel time of the household member  1092 

2. Gas price 1093 

3. Number of total trips of the household 1094 

4. Percentage of shopping trips 1095 

Land use characteristics 1096 

1. Population density  1097 

2. Household area (categorical variables) 1098 

o Urban 1099 

o Suburban 1100 

o Rural 1101 

3. 2010 Census division classification for the household’s home address (categorical variables) 1102 

o New England 1103 

o Middle Atlantic 1104 

o East North Central 1105 

o West North Central 1106 

o South Atlantic 1107 

o East South Central 1108 

o West South Central 1109 

o Mountain 1110 

o Pacific 1111 

4. Home Ownership 1112 

5. House type 1113 

o Duplex 1114 

o Townhouse 1115 

o Apartment or condominium 1116 
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o Mobile home or trailer 1117 

Internet use 1118 

1. Frequency of using the Internet (categorical variables) 1119 

o All household members use the Internet daily 1120 

o All household members use the Internet a few times a week 1121 

o All household members use the Internet once in a week 1122 

o All household members use the Internet a few times a month 1123 

o No household member ever uses the Internet 1124 

Appendix C: Candidate input variables for 2017 1125 

Socioeconomic characteristics 1126 

1. Average age of the household 1127 

2. Education  1128 

o Percentage of members in the household not having high school degree 1129 

o Percentage of members in the household having only high school  1130 

o Percentage of members in the household having bachelor's degree 1131 

o Percentage of members in the household having graduate degree  1132 

3. Percentage of male in the household 1133 

4. Health status of the individual 1134 

o Percentage of members in the household having excellent health condition 1135 

o Percentage of members in the household having poor health condition 1136 

5. Percentage of race in the household 1137 

o White 1138 

o Black or African American 1139 

o Asian 1140 

o American Indian or Alaska Native 1141 

o Native Hawaiian or other Pacific Islander 1142 

o Multiple race 1143 

o Some other race 1144 

6. Number of vehicles in the household 1145 

7. Household income 1146 

8. Household size 1147 

9. Percentage of workers in the household 1148 
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10. Percentage of drivers in the household 1149 

11. Percentage of full-time worker in the household 1150 

12. Percentage of part time worker in the household 1151 

13. Percentage of adults in the household 1152 

Trip characteristics 1153 

1. Total travel time of the household member  1154 

2. Gas price 1155 

3. Number of total trips of the household 1156 

4. Percentage of shopping trips 1157 

Land use characteristics 1158 

1. Population density  1159 

2. Household area (categorical variables) 1160 

o Urban 1161 

o Suburban 1162 

o Rural 1163 

3. 2010 Census division classification for the household's home address (categorical variables) 1164 

o New England 1165 

o Middle Atlantic 1166 

o East North Central 1167 

o West North Central 1168 

o South Atlantic 1169 

o East South Central 1170 

o West South Central 1171 

o Mountain 1172 

o Pacific 1173 

4. Home Ownership 1174 

Internet use 1175 

1. Frequency of using the Internet (categorical variables) 1176 

o All household members use the Internet daily 1177 

o All household members use the Internet a few times a week 1178 

o All household members use the Internet once in a week 1179 

o All household members use the Internet a few times a month 1180 

o No household member ever uses the Internet 1181 
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2. Household that use smartphone daily 1182 

3. Household that use laptop/desktop daily 1183 

Appendix D: Chi square test for the distribution of household online 1184 

purchases between 2009 and 2017 1185 

The frequencies of household purchases in each category (0, 1-5, 6-10, 11-15, 16-20, and 20+) in 2009 1186 

and 2017 are shown in Table D.1 along with the row and columns totals. 1187 

 1188 
Table D.1 Frequency distribution of household purchases in 2009 and 2017 1189 

Year 0 1-5 6-10 11-15 16-20 20+ 
2009 2,242 16,883 5,042 1,632 586 641 
2017 30,394 41,541 13,694 5,033 2,380 2,477 

 1190 
To determine whether a statistically significant difference exists in the distributions between the two 1191 

years’ data, we calculate chi-square (𝜒2) using the following equation: 1192 

 1193 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑛

𝑖=1

 (D.1) 

 1194 
where 𝑂𝑖  and 𝐸𝑖  are observed and expected frequencies for category 𝑖 . We consider that observed 1195 

frequencies correspond to 2017, and expected frequencies correspond to 2009. The expected frequency in 1196 

a category is calculated by multiplying the total number of observations in 2017 by the proportion of 1197 

observations in that category in the total observations based on 2009 data. 1198 

 1199 
Table D.2 𝑂𝑖’s and 𝐸𝑖’s used in calculating 𝜒2 1200 

 0 0-5 6-10 11-15 16-20 20+ 
Observed (𝑂𝑖) 30,394 41,541 13,694 5,033 2,380 2,477 
Expected (𝐸𝑖) 7,924 59,670 17,820 5,768 2,071 2,266 
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 63,718 5,508 955 94 46 20 

 1201 
The 𝜒2 value is calculated to be 70,341. The degree of freedom is 5. The corresponding critical 𝜒2 1202 

value is 7.81 for 5% level of significance. As 𝜒2 > 7.81, we conclude that the distribution of household 1203 

online purchases from the 2017 data is significantly different from that from the 2009 data.  1204 
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Appendix E: Correlation matrices of the input variables 1205 

2009 1206 

  

A
ve

ra
ge

 m
em

be
r a

ge
 

M
al

e 
pe

rc
en

ta
ge

 

H
ou

se
ho

ld
 si

ze
 

H
ou

se
ho

ld
 in

co
m

e 

A
du

lt 
pe

rc
en

ta
ge

 

N
o 

hi
gh

 sc
ho

ol
 p

er
ce

nt
ag

e 

B
ac

he
lo

r’
s d

eg
re

e 
pe

rc
en

ta
ge

 

N
um

be
r o

f v
eh

ic
le

s 

H
om

e 
ow

ne
rs

hi
p 

N
um

be
r o

f t
rip

s p
er

 d
ay

 

Tr
av

el
 ti

m
e 

pe
r d

ay
 

G
as

 p
ric

e 

Sh
op

pi
ng

 tr
ip

 p
er

ce
nt

ag
e 

U
rb

an
 a

re
a 

Po
pu

la
tio

n 
de

ns
ity

 

D
ai

ly
 In

te
rn

et
 u

se
 

Average member age 1.00                

Male percentage -0.01 1.00               

Household size -0.54 0.06 1.00              

Household income -0.13 0.13 0.19 1.00             

Adult percentage 0.51 0.02 -0.77 -0.13 1.00            

No high school percentage -0.06 0.01 0.07 -0.17 -0.03 1.00           

Bachelor’s degree percentage -0.05 0.04 0.02 0.20 -0.07 -0.11 1.00          

Number of vehicles -0.20 0.10 0.34 0.30 -0.08 -0.02 -0.01 1.00         

Home ownership 0.15 0.01 0.02 0.25 0.06 -0.09 0.05 0.22 1.00        

Number of trips per day -0.16 0.07 0.28 0.24 -0.15 -0.03 0.07 0.22 0.07 1.00       

Travel time per day 0.00 0.03 -0.01 0.03 0.03 0.00 -0.01 0.04 0.00 -0.14 1.00      

Gas price -0.01 0.00 0.00 -0.01 0.01 0.00 -0.02 0.00 -0.01 0.01 0.01 1.00     

Shopping trip percentage 0.17 0.03 -0.13 -0.10 0.15 0.01 -0.02 -0.06 -0.01 -0.07 -0.13 0.00 1.00    

Urban area -0.03 0.01 -0.02 -0.03 0.01 0.01 0.01 -0.13 -0.14 -0.01 -0.01 0.01 0.01 1.00   

Population density -0.05 0.01 -0.02 -0.02 0.01 0.01 0.02 -0.19 -0.21 -0.01 -0.01 0.01 0.01 0.63 1.00  

Daily Internet use -0.11 0.07 0.10 0.28 -0.08 -0.11 0.11 0.08 0.06 0.17 0.00 -0.02 -0.04 0.00 0.01 1.00 

 1207 
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2017 1208 
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Average member age 1.00                
Male percentage -0.08 1.00               
Household size -0.22 0.11 1.00              
Household income -0.13 0.12 0.34 1.00             
Adult percentage 0.20 0.00 -0.28 -0.06 1.00            
No high school percentage 0.00 0.00 0.08 -0.14 -0.30 1.00           
Bachelor’s degree percentage -0.15 0.03 -0.01 0.15 0.03 -0.12 1.00          
Number of vehicles -0.10 0.17 0.55 0.36 -0.10 -0.04 0.01 1.00         
Home ownership 0.29 0.01 0.21 0.27 -0.01 -0.07 -0.01 0.33 1.00        
Number of trips per day -0.12 0.05 0.60 0.25 -0.17 0.02 0.03 0.35 0.15 1.00       
Travel time per day -0.09 0.06 0.33 0.15 -0.08 0.03 0.00 0.21 0.07 0.04 1.00      
Gas price 0.04 0.00 0.00 0.05 0.01 -0.03 -0.01 -0.01 -0.04 0.00 0.01 1.00     
Shopping trip percentage 0.16 0.03 -0.06 -0.10 0.04 0.04 -0.05 -0.07 0.00 -0.20 -0.06 0.00 1.00    
Urban area -0.12 0.00 -0.06 0.04 0.02 0.00 0.05 -0.15 -0.18 -0.04 -0.01 0.18 -0.01 1.00   
Population density -0.17 0.00 -0.08 0.05 0.02 -0.01 0.08 -0.22 -0.25 -0.05 -0.02 0.17 -0.01 0.64 1.00  
Daily Internet use -0.28 0.02 0.15 0.27 -0.04 -0.17 0.13 0.14 0.03 0.12 0.06 0.02 -0.10 0.03 0.06 1.00 
 1209 

 1210 

 1211 


