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Differential privacy offers a formal framework for reasoning about the privacy and accuracy of computations
on private data. It also offers a rich set of building blocks for constructing private data analyses. When care-
fully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their
data, and the accuracy of the data analysis results, inferring useful properties about the population. The com-
positional nature of differential privacy has motivated the design and implementation of several programming
languages to ease the implementation of differentially private analyses. Even though these programming lan-
guages provide support for reasoning about privacy, most of them disregard reasoning about the accuracy
of data analyses. To overcome this limitation, we present DPella, a programming framework providing data
analysts with support for reasoning about privacy, accuracy, and their trade-offs. The distinguishing fea-
ture of DPella is a novel component that statically tracks the accuracy of different data analyses. To provide
tight accuracy estimations, this component leverages taint analysis for automatically inferring statistical in-
dependence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by
implementing several classical queries from the literature and showing how data analysts can calibrate the
privacy parameters to meet the accuracy requirements, and vice versa.
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1 INTRODUCTION

Differential privacy (DP) [16] is emerging as a viable solution to release statistical information
about the population without compromising data subjects’ privacy. A standard way to achieve
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6:2 E. Lobo-Vesga et al.

DP is by adding some statistical noise to the result of a data analysis. If the noise is carefully
calibrated, it provides privacy protection for the individuals contributing their data. At the same
time, it enables the inference of accurate information about the population from which the data are
drawn. Thanks to its quantitative formulation, quantifying privacy by means of the parameters e
and §, DP provides a mathematical framework for rigorously reasoning about the privacy-accuracy
trade-offs. The accuracy requirement is not baked into the definition of DP; instead, it is a constraint
made explicit for a specific task at hand when designing a differentially private data analysis.

An important property of DP is composability. Multiple differentially private data analyses can
be composed with a graceful degradation of the privacy parameters (€ and §). This property allows
to reason about privacy as a budget: a data analyst can decide how much privacy budget (the € pa-
rameter) assigns to each of her analyses. The compositionality aspects of DP motivated the design
of several programming frameworks [4, 7, 23, 26, 31, 40, 50, 51, 60, 62-64] and tools [24, 38, 41, 44]
to help analysts design their own differentially private consults. At a high level, most of these pro-
gramming frameworks and tools are based on a similar idea for reasoning about privacy: provide
primitives for fundamental differentially private analyses as building blocks, and use composition
properties to combine these building blocks. During composition, these systems ensure that the
privacy cost of each data analysis sums up and that the total cost does not exceed the privacy
budget. The programming frameworks also provide general support to further combine, through
programming techniques, the different building blocks and the results of several data analyses.
Differently, DP tools are optimized for specific tasks at the price of restricting the kinds of data
analyses they can support.

Unfortunately, reasoning about accuracy is less compositional than reasoning about privacy. It
depends both on the specific task at hand and on the specific accuracy measure that one is inter-
ested in offering to data analysts. Despite this, when restricted to specific mechanisms and specific
forms of data analyses, one can measure accuracy through estimates given as confidence intervals,
or error bounds. As an example, most of the standard mechanisms from the DP literature come
with theoretical confidence intervals or error bounds that can be exposed to data analysts to allow
them to make informed decisions about the consults they want to run. This approach has been
integrated in tools such as GUPT [44], PSI [24], and APEx [25]. Users of these tools can specify
the target confidence interval they want to achieve, and the tools adjust the privacy parameters
accordingly, when sufficient budget is available.!

In contrast, all of the programming frameworks proposed so far [4, 7, 23, 26, 31, 40, 50, 51, 60,
62—64] do not offer any support to programmers or data analysts for tracking, and reasoning about,
the accuracy of their data analyses. This phenomenon is in large part due to the complex nature
of accuracy reasoning, concerning privacy analyses, when designing arbitrary data analyses that
users of these frameworks may want to implement and execute. In this work, we address this
limitation by building a programming framework for designing differentially private analyses,
which supports a compositional form of reasoning about accuracy.

Contribution

Our main contribution is showing how programming frameworks can internalize the use of proba-
bilistic bounds [15] for composing different confidence intervals or error bounds, in an automated
way. Probabilistic bounds are part of the standard toolbox for the analysis of randomized algo-
rithms. Specifically, they are the tools that DP algorithm designers usually employ for the accu-
racy analysis of classical mechanisms [17, 19]. Two important probabilistic bounds are the union

1APEx goes beyond this by also helping users select the right differentially private mechanism to achieve the required
accuracy.
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bound, which can be used to compose errors with no assumption on the way the random noise is
generated, and Chernoff bound, which applies to the sum of random noise when the different ran-
dom variables characterizing noise generation are statistically independent (see Section 5). When
applicable, and when the number of random variables grows, Chernoff bound usually gives a much
“tighter” error estimation than the union bound.

Barthe et al. [8] have shown how the union bound can be internalized in a Hoare-style logic for
reasoning about probabilistic imperative programs, and how this logic can be used to reason in a
mechanized way about the accuracy of probabilistic programs, particularly programs implement-
ing differentially private primitives.

Building on this idea, we propose a programming framework where this kind of reasoning is
automated and can be combined with reasoning about privacy. Such a framework aims to offer
programmers the tools they need to implement differentially private data analyses and explore
their privacy-accuracy trade-offs, in a compositional way. This framework supports not only the
use of union bound as a reasoning principle but also the Chernoff bound when applicable. The in-
sight is that probabilistic bounds relying on probabilistic independence of random variables can be
smoothly integrated in a programming framework by using techniques from information-flow
control (IFC) [54] (in the form of taint analysis [55]). Although these probabilistic bounds are
not enough to express every accuracy guarantee one wants to formulate for arbitrary data anal-
yses, they enable the inspection of a large class of user-designed programs. Our approach allows
programmers to exploit the compositional nature of both privacy and accuracy, complementing in
this way the support provided by tools such as GUPT [44] and PSI [24], which yield confidence in-
tervals estimate only at the level of individual queries, and by APEx [25], which issues confidence
intervals estimate only at the level of a query workload for queries of the same type.

The described tool is materialized as a programming framework called DPella—an acronym
for Differential Privacy in Haskell with accuracy—where data analysts can explore the privacy-
accuracy trade-off while writing their differentially private data analyses. DPella provides several
basic differentially private building blocks and composition techniques, which can be used by a
programmer to design complex differentially private data analyses. The analyses that can be ex-
pressed in DPella are data independent and can be built using primitives for counting, average,
max, and any aggregation of their results.

DPella supports both pure-DP, with parameter €, and approximate-DP, with parameters ¢ and
6. Accordingly, it supports the addition of both Laplace and Gaussian random noise, and the use
of sequential or advanced [17] composition, respectively, together with parallel composition for
both notions. For clarity, we will mainly focus on e-DP and the Laplace mechanism; however, other
variants will be briefly discussed (see Section 5.3). DPella is implemented as a library in the general-
purpose language Haskell, a programming language that is well known to support information-
flow analyses [36, 53] easily. Furthermore, DPella is designed to be extensible by adding new prim-
itives implementing advanced DP routines (see Section 9).

To reason about privacy and accuracy, DPella provides two primitives responsible for interpret-
ing programs (which implement data analyses) symbolically. DPella’s symbolic interpretation for
privacy consists of decreasing the privacy budget of a query by deducing the required budget of
its sub-parts. However, the accuracy interpretation uses as abstraction the inverse Cumulative
Distribution Function (iCDF) representing an upper bound on the (theoretical) error that the
program incurs when guaranteeing DP. A query’s iCDF is built out from the iCDFs of its com-
ponents by using the union bound as the elemental composition principle. These interpretations
provide overestimates of the corresponding quantities they track. To make these estimates as pre-
cisely as possible, DPella uses taint analysis to track the injection of noise and identify which
variables are statistically independent. This information is used by DPella to replace soundly, when
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needed, the union bound with the Chernoff bound, something that to the best of our knowledge
other program logics [8] or program analyses [56] also focusing on accuracy do not consider. We
envision DPella’s accuracy estimations to be used in scenarios that align with those considered by
tools like GUPT, PSI, and APEx.

In summary, our contributions are as follows:

e We present DPella, a programming framework that allows data analysts to reason compo-
sitionally about privacy-accuracy trade-offs.

e We show how to use taint analysis to detect statistical independence of the noise that dif-
ferent primitives add, and how to use this information to achieve better error estimates.

e We inspect DPella’s expressiveness and error estimations by implementing PINQ-like
queries from previous work [6, 39, 40] and workloads from the matrix mechanism [30, 34,
61].

To present DPella and its components, this document is structured as follows. Section 2 pro-
vides a brief background on the notions of privacy and accuracy DPella considers. Section 3 intro-
duces DPella by showcasing its main features through simple examples. Section 4 presents each
of DPella’s primitives for the construction and execution of queries. Section 5 explains how do we
calculate accuracy concentration bounds and the accuracy-aware primitives that can be used by
the data analysts. In Section 6, we implement case studies from the literature revealing DPella’s
advantages and limitations. Section 7 introduces a new primitive that allows data analysts to test
DPella’s accuracy estimations. Section 8 shows DPella’s generalized API that allows data analyst
to combine noisy values generated with different mechanisms. Following, in Section 9, we discuss
DPella’s limitations in detail together with possible extensions to the framework. Last, Section 10
puts DPella in context while contrasting it with other approaches and frameworks.

Highlights. This work builds on our previous paper, “A Programming Framework for Differential
Privacy with Accuracy Concentration Bounds” [37], which we have improved in its presentation
and complemented with novel contributions summarized as follows:

e Comprehensive description of DPella’s components

e Introduction of a new feature to tests DPella’s accuracy estimations (Section 7)—this way,
analysts will be able to measure the tightness of DPella’s bound

e API updates including new accuracy combinators (Section 5.1) giving more options to ma-
nipulate and modify noisy values without losing information of their accuracy

e Description of (e,6-)-DP and Gauss mechanism integration (Section 5.3) that showcases
DPella’s flexibility to host other notions of DP and mechanisms

e Presentation of DPella’s generalized API (Section 8), which facilitates the implementation
of query plans involving results from different mechanisms.

2 BACKGROUND

DP [16] is a quantitative notion of privacy that bounds how much a single individual’s private
data can affect the result of a data analysis. More formally, we can define DP as a property of a
randomized query Q(-) representing the data analysis, as follows.

Definition 2.1 (Differential Privacy (DP) [16]). A randomized query O(-) : db — R satisfies e-DP
if and only if for any two datasets D; and D, in db, which differ in one row, and for every output
set S € R, we have

Pr[Q(D,) € S] < € Pr[Q(Dy) € S]. (1)
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In the preceding definition, the parameter ¢ determines a bound on the distance between the
distributions induced by O(-) when adding or removing an individual from the dataset—the further
away they are, the more at risk the privacy of an individual is, and vice versa. In other words, €
imposes a limit on the privacy loss that an individual can incur in, as a result of running a data
analysis.

A standard way to achieve e-DP is adding some carefully calibrated noise to the result of a query.
To protect all of the different ways in which an individual’s data can affect the result of a query,
the noise needs to be calibrated to the maximal change that the result of the query can have when
changing an individual’s data. This is formalized through the notion of sensitivity.

Definition 2.2 (Sensitivity [16]). The (global) sensitivity of a query Q(-) : db — R is the quantity
Ao = max{|Q(D;) — Q(D,)| for Dy, D, differing in one row.

The sensitivity gives a measure of the amount of noise needed to protect one individual’s data.
In addition, to achieve DP, the choice of the kind of noise that one adds is important. A standard
approach is based on the addition of noise sampled from the Laplace distribution.

THEOREM 2.1 (LAPLACE MECHANISM [16]). Let Q(-) : db — R be a deterministic query with sensi-
tivity Ag. Let Q(+) : db — R be a randomized query defined as Q(D) = Q(D) + n, wheren is sampled
from the Laplace distribution with mean i = 0 and scaleb = Ag/e. Then, Qis e-differentially private.

Notice that in the preceding theorem, for a given query, the smaller e is, the more noise Q(-)
needs to inject to hide the contribution of one individual’s data to the result—this protects privacy
but degrades how meaningful the result of the query is—and vice versa. In general, the notion of
accuracy can be defined more formally as follows.

Definition 2.3 (Accuracy (e.g., see, [17])). Given an e-differentially private query Q(-), a target
query Q(-), a distance function d(-), a bound «, and the probability f, we say that Q(-) is (d(-), @, f)-
accurate with respect to Q(-) if and only if for all of dataset D:

Pr[d(Q(D) - Q(D)) > a] < B. )

This definition allows one to express data-independent error statements such as follows: with
probability at least 1 — f8, the query O(D) diverges from Q(D), in terms of the distance d(-), for
less than a. Then, we will refer to « as the errorand 1 — f as the confidence probability, or simply
confidence. In general, the lower the f is (i.e., the higher the confidence probability is), the higher
the error « is.

As discussed previously, an important property of DP is composability.

THEOREM 2.2 (SEQUENTIAL CoMPOSITION [16]). Let Q;(-) and Q,(-) be two queries that are €, -
and e;-differentially private, respectively. Then, their sequential composition Q(-) = (Q1(-), Q2(+)) is
(e1 + €2)-differentially private.

THEOREM 2.3 (PARALLEL COMPOSITION [40]). Let O(-) be an e-differentially private query and
datay, datay be a partition of the set of data. Then, the query Q;(D) = (Q(D N data;), Q(D N dataz))
is e-differentially private.

Thanks to the composition properties of DP, we can think about € as a privacy budget that one
can spend on a given data before compromising the privacy of individuals’ contributions to that
data. The global e for a given program can be seen as the privacy budget for the entire data. This
budget can be consumed by selecting the local € to “spend” in each intermediate query. Thanks to
the composition properties, by tracking the local e that are consumed, one can guarantee that a
data analysis will not consume more than the allocated privacy budget.
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project
SchemaDS. hs
analysts
LA,Queries.hs
curator

tExecution.hs
dataset.csv
Fig. 1. File structure.

Given an €, DPella gives data analysts the possibility to explore how to spend it on different
queries and analyze the impact on accuracy. For instance, data analysts might decide to spend
“more” epsilon on sub-queries whose results are required to be more accurate while spending
“less” on the others. The next examples (inspired by the use of DP in network trace analyses [39])
show how DPella helps quantify what “more” and “less” mean.

3 DPELLA BY EXAMPLE

DPella’s model considers two kind of actors: data curators, owners of the private dataset who
decide the global privacy budget and split it among the data analysts, the ones who write queries
to mine useful information from the data and spend the budget they received. Analysts are not
allowed to directly query the dataset; instead, they need to implement their analyses and send
them to the curator who will execute them and give the results back.

From an implementation standpoint, this means that the analyses and their run functions are
provided in different files, with different privileges. More specifically, Figure 1 depicts a common
file structure for the usage of DPella. File SchemaDS. hs contains the schema of the dataset own by
the curator; it does not contain private data but only the names of the tables and their respective
attributes as a Haskell record type. For example, a dataset containing just one table called Ages
with two attributes name (a String value) and age (an Int value) will be encoded in SchemaDS. hs
as follows, where (::) is used to describe the type of a term in Haskell:

data Ages = AgeRow {name :: String, age :: Int}

Since the structure of the dataset is not considered sensitive information, SchemaDS . hs can be
accessed by both the data owner and data analysts.

File Queries.hs contains the analyses that have being implemented by the data analysts; all of
these queries should be parameterized by the dataset in which they will be later executed. Analysts
will only have access to their implementations and the database schema. Last, file Execution.hs
implements the run functions for the analyses at Queries.hs; this file is owned by the curator
and has access to all other files in the directory (in particular, it has access to the real data stored
in dataset.csv).

3.1 Basic Aggregations

For the following examples, we consider a dataset representing a tcpdump trace of packets where
each row contains the information indicated by its schema:

data Tcpdump = TCPRow {id = Integer |, timestamp :: Double
,src = IP , dest = IP
, protocol :: Integer , Size :: Integer

, payload :ByteString}
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3.1.1 Counting. An analyst wanting to know the number of packets sent to WikiLeaks, with IP
address 195.35.109.53, can do so by writing a simple eps-differentially private query as follows:

import SchemaD$
import AnalystLP

wikileaks :: e — Data 1 Tcpdump — Query (Value Double)
wikileaks eps dataset = do
byIP « dpWhere ((= 195.35.109.53) o dest) dataset
dpCount eps byIP

First, we import file SchemaDS where Tcpdump’s description (previously presented) is stored. Then,
we import DPella’s interface for analysts called AnalystLP, where LP indicates that we will use
the Laplacian mechanism. Subsequently, we implement query wikileaks, which takes as input
the amount of privacy budget eps (of type €) to be spent by the query and the dataset (of type
Data 1 Tcpdump) where it will be computed; when executed, this query will yield results of type
Query (Value Double)—that is, DPella computations of type Double (a more detailed explana-
tion of DPella’s types can be found in the following sections). In query wikileaks, we use the
primitive transformation? dpWhere to filter all rows whose dest attribute has a value equal to
195.35.109. 53; this operation returns a transformed dataset we call byIP. We proceed to perform
the noisy count using primitive dpCount over the filtered dataset byIP while spending eps amount
of privacy budget. The value of eps will—internally—determine the magnitude of noise to be added
to the real count.

Having this general implementation, an analyst can write specific queries fixing the value of
eps, for instance:

analysis1 =wikileaks 0.5
analysis2 = wikileaks 1
analysis3 =wikileaks 5

To execute these analyses, the data owner needs to implement a function that loads the required
dataset and executes analysts’ queries; such a function will look like this:

import SchemaD$S
import CuratorLP (loadDS, dpEval)
import Queries

runAnalysis :: (Data 1 Tcpdump — Query (Value Double)) — € — IO Double
runAnalysis query bud = do

ds <« loadDS "hotspot.csv"

dpEval query ds bud

Function runAnalysis takes as inputs the function to be executed, called query, and the global
privacy budget bud, returning the randomized count as an I0 Double. This function calls an auxil-
iary function loadDS (provided by DPella’s interface for curators) to read file hotspot.csv, which
is then saved as a DPella dataset in variable ds. Next, it uses DPella’s primitive dpEval indicating

%In Section 4, in our code we will usually use red color for transformations, blue color for aggregate operations, and green
color for combinators for privacy and accuracy.
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which analysis will be performed, over which dataset, and what the tolerance is for the privacy
loss.

Let us assume that hotspot. csv has the information of 10,000 packets and 7 of them are directed
to WikiLeaks’ IP address. Then, when the data owner executes the analysis, she would get results
such as follows:

>runAnalisis analysis1 20
Value =15.3

>runAnalisis analysis2 20
Value =4.8

>runAnalisis analysis3 20
Value =6.7

This clearly exemplifies the effects of the selection of eps on the queries’ results. Intuitively, the
greater the eps, the closer we are to the real count of packets.

3.1.2  Sums. Suppose that we are now interested in computing the amount of transmitted data.
In other words, we want to sum up the value of size column, which indicates the length of the
packets in bytes.

In DPella, to compute a sum, we need to first determine the range of the values—our framework
supports only integer numbers’ ranges (e.g., [1, 10], [-5, 30]). This information is needed to auto-
matically calculate the sensitivity of sum queries at compile time—that is, if every value is in the
range [a, b], the sensitivity of their addition is max{|al, |b|}. We specify ranges in DPella via the
primitive range.

range :: (IsInt a,IsInt b,IsNat | b-a|,a < b) = Range ab

This function receives no arguments since the range is indicated at the type level with type con-
straints of the form IsNat n for strictly positive integer numbers, and IsInt n for positive and
negative integers. Then, to create ranges, we need to use type applications such as follows:

rangel = range @(:+: 1) @(:+: 10)
range2 = range @(:-: 5) @(:+: 30)

Here, functions :+: and : -: are used to specify the sign of the range’s limits.
For the example of packet size, the data curator indicates that the range of size attribute goes
from 40 to 35,000 bytes, and then we define our query as follows:

totalBytes eps dataset = do
dpSum eps (range @(:+: 40) @(:+: 35000)) size dataset

Function totalBytes uses primitive dpSum to compute the noisy sum of size attribute—whose
values are ranging from 40 to 35, 000 bytes—over the indicated dataset. The way this query should
be executed does not vary from the execution of the analyses derived from function wikileaks
and thus is omitted.

Changing the question to focus on an specific protocol might require an adjustment on the range
to be specified. For instance, if instead we want to inspect the total amount of data transmitted
through Kerberos’ authentication protocol, which uses port 88, we should use the fact that this port
transmits packets of at most 1,465 bytes. Hence, we will need to update our query accordingly.
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1 cdf1 bins eps dataset = do

2 sizes « dpSelect size dataset

3 counts « sequence [do elems < dpWhere (< bin) sizes

4 dpCount localEps elems | bin « bins]
5 return (norms counts)

6 where localEps = eps / length bins

(a) Sequential approach

7 cdf2 bins eps dataset = do
8 sizes « dpSelect ((< max bins) o size) dataset

9 -- parts : Map Integer (Value Double)

10  parts « dpPartRepeat (dpCount eps) bins assignBin sizes

11 let counts = Map.elems parts

12 cumulCounts = [add (take i counts) | i « [1.length counts]]

13 return (norms cumulCounts)

(b) Parallel approach

Fig. 2. CDF’s implementations.

totalBytesKerberos eps dataset = do
kerberos « dpWhere ((= 88) o protocol) dataset
dpSum eps (range @(:+: 40) @(:+: 1465)) size kerberos

In function totalBytesKerberos, we will first filter the dataset to obtain the information re-
garding port 88, then we will perform the noisy sum over the filtered data. Observe that we are
defining a query with less global sensitivity than the one implemented in function totalBytes;
thus, if given the same eps, less noise will be added to the results of the analyses deriving from
function totalBytesKerberos. Having a notion of the order of magnitude in which the result of
a sum ranges becomes handy when reasoning about the accuracy of the query. In the following
examples, we depict how an analyst can use DPella to inspect the error of her queries, check for
miscalculations on the consumption of the privacy budget, and more.

3.2 Cumulative Distribution Function

Considering the same dataset Tcpdump, we would like to inspect—in a differentially private
manner—the packet’s length distribution by computing its Cumulative Distribution Function
(CDF), defined as CDF(x) = number of records with value < x. Hence, we are just interested in
the values of the attribute size. McSherry and Mahajan [39] proposed three different ways to ap-
proximate (due to the injected noise) CDFs with DP, and they argued for their different levels of
accuracy. For simplicity, we revise two of these approximations to show how DPella can assist in
showing the accuracy of these analyses.

3.2.1 Sequential CDF. A simple approach to compute the CDF consists of splitting the range of
lengths into bins and, for each bin, counting the number of records that are < bin. A natural way
to make this computation differentially private is to add independent Laplace noise to each count.

We show how to do this using DPella in Figure 2(a). We define a function cdf1 that takes as
input the list of bins describing size ranges, the amount of budget eps to be spent by the entire
query, and the dataset where it will be computed. For now, we assume that we have a fixed list of
bins for packet length. Function cdf1 uses the primitive transformation dpSelect to obtain from
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6:10 E. Lobo-Vesga et al.

the dataset the length of each packet via a selector function; in this case, it is just the column of
interest size. This computation results in a new dataset: sizes. Then, we create a counting query
for each bin using the primitive dpWhere. This filters all records that are less than the bin under
consideration (< bin). Finally, we perform a noisy count using primitive dpCount. The noise in-
jected by the primitive dpCount is calibrated so that the execution of dpCount is localEps-DP
(line 6°). The function sequence then takes the list of queries and computes them sequentially by
collecting their results in a list—to create a list of noisy counts. We then return this list. The com-
binator normg, in line 5 is used to mark where we want the accuracy information to be collected,
but it does not have any impact on the actual result of the CDF.

To ensure that cdf1 is eps-DP, we distributed the given budget eps evenly among the sub-
queries (this is done in lines 4 and 6). However, a data analyst may forget to do so—for example,
she can define localEps = eps, and in this case the final query is (Length bins) % eps-DP, which
is a significant change in the query’s privacy price. To prevent such budget miscalculations or
unintended expenditure of privacy budget, DPella provides the analyst with the function budget
(see Section 4) that, given a query, statically computes an upper bound on how much budget it will
spend. To see how to use this function, consider the function cdf1 and its modified version cdf1’
with localEps = eps. Suppose that we want to compute how much budget will be consumed by
running them on a list of 10 bins (identified as binsjg) and a symbolic dataset symDataset. Then,
the data analyst can ask this as follows:

>budget (cdf1 binsig 1 symDataset)

e=1
>budget (cdf1’ binsjg 1 symDataset)
€e=10

The function budget will not execute the query; it simply performs an static analysis on the code
of the query by symbolically interpreting it. The static analysis uses information encoded by the
type of symDataset (explained in Section 4), which, in this particular case, will be provided by
Tcpdump’s schema.

DPella also provides primitives to statically explore the accuracy of a query. The function
accuracy takes a noisy query Q(-) and a probability § and returns an estimate of the (theoretical)
error that can be achieved with confidence probability 1 — . Suppose that we want to estimate the
error we will incur in by running cdf1 with a budget of € = 1 with the same list of bins and sym-
bolic dataset as before, and we want to have this estimate for § = 0.05 and § = 0.2, respectively.
Then, the data analyst can ask this as follows:

>accuracy (cdf1 binsqjp 1 symDataset) 0.05
a =53

>accuracy (cdf1 binsip 1 symDataset) 0.2
o =40

Since the result of the query is a vector of counts, we measure the error « in terms of ., distance
with respect to the CDF without noise. This is the max difference that we can have in a bin due
to the noise. The way to read the information provided by DPella is that with confidence 95% and
80%, we have errors 53 and 40, respectively. These error bounds can be used by a data analyst to
figure out the exact set of parameters that would be useful for her task.

3The casting operation fromIntegral is omitted for clarity.

ACM Transactions on Programming Languages and Systems, Vol. 43, No. 2, Article 6. Publication date: June 2021.



A Programming Language for Data Privacy with Accuracy Estimations 6:11

3.2.2 Parallel CDF. Another way to compute a CDF is by first generating a histogram of the
data according to the bins and then building a cumulative sum for each bin. To make this function
private, an approach could be to add noise at the different bins of the histogram rather than to the
cumulative sums themselves, so we could use the parallel composition rather than the sequential
one [40], which we show how to implement in DPella in Figure 2(b)—where double dashes are
used to introduce single-line comments.

In cdf2, we first select all packages whose length is smaller than the maximum bin (line 8),
and then we partition the data accordingly to the given list of bins (line 10). To do this, we
use the dpPartRepeat operator to create as many (disjoint) datasets as given bins, where each
record in each partition belongs to the range determined by a specific bin—where the record that
belongs is determined by the function assignBin :: Integer — Integer. After creating all parti-
tions, the primitive dpPartRepeat computes the given query dpCount eps in each partition—the
name dpPartRepeat comes from repetitively calling dpCount eps as many times as the partitions
we have. As a result, dpPartRepeat returns a finite map where the keys are the bins and the ele-
ments are the noisy count of the records per partition (i.e., the histogram). In what follows (lines 12
and 13), we compute the cumulative sums of the noisy counts using the DPella primitive add, and
finally we build and return the list of values denoting the CDF.

The privacy analysis of cdf2 is similar to the one of cdf1. The accuracy analysis, however, is
more interesting: first it gets error bounds for each cumulative sum, and then these are used to
give an error bound on the maximum error of the vector. For the error bounds on the cumulative
sums, DPella uses either the union bound or the Chernoff bound, depending on which one gives
the lowest error. For the maximum error of the vector, DPella uses the union bound, similarly to
what happens in cdf1. A data analyst can explore the accuracy of cdf?2.

>accuracy (cdf2 binsje 1 symDataset) 0.05
a=22

>accuracy (cdf2 binsje 1 symDataset) 0.2
a =20

3.2.3 Exploring the Privacy-Accuracy Trade-off. Let us assume that a data analyst is interested
in running a CDF with an error bounded with 90% confidence—that is, with f = 0.1, having three
bins (named binss), and € = 1. With those assumptions in mind, which implementation should
she use? To answer that question, the data analyst can ask DPella:

>accuracy (cdf1 bins; 1 symDataset) 0.1

a=11
>accuracy (cdf2 binss 1 symDataset) 0.1
a=12

So, the analyst would know that using cdf1 in this case would give, likely, a lower error. Suppose
further that the data analyst realize that she prefers to have a finer granularity and have 10 bins
instead of only 3. Which implementation should she use? Again, she can compute as follows:

>accuracy (cdf1 binsje 1 symDataset) 0.1

o =46
>accuracy (cdf2 binsje 1 symDataset) 0.1
o =20

So, the data analyst would know that using cdf2 in this case would give, likely, a lower error. One
can also use DPella to show a comparison between cdf1 and cdf2 in terms of error when we keep
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Fig. 3. Error comparison (95% confidence).

the privacy parameter fixed and we change the number of bins, where cdf2 gives a better error
when the number of bins is large [39] as illustrated in Figure 3. In the figure, we also show the
empirical error to confirm that our estimate is tight—the oscillations on the empirical cdf1 are
given by the relatively small (300) number of experimental runs we consider.

Now, what if the data analyst chooses to use cdf2 because of what we discussed before but she
realizes that she can afford an error @ < 50; what would be the epsilon that gives such a? One of
the features of DPella is that the analyst can write a simple program that finds it by repetitively
calling accuracy with different epsilons—this is one of the advantages of providing a programming
framework. These different use cases shows the flexibility of DPella for different tasks in private
data analyses.

4 PRIVACY

DPella is designed to help data analysts have an informed decision about how to spend their budget
based on exploring the trade-offs between privacy and accuracy. In this section, we introduce
DPella’s primitives and design principles responsible for ensuring DP of queries written by data
analysts.

4.1 Components of the API

Figure 4 shows part of the DPella API DPella introduces two abstract data types to respectively
denote datasets and queries:

data Data s r -- datasets
data Query a  -- queries

The attentive reader might have observed that the API also introduces the data type Value a. This
type is used to capture values resulting from data aggregations. However, we defer its explanation
to Section 5 since it is only used for accuracy calculations—for this section, readers can consider the
type Value a as isomorphic to the type a. It is also worth noting that the API enforces an invariant
by construction: it is not possible to branch on results produced by aggregations—observe that
there is no primitive capable to destruct a value of type Value a. Although it might seem restrictive,
it enables writing of counting queries, which are the bread and butter of statistical analysis and
have been the focus of the majority of the work in DP. Section 9 discusses, however, how to lift
this limitation for specific analyses.
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-- Transformations (data analyst)

dpWhere = (r — Bool) — Data s r — Query (Datasr)

dpGroupBy  :: Egk = (r — k) — Data s r — Query (Data (2xs) (k,[r]))
dpIntersect = Eqr = Datas; r — Data sy r — Query (Data (s1+s2) r)

dpSelect : (r > r’) - Data s r — Query (Datas r’)

dpUnion = Data sy r — Data sz r — Query (Data (s1+s2) r)

dpPart : Ordk = (r —» k) — Data s r — Map k (Data s r) — Query (Value a))

— Query (Map k (Value a))

-- Aggregations (data analyst)
dpCount ::Stbs = € — Data s r — Query (Value Double)
dpSum :Stbs = e — Range ab — (r — Double) — Data s r — Query (Value Double)
dpAvg :=Stbs = e — Rangeab — (r — Double) — Data s r — Query (Value Double)
dpMax :Eqga = ¢ — Responses a — (r — a) — Data 1 r — Query (Value a)

-- Budget
budget :Querya—e¢
-- Execution (data curator)
dpEval :: (Data 1 r — Query (Value a)) —» [r] > e > I0a

Fig. 4. DPella API: Part I.

Values of type Data s r represent sensitive datasets with accumulated stability s, where each
row is of type r. Accumulated stability, however, is instantiated to type-level positive natural num-
bers (1, 2, etc.). Stability is a measure that captures the number of rows in the dataset that could
have been affected by transformations like selection or grouping of rows. In DP research, stabil-
ity is associated with dataset transformations rather than with datasets themselves. To simplify
type signatures, DPella uses the type parameter s in datasets to represent the accumulated stabil-
ity of the transformations for which datasets have gone through—as done in the work of Ebadi
and Sands [20]. Different from PINQ [40], for example, one novelty of DPella is that it computes
stability statically using Haskell’s type system.

Values of type Query a represent computations, or queries, that yield values of type a. Type
Query a is a monad [43], and because of this, computations of type Query a are built by two fun-
damental operations:

return:a — Query a
(>>=) = Query a — (a — Query b) — Query b

The operation return x outputs a query that just produces the value x without causing side effects
(i-e., without touching any dataset). The function (>>=)—called bind—is used to sequence queries
and their associated side effects. Specifically, gp >>= f executes the query qp, takes its result,
and passes it to the function f, which then returns a second query to run. Some languages, like
Haskell, provide syntactic sugar for monadic computations known as do notation. For instance, the
program qp; >>= (Ax; — qpy >>= (Axy — return (xy, x2))), which performs queries gp; and qp,
and returns their results in a pair, can be written as do x; « qpy; X2 < gp,; return (xi, xz), which
gives a more “imperative” feeling to programs. We split the API into four parts: transformations,
aggregations, budget prediction, and execution of queries—see the next section for the description
of the API’s accuracy components. The first three parts are intended to be used by data analysts,
whereas the last one is intended to be only used by data curators.*

4A separation that can be enforced via Haskell modules [57].
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1 g€ — [Color] — Data 1 Double — Query (Map Color Double)

2 q eps bins dataset = dpPart id dataset dps

3 where dps = fromList [(c,Ads — dpCount eps dataset) | ¢ « bins]
4 --dps = fromList [(c,Ads — dpCount eps ds) | ¢ « bins]

Fig. 5. DP histograms by using dpPart.

4.2 Transformations

The primitive dpWhere filters rows in datasets based on a predicate function (r — Bool). The cre-
ated query (of type Query (Data s r)) produces a dataset with the same row type r and accu-
mulated stability s as the dataset given as argument (Data s r). Observe that if we consider two
datasets that differ in s rows in two given executions, and we apply dpWhere to both of them, we
will obtain datasets that will still differ in at most s rows—thus, the accumulated stability remains
the same. The primitive dpGroupBy returns a dataset where rows with the same key are grouped
together. The functional argument (of type r — k) maps rows to keys of type k. The rows in the
return dataset (Data (2xs) (k,[r])) consist of key-rows pairs of type (k, [r])—syntax [r] denotes
the type of lists of elements of type r. What appears on the left-hand side of the symbol = are type
constraints. They can be seen as static demands for the types appearing on the right-hand side of
=. Type constraint Eq k demands type k, denoting keys, to support equality; otherwise, grouping
rows with the same keys is not possible. The accumulated stability of the new dataset is multiplied
by 2 in accordance with stability calculations for transformations [20, 40]—observe that 2xs is a
type-level multiplication done by a type-level function (or type family [21]) . In other words, it is
an arithmetic operation computed at compile time. Our API also considers transformations similar
to those found in SQL like intersection (dpIntersect), union (dpUnion), and selection (dpSelect)
of datasets, where the accumulated stability is updated accordingly. Providing a general join trans-
formation is known to be challenging [10, 31, 40, 45]. The output of a join may contain duplicates
of sensitive rows, which makes it difficult to bound the accumulated stability of datasets. How-
ever, and similar to PINQ, DPella supports a limited form of joins, where a limit gets imposed on
the number of output records mapped under each key to obtain stability. For brevity, we skip its
presentation and assume that all of the considered information is contained by the rows of given
datasets.

4.3 Partition

Primitive dpPart deserves special attention. This primitive is a mixture of a transformation and
aggregations since it partitions the data (transformation) to subsequently apply aggregations on
each of them. More specifically, it splits the given dataset (Data s r) based on a row-to-key map-
ping (r — k). Then, it takes each partition for a given key k and applies it to the correspond-
ing function Data s r — Query (Value a), which is given as an element of a key-query mapping
(Map k ((Data s r) — Query (Value a))). Subsequently, it returns the values produced at every
partition as a key-value mapping (Query (Map k (Value a))). The primitive dpPartRepeat, used
by the examples in Section 3, is implemented as a special case of dpPart, and thus we do not
discuss it further.

Partition is one of the most important operators to save privacy budget. It allows running of
the same query on a dataset’s partitions but only paying for one of them—recall Theorem 2.3.
The essential assumption that makes this possible is that every query runs on disjoint datasets.
Unfortunately, data analysts could ignore this assumption when writing queries.

To illustrate this point, we present the code in Figure 5. Query g produces an e-DP histogram
of the colors found in the argument dataset, whose rows are of type Color and variable bins
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enumerates all possible values of such type. The code partitions the dataset by using the func-
tion id :: Color — Color (line 2) and executes the aggregation counting query (dpCount) in each
partition (line 3)—function fromList creates a map from a list of pairs. The attentive reader could
notice that dpCount is applied to the original dataset rather than the partitions. This type of error
could lead to a break in privacy as well as inconsistencies when estimating the required privacy
budget. A correct implementation consists of executing dpCount on the corresponding partition
as shown in the commented line 4.

To catch coding errors as the one shown earlier, DPella deploys a static IFC analysis similar to
that provided by MAC [52]. IFC ensures that queries run by dpPart do not perform queries on
shared datasets by attaching provenance labels to datasets Data s r indicating to which part of
the query they are associated with and propagates that information accordingly.

Coming back to our previous example (see Figure 5), the IFC analysis will assign the provenance
of dataset in g to the top-level fragment of the query rather than to sub-queries executed in each
partition—and DPella will raise an error at compile time when ds is accessed by the sub-queries!
Instead, if we comment line 3 and uncomment line 4, the query q will be successfully run by DPella
(when there is enough privacy budget) since every partition is only accessing their own partitioned
data (denoted by variable ds).

The implemented IFC mechanism is transparent to data analysts and curators—that is, they do
not need to understand how it works. Analysts and curators only need to know that when the IFC
analysis raises an alarm, it is due to a possibe access to non-disjoint datasets when using dpPart.

4.4 Aggregations

DPella presents primitives to count (dpCount), sum (dpSum), and average (dpAvg) rows in datasets.
These primitives take an argument eps :: €, a dataset, and build a Laplace mechanism that is eps-
differentially private from which a noisy result gets returned as a term of type Value Double. The
purpose of data type Value a is twofold: to encapsulate noisy values of type a originating from
aggregations of data, and to store information about its accuracy—intuitively, how “noisy” the
value is (explained in Section 5). The injected noise of these queries gets adjusted depending on
three parameters: the value of type ¢, the accumulated stability of the dataset s, and the sensitivity
of the query (recall Definition 2.2). More specifically, the Laplace mechanism used by DPella uses
accumulated stability s to scale the noise—that is, it consider b from Theorem 2.1 as b =s - ATQ.
The sensitivity of DPella’s aggregations are either hard coded into the implementation—similar to
what PINQ does—or calculated statically. The sensitivities of dpSum and dpAvg are determined by
the range of the values under consideration—that is, for the indicated Range a b, the sensitivity is
computed as max {|al, |b|} and |b-a|, respectively. This is enforced by applying a clipping function
(r — Double). This function ensures that the values under scrutiny fall into the interval [a, b]
before (and, for dpAvg, after) executing the query. The sensitivity of dpCount and dpMax is set to
1. To implement the Laplace mechanism, the type constrain Stb s in dpCount, dpSum, and dpAvg
demands the accumulated stability parameter s to be a type-level natural number to obtain a term-
level representation when injecting noise. Finally, primitive dpMax implements report-noisy-max
[17]. This query takes a list of possible responses (Responses a is a type synonym for [a]) and a
function of type r — ato be applied to every row. The implementation of dpMax adds uniform noise
to every score—in this case, the amount of rows voting for a response—and returns the response with
the highest noisy score. This primitive becomes relevant to obtain the winner option in elections
without singling out any voter. However, it requires the accumulated stability of the dataset to be
1 in order to be sound [8]. DPella guarantees such a requirement by typing: the type of the given
dataset as argument is Data 1 r.
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4.5 Privacy Budget and Execution of Queries

The primitive budget statically computes how much privacy budget is required to run a query. It
is worth noting that DPella returns an upper bound of the required privacy budget rather than the
exact one—an expected consequence of using a type system to compute it and provide early feed-
back to data analysts. Finally, the primitive dpEval is used by data curators to run queries (Query a)
under given privacy budgets (€), where datasets are just lists of rows ([r]). It assumes that the
initial accumulated stability is 1 (Data 1 r) since the dataset has not yet gone through any trans-
formation, and DPella will automatically calculate the accumulated stability for datasets affected
by subsequent transformations via the Haskell type system. This primitive returns a computation
of type I0 a, which in Haskell are the computations responsible for performing side effects—in
this case, obtaining randomness from the system to implement the Laplace mechanism.

4.6 Implementation

DPella is implemented as a deep embedded domain-specific language in Haskell. Due to such design
choice, data analysts can piggyback on Haskell’s infrastructure to build queries in a creative way.
For instance, it is possible to leverage on any of Haskell’s pure functions. The following one-liner
(of type Query [Value Double]) uses several Haskell functions to filter a dataset ds in several
(possibly non-disjoint) ways according to a list of predicates ps :: [r — Bool], and then for each
filtered version of ds, it performs a noisy count spending eps on each count.

mapM (flip dpSelect ds >=> dpCount eps) ps

The high-order functions flip, mapM, and (>=>) are standard in Haskell and represent a func-
tion that switches arguments, the monadic versions of map, and the Kleisli arrow, respectively.
Despite DPella being a first-order interface, data analysts can use Haskell’s high-order functions
to compactly describe queries.

5 ACCURACY

DPella uses the data type Value a responsible for storing a result of type a as well as information
about its accuracy. For instance, a term of type Value Double stores a noisy number (e.g., coming
from executing dpCount) together with its accuracy in terms of a bound on the noise introduced
to protect privacy.

DPella provides a static analysis capable of computing the accuracy of queries via the following
function,

accuracy :: Query (Valuea) » f — «

that takes as an argument a query and returns a function, called inverse Cumulative Distribution
Function (iCDF), capturing the theoretical error « for a given confidence 1-f. Function accuracy
does not execute queries but rather symbolically interprets all of its components to compute the
accuracy of the result based on the sub-queries and how data gets aggregated. DPella follows
the principle of improving accuracy calculations by detecting statistical independence. For that, it
implements taint analysis [55] to track if values were drawn from statistically independent distri-
butions. DPella’s primitives involving accuracy calculations are presented in Figure 6 and will be
described in the following sections.

5.1 Accuracy Calculations

DPella starts by generating iCDFs at the time of running aggregations based on the following
known result of the Laplace mechanism.
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-- Accuracy analysis (data analyst)
accuracy = Query (Value a) = f > «a

-- Norms (data analyst) -- Accuracy combinators (data analyst)
Norme :: [Value Double] — Value [Double] add  :[Value Double] — Value Double
norm, : [Value Double] — Value [Double] sub  :[Value Double] — Value Double
norm; :: [Value Double] — Value [Double] neg = Value Double — Value Double
rmsd  :: [Value Double] — Value [Double] scalar :Value Double — Double — Value Double

Fig. 6. DPella API: Part Il.

Definition 5.1 (Accuracy for the Laplace Mechanism). Given a randomized query O(-) : db — R
implemented with the Laplace mechanism as in Theorem 2.1, we have that

Pr[10) - 0(D)] > log (3) - 22| < . 3)

Recall that the Laplace mechanism used by DPella utilizes accumulated stability s to scale the
noise—that is, it consider b from Theorem 2.1 asb =s - A?Q. Consequently, DPella stores the iCDF

AB — log (%) -5 ATQ for the values of type Value Double returned by aggregation primitives like
dpCount, dpSum, and dpAvg. However, queries are often more complex than just calling aggregation
primitives—as shown by cdf2 in Figure 2(b). In this light, DPella provides combinators responsible
to aggregate noisy values while computing its iCDFs based on the iCDFs of the arguments. Figure 6
shows DPella API when dealing with accuracy.

5.1.1  Norms. DPella exposes primitives to aggregate the magnitudes of several error predic-
tions into a single measure—a useful tool when dealing with vectors. Primitives norme, norms,
and norm; take a list of values of type Value Double, where each of them carries accuracy infor-
mation, and produces a single value (or vector) that contains a list of elements (Value [Double])
whose accuracy is set to be the well-known -, {2-, {;-norms, respectively. Finally, primitive rmsd
implements root-mean-square deviation among the elements given as arguments. In our examples,
we focus on using norms, but other norms are available for the taste, and preference, of data
analysts.

5.1.2  Adding Values. The primitive add aggregates values, and to compute accuracy of the addi-
tion, it tries to apply the Chernoff bound if all of the values are statistically independent; otherwise,
it applies the union bound. More precisely, for the next definitions, we assume that primitive add
receives n terms vy :: Value Double, v; :: Value Double, ..., v, :: Value Double. Importantly, since
we are calculating the theoretical error, we should consider random variables rather than specific
numbers. The next definition specifies how add behaves when applying union bound.

Definition 5.2 (add using Union Bound). Given n > 2 random variables V; with their respec-
tive iCDF;, where j€ 1...n,and o; = iCDFj(é), then the addition Z = Z;’zl V; has the following
accuracy:

n
Pr||Z| > Zaj <B. (4)
j=1

Observe that to compute the iCDF of Z, the formula uses the iCDFs from the operands applied
B

. Union bound makes no assumption about the distribution of the random variables V;.
In contrast, the Chernoff bound often provides a tighter error estimation than the commonly

used union bound when adding several statistically independent queries sampled from a Laplace

to
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Fig. 7. Union vs. Chernoff bounds.

distribution. To illustrate this point, Figure 7 shows that difference for the cdf2 function we pre-
sented in Section 3 with € = 0.5 (for each DP sub-query) and § = 0.1. Clearly, the Chernoff bound
is asymptotically much better when estimating accuracy, whereas the union bound works best
with a reduced number of sub-queries—observe how lines get crossed in Figure 7. In this light, and
when possible, DPella computes both union bound and Chernoff bound and selects the tighter
error estimation. However, to apply the Chernoff bound, DPella needs to be certain that the events
are independent. Before explaining how DPella detects that, we give an specification of the formula
we use for Chernoff.

Definition 5.3 (add using the Chernoff Bound [13]). Given n > 2 independent random variables

Vi ~ Lap(0,bj), where j € 1...n, by = max{bj}j=1. n,and v > max { . [2;7:1 ij., by - A/In (%)}, the

addition Z = 377", V; has the following accuracy:

Pr [|Z|>v~,/8-ln(%)] <p. 5)

DPella uses the value v = max {\/2}1:1 b]2., ba - \/ln (%)} + 0.00001 to satisfy the conditions of

the preceding definition when applying the Chernoff bound—any other positive increment to the
computed maximum works as well.’ It is worth mentioning that DPella’s error estimations for the
sums of noisy values rely on available concentration bounds. Hence, even though there exist better
approximations for the error of adding random variables (e.g., dependency-dependent bounds for
dependent variables [33]), currently, union and Chernoff bounds are the only statistical tools that
can be used out of the box.

Last, to support subtraction, DPella provides primitive neg responsible for changing the sign
of a given value, and sub that uses the results of neg and add to subtract a list of values. In the
following, we explain how DPella checks that values come from statistically independent sampled
variables.

5.1.3 Detecting Statistical Independence. To detect statistical independence, we apply taint anal-
ysis when considering terms of type Value a. Specifically, every time a result of type Value Double
gets generated by an aggregation query in DPella’s API (dpCount, dpSum, etc.), it gets assigned a
label indicating that it is untainted and thus statistically independent. The label also carries infor-
mation about the scale of the Laplace distribution from which it was sampled—useful information
when applying Definition 5.3. When the primitive add receives all untainted values as arguments,
the accuracy of the aggregation is determined by the best estimation provided by either the union

SThere are perhaps other ways to compute the Chernoff bound for the sum of independent Laplace distributions; changing
this equation in DPella does not require major work.
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1 totalCount :: Query (Value Double)
2 totalCount = do

3 vq; <« dpCount 0.3 ds;

4 vy « dpCount 0.25ds)

5 A

6 Vige < dpCount 0.5 dsige

7 return (add [vi,v2, ..., Vige])

Fig. 8. Combination of sub-queries’ results.

bound (Definition 5.2) or the Chernoff bound (Definition 5.3). Importantly, values produced by
add are considered tainted since they depend on other results. When add receives any tainted
argument, it proceeds to estimate the error of the addition by just using union bound.

As an example, Figure 8 presents the query plan totalCount, which adds the results of 100
dpCount queries over different datasets, namely dsy, ds, ..., dsjoo. (The ... denotes code inten-
tionally left unspecified.) The code calls the primitive add with the results of calling dpCount—we
use [x1, X2, x3] to denote the list with elements xi, x5, and x3. What would then be the theoreti-
cal error of totalCount? The accuracy calculation depends on whether all values are untainted
in line 7. When no dependencies are detected between vy, v, ..., V1o, namely all the values are
untainted, DPella applies Chernoff bound to give a tighter error estimation. Instead, for instance,
if v3 were computed as an augmentation of v; by a factor of 5, this would be let v3 = scalar vy 5.
Then, line 7 applies union bound since vs is a tainted value—its noise is not freshly sampled but
rather inherited from v;’s noise. With taint analysis, DPella is capable of detecting dependencies
among terms of type Value Double and leverages that information to apply different concentra-
tions bounds. The next section formally defines such a procedure.

5.2 Implementation

The accuracy analysis consists of symbolically interpreting a given query, calculating the accuracy
of individual parts, and then combining them using our taint analysis. We introduce two polymor-
phic symbolic values: D ::Data s r and S[iCDF,s, ts] :: Value a. Symbolic dataset D represents
concrete datasets arising from data transformations. A symbolic value S[iCDF,s, ts] represents
concrete values with tags ts and an iCDF that are computed assuming a noise scale s. Tags are
used to detect the provenance of symbolic values and when they arise from different noisy sources.

Function accuracy takes queries producing results of type Value a. Such queries are essen-
tially built by performing data aggregation queries (e.g., dpCount) preceded by a (possibly empty)
sequence of other primitives like data transformations.® Figures 9 and 10 show the interesting
parts of our analysis. Given a well-typed query q :: Query (Value a), accuracy q = iCDF where
g > S[iCDF,s, ts] for some s and ts. The rules in Figure 9 are mainly split into two cases: consid-
ering data aggregation queries and sequences of primitives glued together with (>>=).

The symbolic interpretation of dpCount is captured by rule DPCounT(see Figure 9(a)). This
rule populates the iCDF of the return symbolic value with the corresponding error calculations
for Laplace as presented in Definition 5.1 (with the scale adjusted with the accumulated stability).
Observe that it extracts the stability information from the type of the considered dataset (ds ::
Data s r)and attaches a fresh tag indicating an independently generated noisy value. The symbolic
interpretation of dpSum and dpAvg proceeds similarly to dpCount, and we thus omit them for
brevity.

SWe ignore the case of return val :: Query (Value a) since the definition of accuracy is trivial for such a case.
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DPCounNT

1
dataset ::Datasr iCDF = A8 — log (E) .S

dpCount € dataset > S[ICDF
DPMax

4 length
dataset :Data 1 r iCDF = Af — — - log (M)
€

4

dpMax € res vote ds > S[iCDF, 0, 0]

(a) DP-queries
SEQ-TRANS

k D ~¥ next next > S[iCDF,s, ts]

transform >>= k > S[iCDF,s, ts]

SEQ-QUERY

query > S[iCDFg, sq, tsq] k (S[iCDFgq, sq, tsql) ~¥ next

next > S[iCDF,s, ts]
query >>=k > S[iCDF, s, ts]

(b) Sequential traversal
SEQ-PART
(m 3 D ~¥ next;);edom(m

(next; > S[iCDFj, s;, tsj])jedom(m)
m’ = (j > S[iCDF},s;j, tsj])jedom(m)

km’ ~3 next next > S[iCDF,s, ts]
dpPart sel dataset m>>=k > S[iCDF,s, ts]

(c) Accuracy calculation when partitioning data
Fig. 9. Accuracy analysis implemented by accuracy.

UNION-BouND

vj = S[iCDFj,s5,tsj]  @; =1iCDF;(Z)  icDF =18 — X"

j=1%j

ub [vq,vy, ...,vp] ~ iCDF
CHERNOFF-BOUND

vi =8| 1CDFJ,sJ,tsJ]
s = max{s;}j=1..n v = max {\/Z s YR \/ln } +0.0001 iCDF=Af > v-

cb [v1,v2,...,vn]| ~> iCDF

8~ln(%)

ApD-UNION
(Fj.tsj=0) Vv mj:l.“n ts; #0
add [v1,v2, ...,vn] ~ S[ub [vq,v2, .. .,vn],0,0]

ApD-CHERNOFF-UNION

Vj =S[iCDFJ‘,Sj,tSJ‘]
iCDF = A — min (ub [vq,vy, ...,
add [vi,vy, ...,vn] ~ S[iCDF, 0, 0]

(Vjts;#0)  Nj=1.nts;=0 vnl B) (cb [v1,v2, ..., va] f)

Fig. 10. Calculation of concentration bounds
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Rule DPMax shows the symbolic interpretation of dpMax whose iCDF aligns with the one ap-
pearing in the work of Barthe et al. [8]. Observe that the return value is tainted. The reason for that
relies on the fact that the result, which is one of the responses in res, contains no noise—it is rather
the process that leads to determining the winning response that has been “noisy.” In this light, no
scale of noise nor distribution can be associated with the response—as we did, for instance, with
dpCount.

To symbolically interpret a sequence of primitives, the analysis gets further split into two cases
depending on if the first operation to interpret is a transformation or an aggregation, respectively
(see Figure 9(b)). Rule SEQ-TRANS considers the former, where transform can be any of the trans-
formation operations in Figure 4. It simply uses the symbolic value D to pass it to the continuation
k. It can happen that k D does not match (yet) any part of DPella’s API required for our analysis to
continue.” However, the embedded domain-specific language nature of DPella makes Haskell re-
duce k D to the next primitive to be considered, which we capture as k D ~¥ next—and we know
that it will occur thanks to type preservation. We represent ~» (~*) to pure reduction(s) in the
host language like function application, pair projections, and list comprehension, among others.
The analysis then continues symbolically interpreting the next yield instruction. Rule SEQ-QUERY
computes the corresponding symbolic value for the aggregation query. The symbolic value is then
passed to the continuation, and the analysis continues with the next yield instruction.

Rule SeQ-PART shows the symbolic interpretation of dpPart. The argument
m::Map k (Data s r — Query (Value a)) describes the queries to execute once given the
corresponding bins. Since these queries produce values, we need to symbolically interpret each
of them to obtain their accuracy estimations. The rule applies each of those queries to a symbolic
dataset (m j D).® The symbolic values yielded by each bin are collected into the mapping m’, which
is then passed to continuation k in order to continue the analysis on the next yield instruction.

5.2.1 Concentration Bounds. Figure 10 shows the part of our analysis responsible for applying
concentration bounds. Rules Un1oN-BouND and CHERNOFF-BOUND define pure functions (reduc-
tion ~~) that produce the concentration bounds as described in Definitions 5.2 and 5.3, respectively.
We define the function add based on two cases. Rule Abp-UNION produces a symbolic value with
an iCDF generated by the union bound (ub [vy, Vs, . . ., v, ]). The symbolic value is tainted, which
is denoted by the empty tags (0). The scale @ denotes that the scale of the noise and its distribution
is unknown—adding Laplace distributions does not yield a Laplace distribution. (However, the sit-
uation is different with Gaussians; see Section 5.3.) This rule gets exercised when either the list
of symbolic values contains a tainted one (3j.ts; = 0) or has not been independently generated
(Nj=1...n tsj # 0). Differently, ADD-CHERNOFF-UNION produces a symbolic value with an iCDF
that chooses the minimum error estimation between union and Chernoff bound for a given f—
sometimes union bound provides tighter estimations when aggregating few noisy values (recall
Figure 7). This rule triggers when all values are untainted (Vj.ts; # 0) and independently gener-
ated ((j=1..., ts; = 0). Atfirst glance, one could believe that it would be enough to use the scale of
the noise to track when values are untainted—that is, if the scale is different from 0, then the value
is untainted. Unfortunately, this design choice is unsound: it will classify adding a variable twice
as an independent sum: do x « dpCount € ds;return (add [x, x]). It is also possible to consider
various ways to add symbolic values to boost accuracy. We could easily write a preprocessing
function that, for instance, first partitions the arguments into a subset of independently generated
values, applies add to them (thus triggering ADD-CHERNOFF-UNION), and finally applies add to the

7For instance, k D = (Ax — dpCount 1 x) D, and thus ((Ax — dpCount 1 x) D) ~¥ dpCount 1 D.
8For simplicity, we assume that maps are implemented as functions
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NoORM-INF
vj = S[iCDF5,sj,ts5]  iCDF = Af — max {|icoF;(£)[}_,

...n

normss [Vi,V2,...,vn] ~» S[iCDF, 0, 0]

Norm-1
vj = S[iCDFj,sj.tsj]  1iCDF = Af — 3, [icDF;(Z)|

normy [vi,Va,...,vn] ~ S[iCDF, 0, 0]

Fig. 11. Calculation of norms.

obtained results (thus triggering Abp-UNION). The implementation of DPella enables the writing
of such functions in a few lines of code.

5.2.2 Norms Calculation. Figure 11 shows our static analysis when computing norm,, and
normy, respectively. There is nothing special about the rules except to note that the results are
symbolic values that are tainted. The reason for this is that norms are designed to condense (in
one measure) the error of the list of the arguments. By doing so, it is hard to assign a specific
Laplace distribution with sensitivity s to the overall given vector. We simply say that the return
symbolic values are tainted—thus, they can only be aggregated by App-Un1on in Figure 10.

5.3 Accuracy of Gaussian Mechanism

As mentioned earlier, DPella supports other notions of DP, such as approximate DP, together with
the use of the Gaussian mechanism. Specifically, DPella supports a relaxation of the notion of DP
known as (e, §)-DP, formally defined as follows.

Definition 5.4 ((e, §)-Differential Privacy[16]). A randomized query O(:) : db — R satisfies (¢, §)-
DP, with €,6 > 0, if and only if for any two datasets D; and D, in db, which differ in one row, and
for every output set S € R we have

Pr[Q(D,) € S] < e Pr[Q(D,) € S] + 6. (6)

The main difference between this notion of privacy and the one described in Definition 2.1 is
that (e, §)-DP introduces the probability mass § that, intuitively, offers a probabilistic notion of
privacy loss. More concretely, (¢, §)-DP ensures that for all adjacent datasets, the absolute value of
the privacy loss will be bounded by € with probability 1 — §. Observe that when § = 0, an (¢, 0)-DP
query satisfies pure e-DP.

A standard implementation of (e, §)-DP queries is based on the addition of noise sampled from
the Gauss distribution—that is, for Q : db — R, an arbitrary function with sensitivity Ag (as de-
scribed in Definition 2.2), the Gaussian mechanism with parameter o adds noise scaled to NV (0, o'2)
to its output. When the noise to be added is calibrated in terms of €, §, and Ap, the Gaussian mech-
anism satisfies (e, §)-DP as stated in the following theorem.

THEOREM 5.1 (GAUSSIAN MECHANISM [2]). Foranye, § € (0,1), the Gaussian output perturbation
1.25y . Ao
== s

mechanism with standard deviation o = /2 - log(=5?) - —

(e, 8)-differentially private.
Similarly to the Laplace mechanism, to provide bound estimates on the errors caused by the
addition of Gaussian noise, DPella keeps track of Gauss’ iCDF. By following the general form of

accuracy introduced in Definition 2.3, we have the following definition.
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DPCounTt

dataset zDatasr a:,[2~log(%)-s~% iCDF=Af > - 2~log(%) t fresh

dpCount e dataset > S[iCDF, o2, {t}]

(a) Aggregations
CHERNOFF-BOUND-GAUSS

vj = S[iCDFj,s5,ts5]  iCDF =Af — \[2- 3755 - log (})

cb [v1,v2,...,vn] ~> iCDF

ADD-CHERNOFF-UNION
Vj :S[iCDFj,Sj,tSj]
(Vj.tsj # 0) Nj=1.ntsj=0 iCDF = A — min(ub [vq,va, . ..,vn] B)(cb [v1,v2, .. .,vn] B)
add [v1,v2, ...,vn] ~ S[iCDF, 2221 Sj, Uj:1...n tSj]

(b) Concentration bounds

Fig. 12. Accuracy analysis for the Gaussian mechanism.

Definition 5.5 (Accuracy for the Gaussian Mechanism). Given a randomized query O(-) : db — R
implemented with the Gaussian mechanism as described previously,

Pr[10D) - QD)1 > o - \f2 - 1og (3)| < 5. )

where the iCDF to be stored by DPella refers to the function Af — o - /2 - log(%).

From an implementation standpoint, adding the Gaussian mechanism to our framework does
not significantly alter the presented primitives, and, in particular, privacy preservation remains
(almost) unchanged. The most significant changes can be seen when calculating the accuracy of
aggregations and their combinations.

The symbolic interpretation of aggregations is updated accordingly to keep track of Gauss’ iCDF,
as well as its respective noise scale determined by o2 as depicted in Figure 12(a) for the case of
dpCount. Additionally, Figure 12(b) shows how concentration bounds are applied for the case of
the Gaussian mechanism—UNION-BouND and ApD-UNION are omitted since they are the same as
the ones in Figure 10. In general, the accuracy analysis for addition of aggregations follows the
one presented previously for the Laplace mechanism. The main difference is seen when adding
independent values. In this case, we use the well-known fact that the addition of independent nor-
mally distributed random variables is also normally distributed. This means that after executing
the ADD-CHERNOFF-UNION, we do not lose information about the distribution of our result as we
used to do under the Laplacian setting. This effect can be seen in the generated symbolic value
S[iCDF, Z;Ll 8js Uj=1...n ts;j], where 27:1 sj indicates that the variance of the new value is calcu-
lated as the addition of the variances of the components being added, and | J;-;.. , ts; indicates
that the new value is statistically dependent of the involved values.

This is a useful feature when combining queries in batches. For instance, Figure 13 shows the
query plan totalCountG that adds the results of 100 queries—using Gaussian dpCount that takes
as input the tuple (e, d) and the dataset—similar to the one presented in Figure 8, but it does so
by adding the first half of the queries (line 7), then adding the second half (line 8), and finally
returning the addition of the two halves (line 9). How will DPella calculate the theoretical error of
totalCountG?
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1 totalCountG:: Query (Value Double)
2 totalCountG = do

3 vi <« dpCount (0.3 ,1e-5) ds;
vy  « dpCount (0.25,1e-5) dsy

Vige < dpCount (0.5 ,1e-3) ds1ge
let hy = add [vq, v2, ...,v5e |

let hy = add [vs51, V52, ..., Vieoe |
return (add [hy,hy])

O 0 N N U

Fig. 13. Combination in batches.

Table 1. Implemented Literature Examples

Category Application Programs
CDFs [39] cdf1, cdf2, cdfSmart
PINQ- Term frequency [40] queryFreq, queriesFreq
like Network analysis [39] packetSize, portSize
Cumulative sums [6] cumulSum1, cumulSum2, cumulSumSmart

Range queries via identity,

histograms [30], and wavelet [61] inhnyn

Counting queries

Observe that h; and h; are constructed as combinations of untainted values, meaning that when
performing the additions at lines 7 and 8, the Chernoff bound could be triggered. More impor-
tantly, DPella still has information about their distribution. Furthermore, h; and h; are statistically
independent (they do not share sub-queries), so when computing their addition at line 9, Chernoff
bound could also be triggered; this could not have been possible under the Laplace mechanism,
since once a value is calculated as a combination of values, their distribution becomes unknown
and only union bound could be applied. In this sense, the Gaussian mechanism might yield tighter
error bounds when dealing with queries that are created in batches, especially when the number
of batches is big enough to trigger use of the Chernoff bound.

6 CASE STUDIES

In this section, we will discuss the advantages and limitations of our programming framework.
Moreover, we will go in depth into using DPella to analyze the interplay of privacy and accuracy
parameters in hierarchical histograms.

6.1 DPella Expressiveness

First, we start by exploring the expressiveness of DPella. For this, we have built several analyses
found in the DP literature—see Table 1—which we classify into two categories, PINQ-like queries
and counting queries. The former class allows us to compare DPella expressivity with the one of
PINQ and the latter with APEx.

PINQ-like queries. We have implemented most of PINQ’s examples [39, 40], such as different
versions of CDFs (sequential, parallel, and hybrid) and network tracing-like analyses (e.g., deter-
mining the frequency a term or several terms have been searched by the users, and computing port
and packet size distribution); additionally, we considered analyses of cumulative sums [6], which
are queries that share some commonalities with CDFs. The interest over differentially private CDFs
and cumulative partial sums applications rely on the existing several approaches to inject noise;
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[1 00 0]

s

1111 1000 (1)(1)(1)(1) 1 1 1 1
0100 0100 1000 1 1-1-1
0110 0010 0100 1-1 0 0
0111 0001 0010 0 0 1-1
0010 0001

0011 Iy Yq
000 1] Hy

Wg,

Fig. 14. Workload of all range queries and query strategies for four ranges.

such choices will directly impact the accuracy of our results and therefore are ideal to be tested and
analyzed in DPella. The structures of these examples closely follow the ones of the CDFs presented
in previous sections, which are straightforward implementations. DPella supports these queries
naturally since its expressiveness relies on its primitives and, by construction, they follow the ones
of PINQ very closely. However, as stated in previous sections, our framework goes a step further
and exposes to data analysts the accuracy bound achieved by the specific implementation. This
feature allows data analysts to reason about accuracy of the results—without actually executing
the query—by varying the strategy of the implementation and the parameters of the query. For
instance, in Section 3, we showed how an analyst can inspect the error of a sequential and parallel
strategy to compute the CDF of packet lengths. Furthermore, the data analyst can take advantage
of DPella being an embedded DSL and write a Haskell function that takes any of the approaches
(cdf1 or cdf2) and varies epsilon aiming to certain error tolerance (for a fixed confidence interval),
or vice versa. Such a function can be as simple as a brute force analysis or as complex as a heuristic
algorithm.

Counting queries. To compare our approach with the tool APEx [25], we consider range queries
analyses—a specific subclass of counting queries. APEx uses the matrix mechanism [34] to com-
pute counting queries. This algorithm answers a set of linear queries (called the workload) by
calibrating the noise to specific properties of the workload while preserving DP. More in detail,
the matrix mechanism uses some query strategies as an intermediate device to answer a workload,
returning a DP version of the query strategies (obtained using the Laplace or Gaussian mechanism)
from which noisy answers of the workload are derived. The matrix mechanism achieves an almost
optimal error on counting queries. To achieve such error, the algorithm uses several non-trivial
transformations that cannot be implemented easily in terms of other components. APEx imple-
ments it as a black box, and we could do the same in DPella (see Section 9). Instead, in this section,
we show how DPella can be directly used to answer sets of counting queries using some of the
ideas behind the design of the matrix mechanism, and how these answers improve with respect to
answering the queries naively, thanks to the use of partition and the Chernoff bound.

To do this, we have implemented several strategies to answer a specific workload Wy: the set
of all range queries over a domain. Figure 14 illustrates the workload that would be the answer
for a frequency count of four ranges. The identity strategy 14 represents four queries (number of
rows) computing the noisy count of each range (number of columns). The hierarchical strategy Hy
contains seven queries representing a binary hierarchy of sums, whereas the wavelet strategy Y4
contains four queries representing the Haar wavelet matrix.
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Fig. 15. Error of each range query in WR using strategy I, with n = 512, = 1, and f = 0.05.
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192 256 320 384 448 512
Left Bound

Our implementation generates noisy counts, and any possible combination of them will yield
(at least) the same error as using strategy I4. In other words, the most accurate answer for Wy will
be yield by the identity strategy. This is not unexpected, because to use the other queries strategies
more efficiently, we would need transformations similar to the ones used in the matrix mechanism.

Figure 15 exposes the error of answering each range query (i.e., each row) in Wg with strategy
I, and n = 512. Although we use the same kind of plot, this error cannot be directly compared
with the one shown in Figure 7 of Li et al. [34], as we use a different error metrics: (a,f)-accuracy
vs mean squared error (MSE). Nonetheless, we share the tendency of having lower error on
small ranges and significant error on large ranges. Now, since the noisy values that will be added
(using the function add) are statistically independent, we can use the Chernoff bound to show
that the error is approximately O(+/n) for each range query, and a maximum error of O(4/nlog n)
for answering any query in Wyg. If we compare our maximum error O(+/nlog n) with the one of
the matrix mechanism based on the identity strategy O(n/€?), it becomes evident how Chernoff
bound is useful to provide tighter accuracy bounds. Unfortunately, as stated previously, the error of
strategies H;, and Y,, in DPella is not better than the one of the strategy I,,, so we cannot reach the
same accuracy the matrix mechanism achieves with these strategies (see Figure 7 of Li et al. [35]).
This limitation can be addressed by leveraging the fact that DPella is a programming framework
that could be extended by adding the matrix mechanism—and some other features—as black-box
primitives.

Black-box primitives. To demonstrate the effects of adding black-box operators in DPella, let us
consider a rather simple query using primitive dpMax. Suppose that there is a highly contagious
virus spreading in a state. To reduce this virus’s rapid spreading, one might want to alert the
population where there are more cases of infections so that they can quarantine. In this scenario,
we will consider two sources of information: one that is private, containing information of infected
patients such as their identity number and ZIP code (i.e., data RowV = V {id:: String, zip :: ZIP}),
and other that is public, such as the phone numbers of people living in each ZIP code (referred as
contact :: [(ZIP,Phone)]).

With this information at hand, we implement query alert (Figure 16). Function alert uses
primitive dpMax (line 3) to access the private dataset of infected patients and return the ZIP code
with more infection cases, which will determine which zone is at risk. Then we obtain the phone
number of all residents of such an area using getPhone function (lines 6-8). Additionally, in line 4,
we function useIndex to access ZIP code enclosed in atRisk to later be used by function getPhone.

Function uselIndex is then a new combinator with type useIndex: (a — b) — Value a —
Value b that has been introduced to be applied only to values generated with dpMax. The in-
sight behind its implementation relies on the fact that the output of a dpMax computation does not
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1 alert: e — Data 1 RowV — Query (Value [Phone])
2 alert eps ds =do
3  atRisk « dpMax eps allZIPs zip ds

4 return (useIndex getPhone atRisk)

5 where

6 getPhone :: ZIP — [Phone]

7 getPhone z = [snd info | info « contact
8 ,fst info = z]

Fig. 16. Using dpMax.

1 hierarchicall [el,e2,e3] dat = do
2 --hy = Map Gen (Value Double)
3 --hy = Map (Gen,Age) (Value Double)
4 --h3:Map (Gen,Age,Nationality) (Value Double) 9 hierarchical? e dat = do
5 hi « byGen el dat 10  h3 « byGenAgeNat e dat
6 hy « byGenAge e2 dat 11 hy « level2 h3
7  h3 « byGenAgeNat e3 dat 12 hy « levell h3
8 return (hy,hy, h3) 13 return (h1,hy, h3)
(a) Approach I: distribute budget among levels (b) Approach 1l: query most detailed level

Fig. 17. Implementation of hierarchical histograms.

contain noise; therefore, applying any function to its result should not affect its interpretation of
accuracy.

From this example, we expect to illustrate the convenience of adding deferentially private algo-
rithms as black boxes in DPella (e.g., dpMax) and their relative smooth integration into the system
once their accuracy estimation has been determined. Ultimately, it highlights that integrating these
primitive usually cascades into defining new combinators (as useIndex) to further manipulate
their outputs.

6.2 Privacy and Accuracy Trade-off Analysis

We study histograms with certain hierarchical structure (commonly seen in Census Bureau analy-
ses) where different accuracy requirements are imposed per level, and where varying one privacy
or accuracy parameter can have a cascade impact on the privacy or accuracy of others. We con-
sider the scenario where we would like to generate histograms from the Adult database’ to perform
studies on gender balance. The information that we need to mine is not only a histogram of the
genders (for simplicity, just male and female) but also how the gender distributes over age, and
within that how age distributes over nationality—thus exposing a hierarchical structure of three
levels.

Our first approach is depicted in Figure 17(a), where hierarchicall generates three histograms
with different levels of details. This query puts together the results produced by queries byGen,
byGenAge, and byGenAgeNationality, where each query generates a histogram of the specified
set of attributes. Observe that these sub-queries are called with potentially different epsilons,
namely el, e2, and e3, then under sequential composition, we expect hierarchicall to be
el+e2+e3-differentially private.

“https://archive.ics.uci.edu/ml/datasets/adult.
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Table 2. Budgeting with a Tolerances, f = 0.05,
and Total e =3

Histogram a Tolerance Status € a
byGen 100 v 0.06 61.48
byGenAge 100 v 0.06 96.13
byGenAgeNat 100 v 0.11 85.74
byGen 10 v 0.41 8.99
byGenAge 50 v 0.16 36.05
byGenAgeNat 5 X MaxBud 1 9.43
byGen 5 v 0.76  4.85
byGenAge 5 X MaxBud 1 5.76
byGenAgeNat 10 v 096 9.82

We proceed to explore the possibilities to tune the privacy and accuracy parameters to our needs.
In this case, we want a confidence of 95% for accuracy (i.e., = 0.05) with a total budget of 3 (€ = 3).
We could manually try to take the budget € = 3 and distribute it to the different histograms in many
different ways and analyze the implication for accuracy by calling accuracy on each sub-query.
Instead, we write a small (simple, brute force) optimizer in Haskell that splits the budget uniformly
among the queries (ie, el =1, e2 =1, and e3 = 1) and tries to find the minimum epsilon that
meets the accuracy demands per histogram. In other words, we are interested in minimizing the
privacy loss at each level bounding the maximum accepted error. The optimizer essentially adjusts
the different epsilons and calls accuracy during the minimization process. To ensure termination,
the optimizer aborts either after a fixed number of calls to accuracy or when the local budget e;
is exhausted.

Table 2 shows some of our findings. The first row shows what happens when we impose an
error of 100 at every level of detalil (i.e., each bar in all of the histograms could be at most +/ — 100
off). Then, we only need to spend a little part of our budget—the optimizer finds the minimum
epsilons that adhere to the accuracy constrains. Instead, the second row shows that if we ask to be
gradually more accurate on more detailed histograms, then the optimizer could fulfill the first two
demands and be aborted on the most detailed histogram (byGenAgeNat) since it could not find an
epsilon that fulfills that requirement—the best we can do is spend all of the budget and obtain an
error bound of 9.43. Finally, the last row shows what happens if we want gradually tighter error
bounds on the less detailed histograms. In this case, the middle layer can be “almost” fulfilled by
expending all of the budget and obtaining an error bound of 5.76 instead of 5. Although the results
from Table 2 could be acceptable for some data analysts, they might not be for others.

We propose an alternative manner to implement the same query that consists of spending pri-
vacy budget only for the most detailed histogram. As shown in Figure 17(b), this new approach
spends all of the budget e on computing h3 < byGenAgeNat e dat. Subsequently, the algorithm
builds the other histograms based on the information extracted from the most detailed one. For
that, we add the noisy values of h3 (using helper functions level2 and levell) creating the rest
of the histograms representing the Cartesian products of gender and age, and gender, respectively.
This methodology will use add and normg, to compute the derived histograms and therefore will
not consume more privacy budget. Observe that the query proceeds in a bottom-up fashion—that
is, it starts with the most detailed histogram and finishes with the less detailed one. Now that we
have two implementations, which one is better? Which one yields the better trade-offs between
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Fig. 18. hierarchicall vs. hierarchical2.

privacy and accuracy? Figure 18 shows the accuracy of the different levels of histograms (i.e., hy,
hs, and h3) when fixing § = 0.05 and a global budget of € = 1 (h1-€1, h2-€2, and h3-¢3) and € = 3
(h1-€3, h2-€3, and h3-e3)—we obtained all of this information by running repetitively the function
accuracy. From the graphics, we can infer that splitting the privacy budget per level often yields
more accurate histograms. However, observe the exception at the most detailed histogram h3: as
expected, hierarchicall will use just one-third of the budget, whereas hierarchical2 uses all
of it, and hence the first approach will return a noisier count.

6.3 K-way Marginal Queries on Synthetic Data

When compared with (non-compositional) approaches for estimating accuracy based on synthetic
or public data, such as that of Hay et al. [29], the static analysis of DPella can be used in a com-
plimentary manner to quickly (and precisely) estimate privacy and accuracy for a wide range of
simple queries. There are certain kinds of queries where it is more convenient to use our static
analysis than synthetic data for high-dimensional datasets.

As an example, we focus on the problem of releasing, in a differentially private manner, the k-
way marginals of a binary dataset D € ({0, 1}¢)". This is a classical learning problem that has been
studied extensively in the DP literature (see [14, 22, 58], among others). A k-marginal query, also
called a k-conjunction, returns the count of how many individual records in D have k < d attributes
set to certain values. For simplicity, we will work with 3-way marginal queries to compare perfor-
mance between DPella and using synthetic data. The goal of our analysis is to release all 3-way
marginals of a dataset. This is implemented through the functions depicted in Figure 19.

Function allChecks counts how many records have 3-attributes set to 1. Auxiliary function
combinatory d k generates k-tuples arising from the combination of indexes 0,1, ...,d taken k
at the time. In our example, the number of generated tuples is (d;m). For each tuple, allChecks
filters the rows that have attributes i, j, and k set to 1 (implemented as dpWhere allOne db) for
then making a noisy count (dpCount localEps tab). Last, function threeMarginal collects the
counts for the different considered attributes and places them into a vector (norms, checks).

We run threeMarginal considering a synthetic dataset (db) that has only one row with all
of the attributes set to zeros. Setting all of the attributes to zero produces that all of the counts
are 0, and thus we are able to measure the noise on each run and accuracy accordingly. We run
threeMarginal approximately 1,000 times for each dimension to measure the noise magnitude,
where we took the 1-f percentile with f = 0.05 (as we did in many of our case studies). Observe
that we have ( dim) queries and thus ( d;m) independent sources of noise, which need a high number
of runs to be well represented. In general, for this kind of task, one is interested in bounding the
max error that can occur in one of the queries (the { norm over the output). For this task, the
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1 -- Perform all 3-way combinations up to attribute dim

2 allChecks:: € — Int — Data s BinR — [Query (Value Double) ]
3 allChecks localEps dim db = do

4 (i,3,k) « combinatory (dim-1) 3

5 letallOner=(r!ti)=(r!j)=(r'k)=1

6 return (do tab « dpWhere allOne db

7 dpCount localEps tab)

o

-- Compute k-way marginals
threeMarginal :: € — Int — Data s BinR — Query (Value [Double])
10 threeMarginal localEps dim db = do
11 checks « sequence (allChecks localEps dim db)
12 return (norms checks)

Nl

Fig. 19. K-way marginal implementation.
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Fig. 20. Performance comparison between accuracy (DPella) and estimating errors using synthetic analysis.

empirical error is well aligned with the theoretical one provided by DPella by calling the function
accuracy. The latter is computed by taking a union bound over the error of each individual query.
For each query we have a tight bound, and the union bound gives us a tight bound over the max.
However, we observe a significant difference in performance.

Figure 20 shows (in log scale) the time difference when calculating accuracy by DPella and
on synthetic data when the dimension of the dataset increases. Already in low dimension, the
difference in performance is many orders of magnitude in favor of DPella—a tendency that does
not change when the dimension goes above 20. The main reason for that comes down to the fact
that DPella, as an static analysis, does not execute the filtering dpWhere allOne db (as well as any
other transformation, recall Section 5.2), which an approach based on synthetic data should do
many times—in our case, 1,000 iterations for each dimension. We expect that for more complex
tasks, this difference is even more evident.

7 TESTING ACCURACY

In previous sections, we have seen the usefulness of the accuracy function to inspect queries’
error and reason about the trade-offs of privacy and accuracy, among other perks. It is clear then
that providing theoretical bounds over the errors of the implemented queries becomes handy to
ease and assist data analysts’ tasks. However, one might argue that having a theoretical bound is
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as important as producing a measurement of the tightness of such calculations. In this section, we
focus on the verification of how close DPella’s accuracy calculations are to the real error bounds.
Thanks to DPella’s data independence, we have been able to create the primitive empiric that
allows analysts to compare the theoretical bound (provided by accuracy) against an empirical
one. It offers a way to compare DPella’s estimations for a query against its empirical error while
still preserving the privacy of the data subjects.
The primitive empiric is a follows:

empiric:: (e — Data 1 r — Query (Value a)) —» Iter e > f > 10«

Given a query plan (of type ¢ — Data 1 r — Query (Value a)), a number of iterations (where
Iter is isomorphic to the type Int), a fixed privacy loss €, and confidence f, primitive empiric
will return the empirical error aemp of the given query using the theoretical error oy, provided by
accuracy with g.

Ideally, dermp should be significantly close to ay,. In particular, since accuracy yields an upper
bound of the error, when empiric is run multiple times we expect demp to be less than or equal to
o most of the time. The unsatisfiability of this condition indicates that the probability of being
above the theoretic error is higher than anticipated, from which we can deduce that DPella’s er-
ror estimation is unsound and it does not actually yield an upper bound of the query’s accuracy.
However, if for most of the runs we observe that aemp << ain, we can infer that DPella’s estimations
are loose, indicating that we could either increase the confidence or decrease the error.

The procedure followed by empiric is fairly simple. First, it executes the given query as many
times as indicated over an empty dataset; this process clearly does not involve any sensitive infor-
mation. However, the attentive reader might have noticed that these executions will allow us to
inspect the query’s noise since they will only return the perturbation to be added—that is, we are
sampling as many times as iterations from the Laplace distribution (or Gauss, depending on the
mechanism) scaled by the sensitivity of the query under consideration. From the samples, we cal-
culate each empirical error aémp either applying the absolute value to the i-th sample if the query’s
output is a scalar or the specified norm (i.e., £, €2, {1, or rmsd) if the output is multi-dimensional.
Then, emp is computed as the 1 — f percentile of all a/,, where i = 1, ..., iter.

To illustrate how empiric could be used by an analyst, recall the example of the 3-way mar-
ginal discussed in the previous section (see Section 6.3). Previously, we claimed that the empirical
error of function threeMarginal from Figure 19 is well aligned with the theoretical one provided
by DPella. This statement can be now verified using the empiric primitive. For localEps = 0.1
and dim ranging from 3 to 20, Figure 21 shows the results of calculating the empirical error of
threeMarginal with f set to 0.05 and iterating 1,000 and 10,000 times. From these results, we can
conclude that increasing the number of iterations will stabilize the results, making the analyses
easier, and that the empirical error provided for DPella for function threeMarginal is indeed very
close to the empirical error bound. Moreover, it depicts DPella’s soundness, since in both cases (for
1K and 10K iterations) most of the aemp Were below ay,’s line.

We acknowledge that not all configurations of DPella programs will have an accuracy esti-
mation as tight as the one presented earlier. In particular, one can imagine a scenario where n
non-independent noisy values are being added. The theoretical error of such a query will be cal-
culated using the union bound, which has been established [25] to be a loose approximation of the
sum’s error. Thus, when comparing the empirical error of these queries against accuracy’s pro-
jection, we should expect a greater discrepancy in favor of the empiric calculation. Under these
circumstances, analysts can consider modifying a code’s structure to take advantage of the Cher-
noff bound as much a possible or adjust their parameters (€ and f).
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Fig. 21. Results of empiric over 3-way marginals.
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Fig. 22. Results of empiric over addition of noisy counts.

Since triggering the Chernoff bound produces the best error estimation when adding several
(independent) noisy values, one might ask, how tight is this bound? Figure 22 compares the re-
sults of empiric over a query adding up to 50,000 independent noisy values with f = 0.2 and
localEps = 1 against the results of accuracy triggering the Chernoff bound; additionally, the es-
timations under union bound are shown as a baseline for comparison. Clearly, the union bound’s
theoretical errors are several orders of magnitude apart from the empirical errors, showcasing
its overconservative calculations. However, the Chernoff bound provides a much tighter bound
that grows by a constant factor w.r.t. the empirical error—the reader should keep in mind that the
log scale might make it difficult to appreciate this claim; still, it could be quickly confirmed by
analyzing the ratio between the two errors.

We argue that DPella’s estimations can be seen as a quick initial step into inspecting queries’
accuracy that could be further complemented by other techniques of error estimation—integration
of such algorithms are left as future work. DPella’s analyses are particularly useful when dealing
with high-dimensional or more complex tasks since—as shown previously—its estimations do not
have computational overheads.

8 API GENERALIZATION

Up to this point, we have seen DPella as a framework where data analysts can implement their
differentially private consults using either the Laplace or the Gaussian mechanism, but not both
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-- Computations -- Privacy parameters
data Query p a data Input pm

-- Privacy notions -- Mechanisms
data PureDP data Laplace
data AproxDP data Gauss

Fig. 23. New types for DPellas’s generalization.

dpCount ::  (Stb s,PrivN p,Mech pm) = Input pm — Data s r — Query p (Value Double)

dpSum :: (Stb s,PrivN p,Mech pm) = Input pm — Range ab — (r — Double) — Datasr
— Query p (Value Double)

dpAvg = (Stb s,PrivN p,Mech pm) = Input pm — Range ab — (r — Double) — Datasr
— Query p (Value Double)

dpMax == (Eqa, PrivN p,Mech pm) = Input pm — Responsesa — (r — a) —» Datalr

— Query p (Value a)

Fig. 24. Updated aggregations.

simultaneously. However, there might be cases where analysts would want to combine queries
using Laplace and Gaussian noise. DPella is designed to allow programmers to mix results from
different mechanisms as long as they are implemented under the same privacy notion; for instance,
only results from mechanisms deploying approximate-DP can be combined within themselves. To
support this behavior, DPella’s computations are generalized by their privacy notion, for which
we introduce the abstract data types presented in Figure 23.

Values of type Query p a represent computations yielding outputs of type a under the privacy
notion p. Variable p can be instantiated to types PureDP or AproxDP, and thus a term of type
g :: Query Pure (Value Double) is a pure differentially private computation whose output has type
Value Double. As established in Section 4, type Query p ais a monad, and then sequencing queries
is done through the bind function. Hence, to enforce a combination of queries only within the same
privacy notion, the type of function (>>=) changes to

(>>=):Querypa— (a— Querypb) > Queryphb

where all of the computations involved must share the same privacy notion p. This restriction
ensures that the principles of composition can be properly applied when combining queries.

To determine which mechanism (or source of noise) will be used in a computation, aggrega-
tions are updated to take an argument of type Input p m (instead of € or (€, §)) as depicted in
Figure 24. Type variable p still refers to the privacy notion, whereas m indicates which mechanism
should be used to ensure p-DP. Variable m can be instantiated to types Laplace or Gauss. Hence,
a term of type arg :: Input AproxDP Gauss represents an input for a computation guaranteeing
approximate-DP using the Gaussian mechanism. The introduction of type Input p m allows us to
refer to our mechanisms’ arguments without specifying them directly. However, when privacy
notion and mechanism are chosen, the input gets concretized to either € or (e, §). More precisely,
the implementation of Input PureDP Laplace is isomorphic to €, whereas Input AproxDP Gauss
and Input AproxDP Laplace are isomorphic to (e, 9).

Last, new type constraints PrivN p and Mech pm are introduced in all aggregations (re-
call Figure 24) to avoid invalid combinations of p and m (e.g., q:Query Bool a and arg :
Input PureDP Gauss).
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1 hist :: (Stb s,PrivN p,Mech pm) = [Age] — (Age — Bool) — Input pm — Data s Age
2 — Query p [Value Double]

3 hist bins f arg dataset = do

4 tab « dpWhere f dataset

5 parts « dpPartRepeat (dpCount arg) bins assignBin tab

6 return (Map.elems parts)

7 mixHist :: Query AproxDP (Value [Double])

8 mixHist = do

9 letbinsLap =[5,10,15,20,25]

10 binsGauss =[50, 55,60, 65|

11 lapHist <« hist binsLap (< 25) (In @AproxDP @Laplace (0.25,1e-3)) ages
12 gaussHist « hist binsGauss (> 50) (In @AproxDP @Gauss (0.5, 1e-3)) ages
13 return (norme (lapHist + gaussHist))

Fig. 25. Histogram using Laplace and Gauss mechanisms.

With this new interface, analysts can implement generic programs without specifying which
mechanism (and privacy notion) will be used during its execution, these computations can be
later used to instantiate specific queries. For instance, Figure 25 presents functions hist (lines
1-6), which creates a histogram of ages taking as input a list of bins, a selector function f, the
general input of the mechanism arg, and the dataset. This function filters the given dataset ac-
cordingly to the selector functor (line 4), partitions the data into the bins and perform a noisy
count on each partition (line 5), and finally returns a list with all noisy counts (line 6). Later, the
analyst can call hist to define a noisy query under approximate-DP, called mixHist, returning a
histogram where some bins are computed using the Laplace mechanism (lines 9 and 11), whereas
others use the Gaussian mechanism (lines 10 and 12). Observe that we use type applications, such
as In @AproxDP @Laplace (...) and In @AproxDP @Gauss (.. .), to specify which privacy notion
and mechanism should be used.

8.1 Implementation and Accuracy Estimations

The accuracy analysis of generalized computations closely follow the one defined for the Laplace
and Gaussian mechanisms. The main difference is that symbolic values S[iCDF, d, ts, n] now keep
track of an extra value, 7, representing the distribution from where the noise is drawn. Values of
1 are limited to L for Laplace, G for Gauss, and U for unknown distributions when noisy values are
combined.

The interpretation of aggregations can be summarized by inspecting dpCount. Rule DPCouNT
in Figure 26 shows that the value of 7 is determined by the distribution indicated at the type of
input arg (i.e., n = m). Internally, type Laplace gets translated into the value L and type Gauss into
the value G. With this information, function noiseScale computes the scale of Laplace (following
Theorem 2.1) or the variance of Gauss (according to Theorem 5.1) depending on the value of 7.
Similarly, function errorDist returns the iCDF of the corresponding distribution.

Major changes occur on the interpretation of combinator add since now the list of values to be
added are potentially mixed w.r.t. their distribution. If not done carefully, computing the error of
such addition will rarely trigger the Chernoff bound. To maximize the chances of using Chernoff
bound, rule ADD-CHERNOFF-UNION illustrates how the static analysis splits the symbolic values v;
into three disjoints sets: values V| are independent Laplacian, values Vg are independent Gaussians,
and values Vy are either non-independent or their distribution is unknown. Each of these groups
of values will be added between them to later be used as partial sums for the final result. The
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DPCounTt
dataset ::Datasr arg:: Inputpm
n=m sc = noiseScale (s, arg,n) iCDF = Af — errorDist (f,s,arg, sc,n) t fresh

dpCount arg dataset > S[iCDF,sc,{t}, ]

ADD-CHERNOFF-UNION
vy ZS[iCDFj,SJ‘,tSj,I]j]
d € {L,G} Vg=A{vi | ni =dANi=1_ tsi =0} Vu=Vj¢{VLUVG}
iCDFg = A — min (ub Vg4 B) (cb V4 B) iCDFy = ub Vy (s, ts,n) = track (sj, tsj,n5)

add [vi,v2, ..., vn] ~ S[ub [V, V6 Vul, s, ts, 7]

Fig. 26. Accuracy analysis for mixed mechanisms.

resulting value of the partial sum for values in V| and V¢ will have an error estimation computed as
the minimum between union and Chernoff bound—that is, iCDF4 = A — min (ub V4 ) (cb V4 B)
ford € {L,G}. Since values grouped in Vy do not have an associated Chernoff bound, the iCDF of
their addition will be determined by union bound iCDFy = ub Vy. Last, the iCDF of the addition of
all values vy, vs, . . ., Vv, is computed as the union bound between the values from V, Vg, and Vy.
This computation is done in such a way that if all values v; come from the same distribution d, the
final iCDF will be the same as presented in Figure 10 for Laplace and Figure 12(b) for Gauss.

To determine the values of s, ts, and #, function track checks if all values are untainted (Vj.ts; #
0), independent ((=;..., ts; = 0), and Gaussian (¥j.n; = G), and if that is the case, thens = }7_; s;,
ts = Uj=1...n tsj, and n = G as done previously with the Gaussian mechanism; otherwise, s = 0,
ts=0,andn = U.

Evidently, combinator add’s new behavior will likely yield tighter bounds compared to our pre-
vious version since now it procures triggering the Chernoff bound in intermediate stages. One
can imagine other optimizations over the interpretation of add to postpone the tainting of val-
ues as much as possible. For example, nested additions such as add [add [vy, V2], v3, V4, v5 ] could
be flattened as add [vy, vy, . . ., V5], potentially improving their sum’s bound, especially when the
noisy values come from the Laplace mechanism. We leave the integration of other optimizations
as future work.

With this generalization, DPella is also extensible to other notions of privacy (e.g., Rényi-
DP [42]) or other mechanisms by simply declaring a new data type, its principles of composition,
and a way to sample noise (to compute noiseScale) and determine its iCDF (to compute
errorDist). Additionally, if the Chernoff bound is not provided, DPella will use the union bound
instead. All extensions to our framework are delimited and clearly identified thanks to our typed
approach.

9 LIMITATIONS AND EXTENSIONS

So far, we have discussed the use of DPella as an API allowing a programmer to implement her own
data analyses. However, we foresee DPella to also serve as a “glue” that enables a programmer to
integrate arbitrary DP algorithms, as (black-box) building blocks while reasoning about accuracy.
In this light, our design supports the introduction of new primitives when some analyses cannot
be directly implemented because either the static analysis for accuracy provided by DPella is too
conservative or DPella’s API building blocks are not enough to express the desired analysis. In the
following, we describe several possible such extensions.

The matrix mechanism

As we discussed in the previous section, in some situations DPella allows answering in an accu-
rate way the multiple counting queries in a way that is similar to the matrix mechanism. As an
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example, DPella estimates accuracy better than the matrix mechanism for the strategy I—recall
Section 6. However, for other workloads and other strategies, the accuracy provided by DPella is
too conservative. To consider other workloads and strategies, the matrix mechanism can be incor-
porated into DPella as a primitive for answering counting queries. The requirements for this are
that the return values are tainted, and that we have an iCDF for it—this can be calculated as in
the work of Ge et al. [25]. In general, it is sound to add new primitives that permit a more precise
accuracy analysis as long as the return values are tainted, and accuracy information is provided—
thus effectively allowing further composition of the primitive with other analyses by means of the
union bound.

Branching on noisy values

By construction, DPella programs are not allowed to branch on results produced by aggregations;
this restriction has been enforced since computing the («, )-accuracy of such programs poses a
challenge in terms of the complexity of their error estimation. More specifically, determining the
accuracy of a program branching on a noisy value involves the computation of conditional proba-
bilities (together with the notion of conditional independence); we have identified two main diffi-
culties carried by the consideration of this measurement. First, it must account for both branches’
error, thus, quickly loosening the bounds as the program’s complexity increases. Second, it is chal-
lenging to define a general and compositional way of reasoning about the accuracy of the combi-
nation of such programs and their independence tracking. To overcome this limitation, we have
proposed adding programs that rely on branching over noisy values (e.g., SVT) as black-box prim-
itives in DPella; in the following, we elaborate on this approach.

Primitives with non-compositional privacy analyses

Several DP algorithms have a privacy analysis that does not follow directly by composition. Some
well-known examples are report-noisy-max, the exponential mechanism (EM), and the sparse-
vector technique (see the work of Dwork and Roth [17] and Barthe et al. [9] for more details).
In their natural implementations, these algorithms branch on the result of some noised query’s
result, and the privacy analyses use some properties of the noise distributions that are not directly
expressible in terms of composition of differentially private components. Because DPella’s API
does not allow branching on the results of noised queries, and because the privacy analyses that
DPella supports are based on composition, we cannot implement these analyses directly using the
DPella APL. However, we can provide them as (black-box) primitives. We already discussed how to
integrate report-noisy-max through a primitive dpMax (Figure 4). The EM can be incorporated into
DPella in a similar way. A subtlety that one has to consider is the fact that the privacy guarantee
of EM depends on a bound of the sensitivity of the score function. We handle this by requiring the
score function’s output to be bound between 0 and 1, bounding the sensitivity to be at most 1. As
with dpMax, the output of the EM is tainted. The EM is an important mechanism that allows im-
plementation of many other techniques. In particular, we can use the EM to implement the offline
version of the sparse vector technique, as discussed in the work of Dwork and Roth [17]. These
components allow DPella to support automated reasoning about accuracy for complex algorithms
such as the offline version of the MWEM algorithm [27] following an analysis similar to the one
discussed in the work of Barthe et al. [8].

Generally, one of the biggest challenges of introducing black-box primitives into DPella is to
determine their (@, f)-accuracy. There is a significant disparity in how the accuracy of well-known
differentially private routines is determined in the literature; thus, there is no straightforward
approach to translate such results into our error measurement—if possible at all. Recent work from
Barthe et al. [3] provides a uniform definition of accuracy across differentially private routines; we
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consider these results as a promising starting point to systematically interpret these algorithms’
accuracy calculations into DPella’s error measurement.

Online adaptive algorithms

Several DP algorithms have different implementations depending if they work offline, where all of
the decisions are made upfront before running the program, or online, where some of the decisions
are made while running the program. Online algorithms usually have a more involved control
flow that depends on information that is available at runtime. As an example, the online version
of the sparse vector technique uses the result of a DP query to decide whether or not to stop the
computation (or whether or not to stop giving meaningful answers). These kinds of algorithms
usually are based on some re-use of a noised result that corresponds to a tainted value in DPella.
Therefore, the current design of DPella cannot support them. As future work, we plan to explore
how to integrate these algorithms in DPella.

Improving accuracy through post-processing

Several works have explored the use of post-processing techniques to improve accuracy (e.g., [28,
30, 47]). Most of these works use accuracy measures that differ from the one we consider here and
use some specific properties of the particular problem at hand. As an example, the work by Hay
et al. [30] describes how to boost accuracy in terms of MSE for DP hierarchical queries by post-
processing the DP results by means of some relatively simple optimization. This improvement in
accuracy relies on, among other things, the impact that the optimization has on the MSE, which
does not directly apply to the a-f notion of accuracy we use here. We expect that, also for the no-
tion of a-f accuracy we use, it is possible to use post-processing for improving accuracy. However,
we leave this for future work. Moreover, the reason for us to choose a-f accuracy as the principal
notion of accuracy in DPella is because of its compositional nature expressible through the use of
probability bounds. It is an interesting future direction to design a similar compositional theory
also for other accuracy notions such as MSE. We expect DPella to be extensible to incorporate such
a theory, once it is available.

10 RELATED WORK
Programming frameworks for DP

PINQ [40] uses dynamic tracking and sensitivity information to guarantee privacy of computa-
tions. Among the frameworks and tools sharing features with PINQ, we highlight Airavat [51],
wPINQ [49], DJoin [45], Ektelo [63], Flex [31], and PrivateSQL [32]. In contrast to DPella, none of
these works keeps track of accuracy, nor static analysis for privacy or accuracy. As discussed in
Section 4, DPella supports a limited form of joins, and it is still able to provide accuracy estimates.
We leave as future work supporting more general join operations through techniques similar to the
ones proposed in Flex and PrivateSQL. Although several of the components from the frameworks
discussed earlier are not supported in the current implementation of DPella, these can be added
as black-box primitives, as discussed in Section 9. All of the programming frameworks discussed
previously support reasoning about privacy for complex data analyses while neglecting accuracy,
whereas DPella supports accuracy but restricts the programming framework to rule out certain
analysis (e.g., adaptive ones) for which we do not yet have a general compositional theory.

Tools for DP

In a way similar to DPella, there exist tools that support reasoning about accuracy and restrict
the kind of data analyses they support. GUPT [44] is a tool based on the sample-and-aggregate
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framework for DP [48]. GUPT allows analysts to specify the target accuracy of the output and
compute privacy from it—and vice versa. This approach has inspired several of the subsequent
works and also our design. The limitations of GUPT are that it supports only analyses that fit in the
sample-and-aggregate framework, and it supports only confidence interval estimates expressed at
the level of individual queries. In contrast, DPella supports analyses of a more general class, such
as the ones we discussed in Section 3 and Section 6, and it also allows reasoning about the accuracy
of combined queries rather that just about the individual ones. PSI [24] offers the data analyst an
interface for selecting either the level of accuracy that she wants to reach or the level of privacy she
wants to impose. The error estimates that PSI provides are similar to the ones that are supported
in DPella. However, similarly to GUPT, PSI supports only a limited set of transformations and
primitives, it supports only confidence intervals at the level of individual queries, and in its current
form it does not allow analysts to submit their own (programmed) queries.

APEx [25] has similar goals as DPella and allows data analysts to write queries as SQL-like
statements. However, the model that APEx uses is different from that of DPella. It supports three
kind of queries: WCQ (counting queries), ICQ (iceberg counting queries), and TCQ (top-k count-
ing queries). To answer WCQ queries, APEx uses the matrix mechanism (recall Section 6) and
applies Monte Carlo simulations to achieve accuracy bounds in terms of « and f, and to determine
the least privacy parameter () that fits those bounds. We have shown how DPella can be used
to answer queries based on the identity strategies using partition and concentration bounds. To
effectively answer different workloads and strategies as well as ICQ and TCQ queries, we would
need to extend DPella with the matrix mechanism as a black box (recall Section 9). Although APEx
supports advanced query strategies, it does not provide the means to reason about combinations
of analyses—for example, it does not support reasoning about the accuracy of a query using re-
sults from WCQ queries to perform TCQ ones. DPella instead has been designed specifically to
support the combination of different queries. As we discussed in Section 9, DPella can be seen as a
programming environment that could be combined with some of the analyses supported by tools
similar to PSI, GUPT, or APEx to reason about the accuracy of the combined queries.

Formal Calculi for DP

There are several works on enforcing DP relying on different models and techniques. Within this
group are Fuzz [50]—a programming language that enforces (pure) DP of computations using a lin-
ear type of system that keeps track of program sensitivity—and its derivatives DFuzz [23], Adaptive
Fuzz [60], Fuzzi [64], and Duet [46]. Hoare2 [7], a programming language that enforces (pure or
approximate) DP using program verification, together with its extension PrivInfer [4] supporting
differentially private Bayesian programming, and other systems using similar ideas [1, 9, 59, 62].
Barthe et al. [6] devise a method for proving DP using Hoare logic. Their method uses accu-
racy bounds for the Laplace mechanism for proving privacy bounds of the Propose-Test-Release
mechanism but cannot be used to prove accuracy bounds of arbitrary computations. Later, Barthe
et al. [8] develop a Hoare-style logic, named aHL, internalizing the use of the union bound for rea-
soning about probabilistic imperative programs. The authors show how to use aHL for reasoning
in a mechanized way about accuracy bounds of several basic techniques such as report-noisy-max,
sparse vector, and MWEM. This work has largely inspired our design of DPella but with several
differences. First, aHL mixes the reasoning about accuracy with the more classical Hoare-style
reasoning. This choice makes aHL very expressive but difficult to automate. DPella instead favors
automation over expressivity. As discussed before, the use of DPella to derive accuracy bound is
transparent to a programmer thanks to its automation. However, there are mechanisms that can
be analyzed using aHL and cannot be analyzed using DPella, such as adaptive online algorithms.
Second, aHL supports only reasoning about accuracy but does not support reasoning about pri-
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vacy. This makes it difficult to use aHL for reasoning about the privacy-accuracy trade-offs. Finally,
aHL supports only reasoning using the union bound and does not support reasoning based on the
Chernoff bound. This makes DPella more precise on the algorithms that can be analyzed using
the Chernoff bound. Barthe et al. [5] use aHL, in combination with a logic supporting reasoning
by coupling, to verify differentially private algorithms whose privacy guarantee depends on the
accuracy guarantee of some sub-component. We leave exploring this direction for future work.
More recently, Smith et al. [56] propose an automated approach for computing accuracy bounds
of probabilistic imperative programs. This work shares some similarities with ours. However, it
does not support reasoning about privacy, and it only uses the union bound and does not attempt
to reason about probabilistic independence to obtain tighter bounds.

Other works

In a recent work, Ligett et al. [36] propose a framework for developing differentially private algo-
rithms under accuracy constraints. This allows one to choose a given level of accuracy first and
then find the private algorithm meeting this accuracy. This framework is so far limited to empirical
risk minimization problems and is not yet supported by a system.

11 CONCLUSION

DPella is a programming framework for reasoning about privacy, accuracy, and their trade-offs.
DPella uses taint analysis to detect probabilistic independence and derive tighter accuracy bounds
using Chernoff bounds. We believe that the principles behind DPella (i.e., the use of concentration
bounds guided by taint analysis) could generalize for more notions of privacy, such as Rényi-
DP [42], concentrated DP [18], zero concentrated DP [12], and truncated concentrated DP [11] (as
is done with (e, §)-DP). As future work, we envision lifting the restriction that programs should
not branch on query outputs.
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