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o Deep learning or interpolation for
inverse modelling of heat and fluid
flow problems?
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Abstract

Purpose — The purpose of this study is to compare interpolation algorithms and deep neural networks for
inverse transfer problems with linear and nonlinear behaviour.

Design/methodology/approach — A series of runs were conducted for a canonical test problem. These
were used as databases or “learning sets” for both interpolation algorithms and deep neural networks. A
second set of runs was conducted to test the prediction accuracy of both approaches.

Findings — The results indicate that interpolation algorithms outperform deep neural networks in accuracy
for linear heat conduction, while the reverse is true for nonlinear heat conduction problems. For heat
convection problems, both methods offer similar levels of accuracy.

Originality/value — This is the first time such a comparison has been made.

Keywords Machine learning, Deep neural networks, Forced and natural convection, Interpolation,
Linear heat conduction, Nonlinear heat conduction, Deep learning

Paper type Research paper

1. Introduction

In a recent paper, Tamaddon-Jahromi et al. (2020) proposed the use of deep learning (DL) via
specific deep neural networks (DNNs) and to quickly solve inverse problems arising in the
general field of heat transfer. The approach was tested on a two-dimensional (2D) unit
square shown in Figure 1. The inverse problem was formulated as follows: given a constant
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(but possibly different) temperature on each of the four walls (i.e. a total of four design
variables) and the temperature at a series of internal (measuring) points, how accurately can
a DNN estimate the wall temperatures? Tamaddon-Jahromi et al. (2020) performed forward
calculations, tabulated the temperatures at the wall (input of the forward problem) and the
resulting temperatures at the measuring points (output of the forward problem). This
database was then used to train several DNNs, which ranged from 2-4 hidden layers and
16-64 neurons per hidden layer. The input data for the DNNs was the output of the forward
problem, and the output had to match as best possible the input of the forward problem. The
results showed a very high predictive accuracy for the DNNSs, often exceeding 95%, i.e. less
than 5% error.

Intrigued by these results, as well as the high number of neurons needed to get these
levels of accuracy, the question arose whether simple interpolation procedures could not
yield a similar accuracy. After all: if the input-to-output map/function is ill-defined or
multivalued (i.e. requiring a high-fidelity physics simulation), given an arbitrary input
neither a DNN nor an interpolation algorithm would be able to accurately predict outputs.

Interpolation algorithms require fast search techniques. Assuming these are available,
they offer a number of interesting possibilities for both IP and DL:

e one can “scan” the learning data and see if there are gaps/holes/“empty regions” that
need further data;

e given new entries into the learning set, one can judge whether this new data is useful or
not (after all: if a point with similar data exists, why add it to the database?);

e given new entries into the learning set, one can judge the level of “noise” or
“uncertainty” in the data (i.e. closeness in inputs but differences in output);

e given new entries into the learning set, one can judge whether the input to output
map is unique, i.e. whether for similar input data large differences in output data are
possible (e.g. butterfly effects); and

e new entries that are not duplicating already given information enhance the database
and improve the accuracy of the interpolation; this implies that both IP and DL
algorithms improve and “learn” with more data.
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Figure 1.
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Interpolation-based algorithms offer further advantages:

¢ There is no arbitrariness in interpolation algorithms; unlike DNNS, there is no need
to test/evaluate the best combination of number of layers, number of neurons in
each layer, activation function type, etc.

¢ One can compute local gradients to estimate the accuracy of interpolation
algorithms.

* Interpolation should have at least comparable speeds to DNNs; if one can order the
data properly, the number of operations required may even be lower than a complex
DNN.

* Unlike DNNs that “saturate” once their coefficients are fixed after a certain number of
entries in the learning data set, interpolation keeps improving with additional data.

¢ Unlike DNNs, IPs do not need to be retrained when new data enters the learning
data set.

The biggest drawback of interpolation techniques is the storage; storage grows linearly with
a data set, while accuracy only increases 1/d, where d is the dimensionality of the problem.

There are several interpretations of DL, and there are various types of DNNS; for a broad
view of the field, we refer to the seminal paper of LeCun ef al. (2015). In particular, we use the
interpretation where in each layer (level), we first apply an affine transformation followed by
an application of a nonlinear activation function. In the end, the DNN approximation is a
composition of such nonlinear transformations in each layer. We further emphasize there are
other more sophisticated DNNs such as convolution neural network etc., but we do not
explore these options further in this paper. We refer to Daubechies ef al. (2019) for
mathematical approximation properties of DNNs used in our paper and its comparison with
linear and nonlinear interpolation. See also He et al. (2020) for the approximation properties
of finite element functions by DNNs. For completeness, we also refer to Raissi et al. (2019) for
physics-informed neural networks (PINNs), and also Huang et al. (2020) for a DNN-based
approach to learn constitutive relations from observations.

The goal of the present paper is not to add to this growing list of excellent publications
on the role of DNNs in physics-based modelling and simulations, but to provide IP as an
alternative to DL. A number of multiple inverse problems illustrate that IP outperforms DL
methods in accuracy for linear heat conduction problems, while DL is better for nonlinear
heat conduction problems. For heat convection problems, both methods provide comparable
levels of accuracy. Even though unrelated, but for completeness we also mention that
comparison between various approaches is somewhat standard in the literature, see e.g.
Kornelsen and Coulibaly (2014) for a comparison between interpolation, statistical and data-
driven methods for missing values in data sets.

To test the effectiveness of IP and DL methods, the inverse heat and fluid flow problems
considered by Tamaddon-Jahromi ef al. (2020) have been revisited. In the following section,
the IP method used is explained. Section 3 provides a brief summary of the DL methods
used. Section 4 presents a comprehensive set of results to compare IP and DL methods for
the classes of problems considered here. Finally, some conclusions are drawn in Section 5.

2. Interpolation

Given that the training set for the DNNSs is usually very large, a possible alternative is to use
this data directly and interpolate from it. Assume as given for each of the /N data entries/
points/cases of the database: w: (), 7 = 1, .. ., »; input values and v: v(), = 1, . . ., n, output



values. For a new *input u'’: find the closest 7 entries in the database that minimize some
distancenormtou ,e.g.:

{Zlu i) — uli) } : @1)

1

Typical values used are p = 1 or p = 2. The final output value is then obtained by some
weighted interpolation, e.g. an inverse distance weight:

qu

k=1,m
Typical values used areg =1 or g = 2.

3. Deep learning

DL, a new artificial intelligence (Al) trend that uses multi-layer perception network (Goodfellow
et al.,, 2016), has received increasing attention from researchers and has been widely applied to
numerous real-world applications and across many fields (LeCun ef al, 2015; Oishi and
Yagawa, 2017; Chakshu ef al, 2020). DL is able to effectively capture the nonlinear and non-
trivial user—item relationships, and it enables the codification of more complex abstractions as
data representations in the higher layers. The general structure or configuration of the
proposed neural network consists of L number of hidden layers along with one input and one
output layer. Each hidden layer, input layer and output layer have K, N and J number of
neurons, respectively. The equation below shows the general structure of the neural network:

m=1

BC; = (Z o}mcg) j=1-4, 3.1

where G} is:

N
—g (Z 0} M, + [bias],le) , k=1-K' 3.2)

n=1

and G, is:

m=1

K-l
G, = g(ZO bzas]) k=1-K', 1=2-L (33)

* x>0 are nonlinear
0.3x ifx<=0
activation functions for the output layer and hidden layers, respectively. The input layer is

(M,,) has N number of input neurons. Here, the output layer produces values calculated for

where ¢ () = max(0, x), 8 are weights and g(x) = {
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Table 1.
Architecture of DL
models

four boundary conditions; hence, the number of neurons in this layer, /, is four. Network
weights and biases of neural networks (NNs) are tuned based on data using the adaptive
moment estimation (Adam) algorithm (Kingma and Ba, 2014). The main part of the DNN
methodology is the learning or training process in which the errors determined at the output
layer are successively reduced by adjusting the weights and biases throughout the network.
The DNN architectures used in the present work are listed in Table 1.

4. Numerical examples
To test the ideas, the same test cases as in Tamaddon-Jahromi ef al. (2020) are considered.

4.1 Linear heat conduction
The equation describing the temperature field is given by:

VEVT =0, k=1 (4.1)

The database was generated by an exhaustive combination of 11 possible temperatures
on each wall (0.00:1.00], with constant increments of 0.1), leading to a total of
11* = 14,641 cases. FEHEAT (Lohner and McAnally, 1994) was used to solve the heat
equation via finite elements. The mesh size was set to 2 = 0.1, similar to Tamaddon-
Jahromi et al. (2020). For each of these (forward) runs, the temperature at the four points
marked M1-M4 was recorded. The data of these runs was stored in a table and used for
interpolation. Thereafter, a second set of runs was performed by an exhaustive
combination of ten possible temperatures on each wall ([0.05:0.95], with constant
increments of 0.1), leading to a total of 10* = 10,000 cases. The logic for this choice was
that these locations represent the “furthest” possible distance from the given data and
should therefore be indicative of “worst-case scenarios” for both IP and DL techniques.
As before, the temperature at the four points marked M1-M4 was recorded for each of
these runs. The wall temperatures for this second set of runs was also estimated via
interpolation using the original database [0.00,1.00,0.1], and the differences in estimated
vs real wall temperatures recorded. These differences are shown in Figures 2 and 3. The
DNN model was trained on the first set of 14,641 cases and tested on the second set of
10,000 cases. The difference between DNN calculated vs real wall temperatures have also
been recorded in Figures 2 and 3. Figures 2 and 3, respectively, show the maximum and
average errors. Note the vastly different scales in the graphs. Using interpolation results
in errors that are 2-3 orders of magnitude smaller than DNNs.

4.2 Nonlinear heat conduction
The equation describing the temperature field is now given by:

VEVT =0, k=max(0.01,7). 4.2)
Inverse problem DNN architecture
Linear conduction 4-64-32-16-4
Nonlinear conduction 4-64-32-16-4
Forced convection 4-64-32-16-16-16-4

Natural convection (10 x 10 grid)
Natural convection (20 x 20 grid)

4-64-32-dropout (10%)-16-16-16—4
4-64-32-dropout (20%)-32-16-16-4




As before, the database was generated by an exhaustive combination of 11 possible temperatures Fluid flow
on each wall [0.00:1.00:0.1], leading to a total of 11* = 14,641 cases. FEHEAT was used to solve the problems
heat equation. The same mesh size of z = 0.1 was used for this nonlinear case as well. For each of
these runs, the temperature at the four points marked M1-M4 was recorded. The data of these runs
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was stored in a table and used for interpolation. Thereafter, a second set of runs was performed by
an exhaustive combination of ten possible temperatures on each wall [0.05:0.95:0.1], leading to a
total of 10* = 10,000 cases. The wall temperatures for this second set of runs were also estimated
via interpolation using the original database [0.00,1.00,0.1], and the differences in estimated vs real

Figure 5.

Nonlinear heat
conduction problem.
Average error
between computed
and estimated
temperatures T1-T4;
interpolation (a) vs
DL (b)

Figure 6.

Forced convection
problem. Maximum
error between
computed and
estimated
temperatures T1-T4;
interpolation (a) vs
DL (b)

Figure 7.

Forced convection
problem. Average
error between
computed and
estimated
temperatures T1-T4;
interpolation (a) vs
DL (b)
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wall temperatures recorded. These differences are shown in Figures 4 (maximum) and 5 (average).
Note that in this case, the differences are higher, something that is to be expected for nonlinear
cases. As with the linear case, the DNN model was trained on the first set of 14,641 cases and tested
on the second set of 10,000 cases. The difference between the DNN calculated vs real wall
temperatures may be seen in Figures 4 and 5. It can be observed here that in this case, the DNN

errors are lower, with averages hovering around 1% for IPs and 0.3% for DNN.

4.3 Forced convection heat transfer

The equation describing the temperature field is now given by:
V-v=0,
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Figure 8.

Natural convection
problem. Maximum
error between
computed and
estimated
temperatures T1-T4;
interpolation (a) vs
DL (b), 10 x 10
structured mesh

Figure 9.

Natural convection
problem. Average
error between
computed and
estimated
temperatures T1-T4;
interpolation (a) vs
DL (b), 10 x 10
structured mesh
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Figure 10.

Natural convection
problem. Maximum
error between
computed and
estimated
temperatures T1-T4;
interpolation (a) vs
DL (b), 20 x 20
structured mesh

Figure 11.

Natural convection
problem. Average
error between
computed and
estimated
temperatures T1-T4;
interpolation (a) vs
DL (b), 20 x 20
structured mesh

where Re is the Reynolds number defined as Re = My’”’, and Pe = “"L% is the Péclet
number. u, is a reference velocity, L.,,, i a characteristic dimension, v is kinematic
viscosity and « is thermal diffusivity of the fluid (Nithiarasu et al, 2016, for more
details). In this study, the Reynolds number was selected to be Re = 140 and Pe = 100.
FEFLO (Lohner et al., 2006) was used to solve the Navier-Stokes and heat equations via
finite elements.

As before, the database for the IP and DNN consisted of the same 14,641 wall
temperature cases, and both were tested on the second set of 10,000 cases. The results
obtained have been summarized in Figures 6 and 7. It may be observed that, interestingly,
IP shows constant errors at three levels of around 0.0, 0.02 and 0.03, even though the same
error measures as for all other cases were used. This can be traced to a sudden change in
boundary conditions for the walls. The average errors for DNNs are around 0.008 and 0.005
(red lines in Figures 6 and 7) as compared to 0.005 and 0.002 (green lines in Figures 6 and 7)
for IPs.

4.4 Natural convection heat transfer
The equation describing the temperature field is now given by:
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V-v=0,
(v-Vo=-Vp+PrVo+GrP’ Ty (4.4)

v VT =V?T

where p is the pressure, ¥ is the unit vector in the y-direction and Pr and Gr are the Prandtl
and Grashof numbers, respectively (Nithiarasu et al. (2016) for more details) Gr is taken here
to be Gr = 10° and Pr = 0.71, which corresponds to air.

As before, FEFLO was used to generate these data sets, using unstructured grids
of size comparable to 10 x 10 and 20 x 20 structured meshes. The first set of 14,641
data points was chosen as the database for interpolation/training set, and the second
set of 10,000 was selected as test candidates. The differences between estimates and
actual values have been summarized in Figures 8 and 9 for the 10 x 10 mesh, and
Figures 10 and 11 for the 20 x 20 mesh. One can see that for this case, the error levels
are almost the same: by some measures/cases IPs are better, by others DNNs are
better.

5. Conclusions and outlook
In summary, the comparison of this limited set of results between the two approaches
provide us with the following observations:

e IPs perform better than DNNs for linear heat conduction problems;
¢ DNNs perform better than IPs for nonlinear heat conduction problems; and
¢ IPs and DNNSs perform similarly for forced and natural convection problems.
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