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Abstract. Fueled by many applications in random processes, imaging science, geophysics, etc.,
fractional Laplacians have recently received significant attention. The key driving force behind the
success of this operator is its ability to capture nonlocal effects while enforcing less smoothness on
functions. In this article, we introduce a spectral method to approximate this operator employing a
sinc basis. Using our scheme, the evaluation of the operator and its application onto a vector has
complexity of O(Nlog(N)), where N is the number of unknowns. Thus, using iterative methods
such as conjugate gradient, we provide an efficient strategy to solve fractional PDEs with exterior
Dirichlet conditions on arbitrary Lipschitz domains. Our implementation works in both two and three
dimensions. We also recover the FEM rates of convergence on benchmark problems. For fractional
exponent s = 1/4, our current three-dimensional implementation can solve the Dirichlet problem
with 5 - 106 unknowns in under 2 hours on a standard office workstation. We further illustrate the
efficiency of our approach by applying it to fractional Allen—Cahn and image denoising problems.
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1. Introduction. This article is concerned with the numerical treatment of
equations of the form

(=AYu=f inQ,

1.1
1) u=0 inR¥\Q
on an open bounded domain  C R? with Lipschitz boundary 9. Furthermore, we
consider applications to phase field models and imaging science.

A standard way to define the fractional Laplacian is via a principal value integral
on functions in the Schwartz space S(R?) of rapidly decaying functions.

DEFINITION 1.1. Let u € S(R?) and s € (0,1). The operator (—A)* is defined as

22T (s + d/2)

(1.2) (=A)*u(z) = C(d, s)P.V. M dy, where C(d,s) = 7I2T(1 — 5)

Ra |z —yld+2s

is a normalization constant.
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This definition clearly shows the nonlocal character of the operator (—A)®. In
order to evaluate (—A)%u(z) at a single point x € R%, one has to evaluate the singular
integral over the full space R?. Furthermore, this fractional Laplacian only makes
sense for functions which are defined on all of R%. The definition can be interpreted in
a weak sense for regular distributions with suitable growth conditions via integration
by parts [39, Chapter 2]. We will from now on use this interpretation implicitly when
needed.

For the remainder of this paper, we will refer to problems of the form (1.1) as the
Dirichlet problem for the fractional Laplacian, or—more explicitly—as the fractional
Poisson problem with Dirichlet exterior conditions. The fractional Laplacian of a
function v with support in Q C R?,  bounded, or, equivalently, of a function wu:  —
R which is extended by zero outside 2 will be denoted as the Dirichlet fractional
Laplacian. We remark that other options to give meaning to fractional operators
applied to functions defined on bounded domains exist (for an overview, see [31]), but
here, we will be concerned with the Dirichlet problem as described above.

On the entire R?, there are at least nine further, equivalent ways to define the
fractional Laplacian; see [30]. A particularly useful one is the one defined using Fourier
transform. See, for example, [23] for a proof of the following.

THEOREM 1.2. Let s € (0,1), and let (—A)* : S(RY) — L2(RY) the fractional
Laplacian from Definition 1.1. Then, for u € S,

(1.3) (=A)u=F ! (w*(Fu)).

In principle, (1.3) gives a direct method to solve (1.1) via the Fourier transfor-
mation. This is, of course, numerically intractable, as it is not possible to perform a
DFT on an infinite domain. On the other hand, if one truncates the domain on which
the Fourier transformation is performed, one instead obtains the fractional Laplacian
of a function u that was periodically extended outside the truncation. We note that
this is a different operator than the Dirichlet fractional Laplacian that we will call
periodic fractional Laplacian, denoted (—A)®.

Fractional PDEs of type (1.1) have recently received a significant amount of at-
tention. The interest in fractional operators of type (—A)® with s € (0, 1) stems from
two facts: (i) these operators impose less smoothness (cf. the classical case s = 1), and
(ii) even more importantly, these operators easily enable nonlocal interaction; recall
that the classical derivatives lead to local operators.

The fractional Laplacian has been used as a regularizer in imaging [7, 8]. Ad-
ditionally, it can be derived using the so-called long jump random walk [43]. Frac-
tional diffusion-reaction equations such as fractional Allen—Cahn have been studied in
[5, 6, 38, 7], and a fractional Cahn—Hilliard equation has been studied, e.g., in [4, 5, 7].
A related example where instead of the space-derivative the time-derivative is taken
to fractional order in a diffusion-reaction equation is [29]. Finally, the fractional
Helmholtz equation has been recently derived in [44] using the first principle argu-
ments in conjunction with a constitutive relation. We emphasize that the fractional
Laplacian in [44] is of the so-called spectral type. From an optimal control point of
view, fractional operators provide a great deal of flexibility since the condition u = 0
is imposed in the exterior R? \ © of the domain €. Therefore, it has been possible
to introduce a new type of optimal control (called exterior control) using fractional
PDEs [9].

It has been noted in [18] that—in R%—the definitions (1.2) and (1.3) are further
equivalent to the so-called extension problem. However, even for functions w such
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that suppu C , with  bounded, the extension has to be performed on R? x (0, 00)
to compute the fractional Laplacian for the Dirichlet problem. It is still possible
to define an extension problem on Q x (0,00) which is equivalent to the so-called
spectral fractional Laplacian [42]. Using such an extension, efficient finite element—
based numerical methods have been proposed in [35, 33]. For completeness, we also
refer the reader to [10] for an extension problem where the fractional exponent s is a
function of the spatial variable xz € €.

On the other hand, the numerical methods for problems of the type (1.1) present
even more challenges, as one needs to resolve the singular integrals. The first work
that rigorously tackles numerics for (1.1) using a finite element method is by Acosta
and Borthagaray [2]; see also [3]. However, the implementations in these works have
been limited to d = 2 dimensions. We also refer the reader to another finite element
approach of Bonito, Lei, and Pasciak [13], which also works in d = 3 [12].

In contrast, we provide a spectral method to approximate the Dirichlet fractional
Laplacian (1.2) where we attempt to combine FFT efficiency with the ability to treat
exterior value problems as in (1.1). As we shall illustrate with numerical examples,
this approach directly applies to the case when d = 3, and extension to even higher
dimensions is possible given efficient FF'T implementations. Using our method, the
application of the fractional operator has the same numerical complexity as a Fourier
transform. To solve the Dirichlet problem (1.1), we then use this operator, restricted
to Q, within a conjugate gradient (CG) algorithm.

Related strategies have been suggested recently by other authors. Duo and Zhang
introduced a finite difference scheme to efficiently solve equations involving the frac-
tional Laplace operator [24]. Their method relies on a finite difference approximation
of the operator and the fact that this can be expressed as a matrix consisting of
blocks of symmetric Toeplitz matrices which can be applied efficiently using DFT-
based methods. Given this operator, they solve fractional PDEs using iterative meth-
ods. Minden and Ying introduced a method to discretize the integral operator (1.2)
which also leads to a Toeplitz matrix. Along with a preconditioner, they also use the
CG method to solve the arising systems for the fractional Dirichlet problem and frac-
tional diffusion equations [34]. Another example for a spectral method was provided
recently by Xu and Darve. They use eigenfunctions and eigenvalues w.r.t. a specific
weight of the Dirichlet fractional Laplacian to solve the fractional Dirichlet problem
on the unit ball [45].

Recently, mesh-free methods based on radial basis functions to estimate fractional
Laplacians [17, 36] have been proposed. Those methods are related to our method
in the sense that they also rely on the elementwise application of an operator to
basis functions. Further, they use the fact that the Fourier transformation of smooth
functions has rapid decay. A novelty that our method shares with [17] is that we
can treat classical and fractional PDEs in a single framework, as illustrated in the
experiments in subsection 4.2.

A more general, unified framework for finite difference schemes to evaluate frac-
tional Laplacians for d = 1 is presented by Huang and Oberman in [28]. In particular,
they use a finite difference scheme based on sinc-interpolation and show an equiva-
lence to a Fourier scheme on an infinite interval. We extend those results to multiple
dimensions and present numerical schemes to calculate the resulting integrals.

The article is organized as follows. In section 2, we briefly discuss some prop-
erties of the sinc-interpolation used in the present work as well as a discrete version
of the fractional Laplacian based on this interpolation. The numerical methods to
efficiently evaluate fractional Laplacians, as well as some equivalences between scaled
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periodic and our discretized operators, are presented in section 3. In a supplementary
section, we provide more details on the implementation of our algorithms and on the
computational complexity; see Appendix A. Section 4 is devoted to validation of our
theoretical results using various numerical examples in both d = 2 and d = 3. The
L2-convergence rates for finite element methods as stated in [3] are obtained also using
our method. We conclude the article by successfully applying the proposed scheme
to the fractional Allen-Cahn equation and image denoising problems.

2. The sinc-fractional Laplacian. In this section, we define our discrete ap-
proximation of the Dirichlet fractional Laplacian. First, in subsection 2.1, we in-
troduce an appropriate discretization method for functions with bounded support.
Following this, we use a discrete convolution to define our operator in subsection 2.2.

2.1. sinc-interpolation. It is a well-known fact that, for example, smooth func-
tions with compact support on R can be well approximated by a weighted sum of
scaled and shifted sinc-functions. The sinc-function is defined as

sin(mx) .

(2.1) sinc(z) = —
Two different approaches of approximating functions with sinc-functions are found in
the literature. The first approach is to consider the sinc-function as a wavelet scaling
function and then to approximate in the sense of wavelets, which leads to the so-called
Shannon wavelets. A good overview on such techniques can be found in [20]. They
have also been used to approximate fractional derivatives as shown in [21, 22].

The second approach, which we will pursue here, is to approximate a function
u: R — R by

(2.2) u(z) ~ i u(kh)sinc(x_hkh>.

k=—o0

The sum on the right-hand side (if it converges) is called a Whittaker cardinal function;
see, e.g., [32] for more details. This approximation is rather precise [41] and has found
numerous applications, e.g., for solving ODEs, PDEs, and integral equations [40, 41]
but also for approximating integrals arising in fractional calculus [11]. Furthermore,
this is the method chosen in [28] to derive the weights for a finite difference scheme
to compute fractional Laplacians in one dimension. Another way the sinc-functions
are employed in the area of fractional PDEs is to use sinc-quadrature to compute the
Dunford-Taylor integral arising from the fractional Laplacian, as done, e.g., in [13].

In this work, we will use approximations similar to (2.2), extended to multiple
dimensions. For z = (z1,...,24)7 € RY, we set

d
(2.3) o(x) = H sinc(z;)

as the reference basis function and define its scaled and shifted version ¢ : R? — R
for k = (ki,...,kq)T € Z9 by a tensor product

d
(2.4) i (@) = [[eWaj k), = (1,....2a)" €RY,
j=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/21 to 129.174.240.213 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SINC-FRACTIONAL LAPLACIAN A2901

where Z? is the d-dimensional integer lattice. For u : RY — R, we obtain the
sinc-approximation

(2.5) un(z) = Z upph (x)  where uy = u(xy), x, = k/N.
kezd

Since we are interested in computing the Dirichlet fractional Laplacian, our functions
have compact support, which we from now on assume to be contained in the unit
cube [0,1)¢ (the generalization to other, larger domains is trivial; our assumption is
merely for notational convenience). We therefore may truncate the series to

N-—1 N—-1
un(@) =Y - Y wen (@) = Y wep (x),
k1=0 ka=0 keTd,

where, if Zy = {0,..., N — 1}, then Z¢ C Z< indicates its d-fold Cartesian product.
Later in this work, we will also use the set Zj; = {—N/2,..., N/2—1} and its Cartesian
product, respectively.

It is a well-known fact that the basis function ¢ can be obtained as the inverse
Fourier transform of the indicator function of a square; i.e., for D = [—7; 7]%, we have

(Fxp(@))(@) = (2m)?p(x),

where xp(z) =1 if z € D and 0 otherwise Similarly, ¢ (z) can be obtained as

el (@) = p(Nw — k) = F~1 ((27N) "y (@)e ™M) (@),

=F ep (w)

where Dy = [-Nn; N7|? C R4

2.2. The discrete operator. Given a real function u with suppu C [0;1)¢, we
want to apply the Dirichlet fractional Laplace operator (—A)® of (1.3) to its sinc-
approximation uy. We shall write

(=A)yu = (=A)*uy

and call the operator (—A)% the sinc-fractional Laplacian. We are restricted to grid
points, so let z, = k/N, k € Z%. As I¢ is finite and (—A)* is linear, we obtain

(=8 u () = (=) ( 2 ued ()

keTd

= 3w (~A)ep) (2)

d
keZy =dN (k—k)

(2.6) = Y wdN(k—k),

kezd

where we have defined ®V (k — k) = (—A)*pN (z,) for k, x € Z¢. In the remainder of
this paper, we will occasionally use the notation ®% = ®V(x — k), with K = x — k
when it is clear from the context. Notice that (2.6) denotes a discrete convolution.
The computation of this convolution is the application of the sinc-fractional Laplacian.
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In other words, we obtain the sinc-fractional Laplacian (—A)*uy (z,) for any grid
point z,; as the discrete convolution of u = (uy,) keTd, and ®V. Such a convolution can
be implemented efficiently using the FFT algorithm once ®V (x — k) is known for all
k. k€ Ij‘f,. More precisely, the circular discrete convolution of two vectors x,y € RV ¢
can be calculated as

(2.7) (xray)(k) = 3 (k) - ¥(k - )

HEI%

(2.8) — IDFT {(DFTx) o (DFTy)} (k),

where o denotes the componentwise product of vectors and DFT and IDFT denote
the discrete Fourier transformation and the inverse discrete Fourier transformation,
respectively. By circular, we mean that negative components of indices kK — k are
mapped circularly to their positive counterparts in the formulas

) x(K) it K >0,
(K)_{X(K+N) if K<0.

While the evaluation of (2.7) is of complexity O((N9)2), if evaluated for each k, the
simultaneous evaluation of (2.8) for all k can be implemented in O(N%log(N?)) time.

For our application, we do not actually want to apply the circular convolution but
rather the convolution where we extend by zero instead of periodically. As we still
want to use the FFT-based algorithm to evaluate (2.6) because of its computational
efficiency, we set
) {uk if k>0,
Uk =

0  otherwise,

where the expression k£ > 0 is meant componentwise. Then we have that
(=A)un(zx) = (a*q @) (k),

which we implement using a FFT of size (2NV)?. Further details on the implementation
and pseudocode can be found in Appendix A.

We have shown that we can obtain the basis function ¢(-) as the inverse Fourier
transformation of the indicator function of a square in R?. This can in principle be
used to obtain the integral fractional Laplacian ((—A)®y) of the basis functions since
for z € R?, we have

(-A)¢) (@) = F1 (|0 (F )
_ T —d w 2seiw~w B
(2.9) ~ (2m) /D we d

ON(k— k) = (27N)™? / w2l (@ =k/N gy,
Dy

_ - —d n12s w2561w~(nfkr) '
em =N [ d
(2.10) = N*((=A)%p)(k — k).

However, using this equality directly is impractical, as we would have to evalu-
ate the oscillating integral for each multi-index k. For the one-dimensional case, it
is possible to circumvent this issue through the use of the confluent hypergeometric
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function [28], but for d > 1, a numerical solution must be found. Clearly, calculating
®V itself is not necessary in order to implement (2.6), as we only need the DFT &V
of ®V. In subsection 3.3, we show how ®V can be obtained efficiently.

3. Numerical methods. The goal of this section is to introduce our numerical
methods. We begin with subsection 3.1, where we discuss the computation of frac-
tional Laplacians using simple Fourier methods as mentioned in the introduction. In
subsection 3.2, we show that the sinc-fractional Laplacian applied to a function with
support in [0, 1)?, as defined in (2.6), can be seen as a limit S — oo of fractional Lapla-
cians obtained by standard Fourier transforms of the function periodically extended
outside [0, 9)%.

We then describe, in subsection 3.3, our numerical quadrature method used to
compute ®. The solution strategy to the Dirichlet exterior value problem (1.1) is
discussed in subsection 3.4.

3.1. Computation of the periodic fractional Laplacian. To experimentally
test that our discrete approximation (2.6) indeed approaches the Dirichlet fractional
Laplacian, we can compare it to the periodic fractional Laplacian, which is calculated
by extending u periodically outside of a truncation domain instead of extending u by 0.

For periodic functions, the periodic fractional Laplacian and the integral frac-
tional Laplacian are equal [1]. If the Dirichlet fractional Laplacian is approximated
with the periodic fractional Laplacian on a finite domain, an error is introduced due
to the implicit periodization of the function. This effect, however, is reduced if the
function is scaled with a factor S > 1 before the application of the periodic fractional
Laplacian and rescaled to the original domain afterward. Heuristically, this occurs be-
cause the additional support introduced by the periodic continuation becomes shifted
farther away from the original support. The error is then on the order of §—(4+2s),
This estimate is summarized in the following lemma. The main motivation for this
lemma is the fact that in the next section, we shall establish an equivalence between
the scaled periodic fractional Laplacian and the sinc-fractional Laplacian; see Theo-
rems 3.2 and 3.3.

LeEMMA 3.1. Let u € LY(R?) with suppu C [0,1)4. Let (—A)® be the Dirich-

let fractional Laplacian (see (1.2)) and (:Z)s be the periodic fractional Laplacian
(applied on the function restricted to [0,1)). Assume furthermore that (—A)%u €
LY([0,1)%). Then, for a.e. € (0,1)%, S sufficiently large, we have

(3.1) 5% ((:Z)GU(S)) (z/S) = (—A)*u(z) + O (S—(d+2s)> _

Proof. Assume first that v € C2°([0,1)4), fix € (0,1)%, and set & = /S,
ug = u(S-). We calculate

(—A)us(@) = (-A)* [ Y us(-—k) | (@)

kezd
u(Sfc) — u(Sy)
(3.3) C(d, s) Z / u(Sz — Sk —:Jr(QSsy Sk) .
keza\{o} /R —

where we note that the sum in (3.3) converges absolutely due to (3.4) and the estimate
(3.5) below.
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A linear transformation in the term in (3.2) yields

u(SZ) — u(S u(S-z/S) —u(Sy) S¢ 9s R
C(d,s)AdeyZC(d,s)Ad (|x/S/—)yd+§Sy)de — §2(—A) u(a).

For the integral in the summand in (3.3), we have, for k # 0,
(3.4) / [u(Sz — Sk) — u(Sy — Sk)] dy = _/ u(Sy — Sk)
R4 R

|7 — y|d+2s a |F — y|dtes

as 5'50 — Sk ¢ (0,1)? D supp u. Furthermore,

u(Sy — Sk) 25 u(y) 11
‘/ T | =5 g s < o €

where the constant C’ remains bounded for large S. Summing over k # 0 and dividing
by S2° yields the result. -
For (—A)%u € L' only, note that we still have (—A)%ug(S-) = S*(—=A)%u(-) —

Zkezd\{o} fRd % dy and that the second term is a nonsingular integral that
can be estimated as above. |

The periodic fractional Laplacian can be discretized using the DFT. A compre-
hensive overview is provided in [7]. Briefly repeated, the N%point DFT of a vector

x € RN" is defined as
N-— N— i
(3.6) (DFTy x) Z Z =

and the inverse DFT is

N-1 N-1

. 1 . j2mick
(3.7 (IDFTy X), =2 = N E E Zjel TN,
J1=0  ja=0

If the size N of the DFT is obvious, we will omit the subscript index N. The N%-point
discrete periodic fractional Laplacian of u : [0;1)¢ — R is calculated via

((=2)3vu) (@x) = (IDFTy (¢ o DTy w) (r)

where o denotes the Hadamard (entrywise) product, DFT and IDFT denote the N¢-
point discrete (inverse) Fourier transformation, and

Cr = [2mk[>".

Note that usual FFT implementations of the DFT calculate the discrete spectrum of
f in the range {0,..., N — 1}¢. To have the factors ( at the correct scale, one has
to shift the Fourier coefficients periodically to the interval {—N/2,... , N/2 — 1} to
obtain

((fﬁﬁvu) (2x) = (IDFTx (¢ o DFTy u)) (k)
N/2-1 N/2-1

:$ S S ek R

ki=—N/2  kq=—N/2
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If S € N, we calculate the discretized scaled periodic fractional Laplacian in (3.1)
similarly using the SN-point DFT and inverse DFT as follows: We extend the vector

u= (Uk)kezi, € RNd,uk = u(k/N)

to a vector
up if K <N,

u=(u . RGN g =
( k)keISN Ok 0  otherwise,

where the < sign is meant componentwise, and obtain

(3.8) ((—A&)gwu) () = (IDFTgx(C o DFTsy u)) (k)
SN/2-1 SN/2—1

1 (25~ (LI
(3.9) = (SN p Z e Z ‘27‘(]‘2 uje Sz\f

j1=—SN/2 ja=—SN/2

2 2s S2mj- s27j K
(3.10) _ &) ST Y we | &5

JeTdy keTd

27T)28 125 127 j.(k—k)
(3.11) = =) e Y [j[PetER .

SN
NG i,

The last line is certainly not the most efficient way to evaluate ((:Z)g’Nu)(xm)—this
should instead be done via the FFT algorithm as stated in the first line. However, the
expression will be needed in the following to show an equivalence of the sinc-fractional
Laplacian and the scaled periodic fractional Laplacian.

3.2. Equivalence of the scaled periodic fractional Laplacian and the
sinc-fractional Laplacian. There is a certain equivalence of the discrete scaled
periodic fractional Laplacian and the sinc-fractional Laplacian. Precisely, if the inte-
gration in the calculation of ® (see (2.10)) is done exactly, the N-point sinc-fractional
Laplacian is the same as the N%point discrete scaled periodic fractional Laplacian
with infinite scale factor. To be precise, we have the following theorem.

THEOREM 3.2. Let u € C.([0;1]%). Then, for S — oo,
S72((=A)y yu) (ze) — ((—A)3u)(2x) Vo, =r/N,k € If.
Proof. Refer to (3.11), (2.6) to see that it is enough to show that

(27‘1’)28

(3.12) Sz (SN

> LI — Nk — k)
JETEy

VK =k — k as S — oo. Indeed, we have

N (k— k) = (277N)‘d/ w26l 5 dw
Dy

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/21 to 129.174.240.213 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

A2906 H. ANTIL, P. DONDL, AND L. STRIET

(see (2.10)), and for the left-hand side of (3.12), we have

(271') ) g- (d+2s) Z |j|25e1SNJK

Nd
JEI
_ ( —(d+2s) Z Z |S]—|—z|25e‘ & (Sj+i)-K
]EI/d ZEId
d S
= O S S s iy UK
JETN ieTd
1 ja+1
Si>>0 2’/T > /ler -/jd+ |w|2sei2ﬁw~K
ez'd ’
(2m)% 2s 125w K
= Nd [ N.N]d |w| bele dw
T2

= (27rN)*d/ |w[25e N duw,
Dn

which completes the proof. 0

A similar result is presented in [28] for functions with noncompact support us-
ing the semi-DFT. In subsection 3.3 (see Theorem 3.3), we show a direct relation
between simple quadrature rules to evaluate the discrete convolution kernel ® and
scaled Fourier fractional Laplacians.

3.3. Setting up the convolution kernel. As stated before, we aim to cal-
culate the DFT & of @ directly instead of having to calculate it as the DFT of @,
as the latter is hard to obtain. While the fast implementation of the convolution
is standard and can be found in many textbooks, our contribution is the formula-
tlon that makes the use of fast convolution algorithms applicable. Therefore, let

T4y ={-N,...,(N=1)}¥ and k € T'9y a multi-index. Let & = (—A) oy (zz),
zr = k/N € RN Let & — DFTyn (@) be the DFT of ® € RV, We start the
computation with the fact that

(3.13) ), = Z B jo 127k /(2N)
J€Tiy
(3.14) :NQS(QW)*d Z (/ |w|2seiw'jdw> o—imhej/N
jerdy P
(3.15) :NQS(QW)*d/ w3 e (@mFh) g,
D ; 1d
JI€TN

where we use the definition of the DFT in the first equation (see (3.6)) and the formula
for @, (see (2.10)) in the second equation. For z € R, define

Ny NN 1) e e
(3.16) Y(z) = Z eldT pS o ife .1 #£0,
j=—N 2N otherwise.
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To simplify the sum in (3.15), we observe that for z € R%, we have

Z ol Z Z el @1t +jaza)

JETL, i=-N  ja=—N
:HY(%‘)
=1
= Yd(x)
Plug this into (3.15), and obtain
(3.17) Oy = N>*(2m)” / |w|25 el = /NE)
I/d
(3.18) = N%(2r)~¢ / |w|25Yd (w—7/Nk) dw
D
_ar2s _a T\ 2s .
(3.19) = N2 (2r) (N) /[N;N]d w] Yd(N(w k)) dw .
=n2s.(2N)—¢

Now we have the same domains for £ and w. Finally, we note that the second factor
Yy(- -+ ) in the integrand is periodic with the length 2N of the integrals, and thus (3.15)
can be implemented as a convolution using the FFT algorithm and using quadrature
rules as follows:

(3.20) By = 725 (2N)~ / o Yo (5w~ ) de
H—/ [ N;N]d N
C(N,d,s)

(3.21) C(N,d,s) Z Za,|]+xL| Yd< (J+x — k:))

jejfd =1

(3.22) C(N,d, s) ZO‘Z Z lj + 2> Yy (——( —j)+%xi>,

I/d

where (z, @;)i=1,...,N, is a quadrature rule on [0; 1]¢. The inner sum can be obtained
as a discrete convolution for each i using two forward and one backward DFTs. In
summary, we have to execute 3Ng DFTs of size (2N)% to obtain ®. This is the
computationally most demanding step in our algorithm, but it has to be performed
only once when d is applied multiple times. The values of ® could even be stored for
given N and s. It is also possible to reduce the sizes of the DFTs to (2N — 1)4. This,
however, complicates the preceding computations.

A consequence of Theorem 3.2 is that the exactness of the integration in (3.22)
is decisive for the accuracy of our method. A trivial choice for the integration points
x; and weights «; is

1

(3.23) x; = Z'E{O,...,NQfl}dandai:a:Nig_

i
No’
For this quadrature rule, the sinc-fractional Laplacian is exactly the same as the

discrete scaled periodic fractional Laplacian with S = 2Ng. We will discuss more
possibilities along with numerical experiments in subsection 4.1.
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THEOREM 3.3. If & in (3.22) is calculated using the quadrature rule from (3.23),
then with S = 2Ng, we have for all k that

(=8)u)(@x) = ((-A)5 yu) (x2)
Proof. We already derived that

— (27)%s NRELICESY
(B = 200 S g

keZq, €T’ g

=b(k—k)
see (3.11). Using (2.6), one can verify that it is enough to show that

(27’()25 ~
NGl O(rk — k)

Ng- From (3.22), we derive using (3.23) that

(5 6)

(I)N(Ii—k'):

for an appropriate choice of (a;, z;)i=1

.....

~ 1 ]
q)k:C(N,CLS)Nig? Z ’]VQ
jeIéNNQ

We then calculate the DFT of ® and obtain

2 (2m)2 = jomek
o) = o 5R
S25N S
REL'd
(27)2s 25 j2min _j2mek
S s [ e | e
ReT'q \JeT'%s
(2m)* 2 J k
= —"— Y (27 | = — —
52 N S ,E; 4 "\SN T 2N
J
“avg 2l G ()
(2N)4 No¢ jera . 1 Na N \ Ng ’
which completes the proof. ]

3.4. Solving the Dirichlet problem. In subsection 2.1, we have seen how to
implement the application of the discrete operator ®V to a vector u € R¥N* efficiently
using the FFT algorithm. In this section, we will show how this is used to solve the
fractional Poisson problem with Dirichlet exterior conditions, i.e., (1.1), repeated here
for convenience:

(3.24) find u st 4D U=
u=0 in RY\ Q,

where Q C [0;1)¢ C R? is an arbitrary Lipschitz domain and f is a given function.
Originally, our methods operate on the full cube [0;1)%. This leads to the discretized
problem

(3.25) find u € RV s.t. @Nu = f,
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where £ = (fi)reza, fr = f(@r), e = k/N, and ®V is the discrete operator from

(2.6). As shown, the application of ®V to a vector u € RY * can be implemented
efficiently using the FFT algorithm. It is thus feasible to solve (3.25) using iterative
methods that work through subsequent applications of the operator instead of invert-
ing them directly. In the present case, we use the CG method [27], as it is fast, easy
to implement, and numerically stable. The same procedure has been used by Duo and
Zhang in [24] to solve the fractional Poisson problem in two and three dimensions on
rectangular (or cuboid) domains using their finite difference method and by Minden
and Ying [34] to solve the discrete system they obtain using singularity subtraction.
To overcome the issue of being restricted to the cube = [0;1)? and solve problems
on arbitrary domains Q C [0; 1)d, we embed the domain into the cube and set the
coefficients outside of 2 to 0. To implement this, we introduce a linear mapping

Sq :RY' — RV
such that, for all u = (up)reza € RN,

up if k/N € Q,
Sou), =
(Sau)s {0 otherwise
holds. Additionally, we define Sp := 1 — Sq, where 1 is the identity on RY . Now, as
we only want to solve (3.25) for the indices that belong to €2, we solve the modified
problem

Sa®N STu = Sof,

3.26 find u € RY" s.t.
( ) nau ® {SDUZO

instead. Note that this is not a system on RY ! anymore but only on the subspace
spanned by the indices that are selected by Sq. The calculations are still done on
the full RV d, as this is the space where we can apply ®V efficiently, which is the
prerequisite for using the CG method. To show the capabilities of the methods, we
apply benchmark problems and problems arising from applications.

4. Numerical experiments. We present four numerical examples to demon-
strate the efficiency of our implementation. First, we compare the scaled periodic
fractional Laplacian (see subsection 3.1) to the sinc-fractional Laplacian for differ-
ent scaling factors. Subsection 4.2 provides an experimental error analysis for a case
where analytic solutions of the Dirichlet problem are known explicitly. As an example
for the importance of using the correct exterior value conditions, we compare the frac-
tional Allen—Cahn evolution equation for the periodically extended and the Dirichlet
case in subsection 4.4. Finally, in subsection 4.5, we show an application to image
denoising as introduced in [7].

4.1. Quadrature rules for the convolution kernel. In this section, we want
to numerically evaluate how different quadrature rules in the calculation of the con-
volution kernel behave. For that reason, we calculate the discrete scaled periodic

fractional Laplacian (—A)g y of a function u with different scaling factors S and
compare it to the sinc-fractional Laplacian (—A)% of u computed using different

quadrature rules in the integration in (3.22).
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(a) s = 1/3 (b) s = 2/3

Fic. 1. Comparison of the scaled periodic fractional Laplacian and our implementation of the
sinc-fractional Laplacian applied to a standard mollifier with support in [0;1)2 for fized N = 64.

The difference is measured as e(S) = |[(=A)%u — (—/\E)ﬁvsquoc The solid purple line shows the

rate O(S~32%). GL3, GL5, and GLT denote Gauss—Legendre integration with 3, 5, and 7 points in
each spatial direction, and U7 denotes 7 uniformly spaced quadrature points in each spatial direction.
We see that at S = 2Ng = 14, the difference e(S) is practically zero for this quadrature rule. This
illustrates Theorem 3.3.

We obtain the simple error estimate
(4.1)  (=A)u = (=A)jull < [(=A)u = (=) yull + [[(=A)§ yu — (=2)5ul.

From Lemma 3.1, we know that the first term is O(S~9+2%), and the second term can
be calculated using the methods presented in subsections 2.2, 3.1, and 4.1.

In order to obtain good accuracy for calculating the sinc-fractional Laplacian at a
reasonable computational cost, we aim to use better quadrature rules than the naive
one presented in (3.23). Basically, we can use any quadrature rule, but for efficient
implementation, we should use the same quadrature rule on each of the d-dimensional
cubes [j1;71 + 1] X -+ X [ja; ja + 1]. This causes some issues, as some cubes contain
an integrand with a singularity due to the factor |j + w|?® if j; € {—1,0} for some
i € {1,...,d}. Nevertheless, we obtain good results using a Gauss—Legendre quad-
rature rule. The results are illustrated in Figure 1, where we show the second term
in the estimate (4.1). Due to Theorem 3.2, a sinc-fractional Laplacian with exactly
computed convolution kernel corresponds to a periodic fractional Laplacian with “in-
finite” scaling. In that case, the difference between the sinc-fractional Laplacian and
(—=A)% v would decrease at the rate O(S~4"2¢). In the figure, one can see that this
rate applies until the quadrature errors from the computation of the convolution kernel
dominate. Naturally, this happens later for more exact quadratures. In the numeri-
cal experiments below, we thus employ an n?-point tensor product Gauss-Legendre
quadrature, with n =7 for d = 2 and n = 5 for d = 3. Figure 1 shows that a 7-point
Gauss—Legendre quadrature corresponds roughly to a scale factor S between 40 and
60, depending on s.

4.2. Function with constant fractional Laplacian on the unit sphere.
One of the few examples where the solution to the fractional Laplace Dirichlet problem
is known explicitly is the problem

(=A)*u=1 inQ,

4.2 find u s.t.
(4.2) neus {u:O in RY\ Q.
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TABLE 1
Number of CG-iterations needed to solve the discretized linear system. The total number of

degrees of freedom (DoF's) is O(N?).

N | s=1/4]s=1/3]s=1/2]s=2/3]s=3/4]s=1

8 8 8 8 8 8 8

16 14 17 21 24 26 27

32 19 24 34 45 51 63

64 25 32 48 75 91 132

d=2 128 31 43 76 127 161 271
256 40 57 112 208 281 545

512 50 75 163 340 488 1089

1024 61 97 234 550 882 2056

2048 76 127 343 1021 1660 4257

4096 94 166 535 1668 3010 8406

8 10 11 12 13 13 13

16 14 16 22 28 31 41

d=3 32 18 23 33 48 57 92
64 23 30 49 79 101 189

128 29 40 73 128 174 386

256 36 53 107 211 299 795

TABLE 2

Scaling exponent B of the number NP of CG-iterations depending on grid size N.

s | 1/4 | 1/3 | 1/2 | 2/3 | 3/4 | 1
5 d=2]027[036 055 [ 071 | 0.76 | 1.02
d=3 [0.32 | 0.41 | 0.56 | 0.71 | 0.78 | 1.04

For Q = {x € R¢||z| < 1}, the solution to (4.2) is given by (see [16])
(4.3) u = Cy(d, s) max{0, (1 — |z|?)}*,

where C,(d,s) = T'(d/2) - (22°T (d/2 + s) (1 + s))~ 1. After shifting and scaling the
problem to a disc or a sphere that is a subset of the cube [0;1)¢ and using the method
from subsection 3.4, we obtain the results shown in Figure 3 in the case d = 2, which
clearly resemble the expected results. In Table 1, we show the number of iterations
of the CG method required until the residual ||r||z2 = = Zk,ezjdv 2 dropped below

1078, and in Table 2, we show how the number of iterations scales w.r.t. N. Since
the conditioning of the problem becomes worse for finer grid resolution, it is expected
that more iterations are necessary for increasing N. We note that for lower fractional
exponent s, the required number of iterations is lower—this is reasonable, as the
largest eigenvalue of the sinc-fractional Laplacian should scale like N2,

In Table 3, we present the time that was required to solve the system. The
time grows when s grows, reflecting the fact that we need more CG-iterations in this
case. We implemented the algorithms in C++ using the FETW library [25], and the
experiments were run on a standard office computer (6-core Intel Core 15-9500, 3.00
Ghz). In addition to the time that is needed to actually solve the system, one has to
set up the operator ®~. This convolution kernel has to be computed only once for
each d, s, and mesh size N. It is independent of the domain  C [0,1)%. Especially
for large values of s, this time is small compared to the time that is needed to actually
solve the system. We provide the details in Table 4.

Figure 4 shows the results for d = 3. In this case, we used only a 5-point Gauss—
Legendre rule in order to reduce computation time.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/21 to 129.174.240.213 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

A2912

H. ANTIL, P. DONDL, AND L. STRIET

TABLE 3

Time (in seconds) needed to solve the discretized system. These are the actual times it took to
compute the results used for Figure 2.

N | #DoF | s=1/4 | s=1/3 | s=1/2 | s=2/3 | s=3/4 | s=1
32 651 | 1.0e—3 [ 1.0e—3 | 2.0e—3 [ 2.0e—3 | 3.0e—3 [ 4.0e—3
64 2,605 | 4.0e—3 | 5.0e—3 | 7.0e—3 | 1.2e—2 | 1.3e—2 | 2.7e—2
128 10,423 | 1.4e—2 | 1.8e—2 | 3.2e—2 | 5.3e—2 | 7.2e—2 | 1.5e—1
d_o _ 256 41,692 | 5.1e—2 | 7.3e—2 | T.de—1 | 2.8e—1 | 3.8e—1 | 1.0e+0
512 166,768 | 3.8e—1 [ 5.6e—1 | 1.2e+0 [ 2.6e+0 | 3.8¢+0 [ 1.2e+1
1024 667,075 | 1.9e+0 | 3.0e+0 [ 7.0e+0 | 1.7e4+1 | 2.7e+1 | 1.0e+2
2048 | 2,668,300 | T.de+1 | 1.8e+1 [ 4det1 | 1.2e+2 | 1.9e+2 | 8.5e+2
4096 | 10,673,203 | 5.8e+1 | 1.0e+2 | 3.2e4+2 | 9.8e+2 | 1.7e+3 | 8.7e+3
16 1,563 [ 7.0e—3 [ 8.0e—=3 [ 1.0—2 [ 1.3e—2 1.5—2 | 2.0e—2
32 12,507 | 9.9e—2 | 1.3e—1 1.8—1 | 2.6e—1 3.1-1 | 5.3e—1
d=3 64 100,061 | 1.4e+0 [ 1.8e+0 | 3.040 [ 4.8e+0 | 6.0+0 [ 1.Te+l
128 800,490 [ 1.9e+1 | 2.6e+1 [ 4.8+1 | 8.lel 1.142 [ 2.5e42
256 | 6,403,922 | 2.0e+2 | 3.0e+2 [ 6.9+42 | 1.3e+3 [ 2.14+3 | 5.5e+3
TABLE 4

Time (in seconds) needed to set up ®V in d = 2 and d = 3 dimensions using a 7> (d = 2) or
53 (d = 3) point Gauss—Legendre quadrature. Notice that ®V is applied to a vector of size N® and
that ®N has (2N)? entries.

N |s=1/4]|s=1/3]s=1/2 | s=2/3 | s=3/4] s=1

8 1.4e—2 1.5e—2 1.4e—2 1.5e—2 1.5e—2 1.4e—2

16 5.2e—2 5.1e—2 5.1e—2 5.2e—2 5.2e—2 | 5.0e—2

32 1.1le—1 1.1le—1 9.7e—2 1.1le—1 1.1le—1 9.8e—2

64 3.1e—1 3.0e—1 2.7e—1 3.0e—1 3.0e—1 | 2.7e—1

d=2 128 9.5e—1 9.5e—1 8.2e—1 9.5e—1 9.5e—1 8.2e—1
256 3.4e+0 3.4e+0 2.9e+0 3.4e+0 3.4e+0 | 2.9e+0

512 1.3e+1 1.3e+1 1.1e+1 1.3e+1 1.3e+1 l.1le+1

1024 5.2e+1 5.2e+1 4.3e+1 5.2e+1 5.2e+1 4.3e+1

2048 2.1e+42 2.1e+42 1.7e+42 2.1e42 2.1e+42 1.7e+42

4096 8.2e+2 8.2e+42 6.9e+42 8.2e+2 8.2e+2 6.9e+2

8 1.8e—1 1.8e—1 1.5e—1 1.8e—1 1.8e—1 1.6e—1

16 1.4e+40 1.4e+4-0 1.2e40 1.4e40 1.4e40 | 1.2e+0

d—3 32 1.le+1 1.1e+1 9.4e+40 1.1e+1 1.1le+1 9.4e+40
64 8.7Te+1 8.7e+1 7.6e+1 8.6e+1 8.7e+1 | 7.6e+1

128 7.1le+2 7.1le+2 6.2e+2 7.1le+2 7.1le+2 6.2e+2

256 5.7e+3 5.7e+3 5.0e+3 5.7e+3 5.7e+3 | 5.0e+3

As a numerical analysis of our method is still pending and remains part of future
work, we experimentally evaluate the capabilities of our method. For that, we solve
problem (4.2) for different values of s on grids of increasing size N¢ for d = 2 and
d = 3. We approximate the Ls-error as

1
lu = ully % | 57a D — ulz)?,
k

where uy = > keTd ukwkN is the solution computed using the sinc-fractional Laplacian
and u is the known analytic solution. The results can be seen in Figure 2 (left)
for the two-dimensional case and in Figure 2 (right) for the three-dimensional case.
We experimentally obtain the convergence rates shown in Table 5. In [2], Acosta
and Borthagaray proved for their finite element implementation the convergence rate
O(h'7¢) for mesh size h = 1/N in the H*(Q)-norm under appropriate smoothness
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F1G. 2. Ezperimental convergence analysis as a log-log plot in two dimensions (left) and three
dimensions (right). The decay conforms to the rates predicted in (2, 14, 3], displayed as dashed lines
in the plots. N is the number of grid points in each direction; i.e., the total number of grid points
is N2 and N3, respectively.

TABLE 5
Ezperimentally determined convergence rates.

s 1/4 1/3 1/2 2/3 3/4 1
Determined rate d=2 | 0.7329 | 0.8192 | 0.9622 | 1.0166 | 1.0189 | 1.0126
d=3 | 0.7439 | 0.8324 | 0.9725 | 1.0360 | 1.0425 | 1.0306
Expected rate 0.75 0.83 1.00 1.00 1.00 1.00
0.3 L
0.3 0.25 -10
0.2 y 0.2 20
0.15
0.1 30
0 0.1
1 -40
1 Bo.05
0.5 05 . -50
y 00 X

(a) u

FIG. 3. Discrete solution u (a) and ®u (b) for problem (4.2) with s = 1/2 using 212 x 212 grid
points. The solution clearly resembles the expected solution, given in (4.3). In (b), values closer
than € = 107° to 1 are colored red to show that the sinc-fractional Laplacian is constant in the
correct region.

assumptions on the domain 2. Using an Aubin—Nitsche argument, the convergence
in the L?(Q)-norm is O (hA™in(1:s+1/2)) [14, 3], modulo ¢, or a logarithmic correction.
The rates that we obtain clearly recover this rate for s < 1. Our method can also
treat the case s = 1, i.e., the standard Laplacian. Notice, however, the reduced rate
in Table 5. This is due to the fact that the exact solution u ¢ H?(R?).

4.3. Function with constant fractional Laplacian on an L-shaped do-
main. To show that we can treat domains other than the sphere, we solve the bound-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/21 to 129.174.240.213 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

A2914 H. ANTIL, P. DONDL, AND L. STRIET

0.25 2
1
0
0.2 D
2
015 Zo5 -4
6
0.1
0 -8
1
0.05 1 10
05 05 .
y 0o X
(b) ®u

FIG. 4. Discrete solution u (a) and ®u (b) for problem (4.2) with s = 1/2 using (28)3 grid
points. In (b), values closer than ¢ = 1072 to 1 are colored red to show that the sinc-fractional
Laplacian is constant in the correct region.

1
02 -20
’ 1 -40
-60
1

Fic. 5. Discrete solution u (a) and ®u (b) for problem (4.2) with s = 1/2 on an L-shaped
domain using 22 x 2'2 grid points. In (b), values closer than € = 1075 to 1 are colored red to
show that the sinc-fractional Laplacian is constant in the correct region. The fractional Laplacian
exhibits a strong singularity at the inside corner.

ary value problem with constant right-hand side on an L-shaped domain. The results
are provided in Figure 5 and visibly resemble the numerical solutions provided, e.g.,
in [31].

If © is not the unit sphere anymore, then the solution to (4.2) is not available
analytically. Therefore, we perform a numerical error analysis where we compare the
solution on a fine mesh with N = 22 points in each spatial direction to solutions on
coarser meshes. The results of our computations can be seen in Figure 5. We present
the approximated L2-errors in Figure 6.

4.4. Fractional Allen—Cahn equation. As a practical application that shows
that our method correctly implements the Dirichlet exterior value conditions instead
of periodic exterior value conditions, we calculate the evolution of the fractional Allen—
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Fic. 6. Ezperimental convergence analysis for the boundary value problem on an L-shaped
domain. The solution on the coarse grids (N = 22,-.. 211 in each spatial direction) were compared
to the solution on the finest grid (N = 212 in each spatial direction,).

Cahn equation

1
u+ (—A)7u = —=W'(u)
€
for ¢ = 2-1072 as an example here for fractional exponent s = % The func-

tion W: R — R is a typical quartic double well potential of the form W(u) =
%ug(u —1)2. Tt has recently been proved [6, 38] that, for ¢ — 0, the associated energy
loéa ([u}i{ 1+ 1W (u)) converges (modulo constants) in the sense of I'-convergence to
the perimeter (in our one-dimensional case, a jump set counting functional). Heuristi-
cally, this energy prefers states of u € {0,1}. The fractional Sobolev norm ensures that
transitions between these two states cannot take place arbitrarily rapidly in space.

The gradient flow, accelerated by a factor of @ as computed here, converges
in one spatial dimension to a kink-antikink annihilation-type dynamic [26]. Again,
heuristically, two nearby states close to u = +1, separated by a gap where u = 0,
attract each other due to the long-range interaction via the fractional operator, so the
two phase transitions (or kinks) move closer to each other. The expected behavior in
the € — 0 limit is a kink velocity proportional to the reciprocal of the distance to the
antikink (and vice versa).

Note that the evolution for small € > 0 is substantially faster than for the classical
local Allen—Cahn equation, where exponentially slow kink-antikink annihilation was
shown [15, 19].

We discretize the equation in time using an implicit Euler scheme with time step
7 and obtain

1

(4.4) (1 + T(fA)a) uttl = {W’ (u') + ut.

To illustrate the differences due to exterior domain condition, we choose either the
periodic fractional Laplacian or the sinc-fractional Laplacian and compare. In the first
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Fic. 7. The solution u(x,t) of the fractional Allen—Cahn equation for different times t. The
dashed green line shows the evolution for the sinc-fractional Laplacian and the solid purple line the
evolution for the periodic fractional Laplacian.
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Fic. 8. Ewolution of the total mass (i.e., the integral of w) in the interval [0;1] (left) and of
the position of the first phase transition (right) using both the periodic and the zero-exterior value
Dirichlet (sinc)-fractional Laplacian for the fractional Allen—Cahn equation. The continuous line
in the left panel shows a fit to a square-root function a+/tg — t, with a = 0.2242,ty = 5.0104.

case, the system (4.4) can be solved directly using the DFT; see, e.g., [7] for details.
In the case of the sinc-fractional Laplacian, we use the CG method as explained in
subsection 3.4. We choose the domain Q@ = [0;1) C R and u’(2) = X[1/4;3/4)(),
i.e., the indicator function on the interval [i; %} In Figure 7, we show the evolution
for different times. It can be clearly seen that the solution for periodic conditions
reaches a steady state due to symmetry: The attraction of the kink and antikink at
T = i and z = %, respectively, is balanced by the attraction to their periodic mirror
images past the domain boundary. In the case of the true Dirichlet problem, the
annihilation is clearly visible. Figure 8 shows the time evolution of the total mass
(i.e., m(t) = fol u(z,t) dz) as well as the position of the left kink (or phase transition)
over time. The fit to the solution of the aforementioned limit equation (which is of

the form a+/ty — ¢ with parameters a and ¢y) is included in the left panel in Figure 8.

4.5. Image denoising. In [7], Antil and Bartels have proposed to solve an image
denoising variational problem. Given a noisy image g, it amounts to

. 1 s @]
mm—/ (~A)Euf? + 7/ hu — g2
u 2 Q 2 Q
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F1G. 9. (a) Original image, (b) image corrupted with Gaussian noise, (c) denoised image using
our method, and (d) the image denoised with the spectral method from [7]. We chose s = 0.42 and
a = 10 - 2w. The difference of the image denoised with our method and denoised with the spectral
method of (7] (see Figure 9) is shown in (e). The differences clearly concentrate at the boundary of
the images as one would expect.

i.e., they use the fractional Laplacian as the regularizer. Here a > 0 is the regular-
ization parameter. Starting from the seminal work of Rudin, Osher, and Fatemi [37],
where they used the total variation as a regularizer, such variational models are be-
ing regularly used in imaging science. The key advantage of the fractional Laplacian
regularizer from [7] is the fact that one arrives at the following linear Euler—Lagrange
equations:

(4.5) (=A)’u+ alg —u) =0.

In the respective work, the authors use the spectral fractional Laplacian which applies
periodic boundary conditions. In contrast, we use our method that uses Dirichlet-
exterior value conditions. Here, we subtract the mean g of g from g before the
calculations and add it back afterward. The results can be seen in Figure 9. The goal
of this example is not to further illustrate the effectiveness of fractional Laplacian as
a regularizer but to show that we can obtain comparable results using the approach
considered in this paper. This clearly follows from our example.

5. Conclusion and future work. The paper introduces a novel spectral method
which allows efficient application of the fractional Laplacian in O(N log(NN)) opera-
tions as well as a solution algorithm for fractional PDEs with Dirichlet exterior condi-
tions. The proposed method works in both two and three dimensions. We have further
shown the effectiveness of the method in two applications: a fractional Allen—Cahn
equation and an image denoising problem. The method works on arbitrary domains;
for instance, we have done computations on the ever popular L-shape domain. One
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potential limitation of our approach is that we can work only on uniform grids, and a
higher number of unknowns may be required, especially when the solution is expected
to have singularities. Regardless, the application of our discrete operator still retains
its O(N log(N)) complexity.

This work opens up new opportunities for problems where nonlocal operators such
as fractional Laplacians appear, especially in three dimensions. There are a number
of open questions which are a matter of current investigation: (i) How do we extend
the proposed method to other exterior conditions, such as Neumann or Robin, and
how do we handle nonzero exterior conditions? (ii) A complete numerical analysis of
the proposed method is currently missing. (iii) We have applied the proposed method
to both linear elliptic and nonlinear parabolic (Allen—Cahn) equations; it will also be
interesting to carry out analysis in the nonlinear setting of Allen—-Cahn. (iv) It will be
interesting to apply the proposed method to equilibrium problems, such as variational
inequalities and PDE-constrained optimization problems.

Appendix A. Implementation details and computational complexity.

In this section, we provide more details on the implementation of the algorithms. The
indices in the following computations will be chosen such that they fit the indices
of usual FFT implementations. All our implementations are written in C++ and rely
on the FFTW library [25]. Computing the discrete solution of the Dirichlet-exterior
value problem (1.1) essentially consists of two steps:

— Set up the discrete operator &Y.

— Solve the (discrete) system Sq®V STu = Sof.
Regarding the first step, we actually calculate not ®V but its DFT PN following the
procedure described in subsection 3.3. Further details are provided in Algorithm A.1.
The arithmetic operations *, + are meant componentwise if applied to arrays. The
computationally most demanding part in Algorithm A.1 is the 3-fold execution of

Algorithm A.1 Calculation of the convolution kernel.

1: function cALC_PHI_HAT(N, s, d)

2 ® +complex array of size (2N)4, filled with 0
3 for (z;, ;) € Q do

4 c1 +empty real array of size (2N)?

5: c1 +—empty real array of size ()¢

6 for j € Iony do

7 alf] « i = NT+z>

8 colj] + Yy(—7/N % (j — N1+ z;))
9

: end for
10: Cy «+ FFT(Cl)
11: Cy «— FFT(CQ)
12: C <+ C1%Cy
13: ¢+ IFFT(C)
14: for k € Zony do
15: Ey + (27T)_d * (W/N)d+2*s % N25 EXP(im(k1 + -+ + kq))
16: D[k] « D[k] + oy * By + c[k]
17: end for
18: end for
19: return ¢

20: end function

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/21 to 129.174.240.213 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SINC-FRACTIONAL LAPLACIAN A2919

the FFT-algorithm in lines 10, 11, and 13 of Algorithm A.1, which are needed to
compute the inner sum on the right-hand side of (3.22), i.e., the convolution. These
FFTs have to be executed for each of the quadrature points, i.e., Ng-times, and
they are of size (2N)?. However, this is done for all the k € Z¢y at a total cost of
O((2N)%1og((2N)%)), which is still small compared to a naive implementation at cost
O(((2N)%)?).

For the second step, i.e., the solution of the fractional PDE, we use the CG
method. The method solves a linear system,

Au=b, beRY AcR¥¥invertible symmetric and positive-definite,

via successive applications of the matrix A instead of solving it directly. Conse-
quently, the algorithm is fast if the application of the operator A can be computed
efficiently. This is the case in our setting since we need to compute the application
(convolution) of ® to a vector u. As mentioned above, we do so by using FFT-based
algorithms in order to reduce the computational complexity. We have to introduce
some padding in order to apply the zero-padding convolution instead of circular con-
volution as the FFT-based algorithm would normally do. The details are provided in
Algorithm A.2.

Algorithm A.2 Application of V.

1: function APPLY_PHI(u, <i>N)

2 1 «—complex array of size (2N)?, filled with 0
3 for k € Iy do

4 [k + NT] « ulk]

5: end for

6 u « FFT(a)

7 for k € Zoy do

8 k] « alk] « [k]

9: end for
10 £« wrr(a)
11: f < empty real array of size N¢
12: for k € Ty do
13: f[k] < £[k]
14: end for
15: return f

16: end function

If the domain in the exterior value problem is the full cube [0;1)¢, we can simply
use the CG method with the operator ®V using the efficient application described
in Algorithm A.2. If we want to restrict the exterior value problem to a domain
Q C [0;1)%, we use the strategy described in subsection 3.4 and further summarized
in Algorithm A.3. Both the operator ®V and the operator restricted to a smaller area
can be applied to a vector u at cost O((2N)%log((2N)%)), which is substantially less
than the cost O(((2N)%)?) of the naive implementation.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/29/21 to 129.174.240.213 Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

A2920

H. ANTIL, P. DONDL, AND L. STRIET

Algorithm A.3 Application of ® with restriction to  C [0;1)%.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

function APPLY_PHI_OMEGA (u, &)

S « empty real array of size N¢
for k € Ty do
if k/N € Q then
S[k] + 1
else
S[k] + 0
end if
end for
for k € Iy do
ulk] < ulk] x S[k]
end for
f « appLY_PHI(u, ®V)
for k € Iy do
f[k] « f[k] = S[k]
end for
return f

18: end function

(11]

(12]

M.

M.
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