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Abstract

A summary is given of the mechanical characteristics of virus contaminants and the transmission via droplets and aerosols.
The ordinary and partial differential equations describing the physics of these processes with high fidelity are presented, as
well as appropriate numerical schemes to solve them. Several examples taken from recent evaluations of the built environment

are shown, as well as the optimal placement of sensors.
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1 The Covid-19 crisis

Starting in Wuhan, China, in the fall of 2019, the Covid-19
pandemic has claimed and will continue to claim millions
of infected patients and hundreds of thousands of deaths.
The lockdowns that followed its outbreak have led to mass
unemployment, stalled economic development and loss of
productivity that will take years to recover. Some changes in
habits and lifestyles may be permanent: in the future, working
from home or in a ‘socially distanced manner’ may be the
prevalent modus operandi for large segments of society.

The present paper gives a short description of computa-
tional techniques that can elucidate the flow and propagation
of viruses or other contaminants in built environments in
order to mitigate [31] or avoid [47] infections.
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2 Virus infection

Before addressing the requirements for the numerical sim-
ulation of virus propagation a brief description of virus
propagation and lifetime are given. Covid-19 is one of many
corona-viruses. The virus is usually present in the air or some
surface, and makes its way into the body either via inhalation
(nose, mouth), ingestion (mouth) or attachment (eyes, hands,
clothes). In many cases the victim inadvertedly touches an
infected surface or viruses are deposited on its hands, and
then the hands touch either the nose, the eyes or the mouth,
thus allowing the virus to enter the body.

An open question of great importance for all that will fol-
low is how many viruses it takes to overwhelm the body’s
natural defense mechanism and trigger an infection. This
number, which is sometimes called the viral load or the infec-
tious dose will depend on numerous factors, among them the
state of immune defenses of the individual, the timing of viral
entry (all at once, piece by piece), and the amount of hair and
mucous in the nasal vessels. In principle, a single organ-
ism in a favourable environment may replicate sufficiently
to cause disease [86]. Data from research performed on bio-
logical warfare agents [33] suggests that both bacteria and
viruses can produce disease with as few as 1-100 organisms
(e.g. brucellosis 10-100, Q fever 1-10, tularaemia 10-50,
smallpox 10-100, viral haemorrhagic fevers 1-10 organisms,
tuberculosis 1). Compare these numbers and consider that
as many as 3,000 organisms can be produced by talking for
5 min or a single cough, with sneezing producing many more
[48,72,78,90,95]. Figure 1, reproduced from [90], shows a
typical number and size distribution.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-020-01881-7&domain=pdf

1094 Computational Mechanics (2020) 66:1093-1107
10k Table 1 Sink velocities and Reynolds number for water particles in air
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1.00E—00 3.01E+01 1.99E+03
n 6f 1.00E—01 3.01E—01 1.99E+00
(x1000) Al 1.00E—02 3.01E-03 1.99E—03
1.00E—03 3.01E-05 1.99E—06
2t 1.00E—04 3.01E-07 1.99E—09
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)

10° 107 10 107 10~
particle diameter (m)

Fig. 1 Counts of particles of various diameters in air expelled by (90)
coughs [72]

3 Virus lifetime outside the body

Current evidence points to lifetimes outside the body that can
range from 1-2h in air to several days on particular surfaces
[45,94]. There has also been some documentation of lifetime
variation depending on humidity.

4 Virus transmission
4.1 Human sneezing and coughing

In the sequel, we consider human sneezing and coughing as
the main conduits of virus transmission. Clearly, breathing
and talking will lead to the exhalation of air, and, conse-
quently the exhalation of viruses for infected victims [2—4].
However, it stands to reason that the size and amount of parti-
cles released—and hence the amount of viruses in them—is
much higher and much more concentrated when sneezing or
coughing [3.,4,32,44,49,90].

The velocity of air at a person’s mouth during sneezing and
coughing has been a source of heated debate, particularly in
the media. The experimental evidence points to exit velocities
of the order of 2—14 m/s [25,36-39,87-89]. A typical amount
and size of particles can be seen in Fig. 1.

4.2 Sink velocities

If, for the sake of argument, we consider Stoke’s law for the
drag of spherical particles, valid below Reynolds numbers of
Re = 1, the terminal sink velocity (also known as the settling
velocity) of particles will be given by [26]:

(:Op - :Og)g -d?
_ > 1
Vg = 1812 (1)
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where p,, 0g, g, 1, d denote the density of the particles
(essentially water in the present case), density of the gas
(air), gravity, dynamic viscosity of the gas and diameter of
the particle respectively. The equivalent Reynolds’ number
is:

_ pgvsd _ pg(pp — :Og)gd3

Re
% 1812

@

With p, = 1gr/cc, pg = 0.0012 gr/cc, g = 981 cm/s%, =
1.81 - 10~* gr/(cms) this yields a limiting diameter for
Re =1 of

dre—1 = 0.0079 cm, 3)

i.e. approximately 1/10th of a millimeter in diameter—a par-
ticle size that would still be perceived by the human eye. The
corresponding sink velocity is given by:

vy =3-10°d* cm/s, 4)
with d in cm, i.e. for Re =1
vs(Re =1) =18 cm/s. 5)

Note the quadratic dependency of the sink velocity with
diameter. Table 1 lists the sink velocities for water droplets of
different diameters in air. One can see that below diameters of
O (0.1 mm) the sink velocity is very low, implying that these
particles remain in and move with the air for considerable
time (and possibly distances).

4.3 Evaporation

Depending on the relative humidity and the temperature of
the ambient air, the smaller particles can evaporate in mil-
liseconds. However, as the mucous and saliva evaporate, they
build a gel-like structure that surrounds the virus, allowing it
to survive. This implies that extremely small particles with
possible viruses will remain infectious for extended periods
of times—up to an hour according to some studies.

An important question is then whether a particle/droplet
will first reach the ground or evaporate. Figure 2, taken from
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Fig.2 Evaporation time and falling time of droplets of varying diameter
(Tpo =33°C, To = 18°C, RH = 0%) from [96]

[96], shows that below 120 pm the particles evaporate before
falling 2 m (i.e. reaching the ground).

4.4 Viral load

A central question that requires an answer is then: how many
viruses are in these small particles? An approximate answer
may be obtained from the experiments that are being carried
out on animals to trace and monitor infections. For ferrets
[46] O(10° — 10°) have been used to infect via intranasal
swabs, while for mice [92] O (10%) seem to suffice. Viral titers
can vary a lot, but one may assume on the order of O(10°)
viruses/ml for a nasopharyngeal swab [46,92]. Table 2 lists
the number of viruses per droplet and the number of droplets
needed to contain just 1 virus. Note that while for a droplet
with a diameter of 1 mm one can expect O(500) viruses,
only every 2000th particle of diameter 10 um does contain
a single virus.

Similar numbers are seen in field studies as well. The
size of viruses varies from 0.02-0.3 wm, while the size of
bacteria varies from 0.5-10 wm. The influenza virus RNA
detected by quantitative polymerase chain reaction in human
exhaled breath suggests that it may be contained in fine par-
ticles generated during tidal breathing and not only coughs
[32,48,49,78]. Influenza RNA and Mycobacterium tubercu-
losis have been reported in particles that range in size from
0.5-4.0 pm ([32,48,49,78] and references cited therein).

5 Physical modeling of aerosol propagation

When solving the two-phase equations, the air, as a con-
tinuum, is best represented by a set of partial differential
equations (the Navier—Stokes equations) that are numerically
solved on a mesh. Thus, the gas characteristics are calcu-
lated at the mesh points within the flowfield. However, as the

droplets/particles may be relatively sparse in the flowfield,
they can be modeled by either:

(a) A continuum description, i.e. in the same manner as the
fluid flow, or

(b) A particle (or Lagrangian) description, where individ-
ual particles (or groups of particles) are monitored and
tracked in the flow.

Although the continuum (so-called multi-fluid) method
has been used for some applications, the inherent assump-
tions of the continuum approach lead to several disadvantages
which may be countered with a Lagrangian treatment for
dilute flows. The continuum assumption cannot robustly
account for local differences in particle characteristics, par-
ticularly if the particles are polydispersed. In addition, the
only boundary conditions that can be considered in a straight-
forward manner are slipping and sticking, whereas reflection
boundary conditions, such as specular and diffuse reflection,
may be additionally considered with a Lagrangian approach.
Numerical diffusion of the particle density is eliminated by
employing Lagrangian particles due to their pointwise spatial
accuracy.

While a Lagrangian approach offers many potential
advantages, this method also creates problems that need to be
addressed. For instance, large numbers of particles may cause
a Lagrangian analysis to be memory intensive. This problem
is circumvented by treating parcels of particles, i.e. doing the
detailed analysis for one particle and then applying the effect
to many. In addition, continuous mapping and remapping of
particles to their respective elements may increase computa-
tional requirements, particularly for unstructured grids.

5.1 Equations describing the motion of the air

As seen from the experimental evidence, the velocities of
air encountered during coughing and sneezing never exceed
a Mach-number of Ma = 0.1. Therefore, the air may be
assumed as a Newtonian, incompressible liquid, where buoy-
ancy effects are modeled via the Boussinesq approximation.
The equations describing the conservation of momentum,
mass and energy for incompressible, Newtonian flows may
be written as

pvi+pv-Vv+Vp 6.1)
=V - uVv+ pg+ Bpg(T — Tp) + su,

V.-v=0 (6.2)

pcpT i+ pcpv-VT =V -kVT +s,, (6.3)
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Table 2 Estimated number of

viruses for different particle Droplet diameter (mm) Volume (mm?) Viruses/droplet Droplets needed for 1 virus
diameters 1.00E+00 5.24E—01 5.24E+02 1.00E+00

1.00E—01 5.24E—04 5.24E—-01 1.91E4-00

1.00E—02 5.24E—07 5.24E—04 1.91E4-03

1.00E—03 5.24E—10 5.24E—07 1.91E+06

Herep,v, p, u, g, B, T, Ty, cp, k denote the density, veloc-
ity vector, pressure, viscosity, gravity vector, coefficient of
thermal expansion, temperature, reference temperature, spe-
cific heat coefficient and conductivity respectively, and s,, s,
momentum and energy source terms (e.g. due to particles or
external forces/heat sources). For turbulent flows both the
viscosity and the conductivity are obtained either from addi-
tional equations or directly via a large eddy simulation (LES)
assumption through monotonicity induced LES (MILES)
[18,34,35,40,42,98].

5.2 Equations describing the motion of
particles/droplets

In order to describe the interaction of particles/droplets
with the flow, the mass, forces and energy/work exchanged
between the flowfield and the particles must be defined. As
before, we denote for fluid (air) by o, p, T, k, v;, u and ¢,
the density, pressure, temperature, conductivity, velocity in
direction x;, viscosity, and the specific heat at constant pres-
sure. For the particles, we denote by p,,, T}, v, d, ¢pp and
Q the density, temperature, velocity in direction x;, equiva-
lent diameter, and heat transferred per unit volume. In what
follows, we will refer to droplet and particles, collectively as
particles.

Making the classical assumptions that the particles may be
represented by an equivalent sphere of diameter d, the drag
forces D acting on the particles will be due to the difference
of fluid and particle velocity:

nd? 1
D:T.CD.§p|V—Vp|(V—Vp). @)

The drag coefficient cp is obtained empirically from the
Reynolds-number Re:

— d
Re — PV —vpld ®)
"
as (see, e.g. [83]):
_ 24 0.687
¢p = max <0.1, o (1 4 0.15Re ) ©)
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The lower bound of ¢cp = 0.1 is required to obtain the
proper limit for the Euler equations, when Re — oo. The
heat transferred between the particles and the fluid is given
by

2

d
Q=”T.[hf.(T_Tp)+a*-(T4—T;‘)], (10

where £ ¢ is the film coefficient and o* the radiation coeffi-
cient. For the class of problems considered here, the particle
temperature and kinetic energy are such that the radiation
coefficient o* may be ignored. The film coefficient 4 s is
obtained from the Nusselt-number Nu:

Nu =2+ 0.459Pr033 Re®, (11)
where Pr is the Prandtl-number of the gas
k
Pr=—, (12)
n
as
Nu -k
hp=— (13)

Having established the forces and heat flux, the particle
motion and temperature are obtained from Newton’s law and
the first law of thermodynamics. For the particle velocities,
we have:

rd® dv, D zd?

e a SPTrE (1
This implies that:
dvp 3p
a " dpyd CalV=Vpl(v—=vp) +8
=oy|V—=Vpl(Vv—vp) + g (15)

where o, = 3pcy/(4ppd). The particle positions are
obtained from:

dxp

= (16)
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The temperature change in a particle is given by:

nd® dT,
Prém=e ar — 9 an

which may be expressed as:

dTy 3k Nu-(T —T,) (T —T,, (18)
—_— . u - — = — y
dt  dcppppd? P T P

with a7 = 3k/(4c,,,,,opd2). Equations (15, 16, 18) may be
formulated as a system of Ordinary Differential Equations
(ODEs) of the form:

My _ v ) (19)
—= =r(u,,x,ur),

dt 14 f
where u,, X, uy denote the particle unknowns, the position
of the particle and the fluid unknowns at the position of the
particle.

5.3 Numerical integration of the motion of the air

The last six decades have seen a large number of schemes that
may be used to solve numerically the incompressible Navier—
Stokes equations given by Egs. (6.1-6.3). In the present case,
the following design criteria were implemented:

— Spatial discretization using unstructured grids (in order
to allow for arbitrary geometries and adaptive refine-
ment);

— Spatial approximation of unknowns with simple linear
finite elements (in order to have a simple input/output
and code structure);

— Edge-based data structures (for reduced access to mem-
ory and indirect addressing);

— Temporal approximation using implicit integration of
viscous terms and pressure (the interesting scales are
the ones associated with advection);

— Temporal approximation using explicit, high-order inte-
gration of advective terms;

— Low-storage, iterative solvers for the resulting systems
of equations (in order to solve large 3-D problems); and

— Steady results that are independent from the timestep
chosen (in order to have confidence in convergence stud-
ies).

The resulting discretization in time is given by the follow-
ing projection scheme [60,63]:

— Advective-Diffusive Prediction: V"', p" — v*

s'=—Vp" + pg+ Bpg(T" — Tp) + sy, (20

vVi=v'+alyAt (—Vi_l Y VAV s’) ;

i=1,k—1; (21a)
|:Ait -0V MV} (Vk - V”) + vk wykd
=V.uVvl 4 (21b)
— Pressure Correction: p" — p"+1
vovr=0, 22)
vn+1At_ v* N v(prrH — M) =0; (23)
which results in
VA"t - p" = VA'IV*; (24)
— Velocity Correction: v* — v"+1
VL v AV (L — . 25)

6 denotes the implicitness-factor for the viscous terms (6 =
1: 1st order, fully implicit, &6 = 0.5: 2nd order, Crank—
Nicholson). o are the standard low-storage Runge—Kutta
coefficients o = 1/(k+1—1). The k — 1 stages of Eq. (21a)
may be seen as a predictor (or replacement) of v by vF=1.
The original right-hand side has not been modified, so that
at steady-state v = vK~! preserving the requirement that
the steady-state be independent of the timestep Az. The fac-
tor y denotes the local ratio of the stability limit for explicit
timestepping for the viscous terms versus the timestep cho-
sen. Given that the advective and viscous timestep limits are
proportional to:

h ph?

Aty ~ —; Aty = —, (26)
[v] "

we immediately obtain

Aty plvlh

~ Rey,, 27
AL, " h 27

or, in its final form:
y = min(l, Reyp). (28)

In regions away from boundary layers, this factoris O (1),
implying that a high-order Runge—Kutta scheme is recov-
ered. Conversely, for regions where Re, = O (0), the scheme
reverts back to the usual 1-stage Crank—Nicholson scheme.
Besides higher accuracy, an important benefit of explicit
multistage advection schemes is the larger timestep one can
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employ. The increase in allowable timestep is roughly pro-
portional to the number of stages used (and has been exploited
extensively for compressible flow simulations [43]). Given
that for an incompressible solver of the projection type given
by Egs. (20-25) most of the CPU time is spent solving the
pressure-Poisson system Eq. (24), the speedup achieved is
also roughly proportional to the number of stages used.

At steady state, v = v" = vt and the residuals of the
pressure correction vanish, implying that the result does not
depend on the timestep At.

The spatial discretization of these equations is carried out
via linear finite elements. The resulting matrix system is re-
written as an edge-based solver, allowing the use of consistent
numerical fluxes to stabilize the advection and divergence
operators [63].

The energy (temperature) equation [Eq. (6.3)] is integrated
in a manner similar to the advective-diffusive prediction
[Eq. (21)], i.e. with an explicit, high order Runge-Kutta
scheme for the advective parts and an implicit, 2nd order
Crank—Nicholson scheme for the conductivity.

5.4 Numerical integration of the motion of
particles/droplets

The equations describing the position, velocity and temper-

ature of a particle [Egs. (15)—-(19)] may be formulated as a

system of nonlinear Ordinary Differential Equations of the

form:

dﬁ =r(u,,X,ur) 29)
dt - p> 2 8f)-

They can be integrated numerically in a variety of ways.
Due to its speed, low memory requirements and simplicity,
we have chosen the following k-step low-storage Runge—
Kutta procedure to integrate them:

n+i __ ..n i . n+i—1 _n+i—1 _ n+i—1
u,” =u, +o At r(up , X Y ),

i=1k. (30)

For linear ODEs the choice

: 1

i .
o _m,z_l,k (31)
leads to a scheme that is k-th order accurate in time. Note that
in each step the location of the particle with respect to the
fluid mesh needs to be updated in order to obtain the proper
values for the fluid unknowns. The default number of stages
used is k = 4. This would seem unnecessarily high, given
that the flow solver is of second-order accuracy, and that the
particles are integrated separately from the flow solver before
the next (flow) timestep, i.e. in a staggered manner. However,
it was found that the 4-stage particle integration preserves
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very well the motion in vortical structures and leads to less
‘wall sliding’ close to the boundaries of the domain [70]. The
stability/accuracy of the particle integrator should not be a
problem as the particle motion will always be slower than
the maximum wave speed of the fluid (fluid velocity).

The transfer of forces and heat flux between the fluid and
the particles must be accomplished in a conservative way,
i.e. whatever is added to the fluid must be subtracted from
the particles and vice-versa. The finite element discretization
of the fluid equations will lead to a system of ODE’s of the
form:

MAu =r, (32)

where M, Au and r denote, respectively, the consistent mass
matrix, increment of the unknowns vector and right-hand side
vector. Given the ‘host element’ of each particle, i.e. the fluid
mesh element that contains the particle, the forces and heat
transferred to r are added as follows:

i
p

> Ni(x,)D,. (33)

el surr i

Here N’ (x p) denotes the shape-function values of the host
element for the point coordinates x,, and the sum extends
over all elements that surround node i. As the sum of all
shape-function values is unity at every point:

Z Ni(x) = 1Vx, (34)

this procedure is strictly conservative.

From Eqgs. (15-18) and their equivalent numerical inte-
gration via Eq. (30), the change in momentum and energy
for one particle is given by:

7d3 (VZH - VZ)
fp = pp 6 At

zd? (le71+1 o TIZI)
= I 36
qp = PpCpp 6 A (36)

, (35)

These quantities are multiplied by the number of particles
in a packet in order to obtain the final values transmitted
to the fluid. Before going on, we summarize the basic steps
required in order to update the particles one timestep:

— Initialize Fluid Source-Terms: r = 0
— DO: For Each Particle:

— DO: For Each Runge—Kutta Stage:

— Find Host Element of Particle: IELEM, N’ (x)
Obtain Fluid Variables Required
Update Particle: Velocities, Position, Tempera-
ture, ...
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— ENDDO
— Transfer Loads to Element Nodes

— ENDDO
5.4.1 Particle parcels

For alarge number of very small particles, it becomes impos-
sible to carry every individual particle in a simulation. The
solution is to:

(a) Agglomerate the particles into so-called packets of N,
particles;

(b) Integrate the governing equations for one individual par-
ticle; and

(c) Transfer back to the fluid N, times the effect of one par-
ticle.

Beyond areasonable number of particles per element (typ-
ically > 8), this procedure produces accurate results without
any deterioration in physical fidelity.

5.4.2 Other numerics

In order to achieve a robust particle integrator, a number
of additional precautions and algorithms need to be imple-
mented. The most important of these are:

— Agglomeration/Subdivision of Particle Parcels: As the
fluid mesh may be adaptively refined and coarsened in
time, or the particle traverses elements of different sizes,
it may be important to adapt the parcel concentrations as
well. This is necessary to ensure that there is sufficient
parcel representation in each element and yet, that there
are not too many parcels as to constitute an inefficient
use of CPU and memory.

— Limiting During Particle Updates: As the particles are
integrated independently from the flow solver, it is not
difficult to envision situations where for the extreme cases
of very light or very heavy particles physically mean-
ingless or unstable results may be obtained. In order to
prevent this, the changes in particle velocities and tem-
peratures are limited in order not to exceed the differences
in velocities and temperature between the particles and
the fluid [70].

— Particle Contact/Merging: In some situations, particles
may collide or merge in a certain region of space.

— Particle Tracking: A common feature of all particle-grid
applications is that the particles do not move far between
timesteps. This makes physical sense: if a particle jumped
ten gridpoints during one timestep, it would have no
chance to exchange information with the points along the
way, leading to serious errors. Therefore, the assumption

that the new host elements of the particles are in the vicin-
ity of the current ones is a valid one. For this reason, the
most efficient way to search for the new host elements
is via the vectorized neighbour-to-neighbour algorithm
described in [51,63].

6 Examples

The techniques described above were implemented in FEFLO,
a general-purpose computational fluid dynamics (CFD) code
based on the following general principles:

— Use of unstructured grids (automatic grid generation and
mesh refinement);

— Finite element discretization of space;

— Separate flow modules for compressible and incompress-
ible flows;

— Edge-based data structures for speed;

— Optimal data structures for different architectures;

— Bottom-up coding from the subroutine level to assure an
open-ended, expandable architecture.

The code has had a long history of relevant applica-
tions involving compressible flow simulations in the areas
of transonic flow [55,73-77], store separation [7,10,12,14,
15], blast-structure interaction [6,8,9,11,13,16,17,58,64,32,
85,93], incompressible flows [5,57,60,68,79,81,91], free-
surface hydrodynamics [54,61,62], dispersion [20-22,59],
patient-based haemodynamics [1,23,24,55,65] and aeroa-
coustics [50]. The code has been ported to vector [56],
shared memory [53,84], distributed memory [52,66,79,80]
and GPU-based [27-30,67,69] machines.

The cases shown all simulate sneezing/coughing in differ-
ent environments. The ambient temperature was assumed to
be 20°C. In order to simulate a sneeze/cough, the velocity
and temperature in a spherical region of radius (r = 5 cm)
near the patient’s mouth was reset at the beginning of each
timestep according to the following triangular function:

e if 10 <1< tmig

f@O =31 =5 if g <t < 2mia - (37)
0 if @ 2tmia <t

v(t) = 5f () [m/s],

T(t) =20+ f(t)(37 — 20). (38)

The droplets were initialized with 4 different sizes and
different velocities, and released every 0.005s during 0.1 s.
This resulted in a final number of particle packets of n, =
25, 662. The temperature was set to 7, = 37°C and the
velocity to v = 5 m/s. Table 3 summarizes the diameters
and resulting mass distribution.
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In the cases shown different temporal scales appear:

— The fast, ballistic drop of the larger (d = 1 mm) particles,
occurring in the range of O (1) s;

— The slower drop of particles of diameterd = O (0.1) mm,
occurring in the range of O(10) s; and

— The transport of the even smaller particles through the
air, occurring in the range of O (100) s.

We have attempted to show these phases in the results,
and for this reason the results are not displayed at equal time
intervals. Unless otherwise noted, the particles have been
colored according to the logarithm of the diameter, with red
colors representing the largest and blue the smallest particles.

The examples given show clearly the dangers of droplet-
and aerosol- based infections in the built environment.

6.1 Sneezing in transportation security agency (TSA)
queues

One of the obvious vectors for viral contamination and spread
are security and passport examination queues in airports. Air
flow is moderate, passengers are in very close proximity,
and in some airports queues wind back and forth in narrow
lanes. Figure 3a, b show the arrangement of pedestrians, as
well as the discretization chosen. Note the smaller elements
close to the bodies and in the region of interest between the
two pedestrians in the middle row. This particular mesh had
12.74Mels. The distribution of particles and the absolute
value of the velocity in the centerplane over time can be
discerned from Figures 3c—e. One can see that the large (red)
particles follow a ballistic path and have some influence on
the flow (e.g. at time ¢+ = 0.20). This ‘ballistic phase’ ends at
about r = 1 s. The (green) particles of size d = 0.1 mm are
quickly stopped by the air, and then sink slowly towards the
floor in close proximity to the individual sneezing. The even
smaller (cyan, blue) particles rise with the cloud of warmer
air exhaled by the sneezing individual, and disperse much
further at later times.

6.2 Sneezing in a generic hospital room

This case considers a typical hospital room. Of interest here
was the dispersion of particles in the first minute after cough-

ing, in particular the reach into neighbouring halls and the
amount of ‘negative pressure’ needed to keep all contami-
nants in the room. Figure 4a shows the arrangement of the
room, with patient and caregiver clearly visible. This partic-
ular mesh had 2 . 25Mels. The distribution of particles over
time can be discerned from Figures 4c—1. As before, one can
see that the large (red) particles follow a ballistic path. This
‘ballistic phase’ ends at about + = 1 s. The (green) parti-
cles of size d = 0.1 mm are quickly stopped by the air, and
then sink slowly towards the patient. The even smaller (cyan,
blue) particles rise with the cloud of warmer air exhaled by
the sneezing individual, and disperse much further at later
times, covering almost the entire room. The velocity distri-
bution in the room may be inferred from Figure 4m.

7 Reopening after the crisis

A lingering question facing all levels of society is how and
when to reopen facilities where people congregate in close
proximity. One key technology that would allow opening is
testing and sensing. We consider sensing in the sequel. Sev-
eral vendors have announced measuring devices for Covid-19
in the next half year. Given that these sensors are expen-
sive, and that a hospital or university many need hundreds
of these, the question becomes how best to deploy them.
In other words: given an arbitrary number of contamina-
tion or infection scenarios, which is the minimum number
of sensors needed to detect them, and where should they
be placed? A partial answer to this non-trivial question was
given in [59,97]. If we assume a given number of sensors,
every contaminant/infection scenario (location and amount
of release, flow conditions, etc.) will lead to a sensor input.
The data recorded from all the possible release scenarios at
all possible sensor locations allows the identification of the
best or optimal sensor locations. Clearly, if only one sensor
is to be placed, it should be at the location that recorded the
highest number of releases. This argument can be used recur-
sively by removing from further consideration all releases
already recorded by sensors previously placed. The proce-
dure is repeated recursively until no undetected release cases
are left, or the available sensors have been exhausted.

See [19,41] for an in-depth analysis of robust sensor place-
ment under uncertainty.

Table 3 Initial conditions for

particles Droplet diameter (mm) Mass (gr’) Nr. of packets Nr. of particles
1.00E+00 5.50E+00 1.05E+03 1.05E+04
1.00E—-01 0.11E+00 2.10E+03 2.10E+05
1.00E—-02 0.58E—-02 1.12E+04 1.12E+07
1.00E—-03 0.58E—05 1.12E+04 1.12E+-08
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Fig.3 TSA Queue: a arrangement of pedestrians and surface mesh, b surface mesh and cut plane, ¢ particle distribution at = 0.02 s, d particle
distribution at = 0.10s, e particle distribution at = 0.20s, f particle distribution at = 0.40's, g particle distribution at t = 0.80s, h particle
distribution at # = 1.60's
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Fig. 4 Hospital room: a surface mesh, b particle distribution at t = t = 4.0s, i particle distribution at t = 10.0s, j particle distribution at
0.0s, ¢ particle distribution at t = 0.2s, d particle distribution at t = 20.0s, k particle distribution at t = 30.0s, I particle distribution at
t = 0.4s, e particle distribution at t = 0.6, f particle distribution t = 50.0's, m surface velocities at t = 60.0's

att = 1.0, g particle distribution at t = 2.0s, h particle distribution at
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Fig.4 continued

7.1 Hospital room

This case considers the same hospital room as shown before.
The boundary conditions determining the flow are assumed
as steady, with air entering the room through vents 1-3 and
exiting the room through the bathroom exhaust or the door.
Figures 5a—c show the outlay of the room, average veloci-
ties and the ‘age of air’ after 5 min. Note the high values for
the age of air in the corners and the back of the room. This
particular mesh had 2.2Mels. Four contaminant release
scenarios were considered: cases 1-3 assumed contaminant
coming in through each of the vents (separately) during the
first minute, while case 4 assumed virus production from the
patient for a period of 10s. The case was run for 5 min of real
time, and the contaminant concentration was measured on all

walls/ceilings. The maximum concentrations measured have
been summarized in Fig. 5d. Note the different areas cov-
ered depending on the release scenario. It was assumed that
sensors should only be allowed above a certain height, and
should be located on a wall or the ceiling. Table 4 summarizes
the points that measured data above a set threshold. As one
can see, none of the possible sensor locations is able to mea-
sure/detect all 4 cases, and many possible sensor locations
do not detect even a single case. There are many possible
pairs of sensors that can detect all 4 cases. The pair selected
is the one that achieves the highest relative measurement val-
ues, and is shown in Fig. 5e. Note that this makes good sense:
one sensor close the HVAC exits, and one close to the patient.
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Fig. 5 Hospital room: a outlay of room and boundary conditions, b average velocities (5 min), ¢ age of air (5 min), d maximum contaminant
concentration over 5 min, e optimal sensor locations

8 Conclusions and outlook high fidelity were given, as well as appropriate numerical
schemes to solve them. Several examples taken from recent

The present paper has summarized some of the mechanical  evaluations of the built environment were given, as well as

characteristics of virus contaminants and the transmission  the optimal placement of sensors.

via droplets and aerosols. The ordinary and partial differen- Current efforts are directed at increasing the realism of

tial equations describing the physics of these processes with  the physical processes modeled (e.g. by adding the effect
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Table 4 Data measurement
summary

Cases measured Number
0 4308
1 3377
2 1010
3 0
4 0

of moving pedestrians [71]), streamlining the simulation
toolbox and workflow, and fielding these tools so that the
post-pandemic opening can occur as smoothly as possible.
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