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ABSTRACT
Occupancy detection systems are commonly equipped with high-
quality cameras and a processor with high computational power to
run detection algorithms. This paper presents a human occupancy
detection system that uses battery-free cameras and a deep learning
model implemented on a low-cost hub to detect human presence.
Our low-resolution camera harvests energy from ambient light and
transmits data to the hub using backscatter communication. We
implement the state-of-the-art YOLOv5 network detection algorithm
that offers high detection accuracy and fast inferencing speed on
a Raspberry Pi 4 Model B. We achieve an inferencing speed of
∼ 100𝑚𝑠 per image and an overall detection accuracy of >90% with
only 2GB CPU RAM on the Raspberry Pi. In the experimental
results, we also demonstrate that the detection is robust to noise,
illuminance, occlusion, and angle of depression.

CCS CONCEPTS
• Computing methodologies → Object detection; • Hardware →
Wireless integrated network sensors.

KEYWORDS
Backscatter, Wireless Battery-Free Camera, Neural Networks, Occu-
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1 INTRODUCTION
Recent advances in sensors, wireless networks, and computer vision
have enabled us to design smart devices that sense their surround-
ings and interact with humans and other intelligent objects. For
instance, recent efforts in the development of smart surveillance
systems have improved the accuracy of automated security systems
wherein smart sensors are used to detect human presence. However,
deployment of these automated systems is limited to scenarios where

*Both authors contributed equally to this research.

EMDL ’21, June 25, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8597-8/21/06.
https://doi.org/10.1145/3469116.3470013

plug-in sensors communicate with a powerful processor for occu-
pancy detection. An ideal human occupancy detection system must
satisfy two major requirements: first, the wireless sensors should
be maintenance-free and do not require battery charging or replace-
ment. Second, a low-cost processor should be able to detect human
presence by using a fast and accurate algorithm.

Outdoor occupancy detection systems typically use high-resolution
solar-powered cameras for human presence detection. However,
these systems might require battery charging if the harvested energy
could not support the operation of the camera [1]. Implementation
of solar-powered cameras is even more challenging in indoor cases
as the solar panels harvest less energy indoor. To address this chal-
lenge, researchers have studied other sensors such as carbon dioxide,
temperature and humidity [30, 31], and passive infrared (PIR) sen-
sors [2, 35] to replace the camera with a low-power sensor. However,
these systems still need batteries for operation. Furthermore, environ-
mental data is susceptible to abrupt pattern changes due to external
factors such as an opened window or door and is generally restricted
to an enclosed environment.

Image data, on the other hand, can provide a clear visual indica-
tion of a human presence. However, due to the limited computational
resources on an embedded device, human detection commonly relies
on shallow models such as Support Vector Machine [4, 6, 27] to
perform real-time detection on images. Object detection and image
classification models such as You Only Look Once (YOLO) net-
works [9, 19, 28, 33], Single Shot MultiBox Detector (SSD) [14],
Few-shot models [25, 34] and RetinaNet [17] are generally too
computation-intensive to perform real-time detection on an embed-
ded system without GPU. In many cases, to perform inference or
detection using a deep learning model, we require a computer with
considerable computation capacity or an expensive device such as
Jetson TX2 [28] to be able to handle the streaming images captured
by the cameras. These examples show a contradicting trade-off be-
tween computation resources and detection performance. On the one
hand, we want to reap the benefit of high detection accuracy from
deep learning models. Still, ideally, on the other hand, we want to
achieve that without expending excessive computation resources.

In this work, we design an occupancy detection system that uses
a lightweight yet accurate algorithm implemented on a low-cost
processor to analyze data from battery-free cameras and detect hu-
man presence. In this system, cameras capture low-resolution images
and transmit them to a hub equipped with a low-cost processor for
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occupancy detection. We use a low-power communication system
called backscatter to send data to the hub in the implementation of
battery-free cameras. Since the required energy for data transmission
is low, a solar panel in an indoor setup can harvest enough energy
from ambient light to support the camera’s operation.
The contributions of this paper are listed below:

(1) Implementation of wireless battery-free cameras that harvest
energy from ambient light.

(2) Deployment of occupancy detection YOLOv5 model on an
embedded system.

(3) Demonstration of inferencing speed, detection accuracy, and
reliability of the proposed system.

2 RELATED WORK
We review the prior efforts in battery-free sensing and detection
algorithm in this section.

Battery-free sensing. To enable battery-free sensing, two condi-
tions must be satisfied; first, operation of the sensor node, sensing
and communicating, should be power efficient, and second, a har-
vester should provide enough energy to support this power-efficient
operation. Backscatter communication technology has addressed the
first challenge and has been used to design and implement battery-
free sensors. In [26], a wireless sensing platform is developed using
RFID readers. The reader in RFID technology uses backscatter
communication to receive data from the battery-free sensors in the
network. Researchers in [20–22], introduce a battery-free camera
that captures still images and transmits them via RFID backscatter
communication. Since the required energy for the operation of this
camera is provided by harvesting energy from the RFID reader, the
operating range is only limited to a few meters.

In [7, 24], a wireless battery-free camera is designed. This system
uses an analog image sensor to stream video. The authors use Pulse
Width Modulation (PWM) to convert the analog pixels value to
digital for backscatter data transmission.

As mentioned, energy harvesting is a major obstacle in imple-
menting battery-free sensors. To address this challenge, researchers
have been trying to improve the efficiency of exiting harvesters
and design novel boards capable of harvesting energy from multi-
ple sources. In [24], a dual harvester board provides power for the
camera’s operation by collecting energy from ambient light and RF
signals simultaneously, allowing the camera to operate at longer
distances. Researchers in [3] design the first battery-free personal
gaming device powered by collected energy from sunlight and the
user actions. Other sources of energy are used to power battery-free
sensors such as thermal [18], vibration [13], and motion [29].

Detection algorithm. In the realm of object detection, or specif-
ically, in human detection, many techniques and algorithms are
proposed in previous literature. For example, the combination of fea-
ture extraction using Histogram of Gradient (HOG) and the Support
Vector Machine (SVM) as the classifier [4, 6, 27] are frequently used.
In these papers, HOG is used to effectively extract the human feature
and contour from an input image, and these extracted features are
then fed into an SVM for classification. On top of that, with the small
model size and inferencing speed, it becomes a suitable candidate to
be deployed on an embedded system to perform real-time detection.

Backscatter

Controller

Image SensorHarvester

(a) Block diagram (b) Hub (Receiver + Raspberry Pi)

(c) Transmitter (d) Camera

Figure 1: Prototype hardware.

In [4, 6], the detection is performed on relatively more straightfor-
ward human posture like standing or walking, and the whole human
body is perfectly visible. In [27], the test cases presented in the paper
are slightly more challenging. The images are captured in a certain
angle of depression, and the humans’ figures appear smaller in the
images. However, the performance of the detection algorithm under
occlusion cases is still not discussed in the papers.

On the other hand, with the recent advances in deep learning, there
are also papers that use deep learning models such as YOLO [19, 28,
33] to detect person for occupant density detection, human behavior,
and motion analysis. In [19], the authors claim that the YOLOv3
model is performing better in cases of partial occlusion. In terms
of inferencing speed, however, in [33], the authors mention that the
algorithm would require a GPU to perform inferencing in a real-
time fashion. An example of this is shown in [19], whereby using a
Jetson TX2 and TensorRT optimization, the system can achieve 10
FPS of processing speed. While deep learning models offer a more
robust detection performance, deploying a deep learning model on
an embedded system for real-time detection remains a challenge.

3 SENSOR DESIGN
Our goal is to design a battery-free camera that captures low-resolution
images and transmits them to a hub via wireless communication.
To enable this, we use a low-power microcontroller to read images
from the image sensor and send them to the receiver using backscat-
ter communication technology. Our solar harvester stores enough
energy to support the operation of the camera. Figure 1 shows the
block diagram of our system and our camera prototype.

3.1 Image Sensor
We use a Himax HM01B0 low-power image sensor that outputs gray-
scale video with a bit depth of 8 per pixel to capture 120 × 120 pic-
tures. This image sensor has the lowest power consumption among
the low-resolution sensors since it consumes only 1.1 mW to stream
video at 30 frames per second. The process of capturing an image
starts with enabling the image sensor. Next, the microcontroller unit
(MCU) reads the image row by row and saves it in memory. Once
the picture is recorded, the MCU disables the image sensor to keep
the camera’s power consumption in sleep mode low.
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To improve the image quality, we remove the static noise in the
images. A white paper is placed in front of the camera’s lens, and
hundreds of images are recorded to estimate this noise. Taking an
average across these images provides an estimate of the static noise.
We remove this offset by subtracting the per-pixel average from each
pixel of the image that we record. Figure 2 shows a sample image
before and after the noise removal process.

Figure 2: Image sample after (left) and before (right) enhance-
ment.

3.2 Microcontroller and Energy Harvester
We use STM32L071C8, an ultra-low-power MCU with a clock
frequency of 4 MHz, to initialize the image sensor, receive images
from it, and transmit them in multiple packets to the hub using
backscatter communication. In the following paragraphs, we explain
the process of capturing an image and transmitting it to the receiver
in more detail.

To save energy, we keep our system in sleep mode and wait
for the hub to request an image. Our camera is equipped with the
low-power Amplitude Shift Keying (ASK) receiver used in [10] to
enable this down-link communication. The ASK receiver listens to
the commands from the hub and wakes the microcontroller from
sleep mode upon detection of the image request command.

Once the command is received, the microcontroller’s Phase-Locked
Loop (PLL) generates a 3 MHz clock signal for the operation of
the image sensor and initializes it via the I2C bus. Next, the image
sensor captures an image and uses the SPI bus to transfer each row’s
pixels value to the MCU. This process is finished when the MCU
reads all of the 120 rows. Finally, to transmit the image to the hub,
the MCU breaks down the image into 12 portions or 120 rows. The
hub can request transmission of a portion or row by sending the
dedicated command to the camera.

The MCU uses the backscatter block for image data transmission.
We stream the raw data to the hub and do not perform any compres-
sion on the camera board because the power and time required for
compression are higher than the needed time and energy to stream
raw data [8]. Moreover, compression becomes more critical where
in contrast to our system, the communication cost is high, so the
data size must be as small as possible. To make our communication
system more robust, the microcontroller computes the Cyclic Redun-
dancy Check (CRC) of each communication packet and transmits it
at the end of the packet. If this CRC does not match the CRC that
the hub calculates, the hub requests re-transmission of the packet.

We use a TI BQ25570 solar energy harvesting Integrated Circuit
(IC) to power the camera’s operation. The amount of energy that
this IC stores in the supercapacitor depends on the size of the solar
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Figure 3: FSK backscatter in frequency domain.

panel and light intensity in the experiment room; using a larger solar
panel or deployment in a room with higher light intensity results in
a higher update rate.

3.3 Backscatter Communication
Backscatter communication is a low-power wireless technology
wherein a transmitter unit generates a carrier signal, a sensor node
reflects the carrier, and a receiver unit decodes the sensor node
data [7, 11, 12, 16]. Since the sensor does not need to generate any
signal to communicate with the receiver and only reflects the carrier,
the power consumption for data transmission is low.

We implement a Frequency Shift Keying (FSK) backscatter unit
to transmit the images to the hub at the data rate of 125 Kbps. In
our design, the microcontroller changes the state of the RF switch
connected to the antenna at two frequency rates to reflect the carrier.
Figure 3 shows the carrier signal and bit 1, and bit 0 with frequency
offset of 𝑓1 and 𝑓0 from the carrier, respectively. Our commuta-
tion system allows the camera to communicate with the receiver
while there is up to 130 ft distance between them [23]. Our custom-
designed receiver board equipped with a Raspberry Pi 4 for data
processing and the transmitter prototype are shown in Figure 1.

4 ALGORITHM
This section discusses the algorithm that we use to perform occu-
pancy detection on the embedded system.

4.1 YOLOv5 Network
To detect human presence, we implement a recent state-of-the-art de-
tection algorithm, YOLOv5 [9]. Similar to most single-stage object
detection models [14, 17], YOLOv5 consists of three components,
each with an essential role in the model.

The first component of the model, known as the model back-
bone, is a feature extractor network that extracts rich and useful fea-
tures from the input images. Many model backbones are developed
over the years, such as Cross Stage Partial Network (CSPNet)[32]
and Residual Network[5]. In YOLOv5, the former is used as the
model backbone. The next component is the model neck, whose
primary function is to generate feature pyramids. Feature pyramids
are an essential block that allows the model to detect objects at
different sizes and scales by constructing multi-scale feature maps.
Similar to YOLOv4, YOLOv5 uses the Path Aggregation Network
(PANet) [15] which combines the top-down and bottom structure
as the model neck. The last component of the model is the model

15



head, which generates the predictions for bounding boxes and object
classes.

The output tensor dimensions for YOLOv5 can be expressed
as 𝑑 × (𝑏 + 𝑛), where 𝑑 is the number of detection layers, 𝑏 =

(𝑥,𝑦,𝑤,ℎ, 𝑐) representing the predicted bounding box’s coordinates,
width, height and the prediction confidence, and 𝑛 is the number of
classes. The model has three detection layers in our application, and
since we are only interested in a single class, human presence detec-
tion, the output tensor dimensions are updated to 3×(5+1) = 18. The
models are introduced with four different sizes; small (𝑠), medium
(𝑚), large (𝑙), and extra-large (𝑥), with the model sizes sorted in
ascending order. The model sizes are increased by increasing the
model height and width multiplier, which will increase the number
of layers and layer channels. Considering the small input image size
and the limited computation resources on Raspberry Pi, we choose
the 𝑠 model with a 0.33 height multiplier and 0.5 width multiplier
for our application. The resulting model weight is merely 14 MB
with 7.25 M parameters and 16.8 GFLOPs in the model.

4.2 Training
Collected images by the cameras are labeled and annotated with
bounding boxes around the occupants. We employ several data aug-
mentation techniques such as brightness varying, image flipping,
and mosaic data augmentations to generate a richer training image
variation. These data augmentations procedures are essential to en-
hance the robustness of the trained model to various scenarios such
as different illuminance levels and human position in the images.
For this single-class detection implementation, we generate up to
4,308 images after augmentations(excluding mosaic augmentation),
and we use 3,016 images for training, 430 images for validation, and
862 images for testing. In the next step, these images are fed into
the YOLOv5 network for model training. The model is trained on
Google Colab using a Tesla T4 GPU for 300 epochs. After training
the model, the model weight and architecture are saved for inferenc-
ing purposes.

4.3 Deployment
The model weights are first converted into Tensorflow Lite (TF-
Lite) format before deploying the saved model on Raspberry Pi.
As a result, we can efficiently perform model inferencing on the
Raspberry Pi using the TF-Lite Interpreter. TF-Lite Interpreter is a
lightweight model interpreter library dedicated to model inferencing
on various embedded systems. This essentially reduces the required
memory size on the embedded system as it exempts the need to
install a full-blown deep learning library to run the model.

5 EVALUATION
We perform several experiments to demonstrate the performance of
our system. First, we measure the power consumption of the camera.
Second, we deploy our camera in different locations to evaluate the
accuracy of the model.

5.1 Camera Power Consumption
As mentioned in section 3.2, the MCU breaks down the image data
into 12 portions or 120 rows to transmit data to the hub. Figure 4
shows the power that the camera consumes to send one portion of an
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Figure 4: Camera’s power consumption during transmission of
a portion of the image.

Sleep Power (𝜇 W) 30
Sensing Energy (mJ) 6.05

Communication Energy (mJ) 3.82
Solar-Powered 2 𝑖𝑛2𝑝𝑎𝑛𝑒𝑙 280

Update Rate (sec.) 17 𝑖𝑛2𝑝𝑎𝑛𝑒𝑙 17
Table 1: Power consumption measurements for camera.

image to the hub. Each portion is composed of 60 communication
packets. The peaks in the power consumption plot are caused by the
MCU computing the CRC of each packet. To measure the camera’s
power consumption, we use a 2.2 Ω resistor in series with the camera
and measure the voltage of the resistor, which is 2.2x the current
the camera and the resistor consume. We analyze the voltage data
that the oscilloscope records to report the power numbers. Since the
resistor value is small, we can assume that the camera consumes the
total current. We list the energy that the camera needs to capture and
transmit an image in Table 1.

To evaluate the harvester’s performance, we use AM-1801 and
AM-1816CA solar panels with areas of 2 𝑖𝑛2 and 17 𝑖𝑛2, respectively,
in an office with the light intensity of 300 lux for collecting energy.
Table 1 lists the average update rates that we can achieve using these
solar panels.

5.2 Experiment Setup
The system setup consists of two camera nodes, a transmitter, and a
receiver attached to a Raspberry Pi. During the system testing, the
cameras are installed in each zone to capture images from different
directions and angles. The system is tested at two indoor locations,
a residential unit, and a computer lab. For privacy concerns, the sys-
tem is only set up in the common areas such as the kitchen and the
living room in the residential unit. These selected testing locations
are chosen to provide diverse indoor testing scenarios. For example,
in the kitchen, occupants are often standing and walking as they
are cooking or cleaning the dishes, while in the living room, occu-
pants are usually sitting on the couch watching television or using
their laptops. These scenarios produce images with different human
postures, lighting conditions, and occupants’ distance to the cam-
era (human figure size in pictures), enabling a more comprehensive
system performance evaluation.

In each location, we run the system for ∼10 hours from sunrise to
sunset, with 0 ∼ 2 occupants in the zone throughout the experiment
period. Moreover, to evaluate the reliability of the system, a final
experiment is performed with an extended period, where we run
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(1)

(a) Lab (camera 1)

(2)

(b) Lab (camera 2)

(3)

(c) Kitchen

(4)

(d) Living Room

Figure 5: Figure shows some example detection results for each experiment zone.

the system uninterrupted for up to 5 days, with the camera nodes
installed in two zones (kitchen and living room) simultaneously. This
experimental setup allows the system to cover a large area in the
residential unit, with up to a ∼30 ft euclidean distance between the
receiver and camera sensor nodes.

5.3 Experiment Results
In this section, we discuss the performance of our system at loca-
tions mentioned in Section 5.2. Figure 5 shows four sample images
wherein the YOLOv5 model detects occupants and annotates them
with bounding boxes. Each example image shown in the figure
depicts a different zone/background or posture. For example, in
Figure 5(a), the image shows the person in a sitting position and
far away from the camera. In contrast, another camera at the same
location captures a picture of the person walking toward the door
from a different angle. The model can detect the person in both
scenarios despite the different posture and distance from the camera.
Moreover, in Figure 5(c), the image shows that our model can detect
multiple people in one image. Finally, in Figure 5(d), the image
shows a scenario where the occupant is looking at the laptop in the
living room with only the top half of the body visible. This example
shows that the model can detect the person despite the occlusion of
the lower half body and it is robust to a small angle of depression.

On top of the output illustrations, Table 2 also provides a sum-
mary of the outcome of the performed experiments. In each zone,
the camera captures and inferences up to ∼3,000 images, and in the
last experiment, the system records more than 30,000 images, with
an inference time of only ∼100ms per image. To simplify results
presentation, we use a 0.5 confidence threshold in the inferencing,
and each frame with a detected person(s), will be labeled as occu-
pied, and otherwise, as unoccupied. After evaluating these occupied
and unoccupied frames, each experiment achieves an accuracy of
>90%, including the last experiment with two zones and an extended
experiment period. This shows that the system can accurately de-
tect human presence and operate reliably in a large area for a long
duration.

Every system has its advantages and shortcomings. In our case,
since our proposed detection system is vision-based, the images
captured by the camera are inherently reliant on the surrounding
illuminance. Under the low light condition, images captured appear
much darker with small pixel intensity values, as shown in Figure 6.
The red circle in Figure 6 indicates an occupant in the frame, but

Zones Total Num. Images Accuracy(%)
Lab 2,951 99.56

Kitchen 3,508 99.72
Living Room 3,082 92.53
Kitchen and

32,914 92.72Living Room
(5 days)

Table 2: Table shows the detection accuracy rates for different
testing locations and the total number of camera images col-
lected using the developed system.

Figure 6: A sample image captured in a dark environment with
the occupant circled in red.

the image captured does not contain enough contrast that shows the
human figure in the image. The combination of low-resolution and
dark images causes human detection to become a challenging task.
This situation can potentially be remedied by equipping the detec-
tion system with simple motion detection and image enhancement
algorithms. In our future work, the adaptation of this system in low
light conditions will be further addressed in more detail.

6 CONCLUSION
This paper proposed a power-efficient and high-performing occu-
pancy detection system deployed on an embedded system with a
low-cost processor. Using a solar energy harvester and backscatter
communication, we successfully powered the low-power camera sen-
sor and transmitted the captured images to the receiver. The power
consumption of the camera for sensing and transmitting an image
was discussed in detail. For the detection algorithm, we deployed a
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state-of-the-art detection model, the YOLOv5 network, on the Rasp-
berry Pi to detect occupants accurately. Multiple indoor experiments
were performed to demonstrate the performance of the proposed
system. The experiment results showed promising results with >90%
detection accuracy and a fast inferencing time of ∼100ms.
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