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Abstract

We give a complete list of smooth and rationally smooth normalized Schubert
varieties in the twisted affine Grassmannian associated with a tamely ramified group
and a special vertex of its Bruhat-Tits building. The particular case of the quasi-
minuscule Schubert variety in the quasi-split but non-split form of Sping (ramified
triality) provides an input needed in the article by He—Pappas—Rapoport classifying
Shimura varieties with good or semi-stable reduction.

1. Introduction

Let k be an algebraically closed field, and let G be a connected reductive group
over the Laurent series field F = k((¢)). Associated with any special vertex x of the
Bruhat-Tits building is the twisted affine Grassmannian Grg . Under the additional
assumption that G splits over a tamely ramified extension of F, we give a complete
answer to the question of whether a given (normalized) Schubert variety in Grg, x is
smooth or singular (resp., rationally smooth or not rationally smooth).

If G is split and char(k) = 0, then such a classification is known by the work
of Evens and Mirkovi¢ in [9] and Malkin, Ostrik, and Vybornov in [26]. The answer
is strikingly simple: the Schubert variety Gré’; corresponding to a cocharacter y €
X«(G) is smooth if and only if x is minuscule.

If G is not split, then our classification has a similar flavor, but the phenomenon
of exotic smoothness enters in: there are surprising additional cases of smoothness,
where the group G is a ramified odd unitary group and p is quasi-minuscule. Unlike
the split case, the nature of the special vertex x now plays a pivotal role which was
first observed by the second named author in [1, Proposition 4.16] (see Theorem 1.2
for a precise statement).
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Our work is intertwined with the work of He, Pappas, and Rapoport in [17] which
classifies Shimura varieties with good or semi-stable reductions by giving a corre-
sponding classification of (slight modifications of) Pappas—Zhu local models (see
[32]). The connection between this article and [17] arises in the following way: in
[32, Theorem 9.1], it is proved that the special fiber of any local model MII‘QC(G, {u})
is isomorphic to an explicit union of Schubert varieties in a (twisted) partial affine
flag variety over k. The smooth local models are those whose special fiber is a sin-
gle smooth Schubert variety. By [17, Theorem 1.2], this implies that the parahoric
K = K, is a special maximal parahoric associated with some special vertex x and
occurs in the following situations: either G is split so that x is hyperspecial, or G is
non-split and the triple (G, w, x) is of exotic good reduction type. Exotic good reduc-
tion comes in three kinds:

(1)  even unitary exotic, discovered by Pappas and Rapoport in [31, Section 5.3];

2) odd unitary exotic, discovered by the second named author in [1, Proposi-
tion 4.16];

3) orthogonal exotic, discovered by He, Pappas, and Rapoport in [17, Sec-
tion 5.1]. i

In cases (1) and (3), the corresponding Schubert variety Grgfﬁc is minuscule (hence

smooth), and the choice of special vertex x plays no role. In case (2), the Schubert

variety Grgfﬁc is quasi-minuscule, and the choice of special vertex plays a crucial role.

This case relates to the phenomenon of exotic smoothness in twisted affine Grass-

mannians.

1.1. Statement of the results

Let k be an algebraically closed field, and let F = k((¢)) be the formal Laurent series
field, with absolute Galois group /. Let G be a connected reductive group over F
which is adjoint, is absolutely simple, and splits over a tamely ramified extension
of F. Associated to every special vertex x in the Bruhat-Tits building, we have the
twisted affine Grassmannian Grg . If G is split, then all special vertices are conjugate
under G,q(F). If G is not split, then this is no longer true (see [37, Section 2.5]). This
fact plays an important role in the phenomenon of exotic smoothness of Schubert
varieties.

We choose further a pair 7 C B C G of a maximal torus and a Borel subgroup
defined over F' which are in good position with respect to x (see Section 2 below).
Associated with each dominant & € X, (T);r is the Schubert variety Gré’fx C Grg x
which is an irreducible projective k-variety.

Let M denote the set of minimal elements of X (T);r \{0} with respect to the par-
tial ordering < defined by the échelonnage coroots TV C X. (T)y (see [12]). Recall
that 1 € M is
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. minuscule if {«, i) € {0, £1)} for all roots & € 3,

i quasi-minuscule otherwise.

In the second case, there exists a unique root y € 3 with (y, &) = 2, y is necessarily

a highest root, and i = yV. Further, {«, it) € {0, %1, 42} for all « € > (see [28,

Lemma 1.1]). Conversely, if i € X *(T);r\{O} belongs to the coroot lattice and if

[{a, 1) <2, Va € 3, then [ € M and hence fi is quasi-minuscule. Therefore, any

irreducible root system possesses a unique quasi-minuscule coweight.
Geometrically, ;£ being minuscule means that Gr(s;f; = Gr‘é,x is a single stra-

tum, whereas & being quasi-minuscule means that Grg’; = Gr’é’x LI{e}, where e €
Grg x (k) is the basepoint.

Under the identification X, (7); = X*((T")?), the échelonnage coroots >V cor-
respond to the roots for ((GY)!, (TV)?) by [12, Section 5.1], where (G ")/ is a simple
and semi-simple connected reductive group with maximal torus (7V)! (see Proposi-
tion A.1). Note that it € X, (T)y is (quasi-)minuscule with respect to Y if and only
if it is (quasi-)minuscule when viewed as a (T"V)!-weight. Similarly, a fundamental
(TV)! -weight w; can be viewed as an element w; € X(7)7. Our main results are as
follows.

THEOREM 1.1
Let i € X«(T)\{0} be dominant. The Schubert variety Gréi is rationally smooth
if and only if x € B(G, F) is any special vertex and the pair (G, i) belongs up to
isomorphism to the following list:
. any G, and i minuscule (for a complete list, see [17, Section 5.2]);
. split groups:
G =PGL,, and any ji;
G=PGL,,n>3,andi=1 -w;,i e{l,n—1},andl > 2;
G =PSp,,, n > 2, and i quasi-minuscule;
G = S0y7, and 1 = w3 (not quasi-minuscule);
G = Gy, and i quasi-minuscule;
. non-split groups:
G =PUs, and any ji;
G =PUyu41, n > 2, and i quasi-minuscule;
G =PSOy, 42, n > 2, and i quasi-minuscule;
G = PUg, and 1 = w3 (not quasi-minuscule);
G = 3Dy 5, the ramified triality, and ji quasi-minuscule.

Note that PUy is isomorphic to the non-split PSOg, and therefore, the quasi-
minuscule Schubert variety for PUy is rationally smooth as well.
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For the formulation of our next result, we introduce the following notion. The
triple (G, 1, x) is called of exotic smoothness if G ~ PU,, 41 for some n > 1,
the element 1 € X *(T);r\{O} is quasi-minuscule, and x corresponds up to G(F)-
conjugation to an almost modular lattice, that is, the lattice times a uniformizer is
contained in the dual of the lattice, with colength 1. See Section 5 below for a more
conceptual interpretation of the last condition in terms of the Bruhat-Tits building.
(In the terminology of Section 5, the condition on x above amounts to requiring that
x 1is special but not absolutely special.)

The following result verifies a conjectural classification which Rapoport postu-
lated in conversations with the second author in 2010.

THEOREM 1.2 B

5 =< - . . .
The normalization Gr(_;f; is smooth if and only if either [u is minuscule or the triple
(G, 1, x) is of exotic smoothness.

We note that Schubert varieties are normal if char(k) 1 |1 (G)| by [30, Theo-
rem 6.1], for example, if the characteristic of k is zero or sufficiently large. However,
there are non-normal Schubert varieties in general, for example, the Schubert variety
for G = PGL;, and quasi-minuscule ji is non-normal if char(k) = 2 (see [13]).

If G is non-split, then the only pairs with minuscule coweights are (PU,,, 1)
and (PSO2,+2,w,) (see Remark 4.3). These relate to the cases (1) and (3) of local
models of exotic good reduction above. The remaining case (2) corresponds to the
case of exotic smoothness.

Our approach to the classification is as follows. We first classify all rationally
smooth Schubert varieties, and for this, the nature of x is unimportant. We prove that
Gré’; is rationally smooth if and only if the representation Vj of (GV)! is weight-
mul£iplicity-free (see Proposition 2.2). For this, we use the ramified geometric Satake
correspondence (see [35], [38]). Next, we use Howe’s classification of all weight-
multiplicity-free representations of simple simply connected groups (Theorem 4.4).
Together with our list of all possibilities for the reductive groups (GY)! for G adjoint
and absolutely simple (Lemma 4.2), we are able to establish the list in Theorem 1.1
of all such pairs (G, jt) such that Gr(s;f; is rationally smooth (see Section 4.1).

Since the normalization of Schubert varieties is a finite, birational, universal
homeomorphism by [16, Proposition 3.1], the cohomological characterization of
rational smoothness (Proposition 2.1) shows that the variety Gréf’;C is rationally
smooth if and only if its normalization Grf;l; is rationally smooth. In particular,
we obtain the same list of rationally smooth normalized Schubert varieties. The
remaining work is to determine which Gr(ﬁ;l:c on this list are smooth. The proof is
given in Section 5.1 below. For split groups, we only rely on the case of PGL,, the
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Levi lemma, and the quasi-minuscule cases of [26], and hence, we do not rely on
computer-aided calculations. For the non-split case, we rely on a few calculations for
classical groups from [1], [29], [31], and [17]. Here we use that Gré‘; is isomorphic
to a Schubert variety for a suitable central extension G — G in order to apply these
results.

The most difficult case in our proof is the quasi-minuscule Schubert variety for
the ramified triality, that is, the non-split form of Sping. This case is studied in Sec-
tion 8, and it is also used by [17, Theorem 1.2] to rule out the possibility of additional
cases of exotic good reduction. The ramified triality plays a special role, in that it is
not amenable to the methods in [17].

Let us note that the results in the split and char(k) = 0 context (see [9], [26]) are
stronger: the smooth locus of Gréf’;c is exactly the open stratum Gr’é,x. Due to the
phenomenon of exotic smoothness, this fails in the non-split case. In Section 5.2, we
formulate a conjecture which describes the precise conditions on x needed to ensure
that this description of the smooth locus holds.

In light of Theorem 1.2, in order to give a classification of smooth Schubert vari-
eties, it suffices to understand which Gréf; are normal. We plan to address this ques-
tion in [13].

2. Rational smoothness of Schubert varieties

Let k be an algebraically closed field, and let F = k((¢)) denote the Laurent series
field. Let G be a connected reductive group over F' which splits over a tamely ramified
Galois extension F’/F . Denote I = Gal(F'/F).Let x € B(G, F) be a special vertex
in the Bruhat-Tits building, and denote by Grg x := LG/L1E, the twisted affine
Grassmannian in the sense of [30]. Let S C G be a maximal F-split torus such that
x belongs to the apartment </ (G, S, F) (see [6, Theorem 7.4.18(i)]). The centralizer
T = Zg(S) is a maximal torus defined over F (because by Steinberg’s theorem G is
quasi-split). Let B C G be a Borel subgroup containing 7" and defined over F'.

We equip the coinvariants X, (7); with the dominance order < with respect to
the échelonnage root system > (see [12]). We denote by X*(T);r C X«(T)y the
submonoid of dominant elements. (One can show that X« (7) — X.(T); induces a
surjective map of monoids X (7)™ — X, (T);r.) For each 1 € X (T);r, we have the
Schubert variety Grgf_ﬁc C Grg,x and the open orbit embedding jj : Gr’éj L Gré’:ﬁc.
For [z, re X, (T);r, we have Gré’x - Gréf; if and only if A< [ in the dominance
order (see [34, Corollary 1.8, Proposition 2.8]).

Since the I-action preserves a pinning of GV, the group (GV)! is a possibly
disconnected reductive Q -group (see [11, Proposition 4.1(a)]). There is a unique (up
to isomorphism) irreducible representation V; of (G¥)! with highest (7)!-weight
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[ (see [38, Lemma 4.10], [35, Corollary A.9], [12, Section 5.2]). For each A< o, we
denote by dj (1) the dimension of the A-weight space Va (A).

Fix a prime number £ coprime to char(k). Denote dj = dim(Gréf—;). The inter-
section complex IC; = j;,1+Qy[d;] corresponds under the ramified geometric Satake
isomorphism (see [35], [38]) to the irreducible @g-representation Vg of (GV)!.

Recall that an irreducible variety Y of dimension d over k is called £-rationally
smooth if, for every point y € Y (k) with closed immersion i, : Spec(k) < Y, there
is an isomorphism

iy Qp = Qq-2d]

in the derived category D é’ ({y}, Q). This notion coincides with the one given in [19,
Definition A.1], since Hg(Y, Qy) := H" (Y, iy,*ij,@g) = H”(iJ’, Q). Further, we say
y € Y(k) is an {£-rationally smooth point of Y if y is contained in an £-rationally
smooth Zariski-open subset of Y. Therefore, by definition the £-rationally smooth
locus is open in Y. It is clear that every smooth variety is £-rationally smooth. But
there exist many non-smooth, but £-rationally smooth varieties.

We use the following characterization of {-rational smoothness which was
explained to us by David Hansen. Let p : Y — Spec(k) be the structure morphism,
and consider the Verdier dualizing complex wy := p'Q,. Denote by Dy (F) =
R Hom D?(Y)(? ,wy), where ¥ belongs to Df (Y), the derived category of bounded
constructible Q¢-complexes on Y. It follows that wy = Dy (Qy).

PROPOSITION 2.1 (Hansen)

The following statements are equivalent:
(1) Y is £-rationally smooth,

(i) oy ~Q2d],

(iii)) ICy ~Qqld].

Proof
The implications (iii) = (ii) = (i) are straightforward. We abbreviate by writing
A := Q. For (i) = (ii), using Dy (4) = wy we note that, for any closed point y,
the stalk iJ!,A is the dual of i;‘ wy . Thus, by (i), the complex wy is concentrated
in degree —2d and (H 24 (wy)), ~ A. This forces any choice of non-zero map
A[2d] — wy to be an isomorphism. Note that such non-zero maps exist because
Hom () (A[2d], wy) = H~24 (Y, wy) is dual to H24 (Y, A) ~ A.

For (ii) = (iii), we can choose maps A[d] — ICy — wy[—d] which are iso-
morphisms on a dense open subset. (Choose any non-zero map A[d] — ICy using
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that Hom ,p (., (A[d],1Cy) = H™(¥,1Cy) is dual to HZ (Y,ICy) ~ A," and choose
ICy — wy[—d] by taking the Verdier dual of the first map.) Now (ii) guarantees that
Ald] = wy[—d] is a perverse sheaf, and the aforementioned maps split A[d] off as a
direct summand of ICy . Since ICy is a simple perverse sheaf, this implies (iii). [

The following proposition is proved using the ramified geometric Satake corre-
spondence (see [35], [38]) as well as elaborations on it such as [38, Theorem 5.1].

Recall that the ramified geometric Satake equivalence provides an equivalence of
Tannakian categories

Perv; +4(Grg,x) ~ Repg, ((GV)I),

under which the intersection complex ICj; corresponds to the representation V. The
left-hand side is the category of LT §-equivariant perverse sheaves on Grg,» equipped
with the tensor structure given by the convolution product and the fiber functor given
by global cohomology. The £-rational smoothness of Gré’; is related to the structure
of the (GV)! -representation Vi as follows.

PROPOSITION 2.2

The following are equivalent.

1) The Schubert variety Gréfﬁc is £-rationally smooth.

(i)  The intersection complex 1Cy, is isomorphic to the constant sheaf Qeld il
(iti)  One has dy(A) = 1 forall A € Xo(T)F, 2 < ji.

In particular, the rational smoothness of Gré{; is independent of the choice of £ and
of the choice of special vertex x. Thus, we replace “L-rationally smooth” from now
on by “rationally smooth” for Schubert varieties.

Proof
Denote by § = §, the special parahoric group scheme. Write Sj; := Gréi, and write
C; = Gré,x for any A€ X*(T);r, A< . Letiz: {x;} < Sy be the closed immer-
sion of the basepoint x; € Cj (k) corresponding to A

(i) = (ii): This is a special case of Proposition 2.1.

(ii) = (iii): Assume that ICy; = Qy [dz]. By setting ¢ = 1 in [38, Theorem 5.1],
we see that the dimension of the total cohomology of i )-T IC; = Qg[dy] is equal to
dp(A) forall 2 € X,(T)F, A < ji. This is equal to 1, which proves (iii).

"For any non-empty open subset U C ¥ with closed complement Z C Y, the natural map HY (U,ICy |¢/) —
Hf (Y,ICy) is an isomorphism. This follows from ICy |z € » D="1(Z) and the estimate of middle-perverse
cohomological amplitude py :<d — 1 for p : Z — Spec(k) (see [2, Section 4.2.4]). We apply this to any
non-empty open subset U C Y with ICy |y = A[d].
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(ili) = (i): Assume that dz(A) = 1 for all X € X.(T);] with A < ji. By [38,
Theorem 5.1, Proposition 5.4], we have

i21C; = Qeldal, zi IC; = Q¢[—dz]. 2.1)

Indeed, [38, Theorem 5.1] implies that dim(H * (i /i{ ICz)) = 1, and then in conjunction
with [38, Proposition 5.4] we see that dim(H ~% (i 71Cp)) = 1, which yields the first
formula. The second formula follows from the first by applying Verdier duality.

Since any point in S (k) lies in the L*§-orbit of some basepoint x; € Cy(k),
this implies that IC; = ¥ [dz], where ¥ := H~92(IC;) is an L*g-equivariant
constructible Qg-sheaf. Here we are using the principle that if a complex K €
D%(S5,Qy) is cohomologically supported in degree n € Z, then K = H" K[—n] in
D2(Si. Qo).

Hence, to prove that Sj; is rationally smooth it is by (2.1) enough to prove that

IC; = Quldg] (2.2)

or equivalently ¥ = Qq. Let D denote the derived category D’c’ Sz, Qy), and write
H(K) for the global cohomology of an object K € D. We have

Homp (Q¢[dz], IC;) = H™92(IC) = HO(¥), (2.3)

and this vector space corresponds under geometric Satake to the 1-dimensional low-
est weight space of V. We claim that any vector v € H~92(ICj;)\{0} induces an
isomorphism

t: Quldz] — IC; = F[d;). (2.4)

The map ¢, is necessarily an isomorphism on a dense open subset by (2.1). Hence,
the kernel of t,[—dj] is a subsheaf of Q¢ which is supported on a nowhere-dense
closed subset; any such subsheaf of Qy is zero. Therefore, ¢, is an injective morphism
of constructible abelian sheaves, which is an isomorphism on the stalks at all closed
points, since by (2.1) ¥ has 1-dimensional stalks everywhere. This implies that ¢, is
an isomorphism and completes the proof. ([

Remark 2.3

If G is split, there is a sharper stratum-by-stratum version of Proposition 2.2. Sup-
pose A, € X«(T)™T satisfy A < u. Then x; belongs to the rationally smooth locus
of S, if and only if d,, (1) = 1. This is well-known, but for completeness we explain
the proof here. Let W (resp., Wy, resp., F£g) denote the Iwahori—Weyl group (resp.,
finite Weyl group, resp., affine flag variety) for G relative to the special vertex x and
an alcove a containing x in its closure. Let w) € W denote the unique longest element
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in WyA(t)Wy. Let X) € FLg denote the basepoint in the Iwahori orbit correspond-
ing to wy. Then as 7 : £ — Grg y is represented by a smooth surjective L1g-
equivariant morphism, x; belongs to the rationally smooth locus of S, if and only if
%), belongs to the rationally smooth locus of the Schubert variety Sy, := 7~ '(S,) in
Flg. By [19, Theorem A.2], this is equivalent to the triviality of certain Kazhdan—
Lusztig polynomials, namely, Py v, (¢) = 1 for all w’ € W with w) <w’ <w,. (In
[19, Theorem A.2], this is proved for Schubert varieties in the classical flag variety
for a split group, but the proof carries over to the affine flag varieties.) This is equiv-
alent to the single equality Py, w, (9) =1 (e.g., [4, Theorem 6.2.10], using that all
Py, »(q) have non-negative coefficients for u, v € W by [20]). Since Py, ,(0) =1 (e.g.,
[4, Lemma 6.1.9]), the equality is equivalent to Py, , (1) = 1. Finally, this is equiv-
alent to d,(A) = 1 by Lusztig’s multiplicity formula Py, v, (1) = d, (1) ([24, The-
orem 6.1]). (Because Kazhdan—Lusztig polynomials Py ,(¢'/?) € Z[g'/?] attached
to Hecke algebras with unequal parameters are not known to belong to Zx>¢[q] (see
[25]), it is not clear that the same argument can be used to handle quasi-split but non-
split groups.) We remark that Berenstein and Zelevinsky in [3] have classified, for any
connected reductive complex group, all pairs of weights (i, A) satisfying d,, (1) = 1.

3. The classification for reductive groups: Passing to adjoint groups
We proceed with the notation of Section 2. Let G — G,4 be the canonical map to
the adjoint group, and denote by Tyq C B,g the image of T C B. The image of the
special vertex x under #(G, F) — B(G.q, F) defines a special vertex x,q. The map
G — Gyq extends to a map of parahoric O g -groups §, — §y,,. By the functoriality of
the loop group construction, we obtain a map LG — LGy (resp., LT g, — L+§xad)
and, hence, a map on twisted affine Grassmannians Grg,x — Grg,,x,q-

Further, T — T,q defines a map X.(T); — X«(Taq); which sends X, (T);L to
X« (Tad)?. For i € X*(T);r, we denote by flaq € X« (Tad)}L its image. Since the Schu-
bert varieties are defined as the scheme-theoretic image of the orbit map, we get a
natural morphism of k-schemes

Grg — Grgl . (3.1)

PROPOSITION 3.1
The map (3.1) is a finite, birational, universal homeomorphism. In particular, it
induces an equivalence of étale sites and an isomorphism on normalizations.

Proof
This is a special case of [16, Proposition 3.5]. The equivalence on étale sites follows
from their topological invariance [36, 04DY]. O
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Now assume that G = G,q is adjoint. Then there is a finite index set J, and an
isomorphism of F'-groups

G = [[Resr,/r(G)). (3.2)
jeJ

where each F; / F is a finite separable field extension and G is an absolutely simple
adjoint F';-group. The condition on G of being tamely ramified implies that each G
is tamely ramified (and likewise for F;/F, but this is not important as we will see).
This induces an identification of buildings Z(G, F) =[] jes #(Gj., Fj) compatible
with the simplicial structure (see [14, Proposition 4.6]). Under this identification we
get x = (x;)jes, where each vertex x; € #(G;, F;) is special.

Further, we can write T = ]_[jEJ Resp;/F (Tj), and likewise for B (see [14,
Lemma 4.2]). Note that the splitting field F’ of G contains each F;, and we
define I; := Gal(F/F;). By Shapiro’s lemma (see [14, Lemma 4.1]), we get
X«(T)r =[1;es X«(Tj)1; compatible with X (T)F = [Ties X*(Tj);rj. For each
i € X, (T), we denote jt = (fi;)jes With i € X*(Tj);j.

LEMMA 3.2
Under (3.2) there is an identification of affine Grassmannians

Grg,x = 1_[ GrGj,xj ,
jeJ

under which the Schubert varieties (resp., their normalizations) for each i =
(ft ;) jes correspond to each other.

Proof
It is enough to treat the following two cases separately.

Products: If G = G1 x G2 is a direct product of two F-groups, then we
have Grg x = Grg,,x, X Grg,,x,, Which is obvious. Also the equality Gréf’; =
Gré’i'x1 X Gré‘; ’2x2 is easy to prove using that the product of (geometrically) reduced
k-schemes is reduced (see [36, 035Z(2)]). Likewise, the equality holds on normaliza-
tions using that the product of (geometrically) normal k-schemes is normal (see [36,
06DG]).

Restriction of scalars: Let G = Resp//r(G’), where F'/F is a finite sepa-
rable extension and G’ is an F’-group. By [14, Proposition 4.7], we have §, =
Reso,., /0 (9,/), where we use the identification %(G,F) = #(G', F'). Now
choose” a uniformizer u € Q. Since k is algebraically closed, we have O g/ = k[[u]

2The identification of twisted affine Grassmannians is independent of this choice as all loop groups can be
defined without choosing uniformizers (see [34, Section 2]).
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(resp., F' = k(u))). For any k-algebra R, we have R[t] ®o9, Of = R[u] (resp.,
R(t) ®F F’ = R(u)). This gives an equality on loop groups L1t§, = Ltg/,
(resp., LG = LG’). Hence, there is an equality on twisted affine Grassmannians
Grg,x = Grg,x, and it is obvious that the Schubert varieties (resp., their normaliza-
tions) correspond to each other. ([

By combining Proposition 3.1 with Lemma 3.2, it is obvious how to extend our
classification from the absolutely simple adjoint case to the case of general tamely
ramified connected reductive groups. From the discussion, we also see that we can
relax the condition on G of being tamely ramified to the condition that each absolutely
simple adjoint factor G; is tamely ramified. In particular, our classification includes
all cases where char(k) > 5 (see the beginning of the next section).

4. Weight-multiplicity-free representations
We proceed with the notation of Section 2, and assume further that G is adjoint and
absolutely simple. Then the splitting field F’/ F is of degree [F': F] =1, 2, or 3 (see
[37, Section 4]). So if G is non-split (i.e., [F’ : F] = 2 or 3), then the assumption of
being tame excludes only 2 or 3 from being the residue characteristic [F’ : F].

We are interested in classifying all irreducible representations Vj; of (GY)! such
that dj; (/_X) =1forall A e X *(T);r, A< [L. These representations are called weight-
multiplicity-free.

LEMMA 4.1

The group (GV)!

is a connected reductive Qq-group which is simple and semi-simple.
Furthermore, it is simply connected except in the case G¥ = SLo, 11, n > 1, with a

non-trivial I-action, in which case (G¥)! = SO, 1.

Proof

Since the I-action preserves a pinning of GV, this follows from Proposition A.I,
taking k = Qq. O
LEMMA 4.2

The following list gives all possibilities for (GV)! :

i)  [F':F]=1:G split; (GV) =GV.

(i) [F:F]=2:
(@) G =PUyy,, n >3, name B-Cy; (GV)! =Sp,,, type C,.
(b) G =PUs,y1, n>1, name C-BCp; (G¥) =S0s,41, type By,.
() G =PSOzn42, n >2, name C-By; (GV)! = Spin,, . ,, type By.
(d) G =2EZ,, ramified Eg, name F}; (G¥)! = F,.
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(i) [F': F]=3: G =3Dyp, ramified triality, name G ; (G¥)! = G,.
Hence, (GY)! is simply connected except in case (ii.b) where the connection index
is 2. In this case, (GV)! = SOy,41 is adjoint.

Here, the name refers to the name given by Tits in [37, Table 4.2], and the type
refers to the type of the connected reductive group (G)!. Tables containing essen-
tially this content are contained in [17, Section 5.2], but here we describe the groups
in classical terms, including the isogeny type.

Remark 4.3

Case (ii.b) shows that there is no non-zero -minuscule coweight for the non-split
group PUj,, 4. The fact that SO,,+; is adjoint means that every weight is in the
root lattice. This translates to X4 (T); = Z[%"], which in turn implies that the affine
Grassmannian for PU,, 4+ is connected. Similarly, one proves that the affine Grass-
mannian for a non-split absolutely simple adjoint group G is always connected, except
in cases (ii.a) and (ii.c), where it has two connected components. This also shows that
only these cases admit minuscule elements: checking the tables in [5, Planche II and
III] identifies w4 in (ii.a) and w, in (ii.c) as the minuscule elements.

Proof

Checking the tables in [37, Section 4] for residually split groups gives the above
list. We make the following remarks. Tits’s tables list the échelonnage root system
attached to G/ F. For example, the group named B-C, is a ramified unitary group
PU,,, and has échelonnage root system 3 of type B,,. The group (GV)! has type dual
to > (see [12, Section 5.1]) and, thus, has type C,, and since it is simply connected
(Lemma 4.1), we see that (GY) = Sp,,- The other cases are handled similarly. [

The following theorem is proven in Howe’s article [18, Theorem 4.6.3], and we
refer the reader to its introduction for further references on the subject. A classification
of multiplicity 1 primitive pairs A < fi is also given in [3]: these are the pairs such
that dg (A) = 1 and every simple root for (GY)! appears at least once in the difference
i — A; from this one may classify all pairs such that d I 1) =1.

THEOREM 4.4

Let i1 € X*(T)}", and denote by X, the type of (GV)!, where n > 1 is the rank of
(GY)!. Then the (GV)! -representation Vi is weight-multiplicity-free if and only if
the pair (X, i) appears in the following list:

. any type Xy, and i minuscule;

. type A1, and [i arbitrary;
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. type Ap, n>2,and i =1 -w; fori € {l,n} andl >2;

. type By, n > 2, and i quasi-minuscule;

. type Cs3, and I = w3 (not quasi-minuscule);
. type G, and i quasi-minuscule.

Remark 4.5

It is interesting to observe that only in type A, are there infinitely many weight-
multiplicity-free representations. Also, outside of type A cases and the single type
C3 case, the following implication holds: “if V}; is weight-multiplicity-free, then jt is
(quasi-)minuscule.”

4.1. Proof of Theorem 1.1

This is a combination of Proposition 2.2 and Theorem 4.4 with the list in Lemma 4.2.
Indeed, these results make no reference to the choice of special vertex x € Z(G, F),
which we therefore do not specify. Drop it from the notation for the rest of the proof.
By Proposition 2.2, the Schubert variety Gr(s;“ is rationally smooth if and only if
the (GV)! -representation Vi is weight-multiplicity-free. Theorem 4.4 gives a com-
plete list of all pairs ((GV)?, i) such that V; is weight-multiplicity-free. Clearly, if
[ is minuscule, there are no restrictions on the group. Assume now that i is not
minuscule. If G is split, then Theorem 4.4 directly applies to give the rationally
smooth cases listed in our theorem. If G is not split, then we use Lemma 4.2 to
translate Theorem 4.4 back in terms of the group G. Note that the group PU3 appears
from Lemma 4.2(ii.b) using the exceptional isomorphism of Lie types By = A;. This
proves the theorem.

Remark 4.6

When [t is quasi-minuscule, it is known that the dimension of the zero-weight space
V7(0) is the number of short nodes in the Dynkin diagram for the group (GV)!. From
this, Lemma 4.2, and Proposition 2.2, one can easily determine the groups G whose
quasi-minuscule Schubert variety is rationally smooth, without invoking Theorem 4.4.

5. Absolutely special vertices

Temporarily we assume G is any connected reductive group over an arbitrary field
F endowed with a non-trivial discrete valuation, and F’/F is a finite separable
extension splitting G. Following [37] we assume F is complete and its residue field
is perfect.

Definition 5.1
A vertex x € B(G, F) is called absolutely special if its image under the simplicial
embedding Z(G, F) — (G, F’) is a special vertex.
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Note that this notion is independent of the choice of the splitting field F’/F.

LEMMA 5.2
Absolutely special vertices exist in every quasi-split group G and are special.

Proof

This is modeled on Tits’s proof of the existence of hyperspecial points for unramified
groups (see [37, p. 36]). Since G is quasi-split, there exist S C T C B defined over
F as above. We may assume F’/F is Galois, and we write I := Gal(F'/F). Let
ai,...,a; denote a I'-stable basis of B-simple absolute roots for (G, T). Clearly T’
acts on the apartment <7 (G, T, F') C 2(G, F’) and also on the set of affine roots
D5 := P (G, T, F’) by construction (see [37, Section 1.6]). We claim that there is
a I'-stable set {ay, ..., 07} C Py such that the vector part of each ot is a;.

Indeed, suppose we are given a I"-orbit {a;,,...,a;, } of simple roots. We change
notation and write these as ay,...,a,. Choose arbitrarily an «; € ®,¢ whose vector
part is a1. Then for each aj, 1 < j < r, choose y; € I' such that yj(al) =aj, and
set o; 1= y;(o1). This is well-defined because if y € I fixes a;, then it fixes o1 by
the definition of the I'-action.

Now recall from [7, Section 4.1.2] that any relative root in X *(S) for G is the
restriction of a root in X *(7") for G r+. Hence, any I'-fixed point in the solution set of

o] =ap =---=a; =0 is the desired absolutely special vertex of «7(G,T, F’)l =
2 (G, S, F). This shows existence and also that any absolutely special vertex is spe-
cial. O

Note that the above result holds even if G is not tamely ramified. Now we con-
tinue with the notation and hypotheses of Section 4. In particular, we are again assum-
ing G is adjoint, absolutely simple, and tamely ramified over F'.

LEMMA 5.3
Assume that G is not isomorphic to PU,, 11 for any n > 1. Then all special vertices
in B(G, F) are conjugate under G(F) and, in particular, are absolutely special.

Proof

The last assertion follows from Lemma 5.2 using that the property of being abso-
lutely special is invariant under G(F)-conjugacy. It remains to show that all spe-
cial vertices are conjugate. This is implicitly contained in [37, Section 2.5], and
we add some details. Clearly, it is enough to show that all special points in the
apartment <7 := o/ (G, T, F) are conjugate. Fix a special point 0 € o7, and identify
& = X«(T) 1 r. We claim that X, (T); C & is exactly the subset of special points.
The claim implies the lemma because the action of T'(F') on &7 is via translation under
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T(F)/T°(OF) >~ X«(T)y, and thus, T'(F) permutes all special points. It remains to
show the claim. By [5, V1.2.2, Proposition 3], the special points in .2/ are identified
with the weight lattice P(iv) for the échelonnage roots. In general, we have an inclu-
sion X4 (T); = X*((TV)!) c P(Y), which is an equality if and only if (G¥) is
simply connected. But this holds true by Lemma 4.2 because we excluded case (ii.b)
by assumption. This proves the lemma. O

Now assume G = PU,; 41 for n > 1. Then up to G(F')-conjugation there are two
kinds of special vertices. If n > 2, the local Dynkin diagram is of the form

C-BC, o—=0 o=<=0 (5.1
If n = 1, then the local Dynkin diagram is drawn in (7.1) below and looks similar.
Here F'/F is a ramified quadratic extension, and the vector space V := (F')?"*1 is
equipped with a non-degenerate split Hermitian form as in [37, Section 3.11] (see also
[31, Section 1.2.1]). The vertex labeled “as” is absolutely special and corresponds to a
self-dual @ p/-lattice in V', whereas the vertex labeled “s” is special, but not absolutely
special, and corresponds to an almost modular lattice (see [31, Section 1.2.3(a)]).
Here an O/ -lattice A C V is called self-dual if A+ = A, where (-)* denotes the
dual lattice with respect to the Hermitian form. The lattice is called almost modular if
u- A C AL with colength 1, where u € F’ is a uniformizer.

5.1. Proof of Theorem 1.2
We start with some preliminary remarks. The normalization

Grghy — Grgl (5.2)
is a finite, birational, universal homeomorphism by [16, Proposition 3.1]. In particular,
the source of (5.2) is rationally smooth if and only if its target is rationally smooth. We
therefore obtain the same list in Theorem 1.1 for rationally smooth normalized Schu-
bert varieties. Also we give references below to articles which include explicit calcu-
lations for the special fibers of local models (see [1], [17], [29], [31]). To apply these
references we need to often replace the adjoint group G by a suitable central exten-
sion G — G such that 7, (Gder) =0 (see [17, (2.11)]). Then the Schubert varieties
for G map isomorphically onto the normalized Schubert varieties for G (see Propo-
sition 3.1) using the normality of Schubert varieties for G (see [30, Theorem 6.1]).
Hence, by [32, Theorem 9.1] the normalized Schubert variety is isomorphic to the
special fiber of a suitable local model for G, which allows us to use these references.
Also we give references below to articles which contain results about the singular-
ity of Schubert varieties (see [9], [26]) over the complex numbers. Here we refer to
Section 6 below for the reduction to k = C, which allows us to use these references.
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If /1 is minuscule or if G is an odd-dimensional ramified unitary group, x is not
absolutely special, and [t is quasi-minuscule, then Gréf; is smooth. Indeed, if j is
minuscule, then Gréf_; = Gr’é’x is a single orbit and, hence, is smooth, so that its
normalization is smooth as well. The other case was observed by the second named
author and follows from an explicit calculation (see [1, Prop. 4.16]).

Conversely assume that C;r?; is smooth. Then it is rationally smooth as well
and, hence, appears in the list of Theorem 1.1. We need to exclude from that list all
the Schubert varieties which are singular. If & is minuscule, then Grélﬁc is smooth as
argued above. Therefore, we have reduced to the case where i is not minuscule. In
what follows, we list groups according to the type of the dual group (GY)!.

Type Aj, and ji arbitrary: Note that there is an / > 2 such that i =/ - w;. If
G = PGL,; is split, then Grélﬁc is singular by [26, Section 5.1] (using Section 6 below
to reduce to k = C here and below; see also [27, Theorem 9.2] for an explicit matrix
calculation). These cases are therefore excluded. If G is not split, then according
to Lemma 4.2 it is the 3-dimensional quasi-split ramified projective unitary group.
Note that only the weights it = [ - w; for even [ > 2 appear in this case, because
(GV)! = S0;3 ~ PGL,; is not simply connected. By Section 6 and Proposition 7.1
below, the normalized Schubert variety Grélﬁc is smooth only in the case where x is
special but not absolutely special, and ft = 2w; is quasi-minuscule, and so only this
case is not excluded.

Type Ay, n>2,and i =1 -w;,i € {1,n},l >2: By Lemma 4.2, the group G is
split, and hence, G = PGL,,+;. The singularity of these normalized Schubert varieties
is a particular case of [9] and [26] (again reduce to kK = C). Let us be more specific.
The inverse transpose morphism G — G, g — (g~ 1)’ induces an isomorphism on
affine Grassmannians flipping the connected components and, in particular, restricts
to an isomorphism Gréf;ul >~ Gré{:)" for all / > 2. We are thus reduced to the case
where i =1 -w;, [ > 2. Also by our general remarks above, we can identify the
normalized Schubert variety with an ordinary Schubert variety in GL, ;. We can
therefore assume that G = GL, 4 and Gréf;)] = Grgf;‘)l.

In this case, we consider the element A = (I —1)-w; + wy. Then 1 — A is a simple
coroot. By the Levi lemma of [26, 3.4], the boundary of Gréfx - Grgf_; is smoothly
equivalent to the boundary of a Schubert variety for GL, and, hence, is singular by
the type A case above. Therefore, all the cases in this paragraph are excluded.

Type By, n > 2, and i quasi-minuscule: If G is split, then Grél; is singular (see
[26, Sections 2.9, 2.10]). If G is not split, then according to Lemma 4.2 we are left
with the cases (ii.b) and (ii.c) for any #n > 2. In case (ii.b), the group G is a quasi-split
unitary group on a 2n + 1-dimensional Hermitian space. If x is absolutely special,
then Gré‘; is singular at the basepoint by [29, Theorem 4.5, Lemma 4.7] (see also [17,
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Section 9, 3.b)]). This case is therefore excluded. If x is special, but not absolutely
special, then Gréfﬁc is smooth at the basepoint by [1, Proposition 4.16] (see also [17,
Section 9, 3.a)]). This case is therefore not excluded.

In case (ii.c), the group G is a ramified orthogonal group on a 2n 4 2-dimensional
space. The normalized Schubert variety Grélﬁc is singular by [17, Section 9, 3.c)].
Note that by Lemma 5.3 all special vertices are conjugate under G(F) so that we
only need to consider the choice of x that is handled in [17, Section 9, 3.c)]. This case
is excluded.

Type Cs,and i = w3: If G is split, then G = PSpy. We have 1 = w3 > w; = ‘A,
and A is minuscule. Checkmg the tables in [5], we see that A is equal to zero on the
root subsystem supp(jt — A) = {oy, oy}, viewing the latter as simple coroots in V.
Also by our general remarks above, we can identify the normalized Schubert variety
with an ordinary Schubert variety in GSpg. We can therefore assume that G = GSp6

and GrG = GrG . By the Levi lemma of [26, 3.4], the boundary of GrG ' CGrg”
is smoothly equivalent to the quasi-minuscule singularity of type C, = B>, Wthh is
singular by the previous case. This case is excluded.

If G is not split, then according to Lemma 4.2 we are in case (ii.a) for n = 3,
that is, G is a quasi-split ramified unitary group on a 6-dimensional Hermitian space.
The normalized Schubert variety Gré‘; is isomorphic to the special fiber of the local
model of the unitary similitudes group for signature (3, 3), and this is singular by [17,
Section 9, 2)] (see the equations given in [31, (5.6)]). This case is excluded.

Type G2, and fu quasi-minuscule: If G is split and p is quasi-minuscule, then
[26, Section 2.9] gives a conceptual proof showing that the basepoint e in Gréi is
singular. (This does not use the Kumar criterion.) If G is not split, then G is the
ramified triality, and the basepoint is again singular. This is the most difficult case in
our classification, and it is treated in Section 8 below (see Theorem 8.1). In both the
split and non-split cases, we are using Section 6 for the reduction to the case k = C.
Thus, the normalized Schubert variety Gréu; is singular at the basepoint, and hence,
it is excluded. This finishes the proof of the classification and, hence, the proof of
Theorem 1.2.

5.2. A conjecture on minimal degenerations

Theorem 1.2 classifies the normalized Schubert varieties in twisted affine Grassman-
nians which are smooth. If the group G is split and char(k) = 0, then the result
proven in [9] and [26] is stronger. In this case, every (normalized) Schubert variety
is singular along its boundary, that is, GrG L= GrG . 1s exactly the smooth locus in
Gr@’ﬁc = GrG - As the phenomenon of exotic smoothness shows, this fails in twisted
affine Grassmannians for general special vertices.
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CONJECTURE 5.4 ) )
- < -
If x is absolutely special, then the smooth locus of Graf; is precisely Grléj X

In Corollary 6.1 below we give some evidence for this conjecture. The essential
difficulty in proving the conjecture consists in handling absolutely simple, non-split
groups over C((¢)).

Remark 5.5

(1) If Conjecture 5.4 holds for the normalized Schubert varieties, then the same
is true for the non-normalized Schubert varieties as well. Indeed, the finite
birational universal homeomorphism C;r?; — Gréf; induces an isomorphism
over the smooth locus of the target.

(i) It would also be interesting to determine the type of singularities which arise.
The calculations in Section 8 indicate that these might be different from the

minimal degeneration singularities for split groups.

6. Reduction of the remaining cases to k = C
In order to treat the remaining cases in Sections 7 and 8 below, we first reduce the
proof that the normalized Schubert varieties in question are singular to the case where
k =C. Let W := W(k) be the ring of Witt vectors of k equipped with the natural
map W — k. Let K = Frac(W) be the field of fractions. As the group G is tamely
ramified, the twisted affine Grassmannian together with the Schubert varieties lift to
W (see [30, Section 7]).

More precisely, there exists a smooth, affine group scheme with connected fibers
§ — W]u] whose base change G to W(u)) is reductive and whose base change
to «flu] for k = k, K is the parahoric group scheme for G (u attached with the
“same” facet (see [32, Corollary 4.2(2)]). We note that &/ W [[u] is a special case of
the “parahoric” group schemes constructed in [32, Section 4].

Hence, as in [30, Section 7] there exist a twisted affine Grassmannian Grg

defined over W and, for every it € X, (T);r, a normalized Schubert variety @é’;
such that

G @k =Grg-. 6.1)

Note that we are using the identification X«(7T); = X« (T g )1, which is compatible
with the dominance order, where T is the lift of T over W: this is an immediate
consequence of the identification of apartments for G g,y and G,y = G (see [32,

(4.2)]). Further, we use the fact that formation of Qé’; commutes with base change.
For simply connected groups this is proved in [30, Proposition 9.11(a) and 9.g], and
the case of adjoint groups follows from this by using a standard reduction to affine flag
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varieties and a translation to the neutral component as, for example, in [16, Proposi-
tion 3.1]. The affine Grassmannian in the generic fiber Gr; , ® K is of the same type
as the affine Grassmannian in the special fiber Grg,x, so that @él; ® K is the Schu-
bert variety in gg‘i ® K for the same i € X« (7T)7 (using the normality of Schubert
varieties in characteristic 0). . .

As the singular locus in @élﬁc is closed, the generic fiber @éi ® K being sin-
gular implies that the special fiber Gréi is singular. We are therefore reduced to the
case in which k is an algebraically closed field of characteristic 0. Furthermore, every
such group is already defined over Q(t)) so that we further reduce to the case k = C.
We will assume this whenever convenient in what follows.

With a view toward Con]ecture 5.4, we note that if the smooth locus of the generic
fiber GrG + ® K is precisely GrG x ® K, then the smooth locus of the special fiber

GrG L ®k = GrG . 1s precisely GrG - Indeed, the formation of GrG . commutes with
base change; and hence, for a maximal element A < fi, any point in the A-stratum of
Qéi ® k is a specialization of a point in the A-stratum of Qélﬁc ® K. Invoking [9]
and [26], we thus have proved the following.

COROLLARY 6.1
(1) If Conjecture 5.4 holds for k = C, then it holds for general fields k.
(i)  If G is split, then Conjecture 5.4 holds.

7. The 3-dimensional quasi-split ramified unitary groups

Let k be an algebraically closed field with char(k) # 2. Let F = k((t)), and let F'/F
be a quadratic ramified extension. Let G = PUj3, and let x € #(G, F) be a special
vertex. Up to conjugation by G,4(F), there are two kinds of vertices: one is absolutely
special and one is special, but not absolutely special. The local Dynkin diagram of G
is:

C-BCy = .

Note that Grg,, is connected with a linear order relation on the Schubert varieties,
that is, there are no minuscule Schubert varieties. Recall that the pair (¢, x) is said to
be of exotic smoothness if j& is quasi-minuscule and x is special, but not absolutely
special, that is, the vertex labeled 1 in (7.1). The aim of this section is to prove the
following proposition.

PROPOSITION 7.1 _
_ . . ~ <R
Assume that (jL,x) is not of exotic smoothness. Then the smooth locus of GrGlfx is

~ [ 5 < m - . .
exactly Grg,x. In particular, Gr(_;f; is singular if L is non-trivial.



3242 HAINES and RICHARZ

We may pass to working with G = SU3 thanks to Proposition 3.1. Also, we use
Section 6 to reduce the proof of Proposition 7.1 to the case in which k = C. In this
case, Grél; = Gra—; is the ordinary Schubert variety. By [30, Section 9.f] the twisted
affine flag varieties for simply connected groups agree with the Kac—-Moody affine
flag varieties so that Kumar’s criterion from [22, Theorem 8.9] is applicable. This
is a criterion for the smoothness of Schubert varieties in terms of affine Weyl group
combinatorics. We first reduce the proof of Proposition 7.1 to Schubert varieties in
the affine flag variety in Section 7.2 and then recall Kumar’s criterion in Section 7.3
below. The final verifications are made in Section 7.4 below.

7.1. Preliminaries on Schubert varieties

We write F’ = k((u)) for a choice of uniformizer u with u? = ¢, and we fix a basis
giving an isomorphism V = (F’)3 such that the Hermitian form is given by the anti-
diagonal matrix antidiag(1, 1, 1). With respect to this basis, we let T C G be the
diagonal torus, and let B C G be the Borel subgroup of upper triangular matrices.

We define the O -lattices Ag := O3, and A; := u"'Op & O%,. Up to con-
jugation by SU3(F), the vertex x corresponds either to the absolutely special vertex
given by the self-dual lattice A¢ or to the special, but not absolutely special vertex
given by the almost modular lattice A (see (5.1)). We fix the base alcove a, which
corresponds to the Iwahori subgroup in SU3(F) given by the stabilizer of the lattice
chain Ag C A;.

Observe that (GV)! is an adjoint group (see Proposition A.1) and so X«(T); =
X*((TV)!) is generated by V. Write e = [ for the simple échelonnage coroot.
In this way we identify X, (T)}F = Zx9, and we denote by [i; € X (T);L the element
which corresponds to [ € Z>¢. Explicitly, ji; is under the Kottwitz map given by the
class of the diagonal matrix diag(u’, 1, (—u)~") € T(F). As closed subschemes in the
affine Grassmannian we have

{e} = GrG“0 C Gr<”“1 C Gr—“2

and GrG“ ! \Gr<“ =1 Grgl ..» Which is of dimension 2/ (because the base alcove
corresponds to the interval (0, %); see below). The element fi; is the unique quasi-
minuscule element.

7.2. Reduction to the affine flag variety

We consider the Iwahori @ f-group scheme §, given by the automorphisms of the
lattice chain Ag C Ay, and we denote by ¢ := LG/L™" g, the associated twisted
affine flag variety in the sense of [30, Section 1.c]. Let W = W(G, T, F) be the affine
Weyl group. For each w € W, we denote by F£=" C F{ the LT ,-Schubert variety
associated with the basepoint n,, € F£(k) corresponding to w (see [30, Section 8]).
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The canonical projection 7 : ¢ — Grg, x is representable by a smooth proper
surjective morphism of relative dimension 1 (see [15, Lemma 4.9 1)]). Thus, for each
[ > 1 there exists a unique element w; , € W such that as subschemes of the affine
flag variety

ap<w; x _ _—1 <it;

FL=Y1x =g (Grg.,)-
Since the projection FL=VIx — Grf;ﬁx’ is smooth, to show Gré’_‘xl is singular it is
enough to show that F£="'- is singular at a point v; , lying over fi;_;. We need to

explicate the elements wy , in terms of the affine Weyl group W and need to make
suitable choices for vy .

7.2.1. Affine roots

We have the perfect pairing (-,-): X*(T)HI% X X«(T)rr — R of 1-dimensional R-
vector spaces. Let €; € X*(T)L be such that (€1, e;) = 1. The set of affine roots
D, = Oui(G, T, F) is given by

Dy = {Fe; + Z; +2¢; + Z}.

It follows that the simple affine roots are o; = €1, g = —2¢; + 1, and the simple
échelonnage root is ac, = 2¢€;. These roots have coroots alv = 2eq, a(\{ =—e; + 1
and a), = e; = ji;. Note this is consistent with our description of ji; above. The base
alcove a is the open interval (0, %) C R. In this notation, we have ji; = leq =la,.

7.2.2. Simple reflections

The affine Weyl group W has a Coxeter group structure given by the choice of the
base alcove a. We denote by < the partial order and by £(w) € Z>¢ the length of an
element w € W. We let 59 := 54, be the simple affine reflection given by o, and we
let 51 := 5o, be the simple reflection given by «;. We have the group presentation

W = (50,51 |55 =57 =1).
The group W acts on ®,¢. We have s; (o;) = —«; fori =0, 1, and

so(a1) = a1 — (a1, a4 )ag = a1 + o,
s1(ao) = ap — (g, ) a1 = ap + 4o
Translation by [ takes the base alcove a = (0, %) to the interval (1, %). Therefore, for

[ > 1, translation by ji; is an element in W with reduced expression (sos1)’. In what
follows we will abbreviate such expressions.
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7.2.3. Cases

We extend the definition to every i € Z by s; := s¢ (resp., o; := ®g) if i is even, and
s; =1 (resp., ; :=orp) if i is odd. Further, for every pair i, j € Z, we define s; j 1=
siSiy1-++8;ifi < jands; j:=1ifi > j. Fix/ > 1, and consider the following two
cases.

Case A. Let x be the absolutely special vertex given by the self-dual lattice Ag. Then
5, (OF) contains the affine root groups given by ;. In this case, we have w; , =
51,21+1, and we fix this reduced expression. We define v; , 1= 51 27-1.

Case B. Let x be the special, but not absolutely special vertex given by the almost
modular lattice A;. Then §,(OF) contains the affine root groups given by +ay.
In this case, we have w; x = 59,27, and we fix this reduced expression. We define
V7,x 1= S0,21—2, that is, the roles of 0 and 1 are interchanged.

7.3. Kumar’s criterion
From now on assume that £ = C. Then F¥ is the Kac—-Moody affine flag variety (see
[22]) associated with the generalized Cartan matrix of rank 2 given by

((01070!3) (ao,alv)) _ ( 2 —4)
(al,ag) {ar.ay) -1 2)

Let Q be the fraction field of the symmetric algebra of the root lattice. Let w €

W, and fix a reduced decomposition w = s7 - ... - s,. For v < w, we define
n
def . . _
evX(w)éznsln-si(ai) 1EQ, (7.2)
i=1

where the sum runs over all sequences (51,...,5,) such that either 5; = 1 or §; = s;
for every i, and §; - ... -5, = v. The following theorem is [22, Theorems 5.5(b) and
8.9].

THEOREM 7.2
The Schubert variety FL=" is smooth at v if and only if
aXw)=D' ] o, (7.3)

+.
€D s V=W

where CD:;f C @, is the set of positive affine roots and s, denotes the associated
reflection.

7.4. End of the proof
By Theorem 7.2, we need to calculate the expression ey, . X(wj ) in both cases A
and B. Note that there are 2/ subexpressions of v;  in w; , defined by deleting two
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neighboring simple reflections and that all subexpressions are of this form. We use
the notation introduced in Section 7.2.3.

Case A. An elementary calculation gives

21—1 2[1—1

elex(wlx)—(nsll(az )(Zslz(ao) Lspian)” ) (7.4)

i=1

=IA1
Case B. The same calculation as before gives

21-2 21—-1

ev,xX(wlx)—(l_[SOl(al ) (ZSOI 1(0) ™ s0,i—1 (@)™ ) (7.5)

=2B/

COROLLARY 7.3
The Schubert variety FL="1-x is smooth at v, . if and only if

-1 -1 -1 -1
Al=—% 31,21(010) = Qg Sl,zl—l(ao) s resp.,

—1 —1 —1 —1
By = —ai sop—1(a1)” =aj So-—2(a1)

Proof
The right-hand side in (7.3) takes the form

21 21
case A: — [ [ s1i-1(@) ™ = =] [srite)™
i=0

i=0
21—-1 21—-1

case B: — l_[ so,i_l(ai)_l =— 1_[ So,i(ai)_l-

i=— i=—1

Here we used s;(o;) = —«; and the conventions s;,— = §1,—1 = §1,0 = 1 to keep
track of the signs. By comparing this with (7.4) (resp., (7.5)), the corollary follows
from Theorem 7.2. O

We now need to calculate A; and Bj for every [ > 1. The following identities are

useful.

LEMMA 7.4

Foralli € Z>y, one has

i oo + s1(ao) =2, and s1,2i(0o) = g — 2i, and s1,2i+1(0) = s1(o) + 2i;

ii. ay +so(a1) =1, and so2i—1(a1) = a1 — i, and so2i (1) = so(ery) +1.
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Proof
We have s1 (o) = ap +401 =2 —0a, and so(e1) = g + o1 = 1 — 1. The remaining
identities are proved by an easy induction and are left to the reader. O

Case A. The number of summands in A; is even, and we add terms in consecutive
pairs as follows. For every 0 <i </ — 1, one has

s1.2i (@0) V5120 (01) T 4 512041 (20) Vst 2041 () !

=451 (ct0) " s1,2i41(c0) ",

where we used s1,2i+1(c01) = —s1,2i (1) and s1,2i41(t0) = 51,2 (20) + 451,2i (1)
This shows
-1
-1 —1 —1 -1
Aj =4'Zsl,zi(0to) S12i+1(c0)” =4l -ag s121-1(0) -
i=0

For the last equality we use Lemma 7.5 below applied to ag + s1(ctg) = 2, which is
justified by Lemma 7.4(i). Hence, by Corollary 7.3 the Schubert variety F£="!-* is
singular at v; , for all / > 1 in this case.

Case B. Again the number of summands in By is even, and we add terms in consecu-
tive pairs. For every 0 <i <[ — 1, one has

50,2i—1(00) " 50,2i—1(01) ™ + 50,2 (0t0) 50,26 (1) ' = s0,2i—1 (1) V0,21 (1) 7,

where we used s9,2; (0tg) = —50,2i—1(o) and s,2; (1) = S0,2i—1(ctg) + S0,2i—1(0t1).
This shows
-1
B, = ZSO,Zi—l(al)_lsO,Zi (@)™t =1-ay s020-2(c)".
i=0

For the last equality we use Lemma 7.5 below applied to o1 + so(c1) = 1, which
is justified by Lemma 7.4(ii). Hence, by Corollary 7.3 the Schubert variety F{=""-
is singular (resp., smooth) at v; , for / > 2 (resp., / = 1). This finishes the proof of
Proposition 7.1.

LEMMA 7.5
Let n € Z>1, and let a, B € Q\nZ (e.g., o, B are affine roots) with « + 8 = n. For
any [ > 1, one has

-1 I

1
2 @—ni)B+ni) af+nl—1)

i=0
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Proof
This is elementary and left to the reader. O

Remark 7.6
The form of A; and B; also shows that the Schubert variety F¢="/-* is rationally
smooth at v;  (see [22, Thms. 5.5(a), 8.9]. This is in accordance with Theorem 1.1.

8. The quasi-minuscule Schubert variety for the ramified triality

Let k be an algebraically closed field of characteristic # 3, and let F = k((¢)) be the
Laurent series local field. Let G be the twisted triality over F', that is, the up to iso-
morphism unique quasi-split but non-split form of Sping over F. Note that G splits
over a totally ramified extension of F of degree 3 and is therefore tamely ramified by
the assumption on k. Let x € B(G, F) be a special vertex in the Bruhat-Tits building,
and denote by G, the associated special parahoric group scheme over O = k[¢]. By
[37, Section 2.5] the group G.q(F') acts transitively on the set of special vertices.
Therefore, we may justifiably denote by Grg := LG/L™§, the twisted affine Grass-
mannian in the sense of [30]. We also note that all Schubert varieties inside Grg are
normal by [30, Theorem 6.1].

THEOREM 8.1
The quasi-minuscule Schubert variety in Grg is a 6-dimensional projective k-variety
which is rationally smooth, but singular at the basepoint.

Rational smoothness follows from Theorem 1.1 (see also Remark 8.3 below).
For the proof that the quasi-minuscule Schubert variety is singular at the basepoint,
we use Section 6 to reduce to the case k = C first, which we assume in Sections 8.6
and 8.7 below. Here our method is similar to the method in [26, Sections 2.9-2.10]:
we construct a neighborhood of the basepoint inside the quasi-minuscule Schubert
variety in a certain space of nilpotent matrices. We show that the tangent space of our
Schubert variety at the basepoint is 7-dimensional, and hence, this point is singular.
Note that it is quite different from the quasi-minuscule Schubert variety for a split
group of type G, in which case the tangent space at the identity is of dimension 14
(= dimension of the Lie algebra of G,; see [26, Section 2.9]).

Alternatively, one can in principle prove that the quasi-minuscule Schubert vari-
ety is singular by using Kumar’s criterion as in Section 7 above. However, this is
lengthy without computer-aided calculations (see also [26, Section 7.10] for a simi-
lar calculation in the split case) and would give less insight as we would not get the
dimension of the tangent space at the identity.
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8.1. Construction of the twisted triality
Let F’ = k(u)) be the cubic Galois extension of F defined by u3 = ¢. The Galois
group I = Gal(F’/F) is cyclic of order 3, and we denote by 7 € I a generator. Then
tu = { -u, where ¢ = {3 is a primitive third root of unity.

The special orthogonal group in dimension 8§ is the functor on k-algebras R given
by

SOs(R) = {4 € SLg(R) | AJA"J =id}, 8.1)

where J := antidiag(1,...,1) € GLg(R). Let T’ C B’ C SOg be the maximal diago-
nal torus, contained in the upper triangular Borel. The torus 7" is given by

T'(R) = {diag(ay.....as.a;".....a7") |ai,....as € R*}. (8.2)

The coroot lattice QV is the index 2 sublattice of X, (7T’) = Z* with basis o) =€ —
€2,0y =€y —€3,ay =€3—€y, and o) = €3+ €4. Hence, 71(SOg) = X (T')/ 0 =
Z]2.

Define v : H := Sping — SOg to be the simply connected degree 2 cover. The
preimage Ty := n~(T’) is a maximal torus of H contained in the Borel subgroup
By := 771 (B’). We have X.(Ty) = QY C X«(T’). The affine Dynkin diagram of
H is

oo
S}

e
D, e (8.3)

04

We let 0¢g € Aut(Dy4) denote the automorphism defined by 2+ 2 and 1 +— 3
4 — 1. We fix a principal nilpotent element in Xz € Lie(By) and regard oy as an
automorphism of H via

Aut(Dy) = Auty (H, By, Ty, Xg) C Auty (H).

Then the twisted triality G is the functor on the category of F-algebras R given by

def

G(R)={Ac HR®F F') | 0(A) = 4}, (8.4)

where 0 := 09 ® 7. Likewise, we define the F-subgroups T C B C G by descent.
The affine Dynkin diagram of G has the form (see [37, Section 4.2])

0 2 1
o

om0 (8.5)

G3

Here the arrow points to the shorter root and should be regarded as an inequality sign
saying that one root is of smaller length than the other.
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8.2. The special parahoric

Since the extension F’/F is tamely ramified, we have an identification of buildings
PB(H, F')° = %(G, F) compatible with the simplicial structure (see [33]). After con-
jugation by an element in G,4(F'), we reduce to the case where x = 0 corresponds to
the basepoint. In terms of parahoric group schemes, the pair (Hr’,0) corresponds to
the O f/-group H := H ®; OF’. Hence, the special parahoric group scheme §, = §
associated with the pair (G, 0) is the O p-group § = Resg ., /0, (H)?.

8.3. Some loop groups

We denote by LG (resp., L1Tg) the twisted loop group given on k-algebras R
by LG(R) = G(R(t))) (resp., LT§(R) = g(R[t])). Likewise, we denote by LH
(resp., LT J) the loop group given by LH(R) = H(R(u)) (resp., LT H(R) =
H (R[u]))). Then as k-group functors

LG =(LH)®  (resp., LTg = (LTH#)), (8.6)

which is an immediate consequence of the definition. The negative loop group L~ H
is defined on k-algebras R by L™ #(R) = H(R[u™']). Let L=~ H# :=ker(L™H —
H), u~! > 0. Then the morphism given by multiplication

L~ H xLTH — LH, (h= hH—h=-h™, (8.7)

is relatively representable by an open immersion (see [23, Proposition 4.6]; see also
[8, Theorem 2.3.1], [15, Corollary 3.2]). The automorphism o € Aut (L H) preserves
the subgroup L™~ H# C LH, and we define the k-group

L8 < (L a)°.
By taking o-fixed points in (8.7), we see that the multiplication morphism L™—§ x
LT§ — LG is still an open immersion. Hence, if e € Grg = LG/L™§ denotes the
basepoint, then the morphism of k-ind-schemes

L7778 — Grg, g g e (8.8)

is representable by an open immersion.

8.4. The quasi-minuscule Schubert variety

Let 3 be the échelonnage root system of G which we give explicitly in Section 8.5.2
below. Let jt € X«(T) be the unique quasi-minuscule cocharacter for this root sys-
tem. We fix an element t# € T(F) mapping to ji under the Kottwitz morphism
T(F) — X.(T);. We show in Section 8.5.3 that the element ¢ maps under the map
T(F)— T'(F’) C SOg(F’) to the diagonal matrix
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diag(uz, u,u, 1,1, u_l,u_l,u_z) - 1o,

for some 79 € T"(OF/). Let Cj, C Grg be the reduced Lt &-orbit of t" . e. The quasi-
minuscule Schubert variety Sy C Grg is the closure of Cj equipped with the reduced
scheme structure. Then Sj; is a projective k-variety whose smooth locus contains Cj.
By the Cartan decomposition for twisted affine Grassmannians ([34, Corollary 2.10]),
we have

Sa=Cu| J{e}- (8.9)

LEMMA 8.2
The Schubert variety Sy is of dimension 6.

Proof
Let 2p = 601 + 100, + 603 + 64 be the sum of the positive roots in the absolute
root system ®p, . By [34, Corollary 2.10],

dim(Sz) = (2p, p),

where p = 20y + oy as in Section 8.5.3 below. A calculation shows (2p, u) = 6. [

Remark 8.3

Note that (GY)! = G, by Lemma 4.2(iii). Under the geometric Satake isomorphism
for ramified groups (see [35], [38]), the Schubert variety S; corresponds to the quasi-
minuscule fundamental representation Vj of G,. This is the unique 7-dimensional
non-trivial representation, it has 6 extreme weights, and hence, its trivial weight space
is 1-dimensional. This shows that Vj; is weight-multiplicity-free, and hence, Sy is
rationally smooth by Proposition 2.2, without using the classification result in Theo-
rem 4.4.

8.5. Various root systems
We give explicitly the various root systems attached to the twisted triality.

8.5.1. Dy roots
We use the notation of Bourbaki from [5] for the root system of type D4. The set of
roots @ p, carries the automorphism o of order 3. The simple roots are

o] = €1 — €7, 0y = €3 — €3, 03 = €3 — €4, 0y = €3 1+ €4.
We list the positive roots as og-orbits:

{az}, {o1. a3, 04}, {o1 + @z, 00 + 3,0 + a4},
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{og + a2 + a3, 00 + a3 + 04,01 + 02 + 04},

{ag + oz + a3 + agl, {aq + 200 + a3 + a4}

The highest root is aP4 = ay + 2000 + 003 + 4.

8.5.2. Echelonnage roots

The échelonnage root system > for G can be described explicitly in terms of the
absolute roots ®p,, by [12, Theorem 6.1]. The simple positive roots in 3 are the
modified norms N (o) of the simple positive roots o for ®p, (but here the modified
norm coincides with the unmodified norm in [12, Definition 3.1]). Therefore, the
simple positive échelonnage roots may be written as

A= {or, 001 + a3 + s}

In other words, & := «; is the short simple root, and § := a1 + a3 + @4 is the long
simple root. It is evident from the angle /(«, §) that we get a root system of type G».
Therefore, in these coordinates the highest root is

a=3a+28 =30 +2(a1 + a3 + a4).
The coroots are given by

\ \ A\
:al —|—a3 + oy
3

' =af.

and (by using that @ =: i is quasi-minuscule with respect to 3 and, hence, is the
fundamental coweight a)g)

- 2
@' =a"+28Y =a) + g(alv + o3 +ay). (8.10)

8.5.3. Quasi-minuscule coweight i for G

The element (8.10) is the result of applying the o-averaging map X«(7); — X«(T)!
to an element u = oy + 2y € X4(T). By [21, (7.3.2)], under T(F)/T(OF) —
T(F")/T(OF), t* maps to u” := ji(u) € T(F'), where

f:=Np=2(+a; +o))+ 30, € X(T). (8.11)
In terms of the diagonal torus 7" in SOg, the image of 1* takes the form
ut . to = diag(uz,u,u, 1, l,u_l,u_l,u_z) - 1o,

for some tg € T'(O /).
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8.5.4. Fixed-point roots

We can identify the root system of the fixed point group H°° = Spingo using the gen-
eral procedure of [11, Section 4]. The procedure is to take the non-divisible elements
of the set of gp-averages of the roots of H. We get the following list, corresponding
to the og-orbits listed above:

o] a3+ oy
o), [Oteten

1
3 {a2+§(al+a3+a4)},

2
{Olz + 5(011 + a3 +0l4)},
{ag + o + a3 + ag}, {ar + 200 + a3 + a4}

This is the set of positive roots in a root system of type G, (see [5, P1. IX (IL, V)]). The
group H°° is connected reductive, semi-simple, simple, and simply connected (see
Proposition A.1), so that H°° = G,. (We fix an isomorphism.) Note that we have
used the connectedness of 790, which is obvious in this situation.

8.6. Nilpotent orbits with a twist
Now assume that k = C.

8.6.1. The space (u='H)°

Write b = Lie(H) and n = Lie(H)"'?, the set of nilpotent elements in h. Consider
u~'h C h ®c C((u)). This is a o-stable C-vector subspace of finite dimension. For a
root y of H, let u, : C — b be the corresponding Lie algebra homomorphism. We
use the same symbol for u,, : C(u) — h @c C(u).

LEMMA 8.4
(1) We may identify (u='h)% with the set of vectors

Py 'x) & (),
Y

where y ranges over the roots of H, where the x, € C satisfy the condition
that Xo,y = ¢ 'x, forall y, and where y € (u™! Lie(Tg))°.

(i1) The vector space (u='h) is a 7-dimensional non-trivial representation of
H? = H°0; hence, it is the quasi-minuscule fundamental representation of
G, = H,

(iii)  Fix x € C\{0}. The variety (u~'n)? contains the reduced orbit closure
G2 - Vmax of

Umax = U +ar+a3 (u_lx) D Uayr+az+ay (“_lg_lx) D Uq;+ar+ay (u_lé—_zx)-

This orbit closure is a 6-dimensional affine C-variety.
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Proof
Part (i) is immediate. We see that x,, = 0 if y is op-fixed. Therefore, we are left only
with the contributions for y in

{03,004} U £{og + o, 00 + 3,00 + 4}

U=E{ar +ax + a3, 00 + a3 + 0,01 + 02 + a4} (8.12)

and the 1-dimensional space (1! Lie(T))? . Therefore, dimc((u~'H)) = 7.

Since H and o act on u~'h such that o(h - v) = o(h) - o(v) for h € H and
v € u~'h, we see that H? acts on («~'H)°. The action is visibly non-trivial. Since
it is a 7-dimensional semi-simple non-trivial representation, (¥~ 'h)? must be the 7-
dimensional representation associated to the quasi-minuscule fundamental weight of
G». This proves (ii).

Finally, let vy« be as in (iii). It is a highest weight vector in the representa-
tion (u~'h)? of H° = G,. Therefore, its orbit is at least 6-dimensional, because it
contains the non-zero elements of the 6 extreme weight spaces in (u~'h)°. Since
n is closed in b, the orbit closure is contained in (x~'n)°. As the latter space is 6-
dimensional (it does not contain (u~! Lie(T))?), we see that the orbit closure is
exactly 6-dimensional. O

8.6.2. The reduced orbit closure is singular

We consider the reduced orbit closure G, - Umax. The G,-orbit is dense in a 6-
dimensional vector subspace of (u~'H)?; hence, its closure contains the origin
0ec (u~th)°.

LEMMA 8.5
The 6-dimensional variety G, - Vmax has a 7-dimensional tangent space

T (G2 : vmax) = (u_lh)c;

hence, Gy - Vmax Is singular at 0.

Proof

Clearly To(G2 - Vmax) € To((u™'h)?) = (u™'h)? as a G,-invariant subspace. Since
(u™'h)? is an irreducible G,-representation, the equality holds. The lemma follows
from Lemma 8.4(ii). O

8.6.3. The exponential map
Essential to our proof of Theorem 8.1 is the following proposition.
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PROPOSITION 8.6
The exponential map

© 1 yi

R » w'X)

exp:u  n—> L H, u XH,EOT (8.13)
i=

is algebraic and equivariant under H. Further, it induces an algebraic map

exp: G2 - Umax —> (L7 H)° NSz =L""§NS;.

Proof
It is clear that (8.13) is algebraic and H -equivariant. Both the scheme-theoretic image
Z of exp |m and L77§ N S are reduced closed subschemes of L™~ J¢. Thus,
to show Z C L™™§ N S; we may argue on C-points. In fact, for the remainder it
suffices to show that vymax has o-fixed image and lands in Cj.

Let Uy : C(u)* — SOs ®c C((u) be the root group homomorphism associated
to y. Then, by the definition of v,,x in Lemma 8.4(iii), one has the formula

exp(vmax) = Ua1+0lz+0!3 (u_lx) . Ua2+d3+0¢4 (u_lé‘_lx) . U(X1+0l2+0[4(u_1§_2x)‘

Note that the three root groups commute with each other, since no pair of the roots in
{ag + o2 + 3,00 + @3 + 04,001 + @2 + 004} sums to a root of H. Thus, exp(Vmax) is
evidently fixed by o, so it liesin L™ §.

It remains to show that exp(vmax) lies in Cj;. A calculation using the root groups
shows that the image of V. in SOg(C (1)) is an 8 x 8 matrix of the form

B ulx wule2x 0 0 —u2 227
u ey 0 0
—u 1 x 0

1 —u~ e 2x
| —uflx ,  (8.14)
1
1
L 1 i

where all unlabeled entries are 0.
By using the embedding SOg C GLg and Section 8.5.3, it suffices to show that

exp(Vmax) € Kdiag(u_z,u_l,u_l, 1, l,u,u,uz)K,

where K = GLg(C[u])). We prove this by using the algorithm for finding the Smith
form of a matrix over a principal ideal domain. For the matrix A = exp(vmax) and
1 <i <8, define the weakly increasing sequence of integers a; € Z by requiring that
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(uz-ifi 4/) = ideal generated by the i x i minors of A.

Then the Smith form of A is the matrix diag(u®!,u%2,...,u%). An inspection of
(8.14) shows that a1 = =2, a1 +a, = -3, a1 + a» + a3 = —4, and a1 + a, +
as + a4 = —4. Thus, the first half of the entries of the Smith form of exp(vm.y) are
(u=2,u~',u™1, 1). Because the matrix is in SOy, this determines the rest of the entries
as well. This completes the proof. O

8.7. End of the proof

We now finish the proof of Theorem 8.1. In Proposition 8.6, we have constructed an
algebraic morphism of 6-dimensional C-varieties (see Lemmas 8.2 and 8.4(iii) for the
dimension)

exp: Ga - vmyx — L7 8N S;. (8.15)

The target is an open neighborhood of the basepoint e in S. Note that 0 — e under
(8.15). By Lemma 8.5, it suffices to show that (8.15) is an open immersion, that is, an
isomorphism onto an open neighborhood of e. For this, we argue as follows.

The map exp: u~'h — L™~ H is injective, as can be seen by writing down the
formula for the exponential map in SOg and by comparing the coefficients of u~!.
Hence, the map (8.15) is an injective morphism of irreducible affine C-varieties of
the same dimension and, in particular, birational (because the field extension at the
generic points is separable, so that it must have degree 1). As the target is normal by
[30, Theorem 6.1], the map (8.15) is an open immersion by Zariski’s main theorem
[10, Corollary 4.4.9]. This completes the proof of Theorem &.1.

Appendix. A remark on fixed point groups

Let H be a connected reductive group over an algebraically closed field «, and let
(T, B, X) be a pinning which is preserved by the action on H of a finite group /.
Recall that H/ is a (possibly disconnected) reductive group, with maximal torus the
neutral component T/+° of the diagonalizable subgroup T/ C H! (see [11, Proposi-
tion 4.1]). In what follows, Z(A) denotes the center of an algebraic group A.

PROPOSITION A.1

Assume char(k) # 2. Then the following statements hold:

1) If T! is connected (e.g., H is adjoint or simply connected), then H' is con-
nected.

(i)  Z(H")Y= Z(H)!, and this group contains Z(H'°).

(ii)  If H is semi-simple, then H' is semi-simple.

(v)  If H is adjoint, then H' is adjoint.



3256 HAINES and RICHARZ

(v) If H is simple and simply connected, then H is simple and simply connected
unless H is of type Azn and carries a non-trivial I-action, in which case
H ~SLypi1and H' = S05, 1.

Proof

By, for example, [ 11, Proposition 4.1] we know 70(7'!) = mo(HT).If H is adjoint or
simply connected, then X*(T') is an induced I-module, and hence, T is connected
because X *(T1) = X*(T); is Z-free. This proves (i). Note this part holds with no
assumption on char(x).

For (ii), note that (7,q)” is connected, and thus, by [11, Proposition 4.6] we have
Z(H)'H"® = H' and hence, Z(H)! Z(H'°) = Z(H'). Now by [I1, proof of
Proposition 4.1], when char(k) # 2 the simple roots for (H °, T1-°) consist precisely
of the restrictions to 7'/>° of the simple roots for (H, T). It follows that z € Z(H-°) is
killed by all the roots of (H, T') and, hence, belongs to Z(H ). This proves Z(H-°)
Z(H)', and (ii) follows. Parts (iii) and (iv) follow from (ii).

For part (v), assume H is simple and simply connected. By (i), H” is connected.
Note that if @ is the highest root for (H,T), then the [-average &° is highest for
(H'°,T1°), and hence, the root system for the latter is irreducible since it has
a unique highest root. This proves H! is simple. Consider the dual group H!:V,
with dual torus 77-V. It is enough to determine when H 7V is adjoint. We have that
Xo(THY) = X*(TT) = Xo(TV); is dual to X*(TV)! = Hom(X«(TV)7,7Z). (Note
that X, (TV); is free.) Therefore, X *(T V) = X*(TV)! = (Z®V(H))!. Therefore,
to show H >V is adjoint, it is equivalent to show that

7oV (H') S (z9Y (H))'.

The right-hand side has as Z-basis the set Ny (AY (H)) of unmodified norms of sim-
ple coroots of H (see the definition of the operations Ny and N ; in [12, Def. 3.17%).
On the other hand, using the notation of [12, Section 3], the proof of [11, Proposi-
tion 4.1] shows that ®(H ') = res; ®(H) 2 (®(H)®)yeq. By the duality result of [12,
Proposition 3.5], Z®Y (H ') has a Z-basis given by N} (A (H)). Therefore, H'+" is
adjoint if and only if N;(AY(H)) = N;(AY(H)), which happens if and only if the
I -action is trivial or ®(H) is not of type A,,. The rest of the assertions of part (v)
are clear. O
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