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Abstract. In this paper, we introduce and analyze a new class of optimal control problems
constrained by elliptic equations with uncertain fractional exponents. We utilize risk measures to
formulate the resulting optimization problem. We develop a functional analytic framework, study
the existence of solution, and rigorously derive the first-order optimality conditions. Additionally,
we employ a sample-based approximation for the uncertain exponent and the finite element method
to discretize in space. We prove the rate of convergence for the optimal risk neutral controls when
using quadrature approximation for the uncertain exponent and conclude with illustrative examples.
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1. Introduction. In the recent article [58], the authors demonstrate a direct
qualitative correlation between geophysical electromagnetic data and numerical simu-
lations of the fractional Helmholtz equation. This application, as well as many others
(see, e.g., [13, 43]), motivate our study of the fractional diffusion equation

(1.1) \scrL s\sansu = \sansz in \Omega , \sansu = 0 on \partial \Omega ,

where \Omega is an open and bounded domain in \BbbR N (N \geq 1), with Lipschitz boundary \partial \Omega .
The operator \scrL s, s \in (0, 1), is a fractional power of the second-order, symmetric, and
uniformly elliptic differential operator \scrL , supplemented with homogeneous Dirichlet
boundary conditions. For example, \scrL represents the second-order differential operator
\scrL w =  - divx(A\nabla xw) + cw, where 0 \leq c \in L\infty (\Omega ) and A \in C0,1(\Omega ,\sansG \sansL (N,\BbbR )) is
symmetric and positive definite on \Omega . Here, \sansG \sansL (N,\BbbR ) denotes the general linear
group consisting of N \times N invertible matrices on \BbbR endowed with the operation of
matrix multiplication.
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Identification of the right-hand side, \sansz , is a classical problem in optimal control
and inverse problems. One motivating application is the distributed control of the
fractional Helmholtz equation, which as shown in [58] can accurately model certain
geophysical phenomena. Although (1.1) is simpler than the fractional Helmholtz
equation, we consider the optimal control of (1.1) a natural first step. However, one
difficulty when considering the fractional model (1.1) is that the exponent s is often
unknown. Recently, there have been systematic studies to determine s for models
of type (1.1) (see, e.g., [4, 51], as well as [7]), where s is allowed to be spatially
varying. These works consider deterministic versions of (1.1), whereas the authors in
[31] consider stochastic \sansz .

In this work, we model the fractional power s of \scrL as a random parameter and
consider the risk-averse optimal control problem

(1.2a) min
\sansz \in \sansZ ad

\scrR (J(\cdot ,\sansS (\sansz ), \sansz )),

where \sansS (z) = \sansu solves

(1.2b) \scrL s\sansu = \sansz in \Omega , \sansu = 0 on \partial \Omega a.s.

Here, the controls \sansz are deterministic and \sansZ ad is a nonempty, closed, and convex set
of admissible controls. Moreover, \sansu in (1.2b) is a random field and we denote the
explicit dependence of \sansu on the uncertain fractional power s by \sansu (s). For fixed \sansu (\cdot )
and \sansz , the objective function s \mapsto \rightarrow J(s, \sansu (s), \sansz ) is a random variable and \scrR is a function
that maps random variables into the extended real numbers. We refer to (1.2) as the
uncertain fractional optimal control problem.

There are a number of reasonable choices for the functional \scrR . For example, if
J(\cdot , \sansu (\cdot ), \sansz ) represents a reliability (e.g., failure) metric or cost associated with (1.1),
then it is often reasonable to minimize the probability that J(\cdot , \sansu (\cdot ), \sansz ) exceeds a
specified threshold. Another option, and the focus of this paper, is to choose \scrR 
to be a measure of risk. Risk measures numerically quantify the overall ``hazard""
associated with the random variable J(\cdot , \sansu (\cdot ), \sansz ) [48]. For example, one could define
\scrR to be the expected value plus a measure of deviation of J(\cdot , \sansu (\cdot ), \sansz ), or one could
define \scrR to be the average of the (1  - \beta ) \times 100\% largest scenarios of J(\cdot , \sansu (\cdot ), \sansz ) for
some fixed 0 < \beta < 1. See [50] for examples of common risk measures. In general,
there is no single method for choosing \scrR . However, \scrR should encode the required
conservativeness or risk preference of the user.

The uncertain fractional optimal control problem presents numerous theoretical
and numerical challenges. First, the regularity of solutions to (1.1) depends on the
fractional exponent s. Since s is random, the random field solution \sansu (\cdot ) of (1.1) has
varying regularity. Therefore, the classical techniques for analyzing (1.1) and (1.2)
may not apply. Second, in general the numerical solution of optimization problems
governed by PDEs with uncertain inputs is computationally expensive, since one not
only must discretize the governing PDE in space but also must approximate the
dependence of the PDE solution on the uncertain parameter s. Such problems have
recently received much attention [38]. For example, in the recent works [36, 37],
the authors developed an optimization algorithm that adaptively refines quadrature
approximations of the expectation of the objective function to efficiently solve PDE-
constrained optimization problems with uncertain inputs. Similarly, in [35], the author
presents an optimization algorithm that utilizes multilevel quadrature approximations
of the control problem to reduce computational cost. On the other hand, the authors
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in [18, 24, 25, 26, 60] discuss efficient optimization approaches that employ reduced-
order models of the governing physics. Finally, the authors in [17] demonstrate the
use of multigrid to solve optimal control problems with parametric uncertainties.

Aside from the computational difficulties associated with uncertainty, additional
complexity arises due to the nonlocal operator \scrL s. To handle \scrL s, one can use a
spectral Fourier approach [2], the Balakrishnan formula [59, p. 260] (see also [16]),
or the so-called Stinga--Torrea extension [52]; see also [20] for the Caffarelli--Silvestre
extension. In this work, we employ the Stinga--Torrea extension. However, our results
hold in case of the first two approaches as well. A similar strategy was used in [3],
where the authors studied a linear quadratic optimal control problem constrained
by (1.1) with fixed (deterministic) s. Given the exponent s \in (0, 1), a desired state
\sansu d \in L2(\Omega ), and J(\sansu , \sansz ) = 1

2\| \sansu  - \sansu d\| 2L2(\Omega ) +
\mu 
2 \| \sansz \| 

2
L2(\Omega ), the authors in [3] investigated

the so-called fractional optimal control problem: minimize J(\sansu , \sansz ) subject to the state
equation (1.1) and the control constraints \sansa \leq \sansz \leq \sansb for given \sansa \leq \sansb . For completeness,
we refer the reader to [10] for the control of the fractional semilinear PDEs with
both integral and spectral fractional diffusion operators and [8, 9] for the control of
fractional p-Laplacian with control in the coefficient. We mention that our approach,
in principle, can be directly applied to other definitions, integral and regional, of
fractional Laplacian [56, 57], provided the solution to the corresponding PDEs fulfills
the s-related properties discussed in this paper.

Our principle contributions in this paper span both the theoretical and the nu-
merical treatments of (1.2). In the following list, we summarize the aforementioned
difficulties associated with analyzing and solving (1.2), and we outline our contribu-
tions.
Variable spatial regularity. The spatial regularity of the random field solution
\sansu (\cdot ) depends explicitly on the random fractional power s. Consequently, the classical
techniques used to analyze (1.1) and (1.2) do not directly apply.
Existence and optimality conditions. We prove that solutions to (1.2) exist in
Theorem 3.1 using the direct method of the calculus of variations. Although this
technique is standard, the details for (1.2) rely heavily on the properties of the risk
measure; see section 3.1. In addition, we derive the first-order necessary optimality
conditions in Theorem 3.2.
Extension and truncation estimates. The numerical solution of (1.2) is daunt-
ing due to the inherent complexity of (1.1) combined with the need to accurately
resolve the stochastic variability. We employ the Stinga--Torrea extension to equiva-
lently rewrite (1.1) and then approximate it via truncation. The key challenge with
this approach is the derivation of the precise s-dependence in the energy estimates
of the solution to the truncated problem. We show, for the risk-neutral case, i.e.,
\scrR is the expected value, that the error for the optimal controls, when using this
truncation, decays exponentially with respect to the truncation parameter.
\bfitL \bftwo (\Omega )-error estimate. The finite-element error estimates in [3, 47] require s \in 
[\varepsilon , 1 - \varepsilon ], with \varepsilon \in (0, 1), as well as sufficient regularity of the problem datum (i.e.,
Sobolev regularity rather than L2(\Omega )). In Theorem 6.3, we provide a finite-element
error estimate for L2(\Omega ) problem datum.
Discrete optimal control problem. We introduce a numerical scheme for (1.2)
that employs the truncated extension of (1.1), finite elements for the spatial dis-
cretization, and interpolation with respect to s. We prove the convergence of this
method for the risk-neutral case. However, due to the s-dependent regularity of the
adjoint state, we are unable to establish higher regularity of the optimal controls
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(see Remark 6.4) and therefore cannot, in general, prove error estimates.
The outline of this paper is as follows. In section 2, we introduce notation and

study the well-posedness and differentiability of \sansu with respect to s. Section 3 is
devoted to the setup of our risk-averse optimal control problem. Under fairly general
assumptions, we show the existence of solutions and derive the first-order optimality
conditions. In section 4, we realize the nonlocal operator \scrL s using the Stinga--Torrea
extension. The Stinga--Torrea extension produces a PDE defined on a semi-infinite
cylinder. We discuss a truncation strategy in section 5 to handle this semi-infinite
cylinder. In particular, we prove that the constants associated with the truncation
error bounds are independent of s. To our knowledge, these estimates are new even
for the forward problem. In section 6, we present a discrete scheme for general risk-
measures, and we also discuss error estimates in case the risk measure is given by
the expected value. For these error estimates, we need to assume that s \in [\varepsilon , 1  - \varepsilon ],
with \varepsilon \in (0, 1), which is an artifact of current numerical schemes. We conclude with
numerical results in section 7.

2. The uncertain fractional equation. We begin by setting our notation
(cf. [5]). Let \Omega be an open, bounded, and connected domain in \BbbR N , N \geq 1, with
Lipschitz boundary \partial \Omega . Let \scrL be the realization in L2(\Omega ) of the elliptic operator

\scrL w :=  - divx(A\nabla xw) + cw

with zero Dirichlet boundary conditions. Here, we assume 0 \leq c \in L\infty (\Omega ) and
A \in C0,1(\Omega ,\sansG \sansL (N,\BbbR )) is symmetric and positive definite. It is well known that \scrL 
has a compact resolvent and its eigenvalues form a nondecreasing sequence 0 < \lambda 1 \leq 
\lambda 2 \leq \cdot \cdot \cdot \leq \lambda k \leq \cdot \cdot \cdot satisfying limk\rightarrow \infty \lambda k = \infty [41]. We denote by \{ \varphi k\} \subset H1

0 (\Omega )
the orthonormal eigenfunctions associated with \{ \lambda k\} .

For any s \geq 0, we define the fractional-order Sobolev space

\BbbH s(\Omega ) :=

\Biggl\{ 
u =

\infty \sum 
k=1

uk\varphi k \in L2(\Omega ) : \| u\| 2\BbbH s(\Omega ) :=

\infty \sum 
k=1

\lambda sku
2
k <\infty 

\Biggr\} 
,

where the coefficients uk are defined as

uk := (u, \varphi k)L2(\Omega ) =

\int 
\Omega 

u\varphi k dx.

It is well known that

(2.1) \BbbH s(\Omega ) =

\left\{     
Hs(\Omega ) = Hs

0(\Omega ) if 0 < s < 1
2 ,

H
1
2
00(\Omega ) if s = 1

2 ,

Hs
0(\Omega ) if 1

2 < s < 1,

where Hs(\Omega ) denotes the classical fractional-order Sobolev space, H
1
2
00(\Omega ) is the so-

called Lions--Magenes space, and Hs
0(\Omega ) denotes the fractional-order Sobolev space of

functions with zero trace when s > 1
2 . We denote the dual space of \BbbH s(\Omega ) by \BbbH  - s(\Omega ).

We recall the following definition of the nonlocal operator \scrL s.

Definition 2.1. The Dirichlet fractional operator is defined on C\infty 
0 (\Omega ) by

\scrL su :=

\infty \sum 
k=1

\lambda skuk\varphi k, with uk = (u, \varphi k)L2(\Omega ).
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Using density arguments, we extend the operator \scrL s to an operator mapping
\BbbH s(\Omega ) into \BbbH  - s(\Omega ).

We model s as a random variable. Here and throughout, we abuse notation and
let s denote a random variable and its realizations. Let (\Sigma ,\scrF ,\BbbP ) denote a complete
probability space where \Sigma is a set of outcomes, \scrF \subseteq 2\Sigma is a \sigma -algebra of events,
and \BbbP : \Sigma \rightarrow [0, 1] is a probability measure. We assume that s is a random variable
mapping \Sigma into \Xi := (0, 1) with probability law P = \BbbP \circ s - 1. We further assume
that s is Borel measurable, i.e., s - 1(A) \in \scrB for all A \in \scrF , where \scrB \subseteq 2\Xi denotes
the Borel \sigma -algebra on \Xi . This allows us to analyze our optimization problem in
the complete probability space (\Xi ,\scrB , P ). We denote the expected value of a random
variable X : \Xi \rightarrow \BbbR by \BbbE [X] =

\int 
\Xi 
X(s)dP (s), and we denote ``P -almost everywhere""

by a.s. (i.e., ``almost surely""). In this probabilistic setting, we require the fractional
diffusion equation (1.1) to hold for all s \in \Xi . The solution to (1.1), \sansu , is a function
that maps \Xi into L2(\Omega ) with the added regularity that \sansu (s) \in \BbbH s(\Omega ) for all s \in \Xi .
Throughout, we denote the control-to-state map for (1.1) by \sansz \mapsto \rightarrow \sansS (\sansz ). For a fixed
\sansz , \sansS (\sansz ) is parametrized by the fractional power s. We denote this dependence by
s \mapsto \rightarrow [\sansS (\sansz )](s). Given a real Banach space (V, \| \cdot \| V ), we denote the Bochner space for
p \in [1,\infty ) and p = \infty , respectively, by

Lp(\Xi ,\scrB , P ;V ) := \{ \zeta : \Xi \rightarrow V | \zeta is strongly \scrB -measurable, \BbbE [\| \zeta \| pV ] <\infty \} ,

L\infty (\Xi ,\scrB , P ;V ) :=

\biggl\{ 
\zeta : \Xi \rightarrow V | \zeta is strongly \scrB -measurable, ess sup

s\in \Xi 
\| \zeta (s)\| V <\infty 

\biggr\} 
.

When V = \BbbR , we obtain the usual Lebesgue space, denoted by Lp(\Xi ,\scrB , P ). We now
study the existence of solution to (1.1) and the differentiability of [\sansS (\sansz )](\cdot ).

Proposition 2.2. For fixed \sansz \in L2(\Omega ), there exists a unique solution to (1.1)
given by

(2.2) [\sansS (\sansz )](s) =
\infty \sum 
k=1

\lambda  - s
k \sansz k\varphi k, \sansz k := (\sansz , \varphi k)L2(\Omega ),

with \sansS (\sansz ) \in L\infty (\Xi ,\scrB , P ;L2(\Omega )). Moreover, s \mapsto \rightarrow [\sansS (\sansz )](s) is infinitely often Fr\'echet
differentiable as a function from \Xi into L2(\Omega ) for any n \in \BbbN and the nth-order
derivative is given by

(2.3)
\partial n

\partial sn
[\sansS (\sansz )](s) =

\infty \sum 
k=1

( - 1)n log(\lambda k)
n\lambda  - s

k \sansz k\varphi k,

where log denotes the natural logarithm.

Proof. Theorem 2.5 of [21] (see also [6, Prop. 2.8]) shows that [\sansS (\sansz )](s) in (2.2)
is the unique solution to (1.1) for fixed s \in \Xi . Motivated by [51], the three-times
Fr\'echet differentiability was shown in [4, Thm. 3.1]. The higher-order differentiability
follows by similar arguments. Now, since s \mapsto \rightarrow [\sansS (\sansz )](s) is Fr\'echet differentiable as a
function from \Xi into L2(\Omega ), it is continuous on \Xi and therefore, for all \sansu \ast \in L2(\Omega ),
the mapping s \mapsto \rightarrow \langle \sansu \ast , [\sansS (\sansz )](s)\rangle L2(\Omega ) is also continuous. Hence, s \mapsto \rightarrow [\sansS (\sansz )](s) is
weakly \scrB -measurable. Moreover, since L2(\Omega ) is separable, Theorem 3.5.2 in [33]
guarantees that s \mapsto \rightarrow [\sansS (\sansz )](s) is strongly \scrB -measurable. Finally, we recall from [4]
that \| [\sansS (\sansz )](s)\| L2(\Omega ) \leq C\| \sansz \| L2(\Omega ), where the constant C > 0 is independent of s
whence \sansS (\sansz ) \in L\infty (\Xi ,\scrB , P ;L2(\Omega )).
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For fixed s \in \Xi , it is easy to see that the state [\sansS (\sansz )](s) enjoys the following higher
spatial regularity.

Lemma 2.3. Suppose [\sansS (\sansz )](s) solves (1.1) for fixed \sansz \in L2(\Omega ) and s \in \Xi . Then

\| [\sansS (\sansz )](s)\| \BbbH 2s(\Omega ) = \| \sansz \| L2(\Omega ).

Therefore, the random variable s \mapsto \rightarrow \| [\sansS (\sansz )](s)\| \BbbH 2s(\Omega ) is finite and constant.

Proof. Since \sansu k = \lambda  - s
k \sansz k, we arrive at the asserted result by using the definition

of \BbbH 2s-norm.

3. The optimal control problem. As demonstrated in Proposition 2.2, the
state \sansS (\sansz ) : \Xi \rightarrow L2(\Omega ) is n-times continuously Fr\'echet differentiable for fixed \sansz \in 
L2(\Omega ) and any n \in \BbbN , and \sansS (\sansz ) \in L\infty (\Xi ,\scrB , P ;L2(\Omega )). Substituting \sansS (\sansz ) into the
objective function J in (1.2) results in the uncertain reduced objective function
J(\cdot , [\sansS (\sansz )](\cdot ), \sansz ). For the remainder of this paper, we assume J has the specific form

J(s, \sansu , \sansz ) = f(s, \sansu ) + g(\sansz ),

where f : \Xi \times L2(\Omega ) \rightarrow \BbbR and g : L2(\Omega ) \rightarrow \BbbR . We further assume that there exist
p, q \in [1,\infty ] such that f(\cdot , [\sansS (\sansz )](\cdot )) \in Lp(\Xi ,\scrB , P ) for any \sansu \in Lq(\Xi ,\scrB , P ;L2(\Omega )).
Such a scenario is typical for optimal control problems (cf. [54]), and in the subsequent
results, we provide explicit assumptions on f that ensure this condition holds. To
formulate the optimal control problem, we choose a functional \scrR : Lp(\Xi ,\scrB , P ) \rightarrow 
( - \infty ,\infty ] and solve

(3.1) min
\sansz \in \sansZ ad

\scrR (f(\cdot , [\sansS (\sansz )](\cdot ))) + g(\sansz ).

Common choices of \scrR include risk measures, worst-case functionals, and probabilistic
functions (see [50] and the references within). Such \scrR often are not differentiable,
adding complication to the analysis and numerical solution of (3.1). In this work, we
focus solely on risk measures.

3.1. Risk measures. Minimizing the average objective function is often not suf-
ficiently conservative for real applications. To address this issue, risk measures were
developed to numerically quantify hazards associated with uncertain outcomes. There
are many ways to model risk preference. In this work, we discuss two classical ap-
proaches: (i) mean-deviation models and (ii) disutility models. In the mean-deviation
approach, we define \scrR as

\scrR (X) = \BbbE [X] +\scrD (X),

where \scrD : Lp(\Xi ,\scrB , P ) \rightarrow [0,\infty ] is a deviation measure and quantifies how nonconstant
a random variable is. For a discussion of generalized deviation measures, see [49]. In
the utility approach, we first choose a utility function \scrU : Lp(\Xi ,\scrB , P ) \rightarrow \BbbR that
quantifies our expected utility for the random outcomes X \in Lp(\Xi ,\scrB , P ). We then
define the associated disutility (or regret) as \scrV (X) =  - \scrU ( - X) and the risk as

\scrR (X) = inf
t\in \BbbR 

\{ t+ \scrV (X  - t)\} .

This risk model is a generalization of the ``optimized certainty equivalent"" risk mea-
sures [15]. These two risk models are linked through the risk quadrangle which pro-
vides fundamental relationships connecting measure of risk, deviation, regret, and
error [48]. Independent of how \scrR is constructed, the authors in [11] postulated the
following four useful properties for modeling risk: For X, X \prime \in Lp(\Xi ,\scrB , P ) and t \in \BbbR ,
we have the following:
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(R1) Subadditivity: \scrR (X +X \prime ) \leq \scrR (X) +\scrR (X \prime ).
(R2) Monotonicity: If X \leq X \prime a.s., then \scrR (X) \leq \scrR (X \prime ).
(R3) Translation equivariance: \scrR (X + t) = \scrR (X) + t.
(R4) Positive homogeneity: If t \geq 0, then \scrR (tX) = t\scrR (X).

Clearly, if \scrR satisfies (R4), then (R4) holds if and only if \scrR is convex. Thus, (R1) is
often replaced by convexity:
(R1\prime ) Convexity: \scrR (tX + (1 - t)X \prime ) \leq t\scrR (X) + (1 - t)\scrR (X \prime ) for all t \in [0, 1].

If \scrR satisfies (R1)--(R4), then it is called coherent. On the other hand, if \scrR satisfies
(R1\prime ), (R2), and (R3), then it is called a convex risk measure [30]. Under appropriate
assumptions on \scrD and \scrV , the associated risk measures are convex, even coherent.
Two popular coherent risk measures are the mean-plus-semideviation,

\scrR (X) = \BbbE [X] + c\BbbE [max\{ 0, X  - \BbbE [X]\} p]
1
p , 0 \leq c \leq 1,

and the conditional value-at-risk,

\scrR (X) =
1

1 - \beta 

\int 1

\beta 

qX(\alpha ) d\alpha = inf
t\in \BbbR 

\biggl\{ 
t+

1

1 - \beta 
\BbbE [max\{ 0, X  - t\} ]

\biggr\} 
, 0 \leq \beta \leq 1,

where qX(\alpha ) denotes the \alpha -quantile of X. Another popular convex risk measure is
the entropic risk,

(3.2) \scrR (X) = \beta  - 1 log\BbbE [exp(\beta X)], \beta > 0.

The entropic risk measure is not coherent since it does not satisfy (R4).

3.2. Existence and optimality conditions. In the following theorem, we pro-
vide conditions on f that ensure

\widehat f(\sansz ) := f(\cdot , [\sansS (\sansz )](\cdot )) \in Lp(\Xi ,\scrB , P ) \forall \sansu \in Lq(\Xi ,\scrB , P ;L2(\Omega ))

and, under these assumptions, prove the existence of solutions to (3.1). We then prove
first-order necessary optimality conditions for (3.1).

Theorem 3.1 (existence of optimal control). Suppose \sansZ ad \subset L2(\Omega ) is nonempty,
closed, convex, and bounded; g : L2(\Omega ) \rightarrow \BbbR is convex and lower semicontinuous; and
f : \Xi \times L2(\Omega ) \rightarrow \BbbR satisfies (i) f(\cdot , u) is \scrB -measureable for all u \in L2(\Omega ), (ii) f(s, \cdot )
is continuous for almost all s \in \Xi , and (iii) there exist p, q \in [1,\infty ] such that one of
the following growth conditions holds:

1. p < \infty , q < \infty , and there exist a \in Lp(\Xi ,\scrB , P ) with a \geq 0 a.s. and C > 0
such that

(3.3) | f(s, \sansu )| \leq a(s) + C\| \sansu \| q/pL2(\Omega ) \forall \sansu \in L2(\Omega ) a.s.;

2. p = q = \infty , and for all C > 0 there exists \gamma = \gamma (C) \geq 0 such that

(3.4) | f(s, \sansu )| \leq \gamma \forall \| \sansu \| L2(\Omega ) \leq C a.s.

Finally, suppose \scrR : Lp(\Xi ,\scrB , P ) \rightarrow ( - \infty ,\infty ] is proper, convex, and lower semi-
continuous if p < \infty or weakly\ast lower semicontinuous if p = \infty and satisfies the
monotonicity property (R2). Then (3.1) has a solution.
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Proof. We first show that [\sansS (\cdot )](s) is a compact operator from L2(\Omega ) into L2(\Omega )
for arbitrary fixed s \in \Xi . Since [\sansS (\cdot )](s) is a continuous linear operator from L2(\Omega ) into
\BbbH s(\Omega ), we have that if \sansz \prime n \rightharpoonup \sansz \prime in L2(\Omega ), then [\sansS (\sansz \prime n)](s) \rightharpoonup [\sansS (\sansz \prime )](s) in \BbbH s(\Omega ). The
compact embedding of \BbbH s(\Omega ) into L2(\Omega ) [28, Thm. 7.1] then ensures that [\sansS (\sansz \prime n)](s) \rightarrow 
[\sansS (\sansz \prime )](s) in L2(\Omega ). In particular, [\sansS (\cdot )](s) is a compact operator from L2(\Omega ) into
L2(\Omega ) for fixed s \in \Xi (cf. [27, Prop. 3.3(b)]). The continuity assumption of f(s, \cdot )
and the compactness of [\sansS (\cdot )](s) ensure that if \sansz n \rightharpoonup \sansz in L2(\Omega ), then \sansS (\sansz n) \rightarrow \sansS (\sansz ) in

L2(\Omega ) a.s. and Fn(s) := [ \widehat f(\sansz n)](s) \rightarrow [ \widehat f(\sansz )](s) =: F (s) a.s.
Now suppose p < \infty , q < \infty , and the growth condition (3.3) holds. Then the

desired result follows from Proposition 3.12 in [39]. On the other hand, if p = q = \infty 
and the uniform boundedness condition (3.4) holds, then for C = supn \| \sansz n\| L2(\Omega )

(which is finite since \sansz n weakly converges), there exists \gamma = \gamma (C) \geq 0 such that
| Fn(s)| \leq \gamma a.s. Now, let \vargamma \in L1(\Xi ,\scrB , P ) be arbitrary. Then

| \vargamma Fn| \leq | \vargamma | \gamma a.s.

and | \vargamma | \gamma \in L1(\Xi ,\scrB , P ). Therefore, the Lebesgue dominated convergence theorem
ensures that

lim
n\rightarrow \infty 

\BbbE [\vargamma Fn] = \BbbE [\vargamma F ].

That is, Fn \rightharpoonup 
\ast F in L\infty (\Xi ,\scrB , P ). Since \scrR is weakly\ast lower semicontinuous, we have

lim inf
n\rightarrow \infty 

\scrR (Fn) \geq \scrR (F ),

and hence z \mapsto \rightarrow \scrR ( \widehat f(\sansz )) is weakly lower semicontinuous. Since g : L2(\Omega ) \rightarrow \BbbR is
assumed to be convex and lower semicontinuous, it is weakly lower semicontinuous.
The existence of a minimizer then follows from the direct method in the calculus of
variations [12, Thm. 3.2.1].

Theorem 3.2 (first-order optimality conditions). Let the assumptions of Theo-
rem 3.1 hold, and assume that f(s, \cdot ) is continuously Fr\'echet differentiable for almost
all s \in \Xi and \nabla \sansu f(\cdot , \sansu ) is strongly measurable for all \sansu \in L2(\Omega ). Moreover, assume
that there exists \alpha > 0 and K \in Lr(\Xi ,\scrB , P ) with

r =

\biggl\{ 
pq/(q  - (1 + \alpha )p) if q > (1 + \alpha )p,
\infty if q = (1 + \alpha )p

such that

| \nabla \sansu f(s, \sansu ) - \nabla \sansu f(s, \sansu 
\prime )| \leq K(s)\| \sansu  - \sansu \prime \| \alpha L2(\Omega ) a.s.

Finally, assume that \scrR is finite on Lp(\Xi ,\scrB , P ). If \=\sansz \in \sansZ ad minimizes \widehat f(\cdot ) + g(\cdot ) over
\sansZ ad, then the first-order necessary conditions,
(3.5)

sup
\theta \in \partial \scrR (f(\cdot ,[\sansS (\=\sansz )](\cdot )))

\BbbE 
\biggl[ 
\theta 

\int 
\Omega 

[\sansP (\=\sansz )](\cdot )(\sansz \prime  - \=\sansz ) dx

\biggr] 
+

\int 
\Omega 

\nabla g(\=\sansz )(\sansz \prime  - \=\sansz ) dx \geq 0 \forall \sansz \prime \in \sansZ ad,

hold where for fixed s \in \Xi and \sansz \in L2(\Omega ), \sansp = [\sansP (\sansz )](s) \in \BbbH s(\Omega ) solves the adjoint
equation

\scrL s\sansp = \nabla \sansu f(s, [\sansS (\sansz )](s)) in \Omega , \sansp = 0 on \partial \Omega 

and \partial \scrR (X) is the usual convex subdifferential of \scrR at X.
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Proof. If 1 \leq p, q < \infty , then Theorem 3.11 in [39] ensures that \sansu \mapsto \rightarrow f(\cdot , \sansu (\cdot )) is
Fr\'echet differentiable. On the other hand, if p = q = \infty , then r = \infty and we can take
K to be constant. In this case, for any \sansh \in L\infty (\Xi ,\scrB , P ;L2(\Omega )), we have that

| f(s, (\sansu + \sansh )(s)) - f(s, \sansu (s)) - \nabla \sansu f(s, \sansu (s))\sansh (s)| 

\leq 
\int 1

0

| (\nabla \sansu f(s, (\sansu + t\sansh )(s)) - \nabla \sansu f(s, \sansu (s)))\sansh (s)| dt \leq 
1

2
K\| \sansh (s)\| 1+\alpha 

L2(\Omega ) a.s.

Passing to the essential supremum on both sides and noting that

ess sup
s\in \Xi 

\| \sansh (s)\| 1+\alpha 
L2(\Omega ) =

\biggl( 
ess sup

s\in \Xi 
\| \sansh (s)\| L2(\Omega )

\biggr) 1+\alpha 

ensures that \sansu \mapsto \rightarrow f(\cdot , \sansu (\cdot )) is Fr\'echet differentiable. Since \sansz \mapsto \rightarrow \sansS (\sansz ) is a continuous

linear mapping and \sansu \mapsto \rightarrow f(\cdot , \sansu (\cdot )) is Fr\'echet differentiable, \sansz \mapsto \rightarrow \widehat f(\sansz ) is Fr\'echet differ-
entiable from L2(\Omega ) into Lp(\Xi ,\scrB , P ). The first-order conditions then follow directly
from Corollary 3.14 in [39].

Remark 3.3 (expected value and entropic risk). Suppose \scrR \equiv \BbbE ; then the opti-
mality conditions (3.5) simplify to\int 

\Omega 

(\BbbE [[\sansP (\=\sansz )](\cdot )] +\nabla g(\=\sansz ))(\sansz \prime  - \=\sansz ) dx \geq 0 \forall \sansz \prime \in \sansZ ad;

cf. [33, Thm. 3.7.12]. The above variational inequality is equivalent to the following
projection formula:

(3.6) \=\sansz = \BbbP \sansZ ad
(\=\sansz  - \gamma (\BbbE [[\sansP (\=\sansz )](\cdot )] +\nabla g(\=\sansz ))) \forall \gamma > 0,

where \BbbP \sansZ ad
: L2(\Omega ) \rightarrow L2(\Omega ) is the projection onto the convex set \sansZ ad; cf. [12,

Thm. 3.3.5].
Similarly, suppose p = q = \infty and \scrR is the entropic risk measure (3.2). Then the

optimality conditions (3.5) simplify to\int 
\Omega 

\biggl( 
\BbbE 
\biggl[ 

exp(\beta f(\cdot , [\sansS (\=\sansz )](\cdot )))
\BbbE [exp(\beta f(\cdot , [\sansS (\=\sansz )](\cdot )))]

[\sansP (\=\sansz )](\cdot )
\biggr] 
+\nabla g(\=\sansz )

\biggr) 
(\sansz \prime  - \=\sansz ) dx \geq 0 \forall \sansz \prime \in \sansZ ad.

Again, this variational inequality is equivalent to the following projection formula:

\=\sansz = \BbbP \sansZ ad

\biggl( 
\=\sansz  - \gamma 

\biggl( 
\BbbE 
\biggl[ 

exp(\beta f(\cdot , [\sansS (\=\sansz )](\cdot )))
\BbbE [exp(\beta f(\cdot , [\sansS (\=\sansz )](\cdot )))]

[\sansP (\=\sansz )](\cdot )
\biggr] 
+\nabla g(\=\sansz )

\biggr) \biggr) 
\forall \gamma > 0.

4. Extended optimal control problem. It is well known that problem (1.1)
can equivalently be posed on a semi-infinite cylinder. This approach was originally
due to Molchanov and Ostrovskii [45] and was rediscovered by Caffarelli and Silvestre
[20] for \BbbR N . Stinga and Torrea exploited the ideas of Caffarelli and Silvestre to define
the fractional Dirichlet Laplacian on bounded open sets [52] (see also [19, 22]). We
mention that for the existence and uniqueness of solutions to the problem on this semi-
infinite cylinder it is sufficient to consider an open set with a Lipschitz continuous
boundary; see [21, Thm. 2.5] for details. We operate under the same setup in the
present section, and we follow the notation of [6].

Let \scrC be the aforementioned semi-infinite cylinder with base \Omega , i.e., \scrC = \Omega \times 
(0,\infty ), and denote its lateral boundary by \partial L\scrC := \partial \Omega \times [0,\infty ). We denote the
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truncated cylinder by \scrC \tau := \Omega \times (0, \tau ) for \tau > 0. Similar to the lateral boundary
\partial L\scrC , we set \partial L\scrC \tau := (\partial \Omega \times [0, \tau ]) \cup (\Omega \times \{ \tau \} ). As a result, the semi-infinite cylinder
and its truncated version are objects defined in \BbbR N+1. Throughout the remainder
of the paper, y denotes the extended variable, such that a vector x\prime \in \BbbR N+1 admits
the representation x\prime = (x1, . . . , xN , xN+1) = (x, xN+1) = (x, y) with xi \in \BbbR for
i = 1, . . . , N + 1, x \in \BbbR N and y \in \BbbR .

The extension problem requires certain weighted Sobolev spaces for its solvability
due to the degenerate/singular nature of the operator. The weight function is y\alpha ,
\alpha \in ( - 1, 1); see [46], [55, sect. 2.1], [40], and [32, Thm. 1] for a more sophisticated
discussion of such spaces. To this end, let \scrD \subset \BbbR N \times [0,\infty ) be an open set, such as
\scrC or \scrC \tau ; then we define the weighted space L2(y\alpha ,\scrD ) as the space of all measurable
functions defined on \scrD with finite norm \| w\| L2(y\alpha ,\scrD ) := \| y\alpha /2w\| L2(\scrD ). Similarly,
using a standard multi-index notation, the space H1(y\alpha ,\scrD ) denotes the space of all
measurable functions w on \scrD whose weak derivatives D\delta w exist for | \delta | = 1 and fulfill

\| w\| H1(y\alpha ,\scrD ) :=

\Biggl( \sum 
| \delta | \leq 1

\| D\delta w\| 2L2(y\alpha ,\scrD )

\Biggr) 1/2

<\infty .

To study the extended problems, we also need the space

\r H1
L(y

\alpha , \scrC ) := \{ w \in H1(y\alpha , \scrC ) | w = 0 on \partial L\scrC \} .

The space \r H1
L(y

\alpha , \scrC \tau ) is defined in an analogous manner.
The extended problem reads as follows: Given \sansz \in L2(\Omega ) and fixed s \in \Xi , find

U \in 
\circ 
H1

L(y
\alpha s , \scrC ) such that

(4.1a)

\int 
\scrC 
y\alpha s (A(x, y)\nabla U \cdot \nabla \Phi + c(x)U \Phi ) dxdy = ds

\int 
\Omega 

\sansz \Phi | \Omega \times \{ 0\} dx

for all \Phi \in 
\circ 
H1

L(y
\alpha s , \scrC ) with

(4.1b) \alpha s := 1 - 2s and ds := 2\alpha s
\Gamma (1 - s)

\Gamma (s)
.

That is, the function U \in 
\circ 
H1

L(y
\alpha s , \scrC ) is a weak solution of the following problem:

(4.2)

\Biggl\{ 
 - div(y\alpha sA(x, y)\nabla U ) + y\alpha sc(x)U = 0 in \scrC ,
\partial \scrU 

\partial \nu \alpha s = ds\sansz on \Omega \times \{ 0\} ,

where we have set

\partial U

\partial \nu \alpha s
(x, 0) =  - lim

y\rightarrow 0
y\alpha sUy(x, y) =  - lim

y\rightarrow 0
y\alpha s

\partial U (x, y)

\partial y

and A(x, y) = diag\{ A(x), 1\} . Throughout, we denote the control-to-state map for
(4.2) by \sansz \mapsto \rightarrow S (\sansz ). For a fixed \sansz , S (\sansz ) is parametrized by the fractional power
s. We denote this dependence by s \mapsto \rightarrow [S (\sansz )](s). Furthermore, we recall that if
[S (\sansz )](s) \in 

\circ 
H1

L(y
\alpha s , \scrC ) solves (4.2), then we obtain the solution to (1.1) as [\sansS (\sansz )](s) =

[S (\sansz )](s)| \Omega \times \{ 0\} .
Using this extension, we arrive at the extended optimal control problem

(4.3) min
\sansz \in \sansZ ad

\scrR (f(\cdot , [S (\sansz )](\cdot )| \Omega \times \{ 0\} )) + g(\sansz ).
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Notice that (4.3) is equivalent to (3.1). Under the assumptions of Theorems 3.1 and
3.2 if \=\sansz solves (4.3), then the first-order necessary conditions,
(4.4)

sup
\theta \in \partial \scrR (f(\cdot ,[S (\=\sansz )](\cdot )| \Omega \times \{ 0\} ))

\BbbE 
\biggl[ 
\theta 

\int 
\Omega 

[P(\=\sansz )](\cdot )| \Omega \times \{ 0\} (\sansz 
\prime  - \=\sansz ) dx

\biggr] 
+

\int 
\Omega 

\nabla g(\=\sansz )(\sansz \prime  - \=\sansz ) dx \geq 0

for all \sansz \prime \in \sansZ ad, hold, where for a fixed s \in \Xi and \sansz \in L2(\Omega ), P = [P(\sansz )](s) \in 
\circ 
H1

L(y
\alpha , \scrC ) solves the weak form of the adjoint equation, i.e., for all \Phi \in 

\circ 
H1

L(y
\alpha s , \scrC ),\int 

\scrC 
y\alpha s (A(x, y)\nabla P \cdot \nabla \Phi + c(x)P\Phi ) dx dy

= ds

\int 
\Omega 

\nabla \sansu f(s, [S (\sansz )](s)| \Omega \times \{ 0\} )\Phi | \Omega \times \{ 0\} dx.

Remark 4.1. If \scrR \equiv \BbbE or \scrR is the entropic risk measure from Remark 3.3 , then
(4.4) reduces to \int 

\Omega 

(\BbbE 
\bigl[ 
[P(\=\sansz )](\cdot )| \Omega \times \{ 0\} 

\bigr] 
+\nabla g(\=\sansz ))(\sansz \prime  - \=\sansz ) dx \geq 0(4.5)

for all \sansz \prime \in \sansZ ad and\int 
\Omega 

\biggl( 
\BbbE 
\biggl[ 

exp(\beta f(\cdot , [S (\=\sansz )](\cdot )| \Omega \times \{ 0\} ))

\BbbE [exp(\beta f(\cdot , [S (\=\sansz )](\cdot )| \Omega \times \{ 0\} ))]
[P(\=\sansz )](\cdot )| \Omega \times \{ 0\} 

\biggr] 
+\nabla g(\=\sansz )

\biggr) 
(\sansz \prime  - \=\sansz ) dx \geq 0

for all \sansz \prime \in \sansZ ad, respectively.

5. The truncated optimal control problem. Even though the state equation
(4.1) is ``local,"" it is posed on the infinite cylinder \scrC = \Omega \times (0,\infty ). Therefore, it cannot
be approximated with finite-element-like techniques. Following [47] we truncate \scrC to
a bounded cylinder \scrC \tau = \Omega \times (0, \tau ). For a fixed s \in \Xi , let v denote the solution to
the truncated extended PDE: Given \zeta \in L2(\Omega ), find v \in 

\circ 
H1

L(y
\alpha s , \scrC \tau ) such that

(5.1)

\int 
\scrC \tau 

y\alpha s (A(x, y)\nabla v \cdot \nabla \Phi + c(x)v\Phi ) dxdy = ds

\int 
\Omega 

\zeta \Phi | \Omega \times \{ 0\} dx

for all \Phi \in 
\circ 
H1

L(y
\alpha s , \scrC \tau ). We denote the control-to-state map for (5.1) by \zeta \mapsto \rightarrow S\tau (\zeta ).

For a fixed \zeta , S\tau (\zeta ) is parametrized by the fractional power s. We denote this
dependence by s \mapsto \rightarrow [S\tau (\zeta )](s). Using this truncation, we arrive at the truncated
optimal control problem

(5.2) min
\zeta \in \sansZ ad

\scrR (f(\cdot , [S\tau (\zeta )](\cdot )| \Omega \times \{ 0\} )) + g(\zeta ).

5.1. Truncation error bounds. In this subsection, we derive error bounds for
the optimal controls of (3.1) and (5.2). We first recall that for fixed s \in \Xi the solution
to (4.1) can be expanded as (see, e.g., [22])

U (x\prime ) =

\infty \sum 
k=1

uk\varphi k(x)\psi k(y)

for x\prime = (x, y) \in \scrC , where

\psi k(y) :=
21 - s

\Gamma (s)
(
\sqrt{} 
\lambda ky)

sKs(
\sqrt{} 
\lambda ky)
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and Ks is the modified Bessel function of the second kind.
The truncation error bounds from [47] do not directly extend to our probabilistic

setting since the constants in [47, Prop. 3.1] (which depend on s) are neglected. When
s is variable, one must ensure that these constants remain bounded for all s under
consideration. The following technical lemma is critical for extending the truncation
error bound in [47] to our probabilistic setting.

Lemma 5.1. For all s \in \Xi , we have the following bound:

(5.3) | y\alpha s\psi k(y)\psi 
\prime 
k(y)| \leq C

cs
c1 - s

\lambda sk(
\sqrt{} 
\lambda ky)

| s - 1
2 | e - 2

\surd 
\lambda ky for y \geq 

\surd 
\lambda 1\surd 
\lambda k

with a constant C := C(\lambda 1) > 0 only depending on \lambda 1, and cr = 21 - r/\Gamma (r), r \in 
\{ s, 1 - s\} .

Proof. Our proof follows closely the arguments in [47, sect. 2.5] and [42, Appx.].
However, we work out the exact dependence on the order s of the fractional operator
in the constants. As a preliminary result, we start with bounding the term ctz

1/2Kt(z)
for t \in (0, 1) and z \geq z0 > 0 with ct = 21 - t/\Gamma (t). Let t0 = min\{ t, 12\} . From [44,
Thm. 5] we obtain that zt0ezKt(z) is a decreasing function for z > 0. Moreover, ac-
cording to [42, Lem. A.2] we have that ctz

tKt(z) is positive and monotone decreasing.
We also notice that ctz

tKt(z) \sim 1 as z tends to zero; see [1, sect. 9.6.9]. By this we
deduce

0 < ctz
1/2Kt(z) = e - zz1/2 - t0ctz

t0ezKt(z) \leq e - zz1/2 - t0ctz
t0
0 e

z0Kt(z0)

= e - zz1/2 - t0ez0zt0 - t
0 ctz

t
0Kt(z0) \leq e - zz1/2 - t0ez0zt0 - t

0

\leq C(z0)e
 - zz1/2 - t0(5.4)

with a constant C(z0) > 0 only depending on z0 for t \in (0, 1). Next, by [47, eq. 2.29],
we have

\psi \prime 
k(y) =  - cs

\sqrt{} 
\lambda k(
\sqrt{} 
\lambda ky)

sK1 - s(
\sqrt{} 
\lambda ky),

and hence by means of (5.4) with z =
\surd 
\lambda ky and z0 =

\surd 
\lambda 1, we obtain

| y\alpha s\psi k(y)\psi 
\prime 
k(y)| = y\alpha scs(

\sqrt{} 
\lambda ky)

sKs(
\sqrt{} 
\lambda ky)cs

\sqrt{} 
\lambda k(
\sqrt{} 
\lambda ky)

sK1 - s(
\sqrt{} 
\lambda ky)

=
cs
c1 - s

\lambda skcs(
\sqrt{} 
\lambda ky)

1/2Ks(
\sqrt{} 
\lambda ky)c1 - s(

\sqrt{} 
\lambda ky)

1/2K1 - s(
\sqrt{} 
\lambda ky)

\leq C(\lambda 1)
cs
c1 - s

\lambda sk(
\sqrt{} 
\lambda ky)

1 - min\{ s, 12\}  - min\{ 1 - s, 12\} e - 2
\surd 
\lambda ky

= C(\lambda 1)
cs
c1 - s

\lambda sk(
\sqrt{} 
\lambda ky)

| s - 1
2 | e - 2

\surd 
\lambda ky

for y \geq 
\surd 
\lambda 1/

\surd 
\lambda k with a constant C(\lambda 1) only depending on \lambda 1.

We emphasize that the constant in estimate (5.3) only depends on \lambda 1, i.e., the
first eigenvalue of \scrL . The dependence on \lambda 1 can be easily carried out by writing
C(z0) explicitly in (5.4). However, for the current discussion the precise expression
of this constant is irrelevant. The key points are that C is independent of s and
that we have exponential decay with respect to y. We further emphasize that one
might be tempted to let \alpha s \rightarrow 1, which means s \rightarrow 0. This is problematic, as the
weight y\alpha s may not fulfill the Muckenhoupt property (cf. [7, Prop. 2.1]), which is a
sufficient condition for the density of smooth functions in the weighted Sobolev space
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\r H1
L(y

\alpha , \scrC ). Furthermore, if we let s = 1, then (1.1) is a standard elliptic equation.
However, in this case, it is unclear what the extension means. We refer the reader to
[7] for a further discussion on this topic where s is a function of the spatial variable
x \in \Omega .

Using Lemma 5.1, we arrive at the following truncation bounds for the state S .

Proposition 5.2. If, for a given s \in (0, 1), [S (\sansz )](s) \in 
\circ 
H1

L(y
\alpha s , \scrC ) solves (4.1),

then for every \tau \geq 1 and s \in \Xi , we have

(5.5) \| \nabla [S (\sansz )](s)\| L2(y\alpha s ,\Omega \times (\tau ,\infty )) \leq C

\biggl( 
cs
c1 - s

\biggr) 1
2

e - 
\surd 
\lambda 1\tau /2\| \sansz \| \BbbH  - s(\Omega )

with a constant C := C(\lambda 1) > 0 only depending on \lambda 1, and cr = 21 - r/\Gamma (r), r \in 
\{ s, 1 - s\} .

Proof. The proof of this truncation bound follows directly from the proof of
Proposition 3.1 in [47] using Lemma 5.1. Indeed, from the proof of Proposition 3.1 in
[47], Lemma 5.1, and Proposition 2.2, we obtain that

\| \nabla [S (\sansz )](s)\| 2L2(y\alpha s ,\Omega \times (\tau ,\infty ))

=

\infty \sum 
k=1

\biggl( \int 
\Omega 

[\sansS (\sansz )](s)\varphi k dx

\biggr) 2

y\alpha s\psi k(y)\psi 
\prime 
k(y)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty 

\tau 

\leq C(\lambda 1)
cs
c1 - s

\infty \sum 
k=1

\lambda  - s
k

\biggl( \int 
\Omega 

\sansz \varphi k dx

\biggr) 2

e - 
\surd 
\lambda k\tau (

\sqrt{} 
\lambda k\tau )

| s - 1
2 | e - 

\surd 
\lambda k\tau 

\leq C(\lambda 1)
cs
c1 - s

\infty \sum 
k=1

\lambda  - s
k

\biggl( \int 
\Omega 

\sansz \varphi k dx

\biggr) 2

e - 
\surd 
\lambda k\tau 

= C(\lambda 1)
cs
c1 - s

e - 
\surd 
\lambda 1\tau \| \sansz \| 2\BbbH  - s(\Omega ),

where we used s \in (0, 1), and several times that the sequence (\lambda k)k\in \BbbN is nondecreas-
ing.

Proposition 5.3 (exponential convergence). Let s \in (0, 1). Moreover, let
[S (\sansz )](s) \in 

\circ 
H1

L(y
\alpha s , \scrC ) solve (4.1), and let [S\tau (\sansz )](s) \in 

\circ 
H1

L(y
\alpha s , \scrC \tau ) solve (5.1) (ex-

tended by zero to \scrC ). Then, for any \tau \geq 1 and s \in \Xi , we have

\| \nabla ([S (\sansz )](s) - [S\tau (\sansz )](s)) \| L2(y\alpha s ,\scrC ) \leq C

\biggl( 
cs
c1 - s

\biggr) 1
2

e - 
\surd 
\lambda 1\tau /4\| \sansz \| \BbbH  - s(\Omega ),(5.6)

\| [S (\sansz )](s)| \Omega \times \{ 0\}  - [S\tau (\sansz )](s)| \Omega \times \{ 0\} \| \BbbH s(\Omega ) \leq Ce - 
\surd 
\lambda 1\tau /4\| \sansz \| \BbbH  - s(\Omega ),(5.7)

where C := C(\Omega , \lambda 1) is a positive constant only depending on \Omega and \lambda 1, and cr =
21 - r/\Gamma (r), r \in \{ s, 1 - s\} .

Proof. To show (5.6), we follow the proof of [47, Thm. 3.5] using Lemma 5.1 and
Proposition 5.2 instead of [47, eq. (2.32)] and [47, Prop. 3.1], respectively. According
to the trace theorem which follows from [22, Prop. 2.1], we have

(5.8) \| V | \Omega \times \{ 0\} \| \BbbH s(\Omega ) \leq 
\biggl( 
c1 - s

cs

\biggr) 1
2

\| y
\alpha s
2 \nabla V \| L2(\scrC ) \forall V \in 

\circ 
H1

L(y
\alpha s , \scrC ),

so that (5.7) follows from (5.6).
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Again under the assumptions of Theorems 3.1 and 3.2, if \=\zeta solves (5.2), then the
following first-order optimality conditions hold:
(5.9)

sup
\theta \in \partial \scrR (f(\cdot ,[S\tau (\=\zeta )](\cdot )))

\BbbE 
\biggl[ 
\theta 

\int 
\Omega 

[P\tau (\=\zeta )](\cdot )| \Omega \times \{ 0\} (\zeta 
\prime  - \=\zeta ) dx

\biggr] 
+

\int 
\Omega 

\nabla g(\=\zeta )(\zeta \prime  - \=\zeta ) dx \geq 0

for all \zeta \prime \in \sansZ ad, where for fixed s \in \Xi and \zeta \in L2(\Omega ), P\tau = [P\tau (\zeta )](s) \in 
\circ 
H1

L(y
\alpha s , \scrC \tau )

solves the adjoint equation for all \Phi \in 
\circ 
H1

L(y
\alpha s , \scrC \tau ):\int 

\scrC \tau 

y\alpha s (A(x, y)\nabla P\tau \cdot \nabla \Phi + c(x)P\tau \Phi ) dxdy

= ds

\int 
\Omega 

\nabla uf(s, [S\tau (\zeta )](s)| \Omega \times 0)\Phi | \Omega \times \{ 0\} dx.

Remark 5.4. If \scrR \equiv \BbbE or \scrR is the entropic risk measure from Remark 3.3, then
(5.9) reduces to\int 

\Omega 

(\BbbE 
\bigl[ 
[P\tau (\=\zeta )](\cdot )| \Omega \times \{ 0\} 

\bigr] 
+\nabla g(\=\zeta ))(\zeta \prime  - \=\zeta ) dx \geq 0 \forall \zeta \prime \in \sansZ ad(5.10)

and\int 
\Omega 

\biggl( 
\BbbE 
\biggl[ 

exp(\beta f(\cdot , [S\tau (\=\zeta )](\cdot )| \Omega \times \{ 0\} ))

\BbbE [exp(\beta f(\cdot , [S\tau (\=\zeta )](\cdot )| \Omega \times \{ 0\} ))]
[P\tau (\=\zeta )](\cdot )| \Omega \times \{ 0\} 

\biggr] 
+\nabla g(\=\zeta )

\biggr) 
(\zeta \prime  - \=\zeta ) dx \geq 0

for all \zeta \prime \in \sansZ ad, respectively.

We next state a result for the exponential convergence for the control and state
for a special case.

Theorem 5.5. Let \scrR \equiv \BbbE , f(\cdot , u) = 1
2\| u - \sansu d(\cdot )\| 2L2(\Omega ), where \sansu d : \Xi \rightarrow L2(\Omega ) is

continuous with \| \sansu d(s)\| L2(\Omega ) \leq D for all s \in \Xi , and g(z) = \mu 
2 \| z\| 

2
L2(\Omega ) with \mu > 0.

If \=\sansz solves the uncertain fractional optimal control problem and \=\zeta solves the truncated
optimal control problem, then for every \tau \geq 1 we obtain that

(5.11) \| \=\zeta  - \=\sansz \| L2(\Omega ) \leq Ce - 
\surd 
\lambda 1\tau /4

\bigl( 
\| \=\sansz \| L2(\Omega ) +D

\bigr) 
and, for all s \in \Xi , we have that

(5.12) \| [S (\=\sansz ) - S\tau (\=\zeta )](s)| \Omega \times \{ 0\} \| L2(\Omega ) \leq Ce - 
\surd 
\lambda 1\tau /4

\bigl( 
\| \=\sansz \| L2(\Omega ) +D

\bigr) 
,

where the constant C > 0 is independent of s.

Proof. We start by setting \sansz \prime = \=\zeta and \zeta \prime = \=\sansz in (4.5) and (5.10), respectively. For
simplicity, we will skip the notation \cdot | \Omega \times \{ 0\} and we will suppress the dependence of
S , S on s when it is clear from the context. After adding the resulting inequalities
and recalling that P(\=\sansz ) = S (S (\=\sansz )  - \sansu d) and P\tau (\=\zeta ) = S\tau (S\tau (\=\zeta )  - \sansu d), we obtain
that

\mu \| \=\zeta  - \=\sansz \| 2L2(\Omega )

\leq (\BbbE [S (S (\=\sansz ) - \sansu d) - S\tau (S\tau (\=\zeta ) - \sansu d)], \=\zeta  - \=\sansz )L2(\Omega )

= \BbbE [((S  - S)(S (\=\sansz ) - ud), \=\zeta  - \=\sansz )L2(\Omega ) + (S (\=\sansz ) - S\tau (\=\sansz ),S\tau (\=\zeta  - \=\sansz ))L2(\Omega )

+ (S\tau (\=\sansz  - \=\zeta ),S\tau (\=\zeta  - \=\sansz ))L2(\Omega )],
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where we used twice that S is a self-adjoint operator, so that the Cauchy--Schwarz
inequality and Young's inequality imply

\| \=\zeta  - \=\sansz \| 2L2(\Omega ) + \BbbE [\| S\tau (\=\sansz  - \=\zeta )\| 2L2(\Omega )]

\leq C\BbbE [\| (S  - S)(S (\=\sansz ) - ud)\| 2L2(\Omega ) + \| S (\=\sansz ) - S\tau (\=\sansz )\| 2L2(\Omega )].

Next, from the definition of the \BbbH s(\Omega )-norm, we notice that

(5.13) \| v\| L2(\Omega ) \leq \lambda 
 - s/2
1 \| v\| \BbbH s(\Omega ) \leq C\| v\| \BbbH s(\Omega ) \forall v \in \BbbH s(\Omega ),

where we have used that \lambda 1 > 0, and that the sequence (\lambda k)k\in \BbbN is nondecreasing,
and therefore the constant C remains uniformly bounded when s approaches 0 or 1.
As a consequence, (5.11) follows from the above inequalities and (5.7). The proof for
(5.12) immediately follows after using (5.11) and (5.7).

6. Discrete problem and error estimates. To get an approximation of S
and P, we apply the discretization from [42, 47] and [3], i.e. the truncated problem
is discretized by a finite element method. We follow some of the notation from [6].

Due to the singular behavior of U towards the boundary \Omega , we will use anistrop-
ically refined meshes. We define these meshes as follows: Let T\Omega = \{ K\} be a con-
forming and quasi-uniform triangulation of \Omega , where K \in \BbbR N is an element that is
isoparametrically equivalent either to the unit cube or to the unit simplex in \BbbR N . We
assume \#T\Omega \sim MN . Thus, the element size hT\Omega 

fulfills hT\Omega 
\sim M - 1. The collection

of all these meshes is denoted by \BbbT \Omega . Furthermore, let \scrI \tau = \{ I\} be a graded mesh of

the interval [0, \tau ] in the sense that [0, \tau ] =
\bigcup M - 1

k=0 [\tau k, \tau k+1] with

\tau k =

\biggl( 
k

M

\biggr) \gamma 

\tau , k = 0, . . . ,M, \gamma >
1

s
> 1.

Now the triangulations T\tau of the cylinder \scrC \tau are constructed as tensor product tri-
angulations by means of T\Omega and \scrI \tau . The definitions of both imply \#T\tau \sim MN+1.
Finally, the collection of all those anisotropic meshes T\tau is denoted by \BbbT .

We denote the finite element spaces defined on the previously introduced meshes.
For every T\tau \in \BbbT , the finite element spaces \BbbV (T\tau ) are defined by

\BbbV (T\tau ) := \{ \Phi \in C0(\scrC \tau ) : \Phi | T \in \scrP 1(K)\oplus \BbbP 1(I) \forall T = K \times I \in T\tau , \Phi | \partial L\scrC \tau 
= 0\} .

In case that K in the previous definition is a simplex, then \scrP 1(K) = \BbbP 1(K), the set of
polynomials of degree less than or equal to 1. IfK is a cube, then \scrP 1(K) equals\BbbQ 1(K),
the set of polynomials of degree at most 1 in each variable. The discretization of the
truncated problem is then as follows: Given Z \in L2(\Omega ) and s \in \Xi , find Uh \in \BbbV (T\tau )
such that

(6.1)

\int 
\scrC \tau 

y\alpha s (A(x, y)\nabla Uh \cdot \nabla \Phi + c(x)Uh\Phi ) dxdy = ds

\int 
\Omega 

Z\Phi dx \forall \Phi \in \BbbV (T\tau ).

We denote the discrete control-to-state map for (6.1) by Z \mapsto \rightarrow \sansS h(Z), and for a fixed
Z, \sansS h(Z) is parametrized by the fractional power s. We have denoted this dependence
by s \mapsto \rightarrow [\sansS h(Z)](s). The semidiscrete optimization problem is then given by

(6.2) min
Z\in \BbbZ ad(T\Omega )

\scrR (f(\cdot , [\sansS h(Z)](\cdot )| \Omega \times \{ 0\} )) + g(Z),
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where \BbbZ ad(T\Omega ) = \sansZ ad \cap \BbbP \ell denotes the discrete admissible set of controls, and \BbbP \ell 

denotes the set of piecewise polynomials of degree less than or equal to \ell (note that
for the error analysis in a special case in section 6.2 we will set \ell = 0). Existence
of solutions to (6.2) follows under the assumptions of Theorem 3.1. Next, under the
assumptions of Theorem 3.2, the generic optimality conditions for the optimal control
\=Z can be derived similarly to (5.9):
(6.3)

sup
\theta \in \partial \scrR (f(\cdot ,[\sansS h( \=Z)](\cdot )))

\BbbE 
\biggl[ 
\theta 

\int 
\Omega 

[\sansP h( \=Z)](\cdot )| \Omega \times \{ 0\} (Z
\prime  - \=Z) dx

\biggr] 
+

\int 
\Omega 

\nabla g( \=Z)(Z \prime  - \=Z) dx \geq 0

for all Z \prime \in \BbbZ ad(T\Omega ), where for fixed s \in \Xi and Z \in L2(\Omega ), the discrete adjoint
\sansP h = [\sansP h(Z)](s) \in \BbbV (T\tau ) satisfies for all \Phi \in \BbbV (T\tau ),\int 

\scrC \tau 

y\alpha s (A(x, y)\nabla \sansP h \cdot \nabla \Phi + c(x)\sansP h\Phi ) dxdy

= ds

\int 
\Omega 

\nabla uf(s, [\sansS h( \=Z)](s)| \Omega \times \{ 0\} )\Phi | \Omega \times \{ 0\} dx.(6.4)

In order to design a generic numerical scheme and to understand the structure
of (6.3), for the remainder of this paper, we will assume that the risk measure \scrR has
the following form:

(6.5) \scrR (X) = inf
t\in \BbbR 

\{ t+ \BbbE [\wp (X  - t)]\} ,

where \wp : \BbbR \rightarrow \BbbR is convex and increasing. This class of risk measures is called the
optimized certainty equivalents [14, 15]. For example, if \wp (x) = \beta  - 1(exp(\beta x)  - 1),
then \scrR is the entropic risk. Similarly, if \wp (x) = x, then we recover \scrR \equiv \BbbE .

The key advantage of the above choice for \scrR in (6.5) is that we can approximate
\scrR by approximating the expectation \BbbE by \BbbE Q as

\scrR Q(X) = inf
t\in \BbbR 

\{ t+ \BbbE Q[\wp (X  - t)]\} ,

where \BbbE Q[\xi ] =
\sum Q

k=1 \omega k\xi (sk). Here \omega k > 0 are the probabilities (quadrature weights)
associated with the samples (quadrature points) sk. The fully discretized optimization
problem is then

(6.6) min
Z\in \BbbZ ad(T\Omega )

\scrR Q(f(\cdot , [\sansS h(Z)](\cdot )| \Omega \times \{ 0\} )) + g(Z).

Note that \scrR Q is a convex functional. The first-order necessary optimality conditions
are as follows: if \=Z \in \BbbZ ad(T\Omega ) solves (6.6), there exist \theta \in \partial \scrR Q(f(\cdot , [\sansS h( \=Z)](\cdot )| \Omega \times \{ 0\} ))
such that
(6.7)\int 

\Omega 

\Biggl( 
Q\sum 

k=1

\omega k

\bigl[ 
\theta (sk)[\sansP h( \=Z)](sk)| \Omega \times \{ 0\} 

\bigr] 
+\nabla g( \=Z)

\Biggr) 
(Z \prime  - \=Z) dx \geq 0 \forall Z \prime \in \BbbZ ad(T\Omega ).

Remark 6.1. Notice that in view of Remark 3.3, if \scrR \equiv \BbbE , then \theta (sk) in (6.7) is
\theta (sk) = 1 for k = 1, . . . , Q. On the other hand, for the entropic risk measure,

\theta (sk) =
exp(\beta f(sk, [\sansS h( \=Z)](sk)| \Omega \times \{ 0\} ))

\BbbE Q[exp(\beta f(\cdot , [\sansS h( \=Z)](\cdot )| \Omega \times \{ 0\} ))]
for k = 1, . . . , Q.

Before we discuss the error estimates for the case when \scrR = \BbbE , we provide an
\BbbH s(\Omega )-estimate for the state variable with less regular data.
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6.1. \BbbH \bfits (\Omega )-error estimate for nonsmooth data. Here we derive the \BbbH s(\Omega )
error estimate for the state equation when \sansz is only in L2(\Omega ). Let us recall the
corresponding estimate for the case that \sansz \in \BbbH 1 - s(\Omega ). From here on we will assume
that \Omega is convex polyhedral.

Theorem 6.2 (see [42, Thm. 4.9]). For s \in [\varepsilon , 1 - \varepsilon ] with \varepsilon \in (0, 1), let [\sansS (\sansz )](s)
and [\sansS h(\sansz )](s) solve the continuous (1.1) and the discrete (6.1) equations with datum
\sansz \in \BbbH 1 - s(\Omega ), respectively. Then the following estimate holds:

\| [\sansS (\sansz )](s) - [\sansS h(\sansz )](s)| \Omega \times \{ 0\} \| \BbbH s(\Omega ) \leq C| log(hT\Omega 
)| shT\Omega 

\| \sansz \| \BbbH 1 - s(\Omega ),

provided \tau \sim log(\#T\tau ). The constant C is independent of hT\Omega 
and s but may depend

on \varepsilon .

Next, we introduce an auxiliary problem which will help us to derive the estimates
in the nonsmooth case: Given \sansz \in L2(\Omega ), we seek \widetilde \sansu hT\Omega 

\in \BbbH s(\Omega ), which solves (weakly)

(6.8) \scrL s\widetilde \sansu hT\Omega 
= \Pi T\Omega 

\sansz in \Omega ,

where \Pi T\Omega 
denotes the piecewise linear L2(\Omega )-(orthogonal)-projection operator.

Theorem 6.3. For s \in [\varepsilon , 1 - \varepsilon ] with \varepsilon > 0, let [\sansS (\sansz )](s) and [\sansS h(\sansz )](s) solve the
continuous (1.1) and the discrete (6.1) equations with datum \sansz \in L2(\Omega ), respectively.
Then the following estimate holds for \tau \sim log(\#T\tau ):

\| [\sansS (\sansz )](s) - [\sansS h(\sansz )](s)| \Omega \times \{ 0\} \| \BbbH s(\Omega ) \leq C| log(hT\Omega )| shsT\Omega 
\| \sansz \| L2(\Omega ),

where the constant C is independent of hT\Omega and s but may depend on \varepsilon .

Proof. To keep the notation simple, we will skip the notation \cdot | \Omega \times \{ 0\} , and we will
use \sansu and Uh in place of [\sansS (z)](s) and [\sansS h(\sansz )](s) whenever it is clear from the context.

We begin by recalling the definition of \widetilde \sansu hT\Omega 
from (6.8). We have

\| \sansu  - \widetilde \sansu hT\Omega 
\| 2\BbbH s(\Omega ) = \langle \scrL s(\sansu  - \widetilde \sansu hT\Omega 

), (\sansu  - \widetilde \sansu hT\Omega 
)\rangle \BbbH  - s(\Omega ),\BbbH s(\Omega )

=

\int 
\Omega 

(\sansz  - \Pi T\Omega \sansz )(\sansu  - \widetilde \sansu hT\Omega 
) \leq \| \sansz  - \Pi T\Omega \sansz \| \BbbH  - s(\Omega )\| \sansu  - \widetilde \sansu hT\Omega 

\| \BbbH s(\Omega ).

We will estimate \| \sansz  - \Pi T\Omega \sansz \| \BbbH  - s(\Omega ) using classical interpolation. First, using [53,
Lem. 41.3] we have that

[L2(\Omega ), H - 1(\Omega )]s = [L2(\Omega ), H1
0 (\Omega )]

 \star 
s = \BbbH s(\Omega ) \star = \BbbH  - s(\Omega ),

where  \star denotes the dual space. Now from [29, eq. 1.115] and [29, Prop. 1.133] we
have that

\| \sansz  - \Pi T\Omega 
\sansz \| L2(\Omega ) \leq C\| \sansz \| L2(\Omega ) and \| \sansz  - \Pi T\Omega 

\sansz \| H - 1(\Omega ) \leq ChT\Omega 
\| \sansz \| L2(\Omega ).

Using the above mentioned interpolation, we obtain that

\| \sansz  - \Pi T\Omega \sansz \| \BbbH  - s(\Omega ) \leq ChsT\Omega 
\| \sansz \| L2(\Omega ).

As a result,

\| \sansu  - \widetilde \sansu hT\Omega 
\| \BbbH s(\Omega ) \leq \| \sansz  - \Pi T\Omega \sansz \| \BbbH  - s(\Omega ) \leq ChsT\Omega 

\| \sansz \| L2(\Omega ).
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Here the constant C is independent of hT\Omega 
and s.

Next, let \widetilde Uh be the solution to the discrete truncated problem (6.1) with datum
\Pi T\Omega \sansz . Then using Theorem 6.2 we have

\| \widetilde \sansu hT\Omega 
 - \widetilde Uh\| \BbbH s(\Omega ) \leq C| log(hT\Omega 

)| shT\Omega 
\| \Pi T\Omega 

\sansz \| \BbbH 1 - s(\Omega ) \leq C| log(hT\Omega 
)| shsT\Omega 

\| \sansz \| L2(\Omega ),

where the last inequality is due to the inverse estimate (after using an interpolation
argument). Indeed, from the classical inverse estimates, combined with the stability
of \Pi T\Omega in L2(\Omega ), we obtain

\| \Pi T\Omega 
\sansz \| H1

0 (\Omega ) \leq Ch - 1
T\Omega 

\| \sansz \| L2(\Omega ) and \| \Pi T\Omega 
\sansz \| L2(\Omega ) \leq C\| \sansz \| L2(\Omega ),

which after recalling that [L2(\Omega ), H1
0 (\Omega )]1 - s = \BbbH 1 - s(\Omega ) yields \| \Pi T\Omega \sansz \| \BbbH 1 - s(\Omega ) \leq 

Chs - 1
T\Omega 

\| \sansz \| L2(\Omega ) as asserted.

From the definition of Uh and \widetilde Uh we have that

\| \widetilde Uh  - Uh\| \BbbH s(\Omega ) \leq C\| \sansz  - \Pi T\Omega \sansz \| \BbbH  - s(\Omega ) \leq ChsT\Omega 
\| \sansz \| L2(\Omega ),

where we have used the estimate for \| \sansz  - \Pi T\Omega 
\sansz \| \BbbH  - s(\Omega ) from the above interpolation

argument, from where

\| \sansu  - Uh\| \BbbH s(\Omega ) \leq \| \sansu  - \widetilde \sansu hT\Omega 
\| \BbbH s(\Omega ) + \| \widetilde \sansu hT\Omega 

 - \widetilde Uh\| \BbbH s(\Omega ) + \| \widetilde Uh  - Uh\| \BbbH s(\Omega )

\leq C| log hT\Omega 
| shsT\Omega 

\| \sansz \| L2(\Omega ).

This completes the proof.

6.2. Error estimates for a special case. Next, we derive the discretization
error estimates for the setting in Theorem 5.5. We assume that \sansZ ad is defined as

(6.9) \sansZ ad := \{ z \in L2(\Omega ) | \sansa \leq z \leq \sansb a.e. in \Omega \} ,

where \sansa , \sansb \in \BbbR , with \sansa < \sansb , are given. Notice that one can easily consider more generic
control bounds than the constants \sansa and \sansb . For instance, when \sansa , \sansb \in L2(\Omega ), we can
use the average of \sansa , \sansb on each element K to approximate the control constraints.
Since \nabla g(\=\sansz ) = \mu \=\sansz , the projection formula in (3.6) after setting \gamma = 1/\mu becomes

(6.10) \=\sansz = \BbbP \sansZ ad

\biggl( 
 - 1

\mu 
\BbbE [[\sansP (\=\sansz )](\cdot )]

\biggr) 
.

Before we proceed further, we need to understand the regularity of the optimal so-
lution. In the deterministic setting, one can use a boot-strap argument to improve
the regularity for \=\sansz using the regularity of the optimal adjoint state and then improve
the regularity of the optimal state and the optimal control. However, owing to the
relation (6.10) this is not as easy as it may appear. The key issue is that the expec-
tation is being carried out with respect to the random variable s which in turn is the
exponent for the Sobolev space \BbbH s(\Omega ). The latter determines the spatial regularity
for the optimal adjoint state. With the help of a simple example, we next illustrate
that in general it is not possible to improve the regularity of \=\sansz .
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Remark 6.4 (regularity of the control).
(i) Let t \geq 0, and suppose \sansu d is independent of s \in \Xi and is sufficiently smooth.

Then, since the eigenfunctions \varphi k form an orthogonal basis of L2(\Omega ) andH1
0 (\Omega ),

we have that

\| \BbbE [[\sansP (\=\sansz )](\cdot )] \| 2\BbbH t(\Omega ) =

\infty \sum 
k=1

\lambda tk(\BbbE [[\sansP (\=\sansz )](\cdot )] , \varphi k)
2

=

\infty \sum 
k=1

\lambda tk

\Biggl( 
\BbbE 

\Biggl[ \infty \sum 
j=1

\lambda  - \cdot 
j

\bigl( 
\lambda  - \cdot 
j (\=\sansz , \varphi j)L2(\Omega )  - (\sansu d, \varphi j)L2(\Omega )

\bigr) 
\varphi j

\Biggr] 
, \varphi k

\Biggr) 2

=

\infty \sum 
k=1

\lambda tk
\bigl( 
\BbbE 
\bigl[ 
\lambda  - \cdot 
k

\bigl( 
\lambda  - \cdot 
k (\=\sansz , \varphi k)L2(\Omega )  - (\sansu d, \varphi k)L2(\Omega )

\bigr) \bigr] \bigr) 2
,

where we have assumed that we can switch the order of summation and inte-
gration. For uniformly distribution s, the quantities, \BbbE [\lambda  - 2\cdot 

k ] and \BbbE [\lambda  - \cdot 
k ], are

\BbbE [\lambda  - 2\cdot 
k ] =

\int 1

0

\lambda  - 2s
k ds =

1

2 log(\lambda k)

\biggl( 
1 - 1

\lambda 2k

\biggr) 
, \BbbE [\lambda  - \cdot 

k ] =
1

log(\lambda k)

\biggl( 
1 - 1

\lambda k

\biggr) 
.

Thus, \BbbE [[\sansP (\=\sansz )](\cdot )] is expected to have logarithmic regularity.
(ii) If \sansu d : \Xi \rightarrow H1(\Omega ) is continuous, then s \mapsto \rightarrow [\sansP (\=\sansz )](s) \in L\infty (\Xi ,\scrB , P ;\BbbH \beta (\Omega )),

where \beta = min\{ 4s, 1 + s\} . In addition, if P ((0, \varepsilon )) = 0 with \varepsilon > 0, then we
deduce \=\sansz \in H1(\Omega ) by means of a bootstrapping argument using (6.10), [34,
Thm. A.1], and

\| \BbbE [[\sansP (\=\sansz )](\cdot )] \| \BbbH t(\Omega ) \leq \BbbE [\| [\sansP (\=\sansz )](\cdot )\| \BbbH t(\Omega )]

with t \geq 0 which is due to Theorem 3.7.6 in [33]. Of course, for t \geq 1/2 we have
to take care of compatibility conditions for \sansa and \sansb , which hold if we assume
\sansa \leq 0 \leq \sansb . Notice that in general we cannot expect higher regularity for \=\sansz as in
the deterministic case [3].

For the optimal control, we use a piecewise constant discretization, i.e., the dis-
crete controls belong to

(6.11) \BbbZ ad(T\Omega ) := \sansZ ad \cap \BbbP 0(T\Omega ),

where by \BbbP 0(T\Omega ) we denote the space of piecewise constant functions. In addition,
we define the piecewise constant L2(\Omega )-projection \Pi 0

T\Omega 
: L2(\Omega ) \rightarrow \BbbP 0(T\Omega ) as

(6.12) (\sansz  - \Pi 0
T\Omega 

\sansz , Z)L2(\Omega ) = 0 \forall Z \in \BbbZ ad(T\Omega ).

Notice that \| \Pi 0
T\Omega 

\sansz \| L2(\Omega ) \leq c\| \sansz \| L2(\Omega ) and for \sansz \in H1(\Omega ), we have \| \sansz  - \Pi 0
T\Omega 

\sansz \| L2(\Omega ) \leq 
chT\Omega 

\| \sansz \| H1(\Omega ), where the constant c is independent of hT\Omega 
and \sansz on both occasions.

From (6.12) it follows that \Pi 0
T\Omega 

\sansz | K = | K|  - 1
\int 
K
\sansz dx. Moreover, due to \sansa and \sansb being

constants, we conclude that \Pi 0
T\Omega 

\sansz \in \BbbZ ad(T\Omega ) and as a result, \Pi 0
T\Omega 

: L2(\Omega ) \rightarrow \BbbZ ad(T\Omega )
is well defined.

In view of Remark 6.4, we state a general error estimate for the optimal control
which only requires L2(\Omega ) regularity of \=\sansz and \sansu d(s). A few special cases will be
discussed in what follows.
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Theorem 6.5. Let the problem setting and assumptions of Theorem 5.5 hold.
Moreover, let \=\sansz solve (4.3) with \scrR = \BbbE , and let \=Z solve (6.6) with \BbbZ ad(T\Omega ) as in
(6.11) and \scrR Q = \BbbE Q. Then

(6.13) \| \=\sansz  - \=Z\| L2(\Omega ) \leq \scrE fem + \scrE quad

and

(6.14) \BbbE Q[\| [\sansS (\=\sansz )](\cdot )| \Omega \times \{ 0\}  - [\sansS h( \=Z)](\cdot )| \Omega \times \{ 0\} \| \BbbH \cdot (\Omega )] \leq \scrE fem + \scrE quad,

where

\scrE fem := C
\bigl( 
\BbbE Q

\bigl[ 
\| [S (\=\sansz ) - \sansS h(\=\sansz )](\cdot )| \Omega \times \{ 0\} \| L2(\Omega )

+ \| [(S  - \sansS h)(S (\=\sansz ) - \sansu d)](\cdot )| \Omega \times \{ 0\} \| L2(\Omega )

+ \| [P(\=\sansz )](\cdot )| \Omega \times \{ 0\}  - \Pi 0
T\Omega 

[P(\=\sansz )](\cdot )| \Omega \times \{ 0\} \| L2(\Omega )

\bigr] 
+ \| \=\sansz  - \Pi 0

T\Omega 
\=\sansz \| L2(\Omega )

\bigr) 
,

\scrE quad :=
\bigm\| \bigm\| \BbbE \bigl[ [P(\=\sansz )](\cdot )| \Omega \times \{ 0\} 

\bigr] 
 - \BbbE Q

\bigl[ 
[P(\=\sansz )](\cdot )| \Omega \times \{ 0\} 

\bigr] \bigm\| \bigm\| 
L2(\Omega )

with a positive constant C independent of h\scrT \Omega and s.

Remark 6.6 (rate of convergence). The estimators \scrE fem and \scrE quad denote the
spatial and quadrature approximation errors, respectively. The precise estimate on
\scrE quad depends on the specific quadrature rule, but in view of the regularity result in
Proposition 2.2 this error can be easily controlled, for instance, using Gauss quad-
rature. On the other hand, we can directly use Theorem 6.3 to estimate all the
terms in \scrE fem, except the last two, which represent the L2-projection approximation
errors. For s \in \Xi , we have [P(\=\sansz )](s)| \Omega \times \{ 0\} \in \BbbH s(\Omega ) and therefore \| [P(\=\sansz )](s)| \Omega \times \{ 0\}  - 
\Pi 0

T\Omega 
[P(\=\sansz )](s)| \Omega \times \{ 0\} \| L2(\Omega ) \leq Chs\| [P(\=\sansz )](s)| \Omega \times \{ 0\} \| \BbbH s(\Omega ). Since we have not estab-

lished the regularity of \=\sansz (cf. Remark 6.4), we can only assert convergence (without
rates) of \| \=\sansz  - \Pi 0

T\Omega 
\=\sansz \| L2(\Omega ) in general.

Proof. For simplicity, we will skip the notation \cdot | \Omega \times \{ 0\} and we will suppress the
dependence of S ,S\tau ,\sansS h, \sansu d on s when it is clear from the context.

Since \BbbZ ad(T\Omega ) \subset \sansZ ad, by setting \sansz \prime = \=Z in the variational inequality (4.5) and
using that g(\=\sansz ) = \mu \=\sansz , we obtain that

(\BbbE [P(\=\sansz )] + \mu \=\sansz , \=Z  - \=\sansz )L2(\Omega ) \geq 0.

Next, setting Z \prime = \Pi 0
T\Omega 

\=\sansz \in \BbbZ ad(T\Omega ) in the corresponding variational inequality for
the discrete problem (6.6), we obtain that\Bigl( 

\BbbE Q[\sansP h( \=Z)] + \mu \=Z,\=\sansz  - \=Z
\Bigr) 
L2(\Omega )

+
\Bigl( 
\BbbE Q[\sansP h( \=Z)] + \mu \=Z,\Pi 0

T\Omega 
\=\sansz  - \=\sansz 

\Bigr) 
L2(\Omega )

\geq 0,

where we have added and subtracted \=\sansz . Adding the resulting expressions and rear-
ranging terms, we arrive at

\mu \| \=\sansz  - \=Z\| 2L2(\Omega )

\leq 
\Bigl( 
\BbbE [P(\=\sansz )] - \BbbE Q[\sansP h( \=Z)], \=Z  - \=\sansz 

\Bigr) 
L2(\Omega )

+
\Bigl( 
\BbbE Q[\sansP h( \=Z)] + \mu \=Z,\Pi 0

T\Omega 
\=\sansz  - \=\sansz 

\Bigr) 
L2(\Omega )

=
\Bigl( 
\BbbE [P(\=\sansz )] - \BbbE Q[P(\=\sansz )], \=Z  - \=\sansz 

\Bigr) 
L2(\Omega )

+
\Bigl( 
\BbbE Q[P(\=\sansz ) - \sansP h( \=Z)], \=Z  - \=\sansz 

\Bigr) 
L2(\Omega )

+
\Bigl( 
\BbbE Q[\sansP h( \=Z)] + \mu \=Z,\Pi 0

T\Omega 
\=\sansz  - \=\sansz 

\Bigr) 
L2(\Omega )

=: I + II + III.
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By applying the Cauchy--Schwarz inequality we get

| I| \leq \| \BbbE [P(\=\sansz )] - \BbbE Q[P(\=\sansz )]\| L2(\Omega )\| \=\sansz  - \=Z\| L2(\Omega ).

For the estimate of II, we can proceed in a manner similar to the proof of Theorem 5.5.
Indeed, as \sansP h( \=Z) = \sansS h(\sansS h( \=Z) - \sansu d) and P(\=\sansz ) = S (S (\=\sansz ) - \sansu d), we obtain by adding
and subtracting \sansS h(S (\=\sansz ) - \sansu d)

II = \BbbE Q[(S (S (\=\sansz ) - \sansu d) - \sansS h(\sansS h( \=Z) - \sansu d), \=Z  - \=\sansz )L2(\Omega )]

= \BbbE Q[((S  - \sansS h)(S (\=\sansz ) - \sansu d), \=Z  - \=\sansz )L2(\Omega )] + \BbbE Q[(\sansS h(S (\=\sansz ) - \sansS h( \=Z)), \=Z  - \=\sansz )L2(\Omega )]

= \BbbE Q[((S  - \sansS h)(S (\=\sansz ) - \sansu d), \=Z  - \=\sansz )L2(\Omega )] + \BbbE Q[(S (\=\sansz ) - \sansS h( \=Z),\sansS h( \=Z  - \=\sansz ))L2(\Omega )].

For the first term, we simply get

\BbbE Q[((S  - \sansS h)(S (\=\sansz ) - \sansu d), \=Z - \=\sansz )L2(\Omega )] \leq \BbbE Q[\| (S  - \sansS h)(S (\=\sansz ) - \sansu d)\| L2(\Omega )]\| \=Z - \=\sansz \| L2(\Omega ).

In case of the second one, we add and subtract \sansS h(\=\sansz ) such that

\BbbE Q[(S (\=\sansz ) - \sansS h( \=Z),\sansS h( \=Z  - \=\sansz ))L2(\Omega )] \leq \BbbE Q[(S (\=\sansz ) - \sansS h(\=\sansz ),\sansS h( \=Z  - \=\sansz ))L2(\Omega )]

\leq \BbbE Q[\| S (\=\sansz ) - \sansS h(\=\sansz )\| L2(\Omega )\| \sansS h( \=Z  - \=\sansz )\| L2(\Omega )].

Next, we use that \sansS h maps stable (in terms of h\scrT \Omega 
and s) from L2(\Omega ) to L2(\Omega ), which

can be seen from (5.13), (5.8), and (6.1). Thus, we get

\BbbE Q[(S (\=\sansz ) - \sansS h( \=Z),\sansS h( \=Z  - \=\sansz ))L2(\Omega )] \leq \BbbE Q[\| S (\=\sansz ) - \sansS h(\=\sansz )\| L2(\Omega )]\| \=\sansz  - \=Z\| L2(\Omega ).

Collecting the previous estimates yields

| II| \leq C(\BbbE Q[\| (S  - \sansS h)(S (\=\sansz ) - \sansu d)\| L2(\Omega )] + \BbbE Q[\| (S  - \sansS h)(\=\sansz )\| L2(\Omega )])\| \=\sansz  - \=Z\| L2(\Omega ).

It then remains to estimate III. Using the orthogonality of \Pi 0
T\Omega 

, we have \mu ( \=Z,\Pi 0
T\Omega 

\=\sansz  - 
\=\sansz )L2(\Omega ) = 0. Since \sansP h( \=Z) = \sansS h(\sansS h( \=Z) - \sansu d), we obtain that

III = (\BbbE Q[\sansS h(\sansS h( \=Z) - \sansu d)],\Pi 
0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega )

= \BbbE Q[(\sansS h(\sansS h( \=Z  - \=\sansz )),\Pi 0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega )] + \BbbE Q[(\sansS h(\sansS h(\=\sansz ) - \sansu d),\Pi 
0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega )]

=: III1 + III2,

where we have added and subtracted (\BbbE Q[\sansS h(\sansS h(\=\sansz ) - \sansu d)],\Pi 
0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega ). To estimate

III1, we use that \sansS h as a map from L2(\Omega ) to L2(\Omega ) is stable. By this we arrive at

| III1| \leq C\| \Pi 0
T\Omega 

\=\sansz  - \=\sansz \| L2(\Omega )\| \=\sansz  - \=Z\| L2(\Omega ).

Next, we will estimate III2. By adding and subtracting (\BbbE Q[\sansS h(S (\=\sansz ) - \sansu d)],\Pi 
0
T\Omega 

\=\sansz  - 
\=\sansz )L2(\Omega ) to III2, we obtain that

| III2| =
\bigm| \bigm| \bigm| \BbbE Q[(\sansS h(\sansS h(\=\sansz ) - S (\=\sansz )),\Pi 0

T\Omega 
\=\sansz  - \=\sansz )L2(\Omega )]

+ \BbbE Q[(\sansS h(S (\=\sansz ) - \sansu d),\Pi 
0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega )]
\bigm| \bigm| \bigm| 

\leq C\BbbE Q[\| \sansS h(\=\sansz ) - S (\=\sansz )\| L2(\Omega )]\| \Pi 0
T\Omega 

\=\sansz  - \=\sansz \| L2(\Omega )

+
\bigm| \bigm| \bigm| \BbbE Q[((\sansS h  - S )(S (\=\sansz ) - \sansu d),\Pi 

0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega )]
\bigm| \bigm| \bigm| 

+
\bigm| \bigm| \bigm| \BbbE Q[(S (S (\=\sansz ) - \sansu d),\Pi 

0
T\Omega 

\=\sansz  - \=\sansz )L2(\Omega )]
\bigm| \bigm| \bigm| ,
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where we have used the stability of \sansS h once again and where we have added and
subtracted (\BbbE Q[S (S (\=\sansz )  - \sansu d)],\Pi 

0
T\Omega 

\=\sansz  - \=\sansz ))L2(\Omega ) to the second term. Subsequently,

by using P(\=\sansz ) = S (S (\=\sansz )  - \sansu d), the orthogonality of the L2(\Omega )-projection, and by
applying the Cauchy--Schwarz inequality, we obtain

| III2| \leq C
\Bigl( 
\BbbE Q[\| \sansS h(\=\sansz ) - S (\=\sansz )\| L2(\Omega )] + \BbbE Q[\| (\sansS h  - S )(S (\=\sansz ) - \sansu d)\| L2(\Omega )]

+ \| \BbbE Q[ \=P  - \Pi 0
T\Omega 

\=P]\| L2(\Omega )

\Bigr) 
\| \Pi 0

T\Omega 
\=\sansz  - \=\sansz \| L2(\Omega ).

Collecting all the estimates, we arrive at (6.13) due to Young's inequality.
It remains to show (6.14). Towards this end, we have

\BbbE Q[\| S (\=\sansz ) - \sansS h( \=Z)\| \BbbH s(\Omega )] \leq \BbbE Q[\| S (\=\sansz ) - \sansS h(\=\sansz )\| L2(\Omega )] + \BbbE Q[\| \sansS h(\=\sansz  - \=Z)\| L2(\Omega )]

\leq \BbbE Q[\| S (\=\sansz ) - \sansS h(\=\sansz )\| L2(\Omega )] + \BbbE Q[\| (\=\sansz  - \=Z)\| L2(\Omega )],

where we have used the discrete stability. Then combined with the previous estimate
(6.13) we obtain (6.14). This concludes the proof.

Corollary 6.7. In addition to the assumptions of Theorem 6.5, if P ((0, \varepsilon )) =
P ((1 - \varepsilon , 1)) = 0 for some \varepsilon > 0, \sansu d : \Xi \rightarrow H1(\Omega ) is continuous, and \sansa \leq 0 \leq \sansb , then
the following estimate holds:
(6.15)

\| \=\sansz  - \=Z\| L2(\Omega ) + \BbbE Q[\| [S (\=\sansz )](\cdot )| \Omega \times \{ 0\}  - [\sansS h( \=Z)](\cdot )| \Omega \times \{ 0\} \| \BbbH \cdot (\Omega )]

\leq ChT\Omega 
\BbbE Q

\bigl[ 
| log(hT\Omega 

)| s
\bigr] 
+
\bigm\| \bigm\| \BbbE [[P(\=\sansz )](\cdot )] - \BbbE Q[[P(\=\sansz )](\cdot )]

\bigm\| \bigm\| 
L2(\Omega )

,

provided \tau \sim log(\#T\tau ).

Proof. The proof is a consequence of Theorem 6.5, Remark 6.4(ii) and Theo-
rem 6.2.

7. Numerics. We implement the optimal control problem in the iFEM library
[23] within the MATLAB environment. The stiffness matrix is assembled exactly, and
the forcing term is computed by a quadrature formula that is exact for polynomials
of degree 4. The resulting state and adjoint systems are solved using backslash in
MATLAB. In our numerical examples, we let n = 2, \Omega = (0, 1)2, c \equiv 0, and A \equiv 1.
The eigenvalues and eigenfunctions of \scrL are

\lambda k,l = \pi 2(k2 + l2), \varphi k,l(x1, x2) = sin(k\pi x1) sin(l\pi x2), k, l \in \BbbN .

7.1. Example 1. We consider

\scrR \equiv \BbbE , f(\cdot , \sansu ) = 1

2
\| \sansu  - \sansu d(\cdot )\| 2L2(\Omega ), g(\sansz ) =

\mu 

2
\| \sansz \| 2L2(\Omega ),

where \mu = 1 and \sansu d is a given desired state exactly specified below. We discretize
\scrR \equiv \BbbE using Gauss--Legendre quadrature of order 5. In order to be able to state an
exact solution, we modify the state equation. More precisely, we consider

\scrL s\sansu = \sansf +\=\sansz in \Omega , \sansu = 0 on \partial \Omega ,

where we set \sansf = \lambda s2,2 sin(2\pi x1) sin(2\pi x2) - \=\sansz . Then \sansS (\=\sansz ) = sin(2\pi x1) sin(2\pi x2). Let-
ting \sansP (\=\sansz ) =  - sin(2\pi x1) sin(2\pi x2), we obtain that \sansu d = (1+\lambda s2,2) sin(2\pi x1) sin(2\pi x2).
In view of the projection formula, we notice that \=\sansz = min \{ \sansb ,max \{ \sansa , - \sansP (\=\sansz )\} \} , where
we set \sansa = 0 and \sansb = 0.5. Figure 1 shows the rate of convergence for the control
as we refine the mesh in space. Clearly we obtain the theoretically expected rate of
convergence.
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Fig. 1. The panel illustrates the rate of convergence in space for the control \sansz for a fixed Gauss
quadrature rule of order 5. We recover the optimal | DoF|  - 1/3 rate of convergence.

7.2. Example 2. In our second example, we compare the behavior of the cost
functional when \scrR (X) = \BbbE [X] and \scrR (X) = \beta  - 1 log\BbbE [exp(\beta X)], respectively. We let

f(\cdot , \sansu ) = 1

2
\| \sansu  - \sansu d\| 2L2(\Omega ), g(\sansz ) =

\mu 

2
\| \sansz \| 2L2(\Omega )

with \mu = 0.1, \sansu d \equiv 1, \beta = 5, \sansa = 0, \sansb = 2, and \Xi = [0.05, 0.95]. We use the Gauss--
Legendre quadrature rule of order 5 and \#T\tau = 3146. Figure 2 shows the cumulative
distribution function (CDF, left) and the probability density function (PDF, right)
for f(\cdot , [\sansS h( \=Z)](\cdot )) when sampled at 100,000 uniformly distributed random numbers.
Moreover, Figure 3 shows the CDF and PDF for f(\cdot , [\sansS h( \=Z)](\cdot ))+g( \=Z). Figure 4 shows
the difference between the controls for the two cases. The entropic risk measure is
more conservative than \BbbE in the sense that

\beta  - 1 log\BbbE [exp(\beta X)] > \BbbE [X] \forall nonconstant X \in Lp(\Xi ,\scrB , P ).

As seen in Figure 2, the control computed using the entropic risk results in less
variability of f(\cdot , \sansu ); i.e., the support of the associated PDF is smaller than the support
of the PDF for the expected value. Effectively, the entropic risk control reduces
variability in the optimal objective function value. This is not without cost. Figure 2
demonstrates that the state-only objective function CDF corresponding to \scrR = \BbbE 
dominates the CDF corresponding to the entropic risk. However, when considering
the total objective function, the entropic risk control appears to outperform the control
for \scrR = \BbbE with respect to the approximately 45\% largest scenarios (cf. Figure 3).

8. Conclusion. This paper has introduced a new class of optimal control prob-
lems for fractional diffusion equations where the fractional exponent s is taken as a
random variable. Since the order of the fractional Sobolev space is itself now a random
variable, the existing techniques to analyze and solve such optimal control problems
are not directly applicable. We have introduced a risk-averse optimization framework
for this class of optimal control problems, and we have shown existence of solutions
as well as rigorously derived the first-order optimality conditions. We employ quadra-
ture to approximate the random exponent and the finite element method to discretize
in space. We have also derived the rate of convergence for the fully discrete optimal
control problem to the continuous one in the risk-neural case.

We have considered optimal control problems governed by the most basic frac-
tional PDE. As we mentioned in the introduction, one of our motivations is to extend
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Fig. 2. Left panel shows the cumulative distribution function (CDF) for \| [\sansS h( \=Z)](\cdot ) - \sansu d\| 2L2(\Omega )
.

Right panel shows probability density function (PDF).
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Fig. 3. Left panel shows the cumulative distribution function (CDF) for \| [\sansS h( \=Z)](\cdot ) - \sansu d\| 2L2(\Omega )
+

\mu \| \=Z\| 2
L2(\Omega )

. Right panel shows probability density function (PDF).
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Fig. 4. Left panel shows the control in case \scrR \equiv \BbbE and the right panel shows the control in
case \scrR is the entropic risk.

our work to the fractional Helmholtz PDE [58]. In order to fully understand this
problem, we must tailor estimates of the distribution of s to the specific applica-
tion; see [58] for an initial discussion on this topic. In view of [7], for the fractional
Helmholtz PDE and imaging science applications, it is also of interest to consider a
spatial varying s, i.e., s(x). In this case, the current problem becomes significantly
more complicated, as the fractional exponent is a spatially varying random field.
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