
This article was downloaded by: [130.207.93.57] On: 29 November 2021, At: 07:50
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Structured Robust Submodular Maximization: Offline and
Online Algorithms
Alfredo Torrico, Mohit Singh, Sebastian Pokutta, Nika Haghtalab, Joseph (Seffi) Naor, Nima
Anari

To cite this article:
Alfredo Torrico, Mohit Singh, Sebastian Pokutta, Nika Haghtalab, Joseph (Seffi) Naor, Nima Anari (2021) Structured Robust
Submodular Maximization: Offline and Online Algorithms. INFORMS Journal on Computing 33(4):1590-1607. https://
doi.org/10.1287/ijoc.2020.0998

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2020.0998
https://doi.org/10.1287/ijoc.2020.0998
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

INFORMS JOURNAL ON COMPUTING

http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Structured Robust Submodular Maximization: Offline and
Online Algorithms
Alfredo Torrico,a Mohit Singh,b Sebastian Pokutta,c,d Nika Haghtalab,e Joseph (Seffi) Naor,f Nima Anarig

aPolytechnique Montréal, University of Montreal, Montreal, Quebec H3T 1J4, Canada; bH. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; cBerlin Institute of Technology, 10623 Berlin, Germany; dZuse
Institute Berlin, 14195 Berlin, Germany; eDepartment of Computer Science, Cornell University, Ithaca, New York 14853; fTechnion—Israel
Institute of Technology, Haifa 3200003, Israel; gComputer Science Department, Stanford University, Stanford, California 94305
Contact: alfredo.torrico-palacios@polymtl.ca, https://orcid.org/0000-0002-9695-9018 (AT); mohit.singh@isye.gatech.edu (MS);
pokutta@zib.de (SP); nika@cs.cornell.edu (NH); naor@cs.technion.ac.il (J(S)N); anari@cs.stanford.edu (NA)

Received: August 1, 2019
Revised: March 8, 2020; June 6, 2020
Accepted: June 17, 2020
Published Online in Articles in Advance:
February 18, 2021

https://doi.org/10.1287/ijoc.2020.0998

Copyright: © 2021 INFORMS

Abstract. Constrained submodular function maximization has been used in subset se-
lection problems such as selection of most informative sensor locations. Although these
models have been quite popular, the solutions obtained via this approach are unstable to
perturbations in data defining the submodular functions. Robust submodular maximi-
zation has been proposed as a richer model that aims to overcome this discrepancy as well
as increase the modeling scope of submodular optimization. In this work, we consider
robust submodular maximization with structured combinatorial constraints and give
efficient algorithms with provable guarantees. Our approach is applicable to constraints
defined by single or multiple matroids and knapsack as well as distributionally robust
criteria. We consider both the offline setting where the data defining the problem are known
in advance and the online setting where the input data are revealed over time. For the offline
setting, we give a general (nearly) optimal bicriteria approximation algorithm that relies on
new extensions of classical algorithms for submodular maximization. For the online version
of the problem, we give an algorithm that returns a bicriteria solution with sublinear regret.
Summary of Contribution:Constrained submodular maximization is one of the core areas
in combinatorial optimization with a wide variety of applications in operations research
and computer science. Over the last decades, both communities have been interested on the
design and analysis of new algorithmswith provable guarantees. Sensor location, influence
maximization and data summarization are some of the applications of submodular op-
timization that lie at the intersection of the aforementioned communities. Particularly, our
work focuses on optimizing several submodular functions simultaneously. We provide
new insights and algorithms to the offline and online variants of the problem which
significantly expand the related literature. At the same time, we provide a computational
study that supports our theoretical results.

History: Accepted by Andrea Lodi, Area Editor for Design and Analysis of Algorithms—Discrete.
Funding: This work was supported in part by the U.S. National Science Foundation (NSF) [Grant CCF-

1717947], an NSF Career Award [Grant CMMI-1452463], an IBM PhD fellowship, and a Microsoft
Research PhD fellowship.

Supplemental Material: The online supplement is available at https://doi.org/10.1287/ijoc.2020.0998.

Keywords: submodular optimization • robust optimization • matroid constraints • greedy algorithm • online learning

1. Introduction
Constrained submodular function maximization has
seen significant progress in recent years in the de-
sign and analysis of new algorithms with guarantees
(Sviridenko 2004, Calinescu et al. 2011, Buchbinder
and Feldman 2016, Ene and Nguyen 2016), as well as
numerous applications, especially in constrained sub-
set selection problems (Krause and Guestrin 2005;
Krause et al. 2008a,b; 2009; Lin and Bilmes 2009;
Powers et al. 2016a), and more broadly machine
learning. A typical example is the problem of picking
a subset of candidate sensor locations for spatial
monitoring of certain phenomena such as temperature,

pH values, humidity, and so on (Krause et al. 2008b).
Here the goal is typically to find sensor locations that
achieve the most coverage or give the most infor-
mation about the observed phenomena. Sub-
modularity naturally captures the decreasing marginal
gain in the coverage or the information acquired about
relevant phenomena by using more sensors (Das and
Kempe 2008). Although submodular optimization of-
fers an attractive model for such scenarios, there are a
few key shortcomings, which motivated robust sub-
modular optimization in the cardinality case (Krause
et al. 2008b) so as to optimize against several func-
tions simultaneously.

1590

Vol. 33, No. 4, Fall 2021, pp. 1590–1607

http://pubsonline.informs.org/journal/ijoc
mailto:alfredo.torrico-palacios@polymtl.ca
https://orcid.org/0000-0002-9695-9018
https://orcid.org/0000-0002-9695-9018
mailto:mohit.singh@isye.gatech.edu
mailto:pokutta@zib.de
mailto:nika@cs.cornell.edu
mailto:naor@cs.technion.ac.il
mailto:anari@cs.stanford.edu
https://doi.org/10.1287/ijoc.2020.0998
https://doi.org/10.1287/ijoc.2020.0998

1. The sensors are typically used to measure vari-
ous parameters at the same time. Observations for
these parameters need to be modeled via different
submodular functions.

2. Many of the phenomena being observed are
nonstationary and highly variable in certain loca-
tions. To obtain a good solution, a common approach
is to use different submodular functions to model
different spatial regions.

3. The submodular functions are typically defined
using data obtained from observations, and imprecise
information can lead to unstable optimization problems.
Thus, there is a desire to compute solutions that are
robust to perturbations of the submodular functions.

Given the computational complexity of optimizing
several functions simultaneously, Krause et al. (2008b)
motivated a bicriteria approach. In simple words, to
obtain provable guarantees, one needs to trade off
the quality of the solution measured by its objective
value with the size of the solution. In the case of a
single cardinality constraint, Krause et al. (2008b)
propose a natural relaxation that consists of allow-
ing more elements in the final set, that is, violating
the feasibility constraint. However, to obtain prov-
able guarantees for more general combinatorial con-
straints, relaxing the size of feasible sets is not enough.

Our main contribution is the development of new
algorithms with provable guarantees for robust sub-
modular optimization under a large class of combi-
natorial constraints. These include partition constraints,
where local cardinality constraints are placed on dis-
joint parts of the ground set. More generally, we con-
sider matroid and knapsack constraints.

We provide bicriteria approximations that trade off
the approximation factor with the size of the solution,
measured by the number � of feasible sets {Si}i∈[�]
whose union constitutes the final solution S. Al-
though this might be nonintuitive at first, it turns out
that the union of feasible sets corresponds to an ap-
propriate analog of the single cardinality constraint.
Some special cases of interest include

1. Partition constraints. Given a partition of the
candidate sensor locations, the feasible sets corre-
spond to subsets that satisfy a cardinality constraint
on each part of the partition. The union of feasible sets
here corresponds to relaxing the cardinality con-
straints separately for each part. This results in a
stronger guarantee than relaxing the constraint glob-
ally, as would be the case in the single cardinality
constraint case.

2. Gammoid.Given a directed graph and a subset of
nodes T, the feasible sets correspond to subsets S that
can reach T via disjoint paths in the graph. Gammoids
appear in flow-based models, for example, in reliable
routing. The union of feasible sets now corresponds to

sets S that can reach T via paths such that each vertex
appears in few paths.
We consider both offline and online versions of the

problem, where the data are either known a priori or
are revealed over time, respectively. For the offline
version of the problem, we provide a general pro-
cedure that iteratively uses any standard algorithm
for submodular maximization to produce a solution
that is a union of multiple feasible sets. The analysis
relies on known insights about the performance of the
classic greedy algorithm when it is used for the car-
dinality constraint. For the online case, we introduce
new technical ingredients that might be broadly ap-
plicable in online robust optimization. Our work
significantly expands on previous work on robust
submodular optimization that focused on a single
cardinality constraint (Krause et al. 2008b).Moreover,
our work substantially differs from its proceeding
version (Anari et al. 2019) because (1) we provide a
general and flexible framework to design an offline
bicriteria algorithm, and (2) we give significant im-
plementation improvements and support our theo-
retical results via an exhaustive computational study
on two real-world applications.

1.1. Problem Formulation
As we describe next, we study offline and online
variations of robust submodular maximization under
structured combinatorial constraints. Although our
results hold for more general constraints, we focus
our attention first on matroid constraints that gen-
eralize the partition aswell as the gammoid structural
constraints mentioned earlier. We discuss extensions
to other class of constraints in Section 4.
Consider a nonnegative set function f : 2V → R+.

We denote the marginal value for any subset A ⊆ V
and e ∈ V by fA(e) :� f (A + e) − f (A), where A + e :�
A ∪ {e}. Function f is submodular if and only if it
satisfies the diminishing-returns property. Namely,
for any e ∈ V and A ⊆ B ⊆ V\{e}, fA(e) ≥ fB(e). We say
that f is monotone if for any A ⊆ B ⊆ V we have
f (A) ≤ f (B). Most of our results are concerned with
optimization of monotone submodular functions.
A natural class of constraints considered in sub-

modular optimization is matroid constraints. For a
ground set V and a family of sets I ⊆ 2V , M � (V,I)
is amatroid if (1) for allA ⊂ B ⊆ V, if B ∈ I , thenA ∈ I ,
and (2) for all A,B ∈ I with |A| < |B|, there is e ∈ B \ A
such thatA ∪ {e} ∈ I . Sets in such a family I are called
independent sets or, simply put, feasible sets for the
purpose of optimization. Maximal independent sets
are called bases. Finally, the rank of a matroid is the
maximum size of an independent set in the matroid.
The classical problem of maximizing a single mono-

tone submodular function f : 2V → R+ under a matroid
constraintM � (V,I) is formally stated asmaxA∈I f (A).

1591
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

Throughout this paper, we say that a polynomial-time
algorithm A achieves a (1 − β) approximation factor
for this problem if it returns a feasible solution S ∈ I
such that f (S)≥(1−β) ·maxA∈I f (A). When A is rando-
mized, we say that A achieves a (1 − β)-approximation
in expectation if E[f (S)] ≥ (1 − β) ·maxA∈I f (A). The
well-known standard greedy algorithm (Nemhauser
et al. 1978) is an example of A with β � 1/2 (Fisher
et al. 1978). We will denote by time(A) the running
time of A.

In this work, we consider the robust variation of the
previous submodularmaximization problem. That is,
for a matroid M � (V,I), and a given collection of k
monotone submodular functions fi : 2V →R+ for i ∈ [k],
our goal is to efficiently select a set S that maximizes
mini∈[k] fi(S). We define a (1 − ε)-approximately opti-
mal solution S as follows:

min
i∈ k[]

fi S() ≥ 1 − ε() ·max
A∈I

min
i∈ k[]

fi A(). (1)

We also consider the online variation of the previous
optimization problem in the presence of an adver-
sary. In this setting, we are given a fixed matroid
M � (V,I). At each time step t ∈ [T], we choose a
set St. An adversary then selects a collection of k
monotone submodular functions { f ti }i∈[k] : 2V →[0,1].
We receive a reward of mini∈[k] E[f ti (St)], where the
expectation is taken over any randomness in choosingSt.
We can then use the knowledge of the adversary’s
actions, that is, oracle access to { f ti }i∈[k], in our future
decisions. We consider nonadaptive adversaries whose
choices { f ti }i∈[k] are independent of Sτ for τ < t. In other
words, an adversarial sequence of functions { f 1i }i∈[k], . . . ,{ f Ti }i∈[k] is chosen upfront without being revealed to
the optimization algorithm. Our goal is to design
an algorithm that maximizes the total payoff

∑
t∈[T]

mini∈[k] E[f ti (St)]. Thus, we would like to obtain a
cumulative reward that competes with that of the
fixed set S ∈ I we should have played had we known
all the functions f ti in advance, that is, compete with
maxS∈I

∑
t∈[T] mini∈[k] f ti (S). As in the offline optimiza-

tion problem, we also consider competing with (1 − ε)
fraction of the previous benchmark. In this case,
Regret1−ε(T) denotes how far we are from this goal.
That is,

Regret1−ε T() � 1 − ε() ·max
S∈I

∑
t∈ T[]

min
i∈ k[]

f ti S()

− ∑
t∈ T[]

min
i∈ k[]

E f ti St
()[]

. (2)

Wedesire algorithmswhose (1 − ε)-regret is sublinear
in T. That is, we get arbitrarily close to a (1 − ε)
fraction of the benchmark as T → ∞.

The offline (Equation (1)) or online (Equation (2))
variations of robust monotone submodular functions
are known to be nondeterministic polynomial-time

hard (NP-hard) to approximate to any polynomial
factor when the algorithm’s choices are restricted to
the family of independent sets I (Krause et al. 2008b).
Therefore, to obtain any reasonable approximation
guarantee, we need to relax the algorithm’s constraint
set. Such an approximation approach is called a
bicriteria approximation scheme, in which the algorithm
outputs a set with a nearly optimal objective value
while ensuring that the set used is the union of only a
few independent sets in I . More formally, to get a
(1 − ε)-approximate solutions, we may use a set S
where S � S1 ∪ · · · ∪ S� such that S1, . . . ,S� ∈ I and �
is a function of 1

ε and other parameters. Because the
output set S is possibly infeasible, we define the vi-
olation ratio ν as theminimumnumber of feasible sets
whose union is S. To exemplify this, consider partition
constraints: Here we are given a partition {P1, . . . ,Pq}
of the ground set, and the goal is to pick a subset that
includes at most bj elements from part Pj for each j.
Then the union of � feasible sets has at most � · bj el-
ements in each part. In our example, the violation
ratio corresponds to ν � maxj∈[q]�|S ∩ Pj|/bj.
1.2. Our Results and Contributions
We present (nearly tight) bicriteria approximation
algorithms for the offline and online variations of ro-
bust monotone submodular optimization under mat-
roid constraints. Throughout this paper, we assume
that the matroid is accessible via an independence
oracle and that the submodular functions are acces-
sible via a value oracle. Moreover, we use loga to
denote a logarithm with base a (when the subscript
is not explicit, we assume that it is base 2; that is,
log :� log2) and ln to denote the natural logarithm.
For the offline setting of the problem, we obtain the

following general result.

Theorem 1. Consider a polynomial-time (1 − β)-approxi-
mation algorithm A for the problem of maximizing a single
monotone submodular function subject to a matroid con-
straint. Then, for the offline robust submodular optimization
problem (1), for any 0 < ε < 1, there is a polynomial-time
bicriteria algorithm that uses ext-A as a subroutine, runs in

O time A() · log1/β
k
ε

()
· log n()

(
·min

nk
ε
, log1+ε max

e,j
fj e()

(){ })
time, and returns a set SALG such that

E min
i∈ k[]

fi SALG()[]
≥ 1 − ε() ·max

S∈I
min
j∈ k[]

fj S(),

where the expectation is taken over any randomization of
A, SALG � S1 ∪ · · · ∪ S�, with � � �log1/β k

ε and S1, . . . ,
S� ∈ I .

1592
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

The subroutine ext-A that achieves this result is
an extended version of the algorithm A. Because A
outputs a feasible set, ext-A reuses A in an iterative
scheme so that it generates a small family of feasible
sets whose union achieves the (1 − ε)-guarantee. The
argument is reminiscent of a well-known fact for
submodular function maximization under cardinal-
ity constraints: Letting the standard greedy algorithm
run longer results in better approximations at the
expense of violating the cardinality constraint. Our
extended algorithm ext-A works in a similar spirit,
but it iteratively produces feasible sets in the matroid.
This framework generalizes the idea presented in
Anari et al. (2019). We emphasize that our procedure
does not correspond to an extension of the algorithm
for the cardinality constraint presented in Krause
et al. (2008b). The natural extension of their algo-
rithm to a single matroid constraint would be to run
an algorithm A over a larger feasibility constraint.
However, this approach does not provide any bicriteria
approximation. The main challenge for matroid con-
straints is to define an appropriate notion of violation. In
our work, we measure violation by the number of in-
dependent sets needed to cover the given set, in contrast
to Krause et al. (2008b), who define it in terms of car-
dinality. Our subroutine ext-A constructs a family of in-
dependent sets that ispivotal toobtainprovableguarantees.

A natural candidate for A is the standard greedy
algorithm, hereafter referred to as Greedy. Because
Greedy achieves a 1/2 approximation factor (Fisher
et al. 1978), the number of feasible sets needed is � �
�log2 k

ε (Anari et al. 2019). Unfortunately, Greedy’s
running time O(n · r) depends on the rank of the
matroid r. This can be computationally inefficient
when r is sufficiently large. To improve this, in Sec-
tion 2.1, we propose an extended version of the thresh-
old greedy algorithm introduced by Badanidiyuru
and Vondrák (2014). The main advantage of the thresh-
old greedy algorithm, further referred as ThGreedy,
is its running time, which does not depend on the
rank of the matroid. Formally, we obtain the fol-
lowing corollary.

Corollary 1. For the offline robust submodular optimization
problem (1), for any 0 < ε, δ < 1, there is a polynomial-time
bicriteria algorithm that uses ext-ThGreedy as a subroutine,
runs in

O
n
δ
· log n

δ

()
· log2

k
ε

()
· log n()

(
·min

nk
ε
, log1+ε max

e,j
fj e()

(){ })
time, and returns a set SALG such that

min
i∈ k[]

fi SALG() ≥ 1 − ε() ·max
S∈I

min
j∈ k[]

fj S(),

where SALG � S1 ∪ · · · ∪ S� with � � �log2 k
ε and S1, . . . ,

S� ∈ I .

To achieve a tight bound on the size of the family �,
we use an improved version of the continuous greedy
algorithm (Vondrák 2008, Badanidiyuru and Vondrák
2014) as the inner algorithm A. Because the contin-
uous greedy algorithm achieves a 1 − 1/e approxi-
mation ratio, we need � � �ln k

ε feasible sets to achieve
a 1 − ε fraction of the true optimum, which matches
the hardness result presented in Krause et al. (2008b).
This bicriteria algorithm is much simpler than the one
presented in Anari et al. (2019). We present the main
offline results and the corresponding proofs in
Section 2.
Onemight hope that similar results can be obtained

even when functions are nonmonotone (but still sub-
modular). As we show in Section 2.2, this is not pos-
sible. To support our theoretical guarantees, we pro-
vide an exhaustive computational study in Section 2.3.
In this section, we observe that the main computa-
tional bottleneck of the bicriteria algorithms is to
certify the near-optimality of the output solution. To
solve this, we present significant implementation im-
provements such as lazy evaluations and an early
stopping criterion, which empirically show how the
computational cost can be drastically improved.
Our offline approach is quite flexible in the sense

that Theorem 1 uses an arbitrary algorithm A. This
allows us to consider different algorithms in the lit-
erature of submodular optimization and further ex-
tend our results to other classes of constraints, such
as knapsack constraints and multiple matroids. We
describe these extensions in Section 4.
A natural question is whether our algorithm can be

carried over into the online setting, where functions
are revealed over time. For the online variant, we
present the following result.

Theorem 2. For the online robust submodular optimization
problem (2), for any 0 < ε < 1, there is a randomized
polynomial-time algorithm that returns a set St for each stage
t ∈ [T], and thus we get the following:∑

t∈ T[]
min
i∈ k[]

E f ti St
()[] ≥ 1 − ε() ·max

S∈I
∑
t∈ T[]

min
i∈ k[]

f ti S()

−O 1 − ε()n5
4

̅
T̅

√()
,

where St � St1 ∪ · · · ∪ St�, with � � �ln 1
ε and St1, . . . ,St� ∈I .

We remark that the guarantee of Theorem 2 holds
with respect to the minimum of E[f ti (St)], as opposed
to the guarantee of Theorem 1, which directly bounds
the minimum of fi(S). Therefore, the solution for the
online algorithm is a union of only �ln 1

ε independent
sets, in contrast to the offline solution, which is the
union of �log k

ε independent sets. The main challenge

1593
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

in the online algorithm is to deal with nonconvexity
and nonsmoothness resulting from submodularity
exacerbated by the robustness criteria. Our approach
to copingwith the robustness criteria is to use the soft-
min function − 1

α ln
∑

i∈[k] e−αgi , defined for a collection
of smooth functions {gi}i∈[k] and a suitable parameter
α > 0. This function is also known as log-sum-exp; for
some of its properties and applications, we refer the
interested reader to Calafiore and El Ghaoui (2014).
Although the choice of the specific soft-min function
is seemingly arbitrary, one feature is crucial for us:
Its gradient is a convex combination of the gradients
of the gi’s. Using this observation, we use parallel
instances of the follow-the-perturbed-leader (FPL)
algorithm presented by Kalai and Vempala (2005),
one for each discretization step in the continuous
greedy algorithm. We believe that the algorithm
might be of independent interest to perform online
learning over a minimum of several functions, a
common feature in robust optimization. The main
result and its proof appear in Section 3.

1.3. Related Work
Building on the classical work of Nemhauser et al.
(1978), constrained submodular maximization prob-
lems have seen much progress recently (see, e.g.,
Chekuri et al. 2010, Calinescu et al. 2011, Buchbinder
et al. 2014, 2016). Robust submodular maximization
generalizes submodular function maximization un-
der a matroid constraint for which a (1 − 1

e)-approxi-
mation is known (Calinescu et al. 2011) and is opti-
mal. The problem has been studied for constant k by
Chekuri et al. (2010), who give a (1 − 1

e − ε)-approxi-
mation algorithm with running time O(nk

ε). Closely
related to our problem is the submodular cover prob-
lem, where we are given a submodular function f and a
target b ∈ R+, and the goal is to find a set S of mini-
mum cardinality such that f (S) ≥ b. A simple reduc-
tion shows that robust submodular maximization
under a cardinality constraint reduces to the sub-
modular cover problem (Krause et al. 2008b). Wolsey
(1982) shows that the greedy algorithm gives an
O(ln n

ε)-approximation, where the output set S sat-
isfies f (S) ≥ (1 − ε)b. Krause et al. (2008b) use this
approximation to build a bicriteria algorithm for the
cardinality case that achieves tight bounds. This ap-
proach falls short of achieving a bicriteria approxi-
mation when the problem is defined over a matroid.
A natural extension of this approach to matroid con-
straints would be to run a single algorithm A over a
larger feasibility constraint. However, this procedure
does not provide any guarantee. Therefore, the main
challenge is to define an appropriate notion of vio-
lation. In this work, we measure violation not by
cardinality, as in Krause et al. (2008b), but by the
number of independent sets needed to cover the given

set. Our subroutine ext-A picks one feasible set at a
time, and this is crucial to obtain provable guarantees.
Powers et al. (2016b) consider the same robust prob-
lem with matroid constraints. However, they take a
different approach by presenting a bicriteria algo-
rithm that outputs a feasible set that is good only for a
fraction of the k monotone submodular functions. A
deletion-robust submodular optimization model is
presented in Krause et al. (2008b), which is later
studied by Orlin et al. (2016), Bogunovic et al. (2017),
and Kazemi et al. (2018). Influence maximization
(Kempe et al. 2003) in a network has been a successful
application of submodular maximization, and recently,
He and Kempe (2016) and Chen et al. (2016) study the
robust influence maximization problem. Robust op-
timization for nonconvex objectives (including sub-
modular functions) has been also considered by Chen
et al. (2017), but with weaker guarantees than ours
because of the extended generality. Specifically, their
algorithm outputs r log k

ε2OPT feasible sets whose union
achieves a factor of (1 − 1/e − ε). Finally,Wilder (2017)
studies a similar problem in which the set of feasible
solutions is the set of all distributions over inde-
pendent sets of a matroid. In particular, for our set-
ting, Wilder (2017) gives an algorithm that outputs
O(log kε3) feasible sets whose union obtains (1 − 1/e)2
fraction of the optimal solution. Our results are stronger
than the ones obtained by Chen et al. (2017) and
Wilder (2017) because we provide the same guaran-
tees using the union of fewer feasible sets. Other
variants of the robust submodular maximization
problem are studied by Mitrovic et al. (2018) and
Staib et al. (2018).
There has been some prior work on online sub-

modular function maximization that we briefly re-
view here. Streeter and Golovin (2008) study the
budgeted maximum submodular coverage problem
and consider several feedback cases (denote B a in-
tegral bound for the budget): In the full-information
case, a (1 − 1

e)-expected regret of O(̅̅̅̅̅̅̅̅̅̅
BT ln n

√) is
achieved, but the algorithm uses B experts, which
may be very large. In a follow-up work, Golovin
et al. (2014) study the online submodular maximi-
zation problem under partition constraints, and then
they generalize it to general matroid constraints. For
the latter algorithm, the authors present an online
version of the continuous greedy algorithm, which
relies on the FPL algorithm of Kalai and Vempala
(2005), and obtain a (1 − 1

e)-expected regret of O(̅
T̅

√).
Similar to this approach, our bicriteria online algo-
rithmwill also use the FPL algorithm as a subroutine.
Recent results on other variants of the online sub-
modular maximization problem are studied in Soma
(2019) and Zhang et al. (2019).

1594
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

2. The Offline Case
In this section, we consider offline robust optimiza-
tion (Equation (1)) under matroid constraints.

2.1. General Offline Algorithm and Analysis
In this section, we present a general procedure to
achieve a (nearly) tight bicriteria approximation for
the problem of interest and prove Theorem 1.

First, consider a nonnegative monotone submodular
function g : 2V → R+, a matroid M � (V,I), and a
polynomial-time (1 − β)-approximation algorithm A
for the problem of maximizing g overM. Formally, in
the deterministic case, A outputs a feasible set S ∈ I
such that g(S) ≥ (1 − β) ·maxA∈I g(A). If g(∅) �� 0, then
we define a new function g′ : 2V → R+ as g′(A) :�
g(A) − g(∅), which remains being monotone and sub-
modular. The approximation guarantee in this case is
g(S) − g(∅) ≥ (1 − β) ·maxA∈I{ g(A) − g(∅)}. When A is
a randomized algorithm,we say thatA achieves a (1 −
β) factor in expectation if A outputs a random fea-
sible set S ∈ I such that E[g(S) −g(∅)] ≥ (1−β)·maxA∈I
{g(A) −g(∅)}. We define in Algorithm 1 our main
procedure ext-A as an extended version ofA that runs
iteratively � ≥ 1 times.

Algorithm 1 (General Extended Algorithm for Submodular
Optimization ext-A)

Input: � ≥ 1, a monotone submodular function g :
2V → R+, a matroidM � (V,I), and algorithmA.

Output: sets S1, . . . ,S� ∈ I .
1: for τ � 1, . . . , �, do
2: Define g̃(S) � g(S⋃∪τ−1

j�1 Sj).
3: Sτ ← A(g̃,M).

Note that function g̃, defined in line 2 of Algorithm 1,
is also monotone and submodular. Observe that we
can recover algorithm A simply by considering � � 1
in ext-A. More important, we obtain the following
guarantee for ext-A.

Theorem 3. Consider a monotone submodular function g :
2V → R+ with g(∅) � 0, a matroid M � (V,I), and a
polynomial-time (1 − β)-approximation algorithm A for the
problem of maximizing g overM. For any �≥ 1, Algorithm 1
returns sets S1, . . . , S� such that

E g
⋃�
τ�1

Sτ

()[]
≥ 1 − β�
() ·max

S∈I
g S(),

where the expectation is taken over any randomization ofA
when choosing S1, . . . ,S�.

Proof. Let us assume that A is deterministic. In the
randomized case, the proof follows similarly by tak-
ing the corresponding expectations. From the first iter-
ation of Algorithm 1 and using the guarantees ofA, we

conclude that g(S1) −g(∅) ≥ (1−β) ·maxS∈I{g(S) −g(∅)}.
We use the previous statement to prove our theorem
by induction. For τ � 1, the claim follows directly.
Consider any � ≥ 2. Observe that the algorithm in it-
eration τ � � is exactly algorithmA run on submodular
function g̃ : 2V → R+, where g̃(S) :� g(S⋃∪�−1

j�1 Sj). This
procedure returns S� such that g̃(S�) − g̃(∅) ≥ (1 − β)·
maxS∈I{ g̃(S) − g̃(∅)}, which implies that

g
⋃�
τ�1

Sτ

()
− g

⋃�−1
τ�1

Sτ

()
≥ 1 − β
()

·max
S∈I

g S() − g
⋃�−1
τ�1

Sτ

(){ }
.

By induction, we know that g(∪�−1
τ�1Sτ) ≥ (1 − β�−1)·

maxS∈I g(S). Thus, we obtain the following:

g
⋃�
τ�1

Sτ

()
≥ 1 − β
() ·max

S∈I
g S() + β · g ⋃�−1

τ�1
Sτ

()
≥ 1 − β�
() ·max

S∈I
g S(). □

WenowapplyTheorem 3 for the robust submodular
problem, in which we are given monotone sub-
modular functions fi : 2V → R+ with fi(∅) � 0 for
i ∈ [k]. Our main bicriteria algorithm consists of two
consecutive steps: (1) Get an estimate γ of the value of
the optimal solution OPT, and (2) apply subroutine
ext-A to a convenient function depending on γ. For-
mally, we obtain an estimate γ on the value of the
optimal solution OPT :� maxS∈I mini∈[k] fi(S) via a bi-
nary search. For the purpose of the proof of Theo-
rem 1, given parameter ε > 0, let us assume that γ
has relative error 1 − ε

2; that is, (1 − ε
2)OPT ≤ γ ≤ OPT.

As in Krause et al. (2008b), let g : 2V → R+ be defined
for any S ⊆ V as follows:

g S() :� 1
k

∑
i∈ k[]

min fi S(), γ{ }
. (3)

Observe that maxS∈I g(S) � γ whenever γ ≤ OPT.
Moreover, note that g is also a monotone submodular
function. Therefore, the second step of the bicriteria
algorithm is to run algorithm ext-A on the function g
to obtain a candidate solution. A more detailed de-
scription of the algorithm can be found in Section 2.3.

Proof of Theorem 1. We assume A to be deterministic.
The randomized case can be easily proved by consider
the following proof for each realization sequence of
S1, . . . , S�. Consider the family of monotone submodu-
lar functions {fi}i∈[k], and define g as in Equation (3)
using parameter γ with a relative error of 1 − ε

2 . If we
run Algorithm 1 on g with � ≥ �log1/β 2k

ε , we get a

1595
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

set SALG � S1 ∪ · · · ∪ S�, where Sj ∈ I for all j ∈ [�].
Moreover, Theorem 3 implies that

g SALG() ≥ 1 − β�
() ·max

S∈I
g S() ≥ 1 − ε

2k

()
· γ.

Now we will prove that fi(SALG) ≥ (1 − ε
2) · γ for all

i ∈ [k]. Assume by contradiction that there exists an
index i∗ ∈ [k] such that fi∗ (SALG) < (1 − ε

2) · γ. Because
we know that min{fi(SALG), γ} ≤ γ for all i ∈ [k], then

g SALG() ≤ 1
k
· fi∗ SALG() + k − 1

k
· γ <

1 − ε/2
k

· γ

+ k − 1
k

· γ � 1 − ε

2k

()
· γ,

contradicting g(SALG) ≥ (1 − ε
2k) · γ. Therefore, we ob-

tain fi(SALG) ≥ (1 − ε
2) · γ ≥ (1 − ε) ·OPT for all i ∈ [k]

as claimed. □

2.1.1. Running-TimeAnalysis. In this section, we study
the running time of the bicriteria algorithm we just
presented. To show that a set of polynomial-size
values for γ exists such that one of them satisfies
(1 − ε/2)OPT ≤ γ ≤ OPT, we simply try γ � nfi(e)(1 −
ε/2)j for all i ∈ [k], e ∈ V, and j � 0, . . . , �ln1−ε/2(1/n).
Note that there exists an index i∗ ∈ [k] and a set S∗ ∈ I
such that OPT � fi∗ (S∗). Now let e∗ � argmaxe∈S∗ fi∗ (e).
Because of submodularity andmonotonicity, we have
1
|S∗ | fi∗ (S∗) ≤ fi∗ (e∗) ≤ fi∗ (S∗). So we can conclude that 1 ≥
OPT/nfi∗ (e∗) ≥ 1/n, which implies that j� �ln1−ε/2(OPT/
nfi∗ (e∗)) is in the correct interval, obtaining

1 − ε/2() OPT ≤ nfi∗ e∗()
1 − ε/2()j ≤ OPT.

We remark that the dependency of the running time
on ε can be made logarithmic by running a bi-
nary search on j as opposed to trying all j � 0, . . . ,
�ln1−ε/2(1/n). This would take at most nk

ε · logn iter-
ations. We could also say that doing a binary search
to get a value up to a relative error of 1 − ε/2 of OPT
would take log1+ε OPT. So we consider the mini-
mum of those two quantities min{nkε · logn, log1+εOPT}.
Given that Algorithm 1 runs in � · time(A), where � �
�log1/β k

ε is the number of rounds, we conclude that
the bicriteria algorithm runs in O(time(A) · log1/β k

ε ·
min{nkε · logn, log1+ε OPT}) time.

2.1.2. Two Deterministic Classical Algorithms: Greedy
and Local Search. Themost natural candidate forA is
Greedy (Nemhauser et al. 1978), which achieves a
ratio of 1/2 for the problem of maximizing a single
monotone submodular function subject to a matroid
constraint (Fisher et al. 1978). In this case, we know
that time(Greedy) � O(n · r), where r is the rank of the
matroid. Using Greedy, we are able to design its

extended version ext-Greedy, formally outlined in
Algorithm 2.

Algorithm 2 (Extended Greedy Algorithm for Submodular
Optimization ext-Greedy)

Input: � ≥ 1, monotone submodular function g :
2V → R+, matroid M � (V,I).

Output: sets S1, . . . ,S� ∈ I .
1: for τ � 1, . . . , �, do
2: Sτ ← ∅.
3: while Sτ is not a basis of M, do
4: Compute e∗�argmaxSτ+e∈I{g(∪τ

j�1Sj+e)}.
5: Update Sτ ← Sτ + e∗.

From Theorem 1, we can easily derive the following
corollary for ext-Greedy.

Corollary 2. For the offline robust submodular optimization
problem (1), for any 0 < ε, δ < 1, there is a polynomial-time
bicriteria algorithm that uses ext-Greedy as a subroutine,
runs in

O n · r · log2
k
ε

()
· log n()

(
·min

nk
ε
, log1+ε max

e,j
fj e()

(){ })
time, and returns a set SALG such that

min
i∈ k[]

fi SALG() ≥ 1 − ε() ·max
S∈I

min
j∈ k[]

fj S(),

where SALG � S1 ∪ · · · ∪ S�, with � � �log2 k
ε and S1, . . . ,

S� ∈ I .

Another natural candidate is the standard local
search algorithm, hereafter referred to as LS (Fisher
et al. 1978). Roughly speaking, this algorithm starts
with a maximal feasible set and iteratively swaps
elements if the objective is improved while main-
taining feasibility. If the objective cannot be im-
proved, the algorithm stops. Fisher et al. (1978) prove
that this procedure also achieves a 1/2-approxima-
tion, that is, β � 1/2. However, the running time of LS
cannot be explicitly obtained. Finally, for the offline
robust problem, the extended version of the local
search algorithm ext-LS achieves the same guarantees
as ext-Greedy but without an explicit running time.

2.1.3. Improving Running Time: Extended-Threshold
Greedy. As mentioned earlier, we are interested in
designing efficient bicriteria algorithms for the robust
submodular problem (1). Unfortunately, the sub-
routine ext-Greedy performs O(n · r · log2 k

ε) function
calls, which can be considerably inefficient when r is
sufficiently large. Our objective in this section is to
study a variant of the standard greedy algorithm that
performs fewer function calls and whose running
time does not depend on the rank of the matroid. For

1596
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

our purposes, we consider ThGreedy, introduced by
Badanidiyuru and Vondrák (2014). Roughly speak-
ing, this procedure iteratively adds elements whose
marginal value is above a certain threshold while
maintaining feasibility. Unlike Greedy, ThGreedy
may add more than one element in a single itera-
tion. For the cardinality constraint, Badanidiyuru
and Vondrák (2014) show that the ThGreedy algo-
rithm achieves a (1 − 1/e − δ)-approximation factor,
where δ is the parameter that controls the threshold.
Moreover, time(ThGreedy) �O(nδ log n

δ), which does
not depend on the rank of the matroid. We formalize
its extended version, ext-ThGreedy, in Algorithm 3.
The original version corresponds to considering � � 1.

Algorithm 3 (Extended Threshold Greedy ext-ThGreedy)
Input: � ≥ 1, ground set V with n :� |V|, monotone

submodular function g : 2V → R+, matroid M �
(V,I), and δ > 0.

Output: Feasible sets S1, . . . ,S� ∈ I .
1: for τ � 1, . . . , �, do
2: Sτ ← ∅.
3: d ← maxe∈V g(∪τ−1

j�1 Sj + e).
4: for (ω � d;ω ≥ δ

n d;ω ← (1 − δ)ω) do
5: for e ∈ V\Sτ, do
6: if Sτ + e ∈ I and g∪τ

j�1Sj(e) ≥ ω, then
7: Sτ ← Sτ + e.

Similarly to Badanidiyuru and Vondrák (2014), we
can prove the following guarantee of ThGreedywhen
it is used for the problem of maximizing a single
monotone submodular function subject to a mat-
roid constraint.

Corollary 3. For any δ > 0, ThGreedy achieves a (1 − 1
2−δ)-

approximation for the problem of maximizing a single
monotone submodular function subject to a matroid con-
straint, using O(nδ · log n

δ) queries.
For a detailed proof of Corollary 3, we refer the

interested reader to the online supplement. Given the
preceding result, we easily obtain Corollary 1 using
β � 1

2−δ in Theorem 1. The most relevant feature of ext-
ThGreedy is its running time, which is independent
on the rank of the matroid.

2.1.4. Tight Bounds: Extended Continuous Greedy. To
achieve a tight bound on the number of feasible sets
in Theorem 1, we need to make use of the continuous
greedy algorithm (Vondrák 2008), hereafter referred
to as CGreedy. Before explaining the algorithm, let us
recall some preliminary definitions. We denote the
indicator vector of a set S ⊆ V by 1S ∈ {0, 1}V , where
1S(e) � 1 if e ∈ S and zero otherwise, and the matroid
polytope by P(M) � conv{1S | S ∈ I}. For any non-
negative set function g : 2V → R+, its multilinear ex-
tension G : [0, 1]V → R+ is defined for any y ∈ [0, 1]V

as the expected value of g(Sy), where Sy is the random
set generated by drawing independently each ele-
ment e ∈ V with probability ye. Formally,

G y
() � ES∼y g S()[] � ∑

S⊆V
g S()∏

e∈S
ye
∏
e /∈S

1 − ye
()

. (4)

Observe that this is in fact an extension of g because
for any subset S ⊆ V, we have g(S) � G(1S). For any
x, y ∈ [0, 1]V , we will denote x ∨ y as the vector whose
components are [x ∨ y]e � max{xe, ye}.

Fact 1 (Calinescu et al. 2011). Let g be a monotone
submodular function and G its multilinear extension:
a. By the monotonicity of g, we have ∂G

∂ye
≥ 0 for any

e ∈ V. This implies that for any x ≤ y coordinate-wise,
G(x) ≤ G(y). By contrast, by the submodularity of g, G
is concave in any positive direction; that is, for any
e1, e2 ∈ V, we have ∂2G

∂ye1∂ye2
≤ 0.

b. Throughout the rest of this paper we will denote
the gradient of G by ∇eG(y) :� ∂G

∂ye
, and the expected

value of the marginal gS e()
ΔeG y

()
:� ES∼y gS e()[]

. (5)
It is easy to see that ΔeG(y) � (1 − ye)∇eG(y). For any
x, y ∈ [0, 1]V , it is easy to prove by using submod-
ularity that

G x ∨ y
() ≤ G x() + ΔG x() · y ≤ G x() + ∇G x() · y. (6)

Broadly speaking, CGreedy works as follows. The
algorithm starts with the empty set y0 � 0 and for
every t ∈ [0, 1] continuously finds a feasible direction
z that maximizes ∇G(yt) · z over P(M), where yt is the
current fractional point. Then, CGreedy updates yt
according to z. Finally, the algorithm outputs a fea-
sible set by rounding y1 according to pipage rounding
(Ageev and Sviridenko 2004), randomized pipage
rounding, or randomized swap rounding (Chekuri
et al. 2010). All these rounding procedures satisfy the
following property: If S is the result of rounding y1,
then S ∈ I and E[g(S)] ≥ G(y1), where the expectation
is taken over any randomization.
Notably, Vondrák (2008) proved that CGreedy

finds a feasible set S such that E[g(S)] ≥ (1 − 1/e) ·
maxA∈I g(A). Unfortunately, time(CGreedy)�O(n8) be-
cause of the large number of samples required to
accurately evaluate the multilinear extension. This
running time can be substantially improved by us-
ing an accelerated version of the continuous greedy
(ACGreedy) algorithm introduced by Badanidiyuru
and Vondrák (2014). ACGreedy generalizes the idea
of ThGreedy to the continuous framework and out-
puts a random feasible set S such that E[g(S)] ≥
(1 − 1/e − δ) ·maxA∈I g(A), whereδ is theparameter that
controls the threshold. More important, ACGreedy runs

1597
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

in O(rnδ−4 log2 n), where r is the rank of the matroid.
Therefore, by using ext-ACGreedy with β � 1/e + δ in
Theorem 1, we obtain the following corollary.

Corollary 4. For the offline robust submodular optimization
problem (1), for any 0 < ε < 1, there is a polynomial-time
bicriteria algorithm that uses ext-ACGreedy as a subroutine,
runs in

O r · n · δ−4 · log2 n() · ln k
ε

()
· log n()

(
·min

nk
ε
, log1+ε max

e,j
fj e()

(){ })
time, and returns a set SALG such that

E min
i∈ k[]

fi SALG()[]
≥ 1 − ε() ·max

S∈I
min
j∈ k[]

fj S(),

where SALG � S1 ∪ · · · ∪ S�, with � � �ln k
ε and S1, . . . ,

S� ∈ I .

As we can see, the number of independent sets
required for obtaining this result � � �ln k

ε is smaller
up to a constant than the number of sets obtained
by ext-Greedy, � � �log2 k

ε. More important, Corol-
lary 4 matches the hardness results given by Krause
et al. (2008b).

2.2. Necessity of Monotonicity
In light of the approximation algorithms for non-
monotone submodular function maximization under
matroid constraints (see, e.g., Lee et al. 2009), one
might hope that an analogous bicriteria approxima-
tion algorithm could exist for robust nonmonotone
submodular function maximization. However, we
show that even without any matroid constraints,
getting any approximation in the nonmonotone case
is NP hard.

Lemma 1. Unless P � NP, no polynomial-time algorithm
can output a set S̃ ⊆ V given general submodular functions
f1, . . . , fk such that mini∈[k] fi(S̃) is within a positive factor
of maxS⊆V mini∈[k] fi(S).

We use a reduction from SAT. Suppose that we
have a SAT instance with variables x1, . . . , xn. Con-
sider V � {1, . . . ,n}. For every clause in the SAT in-
stance, we introduce a nonnegative linear (and there-
fore submodular) function. For a clause

⋁
i∈A xi ∨⋁

i∈B xi,
define the following:

f S() :� |S ∩ A| + |B \ S|.
It is easy to see that f is linear and nonnegative. If we
let S be the set of true variables in a truth assignment,
then it is easy to see that f (S) > 0 if and only if the
corresponding clause is satisfied.Consequently,findinga
set S such that all functions f corresponding to

different clauses are positive is as hard as finding a
satisfying assignment for the SAT instance.

2.3. Computational Study
Our objective in this section is to empirically dem-
onstrate that natural candidate subroutines for the
offline robust problem (1) such as ext-Greedy can be
substantially improved. For this, we will make use of
ext-ThGreedy and other implementation improve-
ments such as lazy evaluations and an early stopping
rule. Ultimately, with these tools, we are able to de-
sign an efficient bicriteria algorithm.
First, let us recall how the general bicriteria algo-

rithmworks. In an outer loop we obtain an estimate γ
of the value of the optimal solution OPT :� maxS∈I
mini∈[k] fi(S)via a binary search. Next, for each guess γ,
we define a new submodular set function as g(S) :�
1
k
∑

i∈[k] min{ fi(S), γ}. Finally, we run Algorithm 1 to
obtain a candidate solution. Depending on this result,
we update the binary search on γ, and we iterate. We
stop the binary search whenever we get a relative
error of 1 − ε/2, namely (1 − ε/2)OPT ≤ γ ≤ OPT.

For our experimental study, we took into consid-
eration the following:
1. Reducing the number of function calls. In Section 2.1.3,

we theoretically showed that by using the subroutine
ext-ThGreedy, we can get a (nearly) optimal objective
value using fewer function evaluations than by using
ext-Greedy at the cost of producing a slightly bigger
family of feasible sets. Therefore, we will use ext-
ThGreedy for our efficient bicriteria algorithm.
2. Certifying (near) optimality. The main bottleneck

of any bicriteria algorithm remains obtaining a cer-
tificate of (near) optimality or, equivalently, a good
upper bound on the optimum. We obtain that the
optimum value is at most γ whenever running ext-A
on function g fails to return a solution of desired
objective. Because of the desired accuracy in binary
search and the number of steps in the extended al-
gorithm, obtaining good upper bounds on the opti-
mum is computationally prohibitive. We resolve this
issue by implementing an early stopping rule in the
bicriteria algorithm.When running ext-A on function
g (as explained earlier), we use the stronger guarantee
given in Proposition 3: for any iteration τ ∈ [�], we
obtain a set Sτ such that g(∪τ

j�1Sj) ≥ (1 − βτ) · γ. If in
some iteration τ ∈ [�] the algorithm does not satisfy
this guarantee, then it means that γ is much larger
than OPT. In such a case, we stop ext-A and update
the upper bound onOPT to be γ. This allows us to stop
the iterationmuch earlier because inmany real instances
τ is typicallymuch smaller than �when γ is large. This
leads to a drastic improvement in the number of
function calls as well as central processing unit time.

1598
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

3. Lazy evaluations. All greedy-like algorithms and
baselines implemented in this section make use of
lazy evaluations (Minoux 1978). This means that we
keep a list of an upper bound ρ(e) on themarginal gain
for each element (initially∞) in decreasing order, and
at each iteration, it evaluates the element at the top of
the list e′. If the marginal gain of this element satisfies
gS(e′) ≥ ρ(e) for all e �� e′, then submodularity ensures
that gS(e′) ≥ gS(e). In this way, for example, Greedy
does not have to evaluate all marginal values to select
the best element.

4. Bounds initialization.To compute the initial lower
bound (LB) and upper bound (UB) for the binary
search, we run the lazy greedy algorithm (Minoux
1978) for each function in a small subcollection { fi}i∈[k′],
where k′ � k, leading to k′ solutions A1, . . . ,Ak′ with
guarantees fi(Ai) ≥ (1/2) ·maxS∈I fi(S). Therefore, we set
UB � 2 ·mini∈[k′] fi(Ai) and LB � maxj∈[k′] mini∈[k] fi(Aj).
These two values correspond to the upper and lower
bounds for the true optimum OPT.

To facilitate the interpretation of our theoretical
results, we will consider partition constraints in all
experiments: The ground set V is partitioned in q
sets {P1, . . . ,Pq}, and the family of feasible sets is
I � {S : |S ∩ Pj| ≤ b, ∀j ∈ [q]}, with the same budget b
for each part. We test five methods: prev-extG, the
extended greedy algorithm with no improvements,
and the rest with improvements: ext-Greedy, ext-
ThGreedy, and ext-SGreedy. The last method is a
heuristic that uses the stochastic greedy algorithm
(Mirzasoleiman et al. 2015) adapted to partition con-
straints (see the online supplement). The vanilla ver-
sion of this algorithm samples a smaller ground set in
each iteration and optimizes accordingly. Also, we
tested the extended version of local search, but be-
cause of its bad performance compared with greedy-
like algorithms, we do not report the results. For the
final pseudocode of the main algorithm, we refer the
interested reader to the online supplement.

After running the four algorithms, we save the
solution SALG with the largest violation ratio ν �
maxj∈[q]�|S ∩ Pj|/b and denote it by τmax :� �ν. Ob-
serve that SALG � S1 ∪ . . . ∪ Sτmax , where Sτ ∈ I for all
τ ∈ [τmax]. We consider two additional baseline al-
gorithms (without binary search): random selection,
which outputs a set S̃ � S̃1 ∪ . . . ∪ S̃τmax such that for
each τ ∈ [τmax], S̃τ is feasible, constructed by selecting
elements uniformly at random, and |S̃τ ∩ Pj| � |Sτ ∩ Pj|
for each part j ∈ [q]. Second, we run τmax times the lazy
greedy algorithm on the average function 1

k
∑

i∈[k] fi and
consider constraints Iτ � {S : |S ∩ Pj| ≤ |Sτ ∩ Pj| , ∀j ∈
[q]} for each iteration of τ ∈ [τmax]; we call this pro-
cedure G-Avg.

In all experiments, we consider the following pa-
rameters: approximation 1−ε� 0.99, threshold δ � 0.1,

and sampling in ext-SGreedy with ε′ � 0.1. The com-
position of each part Pj is always uniformly at random
from V.

2.3.1. Nonparametric Learning. We follow the setup in
Mirzasoleiman et al. (2015). Let XV be a set of ran-
dom variables corresponding to biomedical mea-
surements, indexed by a ground set of patients V. We
assume XV to be a Gaussian process (GP); that is, for
every subset S ⊆ V, XS is distributed according to a
multivariate normal distribution N (μS,ΣS,S), where
μS � (μe)e∈S and ΣS,S � [Ke,e′]e,e′∈S are the prior mean
vector and prior covariance matrix, respectively. The
covariance matrix is given in terms of a positive-
definite kernel K; for example, a common choice in
practice is the squared exponential kernel Ke,e′ �
exp(−‖xe − xe′ ‖22/h). Most efficient approaches for mak-
ing predictions in GPs rely on choosing a small subset
of data points. For instance, in the informative vector
machine, the goal is to obtain a subset A that maxi-
mizes the information gain f (A) � 1

2logdet(I+σ−2ΣA,A),
which is known to be monotone and submodular
(Krause and Guestrin 2005). In our experiment, we
use the Parkinson’s telemonitoring data set (Tsanas
et al. 2010) consisting of n � 5,875 patients with early-
stage Parkinson’s disease and the corresponding bio-
medical voice measurements with 22 attributes (di-
mension of the observations). We normalize the
vectors to zero mean and unit norm. With these
measurements, we computed the covariance matrix
Σ considering the squared exponential kernel with
parameter h � 0.75. For our robust criteria, we con-
sider k � 20 perturbed versions of the information
gain defined with σ2 � 1; that is, Problem (1) corre-
sponds tomaxA∈Imini∈[20] f (A)+∑e∈A∩Λiηe, where f (A) �
1
2 logdet(I+ΣAA), Λi is a random set of size 1,000 with
different composition for each i ∈ [20], and η ∼ [0, 1]V
is a uniform error vector.
We made 20 random runs considering q � 3 parts

and budget b � 5. We report the results in Figure 1,
(a)–(d). In Figure 1, (a) and (b), we show the perfor-
mance profiles for the running time and the number of
function calls of all methods, respectively. The y-axis
corresponds to the fraction of the instances in which a
specific method performs less than a multiplicative
factor (x-axis) with respect to the best performance.
For example, we observe in Figure 1(b) that in only
20% of the instances, the method prev-extG uses
fewer than 2.5 times the number of function calls used
by the best method. We also note that any of the three
algorithms clearly outperform prev-extG either in
terms of running time (Figure 1(a)) or function calls
(Figure 1(b)). With this, we show empirically that our
implementation improvements help the algorithm’s

1599
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

performance. We also note that ext-SGreedy is likely
to have the best performance. Box plots for the func-
tion calls in Figure 1(d) confirm this fact because ext-
SGreedy has the lowest median. Each method is
presented in the x-axis, and the y-axis corresponds to
the number of function calls (the line inside the box
corresponds to themedian, and circles are outliers). In
this figure, we do not present the results of prev-extG
because of the difference in magnitude. Finally, in
Figure 1(c), we present the objective values (y-axis)
obtained in a single run with respect to the number of
feasible sets needed to cover the given set (x-axis). For
example, when the set constructed by each method is
two times the size of a feasible set, most of the pro-
cedures have an objective value around 10. We ob-
serve that the stopping rule is useful because the three

tested algorithms output a nearly optimal solution
earlier (using around three times the size of a feasible
set), outperforming prev-extG and the benchmarks
(which need around six times) and, moreover, at much
less computational cost, as we mentioned earlier.

2.3.2. Exemplar-Based Clustering. We follow the setup
in Mirzasoleiman et al. (2015). Solving the k-medoid
problem is a common way to select a subset of ex-
emplars that represent a large data set V (Kaufman
and Rousseeuw 1990). This is done by minimizing
the sum of pairwise dissimilarities between ele-
ments in A ⊆ V and V. Formally, define L(A) � 1

V
∑

e∈V
minv∈A d(e, v), where d :V×V→R+ is a distance
function that represents the dissimilarity between a
pair of elements. By introducing an appropriate

Figure 1. (Color online) Experimental Results

Notes: Nonparametric learning: performance profiles for (a) running time (to facilitate the visualizationwe compare the logarithmof the running
times; note that ext-Greedy is covered by ext-ThGreedy) and (b) function calls. Box plot (c) shows the objective value versus the violation ratio in a
single run of each method. Box plot (d) shows the function calls. Clustering: (small) performance profiles for (e) the running time and (f) the
function calls, and (large) box plots for (g) the running time and (h) the function calls.

1600
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

auxiliary element e0, it is possible to define a new
objective f (A) :� L({e0}) − L(A + e0) that is monotone
and submodular (Gomes and Krause 2010); thus,
maximizing f is equivalent to minimizing L. In our
experiment, we use the VOC2012 data set (Everingham
et al. 2012). The ground set V corresponds to images,
and we want to select a subset of the images that best
represents the data set. Each image has several
(possibly repeated) associated categories such as
person and plane. There are around 20 categories in
total. Therefore, images are represented by feature
vectors obtained by counting the number of elements
that belong to each category; for example, if an image has
two people and one plane, then its feature vector is
(2, 1, 0, . . . , 0) (where zeros correspond to other ele-
ments). We choose the Euclidean distance d(e, e′) �
‖xe − xe′ ‖, where xe, xe′ are the feature vectors for im-
ages e, e′. We normalize the feature vectors to mean
zero and unit norm, and we choose e0 as the origin. For
our robust criteria, we consider k � 20 perturbations of
the function f defined earlier; that is, Problem (1)
corresponds to maxA∈I mini∈[20] f (A) + ∑

e∈A∩Λi ηe,
where Λi is a random set of fixed size with different
composition for each i ∈ [20], and finally, η ∼ [0, 1]V
is a uniform error vector.

We consider two experiments: (small) with n �
3,000 images, 20 random instances considering q � 6
parts, and budget b � 70, |Λi| � 500; and (large) with
n � 17,125 images, 20 random instances considering
q ∈ {10, . . . , 29} parts, and budget b � 5, |Λi| � 3,000
(we do not implement prev-extG because of the ex-
orbitant running time). We report the results of the
experiments in Figure 1, (e)–(h). In Figure 1, (e) and (f),
we show the performance profiles for the running
time and the number of function calls of all methods,
respectively. The y-axis corresponds to the fraction of
the instances inwhich a specificmethod performs less
than amultiplicative factor (x-axis) with respect to the
best method. For example, we observe in Figure 1(f)
that in only 20% of the instances, the method ext-
Greedy uses fewer than 1.1 times the number of
function calls used by the best method (ext-ThGreedy).
We do not present the results of prev-extG because of its
difference in magnitude. For the small experiments, the
performance profiles in Figure 1, (e) and (f), confirm
our theoretical results: ext-ThGreedy is the most
likely to use fewer function calls (Figure 1(f)) and less
running time (Figure 1(e)) when the rank is relatively
high (in this case, q · b � 420). This contrasts with the
performance of ext-Greedy that depends on the rank
(the chart in Figure 1(f) reflects this). For large ex-
periments, we can see in the box plots in Figure 1, (g)
and (h), that the results are similar in terms of either
running time or function evaluations. Therefore, when
we face a large ground set and a small rank, we could

choose any algorithm, but we would still prefer ext-
ThGreedy because it has no dependency on the rank.

3. The Online Case
In this section, we consider the online robust opti-
mization problem (Equation (2)) under matroid con-
straints. We introduce an online bicriteria algorithm
that achieves a sublinear (1 − ε)-regret while using
solution St at time t that is a union of O(ln 1

ε) inde-
pendent sets from I . To start, let us first present
definitions and known results that play a key role in
this online optimization problem. To avoid any con-
fusion, in the remainder of this section we will denote
the dot product between two vectors as 〈·, ·〉.

3.1. Background
3.1.1. Submodular Maximization. Multilinear exten-
sion plays a crucial role in designing approximation
algorithms for various constrained submodular op-
timization problems (see Section 2.1.4 for a list of its
useful properties). Vondrák (2008) introduced the
discretized continuous greedy algorithm that ach-
ieves a 1 − 1/e approximate solution for maximizing a
singlemonotone submodular function undermatroid
constraints (see Feldman et al. 2011 for the variant of
the continuous greedy that we use). Consider G to be
the multilinear extension of a monotone submodular
function g. Recall thatΔG(y)denotes the vector whose
eth coordinate is ΔeG(y), as defined in (5). At a high
level, the discretized continuous greedy algorithm
discretizes interval [0, 1] into points {0, δ, 2δ, . . . , 1}.
Starting at y0 � 0, for each τ ∈ {δ, 2δ, . . . , 1}, the al-
gorithm uses a linear program to compute the di-
rection zτ � argmaxz∈P(M)〈ΔG(yτ−δ), z〉. Then the al-
gorithm takes a step in the direction of zτ by setting
yτ,e ← yτ−δ,e + δzτ,e(1 − yτ−δ,e) for all e ∈ V. Finally, it
outputs a set S by rounding the fractional solution y1.
We will use this discretized version of the continuous
greedy algorithm to construct our online algorithm in
the next section.

3.1.2. The Soft-Min Function. Consider a set of k twice-
differentiable real-valued functions φ1, . . . ,φk : R

n → R.
Let φmin be the minimum among these functions; that
is, for each point x in the domain, define φmin(x) :�
mini∈[k] φi(x). This function can be approximated by
using the so-called soft-min (or log-sum-exp) function
H : Rn → R, defined as follows:

H x() � − 1
α
ln

∑
i∈ k[]

e−αφi x(),

where α > 0 is a fixed parameter. We now present
some of the key properties of this function in the
following lemma.

1601
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

Lemma 2. For any set of k twice-differentiable real-valued
functions φ1, . . . ,φk, the soft-min function H satisfies the
following properties:

a. Bounds:

φmin x() − ln k
α

≤ H x() ≤ φmin x(). (7)

b. Gradient:

∇H x() � ∑
i∈ k[]

pi x()∇φi x(), (8)

where pi(x) :� e−αφi(x)/∑j∈[k] e−αφj(x). Clearly, if ∇φi ≥ 0
for all i ∈ [k], then ∇H ≥ 0.

c. Hessian:

∂2H x()
∂xe1∂xe2

�∑
i∈ k[]

pi x() −α∂φi x()
∂xe1

∂φi x()
∂xe2

+ ∂2φi x()
∂xe1∂xe2

()
+ α∇e1H x()∇e2H x(). (9)

Moreover, if for all i ∈ [k], we have | ∂φi
∂xe1

| ≤ L1 and

| ∂2φi
∂xe1∂xe2

s| ≤ L2, then | ∂2H
∂xe1∂xe2

| ≤ 2αL21 + L2.

c. Comparing the average of the φi functions with H.
Given α > 0, we have

H x() ≤ ∑
i∈ k[]

pi x()φi x() ≤ H x() + lnα
α

+ ln k
α

+ k
α
. (10)

Therefore, for α > 0 sufficiently large,
∑

i∈[k] pi(x)φi(x) is a
good approximation of H(x).

For other properties and applications, we refer the
interested reader to (Calafiore and El Ghaoui 2014).
Now, we present a lemma that is used to prove the
main result in the online case, Theorem 2.

Lemma 3. Fix a parameter δ > 0. Consider T collections of
k twice-differentiable functions, namely {φ1

i }i∈[k], . . . ,{φT
i }i∈[k].

Assume that 0 ≤ φt
i(x) ≤ 1 for any x in the domain, for all

t ∈ [T] and i ∈ [k]. Define the corresponding sequence of
soft-min functions H1, . . . ,HT with common parameter
α > 0. Then any two sequences of points {xt}t∈[T], {yt}t∈[T] ⊆
[0, 1]V with |xt − yt| ≤ δ satisfy∑

t∈ T[]
Ht yt

() − ∑
t∈ T[]

Ht xt
() ≥ ∑

t∈ T[]
〈∇Ht xt

()
, yt − xt〉

−O Tn2δ2α
()

.

For a proof of these lemmas, we refer readers to the
online supplement.

3.2. Online Algorithm and Analysis
Turning our attention to the online robust optimi-
zation problem (2), we are immediately faced with
two challenges. First, we need to find a direction zt
that is good for all k submodular functions in an online
fashion. In the offline case, we used the function
g(S) � 1

k ·
∑k

i�1 min{ fi(S), γ} and its multilinear extension

to find such a direction (see Section 2.1.4). To resolve
this issue, we use a soft-min function that converts
robust optimization over k functions into optimizing
of a single function. Second, robust optimization leads
to nonconvex and nonsmooth optimization combined
with online arrival of such submodular functions. To
deal with this, we use the FPL online algorithm intro-
duced by Kalai and Vempala (2005).
For any collection of monotone submodular func-

tions { f ti }i∈[k] played by the adversary, we define the
soft-min function with respect to the correspond-
ing multilinear extensions {Fti}i∈[k] as Ht(y) :�− 1

α ln∑
i∈[k] e−αF

t
i (y), where α > 0 is a suitable parameter.

Recall that if we assume functions f ti taking values in
[0, 1], then their multilinear extensions Fti also take
values in [0, 1]. The following properties of the soft-
min function as defined in the preceding section are
easy to verify and crucial for our result:
1. Approximation:mini∈[k]Fti(y) − lnk

α ≤Ht(y) ≤mini∈[k]
Fti(y).

2. Gradient: ∇Ht(y) �∑
i∈[k] pti(y)∇Fti(y), where pti(y) ∝

e−αFti (y) for all i∈ [k] .
Note that as α increases, the soft-min function Ht

becomes a better approximation of mini∈[k]{Fti}; how-
ever, its smoothness degrades (see property (9) in
Section 3.1). By contrast, the second property shows
that the gradient of the soft-min function is a con-
vex combination of the gradients of the multilinear
extensions, which allows us to optimize all the
functions at the same time. Indeed, define ΔeHt(y) :�∑

i∈[k] pti(y)ΔeFti(y) � (1−ye)∇eHt(y). At each stage t ∈ [T],
we use the information from the gradients previously
observed, in particular, {ΔH1, · · · ,ΔHt−1}, to decide
the set St. To dealwith adversarial input functions, we
use the FPL algorithm (Kalai and Vempala 2005) and
the following guarantee about the algorithm.

Theorem 4 (Kalai and Vempala 2005). Let s1, . . . , sT ∈ S
be a sequence of rewards. The FPL Algorithm 6 (in the
online supplement) with parameter η ≤ 1 outputs deci-
sions d1, . . . , dT with regret

max
d∈D

∑
t∈ T[]

〈st, d〉 − E
∑
t∈ T[]

〈st, dt〉
[]

≤ O poly n() ηT + 1
Tη

()()
.

For completeness, we include the original setup
and the algorithm in the online supplement.
Our online algorithm works as follows. First, given

0 < ε < 1, we denote � :� �ln 1
ε. We consider the fol-

lowing discretization indexed by τ ∈ {0, δ, 2δ, . . . , �}
and construct fractional solutions ytτ for each iteration
t and discretization index τ. At each iteration t, ide-
ally, we would like to construct {ytτ}�τ�0 by running
the continuous greedy algorithm using the soft-min

1602
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

function Ht and then play St using these fractional
solutions. In the online model, though, function Ht is
revealed only after playing set St. To remedy this, we
aim to construct ytτ using the FPL algorithm based on
gradients {∇Hj}t−1j�1 obtained from previous iterations.
Thus we have multiple FPL instances, one for each
discretization parameter, being run by the algorithm.
Finally, at the end of iteration t, we have a fractional
vector yt�, which belongs to � · P(M) ∩ [0, 1]V and
therefore can be written, fractionally, as a union of �
independent sets using the matroid union theorem
(Schrijver 2003).

We round the fractional solution yt� using the ran-
domized swap rounding (or randomized pipage round-
ing) proposed by Chekuri et al. (2010) for matroid M�

to obtain the set St to be played at time t. The following
theorem from Chekuri et al. (2010) gives the necessary
property of the randomized swap rounding that we use.

Theorem 5 (Chekuri et al. 2010, theorem II.1). Let f be a
monotone submodular function and F its multilinear ex-
tension. Let x ∈ P(M′) be a point in the polytope of matroid
M′ and S′ a random independent set obtained from it by
randomized swap rounding. Then E[f (S′)] ≥ F(x).

We formalize the details in Algorithm 4 (observe
that �/δ ∈ Z+).

Algorithm 4 (OnlineSoftMin Algorithm)
Input: Learning parameter η > 0, ε > 0, α � nT,

discretization δ � n−1T−1, and � � �ln 1
ε.

Output: Sequence of sets S1, . . . ,ST.
1: Sample q ∼ [0, 1/η]V .
2: for t � 1 to T, do
3: yt0 � 0,
4: for τ ∈ {δ, 2δ, . . . , �}, do
5: Compute ztτ � argmaxz∈P(M)〈

∑t−1
j�1 ΔHj

(yjτ−δ) + q, z〉.
6: Update: For each e∈V, ytτ,e � ytτ−δ,e+

δ(1−ytτ−δ,e)ztτ,e.
7: Play St ← Rounding(yt�). Receive and

observe new collection { f ti }i∈[k].
To get sublinear regret for the FPL Algorithm 6,

Kalai and Vempala (2005) assume a couple of con-
ditions on the problem (see the online supplement).
Similarly, for our online model, we need to consider
the following for any t ∈ [T]:

1. Bounded diameter of P(M); that is, for all z, z′ ∈
P(M), ‖z − z′‖1 ≤ D.

2. For all y, z ∈ P(M), we require |〈z,ΔHt(y)〉| ≤ L.
3. For all y ∈ P(M), we require ‖ΔHt(y)‖1 ≤ A.
Nowwe give a complete proof of Theorem 2 for any

given learning parameter η > 0, but the final result
follows with η � ̅̅̅̅̅̅̅̅̅̅

D/LAT
√

and assuming L ≤ n, A ≤ n,
and D ≤ ̅̅

n
√

, which gives aO(n5/4) dependency on the
dimension in the regret.

Proof of Theorem 2. Consider the sequence of multi-
linear extensions {F1i }i∈[k], . . . , {FTi }i∈[k] derived from the
monotone submodular functions f ti obtained during the
dynamic process. Because the f ti ’s have value in [0, 1],
we have 0 ≤ Fti(y) ≤ 1 for any y ∈ [0, 1]V and i ∈ [k].
Consider the corresponding soft-min functions Ht for
collection {Fti}i∈[k] with α � nT for all t ∈ [T]. Denote � �
�ln 1

ε and fix τ ∈ {δ,2δ, . . . ,�}with δ � n−1T−1. According
to the update in Algorithm 4, {ytτ}t∈[T] and {ytτ−δ}t∈[T]
satisfy conditions of Lemma 3. Thus, we obtain
the following:∑

t∈ T[]
Ht ytτ

() −Ht ytτ−δ
() ≥ ∑

t∈ T[]
∇Ht ytτ−δ

()
, ytτ − ytτ−δ

〈 〉
−O Tn2δ2α

()
.

Then,because theupdate isytτ,e � ytτ−δ,e + δ(1 − ytτ−δ,e)ztτ,e,
we get the following:∑

t∈ T[]
Ht ytτ

() −Ht ytτ−δ
()

≥ δ
∑
t∈ T[]

∑
e∈V

∇eHt ytτ−δ
()

1 − ytτ−δ,e
()

ztτ,e

−O Tn2δ2α
()

� δ
∑
t∈ T[]

ΔHt ytτ−δ
()

, ztτ
〈 〉 −O Tn2δ2α

()
. (11)

Observe that an FPL algorithm is implemented for
each τ, so we can state a regret bound for each τ using
Theorem 4. Specifically,

E
∑
t∈ T[]

ΔHt ytτ−δ
()

, ztτ
〈 〉[]

≥ max
z∈P M()

E
∑
t∈ T[]

ΔHt ytτ−δ
()

, z
〈 〉[]

− Rη,

where Rη � ηLAT + D
η is the regret guarantee for a

given η > 0. By taking expectation in (11) and us-
ing the regret bound we just mentioned, we obtain
the following:

E
∑
t∈ T[]

Ht ytτ
() −Ht ytτ−δ

()[]

≥ δ max
z∈P M()

E
∑
t∈ T[]

ΔHt ytτ−δ
()

, z
〈 〉[]()

− δRη

−O Tn2δ2α
()

≥ δE
∑
t∈ T[]

Ht x∗() − ∑
i∈ k[]

pti y
t
τ−δ

()
Fti y

t
τ−δ

()[]()
− δRη −O Tn2δ2α

()
, (12)

where x∗ � 1S∗ is the indicator vector of the true opti-
mum S∗ formaxS∈I

∑
t∈[T]mini∈[k] f ti (S). Observe that (12)

1603
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

follows from the monotonicity and submodularity of
each f ti ; specifically, we know that

ΔHt y
()

, z
〈 〉 � ∑

i∈ k[]
pti y
()

ΔFti y
()

, z
〈 〉

≥ ∑
i∈ k[]

pti y
()

Fti x
∗() − ∑

i∈ k[]
pti y
()

Fti y
()

≥ Ftmin x∗() − ∑
i∈ k[]

pti y
()

Fti y
()

≥ Ht x∗() − ∑
i∈ k[]

pti y
()

Fti y
()

.

(Equation (6))

By applying property (10) of the soft-min in expres-
sion (12), we get the following:

E
∑
t∈ T[]

Ht ytτ
() −Ht ytτ−δ

()[]

≥ δE
∑
t∈ T[]

Ht x∗() −Ht ytτ−δ
()()

− δRη

−O Tn2δ2α
()

− δT
lnα
α

+ ln k
α

+ k
α

()
. (13)

Given the choice of α and δ, the last two terms on the
right-hand side of inequality (13) are small compared
with Rη, so by rearranging terms, we can state the
following:

∑
t∈ T[]

Ht x∗() − E
∑
t∈ T[]

Ht ytτ
()[]

≤ 1 − δ() ∑
t∈ T[]

Ht x∗() − E
∑
t∈ T[]

Ht ytτ−δ
()[]()

+ 2δRη.

By iterating �
δ times in τ, we get the following:

∑
t∈ T[]

Ht x∗() − E
∑
t∈ T[]

Ht yt�
()[]

≤ 1 − δ()�δ ∑
t∈ T[]

Ht x∗() − ∑
t∈ T[]

Ht yt0
()()

+O 1 − 1 − δ()�δ
()

Rη

()
≤ ε

∑
t∈ T[]

Ht x∗() + ln k

[]
+O 1 − ε()Rη

()
,

where in the last inequality we used (1 − δ) ≤ e−δ and
� � �ln 1

ε. Given that the term ε ln k is small (for ε
sufficiently small), we can bound it byO(Rη). Because
α is sufficiently large, we can apply the approximation

property of soft-min functions to obtain the following
regret bound:

1 − ε() · ∑
t∈ T[]

min
i∈ k[]

Fti x
∗() − E

∑
t∈ T[]

min
i∈ k[]

Fti y
t
�

()[]
≤ O 1 − ε()Rη

()
.

Because we are doing randomized swap rounding (or
randomized pipage rounding) on each yt�, Theorem 5
shows that there is a random set St that is independent
inM� (i.e., St is the union of atmost � independent sets
in I) such that E[f ti (St)] ≥ Fti(yt�) for all t ∈ [T] and
i ∈ [k]. Thus, we finally obtain the following:

1 − ε() ·max
S∈I

∑
t∈ T[]

min
i∈ k[]

f ti S() − ∑
t∈ T[]

min
i∈ k[]

E f ti St
()[]

≤ O 1 − ε()Rη

()
. □

Observation 1. Theorem 2 could be easily extended
to an adaptive adversary by sampling in each stage
t ∈ [T] a different perturbation qt ∼ [0, 1/η]V , as shown
in Kalai and Vempala (2005).

Note that the guarantee of Theorem 2 holds with
respect to the minimum of E[f ti (St)], as opposed to the
guarantee of Theorem 1, which directly bounds the
minimumof fi(S). Because of this, the online algorithm
needs only �ln 1

ε independent sets, comparedwith the
offline solution, which needs �log k

ε independent sets.
Itmight seemmore appealing to define the regretwith
respect to the expected value of the minimum func-
tion, but at the same time, it becomes technically
more challenging for several reasons. If one wants to
apply a similar technique to the offline algorithm, it is
not clear how to dynamically estimate the optimal
value of the online model while considering simul-
taneously the behavior of the adversary and the
nonsmoothness of the minimum function.

4. Extensions
In this section, we consider other classes of combi-
natorial constraints for the offline robust model. Be-
cause the extended algorithm ext-A considers a gen-
eral algorithm A for submodular maximization, we
can expand our results to other constraints such as
knapsack constraints and multiple matroids. Similar
results can be obtained in the online model as long as
the polytope is downward closed.

4.1. Knapsack Constraint
Consider a knapsack constraint K� {S⊆ [n] :∑e∈S ce ≤ 1},
where ce > 0 for all e ∈ [n]. Our interest is to solve the
following robust problem:

max
S∈K

min
i∈ k[]

fi S(). (14)

1604
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

Corollary 5. For Problem (14), there is a polynomial-time
algorithm that returns a set SALG such that for all i ∈ [k],
for a given 0 < ε < 1,

fi SALG() ≥ 1 − ε() ·max
S∈K

min
j∈ k[]

fj S()

and
∑

e∈SALG ce ≤ � for � � O(ln k
ε). Moreover, SALG can be

covered by at most � sets in K.

Following the idea of the general extended algo-
rithm ext-A, we design an extended version of the
bang-per-buck greedy algorithm. We formalize this
procedure in Algorithm 5. Even though the standard
bang-per-buck greedy algorithm does not provide
any approximation factor, if we relax the knapsack
constraint to be

∑
e∈S ce ≤ 2, then the algorithm gives a

1 − 1/e factor. There are other approaches to avoid this
relaxation (see, e.g., Sviridenko 2004).

Algorithm 5 (Extended Bang-per-Buck Algorithm for Knap-
sack Constraints)

Input: � ≥ 1, monotone submodular function g :
2V → R+, knapsack constraint K.

Output: Sets S1, . . . ,S� ∈ K.
1: for τ � 1, . . . , �, do
2: Sτ ← ∅.
3: while V �� ∅, do
4: Compute e∗�argmaxe∈V{

g(∪τ
j�1Sj+e)−g(∪τ

j�1Sj)
ce

}.
5: if

∑
e∈Sτ ce + ce∗ ≤ 2, then Sτ ← Sτ + e∗.

6: V ← V − e∗.
7: Restart ground set V.

Given a monotone submodular function g : 2V → R+,
Algorithm 5 produces a set SALG � S1 ∪ · · · ∪ S� such
that g(SALG) ≥ (1 − 1

e�) ·maxS∈K g(S). Therefore, Cor-
ollary 5 can be easily proved by defining g in the same
way as in Theorem 1 and running Algorithm 5 on g
with � � O(ln k

ε).

4.2. Multiple Matroid Constraints
Consider a family of rmatroidsMj � (V,I j) for j ∈ [r].
Our interest is to solve the following robust problem:

max
S∈⋂r

j�1 I j

min
i∈ k[]

fi S(). (15)

Corollary 6. For Problem (15), there is a polynomial-time
algorithm that returns a set SALG such that for all i ∈ [k],
for a given 0 < ε < 1,

fi SALG() ≥ 1 − ε() · max
S∈⋂r

j�1 I j

min
i∈ k[]

fi S(),

where SALG is the union of O(log k
ε / log

r+1
r) independent

sets in I .

Fisher et al. (1978) proved that the standard greedy al-
gorithm gives a 1/(1+ r) approximation for Problem (15)

when k � 1. Therefore, we can adapt Algorithm 2 to
produce a set SALG � S1 ∪ · · · ∪ S� such that

f SALG() ≥ 1 − r
r + 1

()�()
· max
S∈⋂r

j�1 I j

f S().

Then Corollary 6 can be proved similarly to Theorem 1
by choosing � � O(log k

ε / log
r+1
r).

4.3. Distributionally Robust Over Polyhedral Sets
Let Q ⊆ Δ(k) be a polyhedral set, where Δ(k) is the
probability simplex on k elements. For q ∈ Q, denote
fq :� q1f1 + · · · + qkfk, which is also monotone and sub-
modular.Given amatroidM � (V,I), our interest is to
solve the following distributionally robust problem:

max
S∈I

min
q∈Q fq S(). (16)

Denote by Vert(Q) the set of extreme points of Q,
which is finite because Q is polyhedral. Then Prob-
lem (16) is equivalent tomaxS∈I minq∈Vert(Q) fq(S). Then
we can easily derive Corollary 7 by applying Theo-
rem 1 in the equivalent problem. Note that when Q is
the simplex, we get the original Theorem 1.

Corollary 7. For Problem (16), there is a polynomial-time
algorithm that returns a set SALG such that for all i ∈ [k],
for a given 0 < ε < 1,

fi SALG() ≥ 1 − ε() ·max
S∈I

min
q∈Q fq S(),

with SALG � S1 ∪ · · · ∪ S� for � � O(log |Vert(Q)|
ε) and

S1, . . . , S� ∈ I .

Acknowledgments
The authors thank Shabbir Ahmed for discussions about the
distributionally robust problem (16).

References
Ageev A, Sviridenko M (2004) Pipage rounding: A new method of

constructing algorithms with proven performance guarantee.
J. Combin. Optim. 8(3):307–328.

Anari N, Haghtalab N, Naor S, Pokutta S, Singh M, Torrico A (2019)
Structured robust submodular maximization: Offline and online
algorithms. Chaudhuri K, Sugiyama M, eds. Proc. 22nd Internat.
Conf. Artificial Intelligence Statist. (AISTATS, Okinawa, Japan),
3128–3137.

Badanidiyuru A, Vondrák J (2014) Fast algorithms for maximizing
submodular functions. Chaudhuri K, Sugiyama M, eds.Proc. 25th
Annual ACM-SIAM Symp. Discrete Algorithms (SODA) (SIAM,
Philadelphia), 1497–1514.

Bogunovic I, Mitrovic S, Scarlett J, Cevher V (2017) Robust sub-
modular maximization: A non-uniform partitioning approach.
Precup D, Teh YW, eds. Proc. 34th Internat. Conf. Machine
Learn. (ICML, Sydney), 508–516.

Buchbinder N, Feldman M (2016) Deterministic algorithms for
submodular maximization problems. Proc. 27th Annual ACM-
SIAM Symp. Discrete Algorithms (SODA) (ACM, New York),
392–403.

1605
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

Buchbinder N, FeldmanM, Schwartz R (2016) Comparing apples and
oranges: Query trade-off in submodular maximization. Math.
Oper. Res. 42(2):308–329.

Buchbinder N, Feldman M, Naor JS, Schwartz R (2014) Submodular
maximization with cardinality constraints. Proc. 25th Annual
ACM-SIAM Symp. Discrete Algorithms (SODA) (ACM, New
York), 1433–1452.

Calafiore GC, El Ghaoui L (2014) Optimization Models (Cambridge
University Press, Cambridge, UK).

Calinescu G, Chekuri C, Pál M, Vondrák J (2011) Maximizing a
monotone submodular function subject to a matroid constraint.
SIAM J. Comput. 40(6):1740–1766.

Chekuri C, Vondrak J, Zenklusen R (2010) Dependent randomized
rounding via exchange properties of combinatorial struc-
tures. Proc. 51st Annual Symp. Foundations Comput. Sci. (FOCS,
Las Vegas, NV), 575–584.

Chen RS, Lucier B, Singer Y, Syrgkanis V (2017) Robust optimization
for non-convex objectives. Guyon I, Luxburg UV, Bengio S,
Wallach H, Fergus R, Vishwanathan S, Garnett R, eds. Proc. 31st
Internat. Conf. Neural Inform. Processing Systems (Curran Asso-
ciates, Red Hook, NY), 4708–4717.

Chen W, Lin T, Tan Z, Zhao M, Zhou X (2016) Robust influence
maximization. Proc. 22nd ACM SIGKDD Conf. Knowledge Dis-
covery Data Mining (ACM, New York), 795–804.

Das A, Kempe D (2008) Algorithms for subset selection in linear
regression. Proc. 40th Annual ACM Symp. Theory Comput. (ACM,
New York), 45–54.

Ene A, Nguyen HL (2016) Constrained submodular maximization:
Beyond 1/e. Proc. 57th Annual Symp. Foundations Comput.
Sci. (FOCS, New Brunswick, NJ), 248–257.

Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A
(2012) The PASCAL Visual Object Classes Challenge 2012
(VOC2012)Results [dataset].AccessedonOctober 30, 2020, http://
www.pascal-network.org/challenges/VOC/voc2012/workshop/
index.html.

Feldman M, Naor J, Schwartz R (2011) A unified continuous
greedy algorithm for submodular maximization. Proc. 52nd An-
nual Symp. Foundations Comput. Sci. (FOCS, Palm Springs, CA),
570–579.

Fisher ML, Nemhauser GL, Wolsey LA (1978) An analysis of ap-
proximations for maximizing submodular set functions—ii.
Balinski ML, Hoffman AJ, eds. Polyhedral Combinatorics (Springer,
Berlin, Heidelberg), 73–87.

Golovin D, Krause A, Streeter M (2014) Online submodular maxi-
mization under a matroid constraint with application to learning
assignments. Technical report. California Institute of Technol-
ogy, Pasadena, CA.

Gomes R, Krause A (2010) Budgeted nonparametric learning from
data streams. Proc. 27th Internat. Conf. Machine Learn. (Omnipress,
Madison, WI), 391–398.

He X, Kempe D (2016) Robust influence maximization. Proc. 22nd
ACM SIGKDD Conf. Knowledge Discovery Data Mining (ACM,
New York), 885–894.

Kalai A, Vempala S (2005) Efficient algorithms for online decision
problems. J. Comput. System Sci. 71(3):291–307.

Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data: An Intro-
duction to Cluster Analysis, vol. 344 (Wiley-Interscience, Hobo-
ken, NJ).

Kazemi E, Zadimoghaddam M, Karbasi A (2018) Scalable deletion-
robust submodular maximization: Data summarization with
privacy and fairness constraints. Dy J, Krause A, eds. Proc. 35th
Internat. Conf. Machine Learn. (ICML), vol. 80 (PMLR, Stockholm,
Sweden), 2544–2553.

Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of
influence through a social network. Theory Comput. 11(4):
105–147.

Krause A, Guestrin C (2005) Near-optimal nonmyopic value of in-
formation in graphical models. Proc. 21st Conf. Uncertainty Ar-
tificial Intelligence (AUAI Press, Arlington, VA), 324–331.

Krause A, Singh A, Guestrin C (2008a) Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and
empirical studies. J. Machine Learn. Res. 9:235–284.

Krause A, McMahan HB, Guestrin C, Gupta A (2008b) Robust sub-
modular observation selection. J. Machine Learn. Res. 9:2761–2801.

Krause A, Rajagopal R, Gupta A, Guestrin C (2009) Simultaneous
placement and scheduling of sensors. Proc. 8th ACM/IEEE
Conf. Inform. Processing Sensor Networks (IPSN) (IEEE, Piscat-
away, NJ), 181–192.

Lee J, Mirrokni VS, Nagarajan V, Sviridenko M (2009) Non-monotone
submodular maximization under matroid and knapsack con-
straints. Proc. 41st Annual ACM Symp. Theory Comput. (STOC)
(ACM, New York), 323–332.

Lin H, Bilmes JA (2009) How to select a good training-data subset for
transcription: Submodular active selection for sequences. Proc.
10th Annual Conf. Internat. Speech Comm. Assoc. (INTERSPEECH,
Brighton, UK), 2859–2862.

Minoux M (1978) Accelerated greedy algorithms for maximizing
submodular set functions. Stoer J, ed. Optim. Techniques. Lecture
Notes in Control and Information Sciences, vol. 7 (Springer,
Berlin), 234–243.

Mirzasoleiman B, Badanidiyuru A, Karbasi A, Vondrák J, Krause A
(2015) Lazier than lazy greedy. Proc. 29th AAAI Conf. Artificial
Intelligence (AAAI, Menlo Park, CA), 1812–1818.

Mitrovic M, Kazemi E, Zadimoghaddam M, Karbasi A (2018) Data
summarization at scale: A two-stage submodular approach.
Dy J, Krause A, eds. Proc. 35th Internat. Conf.Machine Learn. (PMLR,
Stockholm, Sweden), 3593–3602.

Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of ap-
proximations for maximizing submodular set functions—i.
Math. Programming 14(1):265–294.

Orlin JB, Schulz AS, Udwani R (2016) Robust monotone submodular
function maximization. Louveaux Q, Skutella M, eds. Proc. 18th
Internat. Conf. Integer Programming Combin. Optim. (Springer,
Cham, Switzerland), 312–324.

Powers T, Bilmes J, Krout DW, Atlas L (2016a) Constrained robust
submodular sensor selection with applications to multistatic
sonar arrays. Proc. 19th Internat. Conf. Inform. Fusion (FUSION),
2179–2185.

Powers T, Bilmes J, Wisdom S, Krout DW, Atlas L (2016b) Con-
strained robust submodular optimization. 30th Conf. Neural In-
form. Processing Systems (NIPS 2016), Barcelona, Spain (Curran
Associates, Red Hook, NY).

Rakhlin A (2009) Lecture notes on online learning. Draft, April.
Accessed October 30, 2020, http://www-stat.wharton.upenn
.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf.

Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency,
vol. 24 (Springer Verlag, Berlin, Heidelberg).

Soma T (2019) No-regret algorithms for online k-submodular maxi-
mization. Chaudhuri K, Sugiyama M, eds. Proc. Machine Learn.
Res., vol. 89, 1205–1214.

Staib M, Wilder B, Jegelka S (2018) Distributionally robust sub-
modular maximization. Chaudhuri K, Sugiyama M, eds. Proc.
Machine Learn. Res., vol. 89 (Omnipress, Madison, WI), 506–516.

Streeter M, Golovin D (2008) An online algorithm for maximizing
submodular functions. Koller D, Schuurmans D, Bengio Y,
Bottou L, eds. Proc. 21st Internat. Conf. Neural Inform. Processing
Systems (NeurIPS) (Curran Associations, Red Hook, NY),
1577–1584.

SviridenkoM (2004) A note onmaximizing a submodular set function
subject to a knapsack constraint. Oper. Res. Lett. 32(1):41–43.

Tsanas A, Little MA, McSharry PE, Ramig LO (2010) Enhanced
classical dysphonia measures and sparse regression for tele-
monitoring of Parkinson’s disease progression. Proc. 35th IEEE

1606
Torrico et al.: Robust Submodular Maximization

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf

Internat. Conf. Acoustics Speech Signal Processing (ICASSP)
(IEEE, Piscataway, NJ), 594–597.

Vondrák J (2008) Optimal approximation for the submodular welfare
problem in the value oracle model. Proc. 40th Annual ACM Symp.
Theory Comput. (STOC) (ACM, New York), 67–74.

Wilder B (2017) Equilibrium computation and robust optimization in
zero sum games with submodular structure. Proc. 32nd Conf.
Artificial Intelligence (AAAI Press, Menlo Park, CA), 1274–1281.

Wolsey LA (1982) An analysis of the greedy algorithm for the sub-
modular set covering problem. Combinatorica 2(4):385–393.

Zhang M, Chen L, Hassani H, Karbasi A (2019) Online continuous
submodular maximization: From full-information to bandit
feedback. Wallach H, Larochelle H, Beygelzimer A, d-Alche-
Buc F, Fox E, Garnett R, eds. Proc. 32nd Internat. Conf. Neural
Inform. Processing Systems (NeurIPS) (Curran Associates, Red
Hook, NY), 9210–9221.

1607
Torrico et al.: Robust Submodular Maximization
INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1590–1607, © 2021 INFORMS

