
This article was downloaded by: [130.207.93.57] On: 29 November 2021, At: 08:01
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Dynamic Resource Allocation in the Cloud with Near-
Optimal Efficiency
Sebastian Perez-Salazar, Ishai Menache, Mohit Singh, Alejandro Toriello

To cite this article:
Sebastian Perez-Salazar, Ishai Menache, Mohit Singh, Alejandro Toriello (2021) Dynamic Resource Allocation in the Cloud with
Near-Optimal Efficiency. Operations Research

Published online in Articles in Advance 29 Oct 2021

.  https://doi.org/10.1287/opre.2021.2138

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2021.2138
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


Methods

Dynamic Resource Allocation in the Cloud with
Near-Optimal Efficiency
Sebastian Perez-Salazar,a Ishai Menache,b Mohit Singh,a Alejandro Torielloa

aGeorgia Institute of Technology, Atlanta, Georgia 30332; bMicrosoft Research, Redmond, Washington 98052
Contact: sperez@gatech.edu, https://orcid.org/0000-0003-4534-7721 (SP-S); ishai@microsoft.com, https://orcid.org/0000-0002-2540-236X
(IM); mohit.singh@isye.gatech.edu, https://orcid.org/0000-0002-0827-233X (MS); atoriello@isye.gatech.edu,

https://orcid.org/0000-0002-3147-0764 (AT)

Received: August 15, 2019
Revised: September 16, 2020
Accepted: January 21, 2021
Published Online in Articles in Advance:

Subject Classification: analysis of algorithms:
suboptimal algorithms
Area of Review: Optimization

https://doi.org/10.1287/opre.2021.2138

Copyright: © 2021 INFORMS

Abstract. Cloud computing has motivated renewed interest in resource allocation prob-
lems with new consumption models. A common goal is to share a resource, such as CPU or
I/O bandwidth, among distinct users with different demand patterns as well as different
quality of service requirements. To ensure these service requirements, cloud offerings often
come with a service level agreement (SLA) between the provider and the users. A SLA
specifies the amount of a resource a user is entitled to utilize. In many cloud settings, pro-
viders would like to operate resources at high utilization while simultaneously respecting
individual SLAs. There is typically a trade-off between these two objectives; for example,
utilization can be increased by shifting away resources from idle users to “scavenger”work-
load, but with the risk of the former then becoming active again.We study this fundamental
tradeoff by formulating a resource allocation model that captures basic properties of cloud
computing systems, including SLAs, highly limited feedback about the state of the system,
and variable and unpredictable input sequences. Our main result is a simple and practical
algorithm that achieves near-optimal performance on the above two objectives. First, we
guarantee nearly optimal utilization of the resource even if compared with the omniscient
offline dynamic optimum. Second, we simultaneously satisfy all individual SLAs up to a
small error. The main algorithmic tool is a multiplicative weight update algorithm and a
primal-dual argument to obtain its guarantees. We also provide numerical validation on
real data to demonstrate the performance of our algorithm in practical applications.

Funding: The authors’ work was partially supported by the U.S. National Science Foundation [Grants
CMMI 1552479, AF 1910423, and AF 1717947].

Keywords: cloud computing • online algorithms • multiplicative weights

1. Introduction
Cloud computing hasmotivated renewed interest in re-
source allocation, manifested in new consumption
models (e.g., AWS spot pricing), as well as the design
of resource-sharing platforms (Hindman et al. 2011, Va-
vilapalli et al. 2013). These platforms need to support a
heterogenous set of users, also called tenants that share
the same physical computing resource, e.g., CPU,
memory, I/O bandwidth. Providers such as Amazon,
Microsoft, and Google offer cloud services with the
goal of benefiting from economies of scale. However,
the inefficient use of resources — overprovisioning on
the one hand or congestion on the other— could result
in a low return on investment or in loss of customer
goodwill, respectively. Hence, resource allocation algo-
rithms are key for efficiently utilizing cloud resources.

To ensure quality of service, cloud offerings often
come with a service level agreement (SLA) between the
provider and the users. A SLA specifies the amount of a

resource the user is entitled to consume. Perhaps the
most common example is renting a virtual machine
(VM) that guarantees an explicit amount of CPU, mem-
ory, etc. Naturally, VMs that guarantee more resources
are more expensive. In this context, a simple allocation
policy is to assign each user the resources specified by
their SLAs. However, such an allocation can be waste-
ful, as users may not need the resource at all times. In
principle, a dynamic allocation of resources can increase
the total efficiency of the system. However, allocating
resources dynamically without carefully accounting for
SLAs can lead to user dissatisfaction.

Recent scheduling proposals address these challenges
through work-maximizing yet fair schedulers (Zaharia
et al. 2010, Ghodsi et al. 2011). However, such schedu-
lers do not have explicit SLA guarantees. On the other
hand, otherworks focuson enforcing SLAs (Curino et al.
2014, Grandl et al. 2016, Jyothi et al. 2016) but do not ex-
plicitly optimize the use of extra resources.

1

OPERATIONS RESEARCH
Articles in Advance, pp. 1–21

ISSN 0030-364X (print), ISSN 1526-5463 (online)http://pubsonline.informs.org/journal/opre

October 29, 2021

mailto:sperez@gatech.edu
https://orcid.org/0000-0003-4534-7721
mailto:ishai@microsoft.com
https://orcid.org/0000-0002-2540-236X
mailto:mohit.singh@isye.gatech.edu
https://orcid.org/0000-0002-0827-233X
mailto:atoriello@isye.gatech.edu
https://orcid.org/0000-0002-3147-0764
https://orcid.org/0000-0003-4534-7721
https://orcid.org/0000-0002-2540-236X
https://orcid.org/0000-0002-0827-233X
https://orcid.org/0000-0002-3147-0764
http://pubsonline.informs.org/journal/opre


Our goal in this work is to understand the funda-
mental trade-off between high utilization of resources
and SLA satisfaction of individual users. In particular,
we design algorithms that guarantee both near-
optimal utilization and the satisfaction of individual
SLAs simultaneously. To that end, we formulate a ba-
sic model for online dynamic resource allocation. We
focus on a single divisible resource, such as CPU or I/
O bandwidth, that has to be shared among multiple
users. Each user also has a SLA that specifies the frac-
tion of the resource it expects to obtain. The actual de-
mand of the user is in general time-varying and may
exceed the fraction specified in the SLA. As in many
real systems, the demand is not known in advance but
rather arrives in an online manner. Arriving demand
is either processed or queued up, depending on the
resource availability. In many real-world scenarios, it
is difficult to measure the actual demand size (see,
e.g., Narasayya et al. (2013)). Accordingly, we assume
that the system (and the underlying algorithm) re-
ceives only a simple binary feedback per user at any giv-
en time: whether the user queue is empty (the user’s
work arriving so far has been completed) or not. This
is a plausible assumption in many systems, because
one can observe workload activity, yet anticipating
how much of the resource a job will require is more
difficult. Additionally, it also models settings where
demands are not known in advance.

Whereas online dynamic resource allocation problems
have been studied in different contexts and communities
(see Section 1.3 for an overview), our work aims to ad-
dress the novel aspects arising in the cloud computing
paradigm, particularly the presence of SLAs, the highly
limited feedback about the state of the system, and a de-
sired robustness over arbitrary input sequences. For the
algorithm design itself, we pay close attention to practi-
cality; our approach involves fairly simple computations
that can be implemented with minimal overhead of
space or time. Our algorithm achieves nearly optimal
utilization of the resource as well as approximately satis-
fying the SLA of each individual user. We see two main
use cases for the algorithm:

• In enterprise settings (“private cloud”), different
applications or organizations share the same infrastruc-
ture. These often have SLAs, but providers would still
like to maximize the return on investment (ROI) by
maximizing utilization (Rasley et al. 2016).

• In public clouds, users buy VMs, which are offered
at different “sizes” (which is practically the SLA). In
addition, the service providers offer “best-effort” alter-
natives, such as Azure Batch (MS) or Spot instances
(AWS). In our model, these services can be modeled by
giving a SLA of zero. Here, satisfying the VM SLAs
and achieving high utilization are both important; in-
deed, the provider is paid for the best-effort workloads
only if it completes these jobs. Our work can be viewed

as a principled way to accommodate such services and
even give VMs better service than expected, an impor-
tant consideration as public cloud offerings gradually
become commoditized.

1.1. The Model
We consider the problem of having multiple tenants
or users sharing a single resource, such as CPU, I/O,
or networking bandwidth. For simplicity, we assume
that the total resource capacity is normalized to 1. We
have N users sharing the resource, a finite but possi-
bly unknown discrete time horizon indexed
t � 1, : : : ,T, and an underlying queuing system. For
each user i, we are also given an expected share of re-
source β(i) ≥ 0 satisfying

∑N
i�1β(i) ≤ 1. The input is an

online sequence of workloads L1, : : : ,LT ∈ RN
+ , where

Lt(i) ≥ 0 corresponds to i’s workload arising at time t.
The system maintains a queue Qt(i), denoting i’s re-
maining work at time t. In our model, the decision
maker does not have direct access to the values of the
queues or the workloads. This allows us to consider
settings where the job sizes are not known in advance
and minimal information is available about the under-
lying system, a regular occurrence in many cloud set-
tings. At time t, the following happens:

1. Feedback: The decision maker observes which
queues are nonempty (the set of users i with Qt(i) > 0,
the active users), and which are empty (Qt(i) � 0, the
inactive users).

2. Decision: The decision maker updates user re-
source allocations ht(i), satisfying ∑

iht(i) ≤ 1.
3. Update: The load Lt(i) for each i arrives, and each

user processes as much of the work from the queue
plus the arriving workload as possible. The work com-
pleted by user i in step t is

wt(i) :�min{ht(i),Lt(i) +Qt(i)}:
The queues at the end of the time step are updated

accordingly:

Qt+1(i) � max{0,Lt(i) +Qt(i) − ht(i)}:
We assess the performance of any algorithm based

on two measures.
1. Work Maximization: The algorithm should maxi-

mize the total work completed over all users and thus
utilize the resource as much as possible.

2. SLA Satisfaction: The algorithm should (approxi-
mately) satisfy the SLAs in the following manner. The
work completed by user i up to any time 1 ≤ t ≤ T
should be no less than the work completed for this user
up to t if it were given a constant β(i) fraction of the re-
source over the whole horizon.

Achieving either of the criteria on their own is
straightforward. A greedy strategy that takes away re-
sources from an idle user and gives them to any user
whose queue is nonempty is approximately work-

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
2 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



maximizing (see Appendix C for details). On the other
hand, to satisfy the SLAs, we give each user a static as-
signment of ht(i) :� β(i) for all t. Naturally, the two cri-
teria compete with each other; the following examples
illustrate why these simple algorithms do not satisfy
both simultaneously.

Example 1. We have a shared system with three users
and corresponding SLAs β(1) � 0:5,β(2) � 0:2 and
β(3) � 0:3. Loads are defined by

Lt(1) � 1 t � 1, : : : ,T=3, 2T=3+ 1, : : : ,T
0 t � T=3+ 1, : : : , 2T=3 , and Lt(2) � Lt(3) � 1− Lt(1):

{

We assume that T is divisible by 3. In Figure 1, we
show the three users’ loads in blue dashed lines and
the corresponding SLAs in dotted red lines. The static
solution given by the SLAs, that is, ht(i) � β(i) for all t,
ensures a total of 5T=6 work done. However, the
dynamic policy given by ensures T work is done (the
green area). Moreover, it also ensures SLA satisfaction
at all times. An alternative policy is

which is also work maximizing. However, it does not
ensure SLA satisfaction. Indeed, this policy does not
satisfy user 3’s SLA at any time in (T=3, 2T=3].

We remark that achieving both criteria is relatively
simple if we allow the decision maker to observe de-
mand or even the queue length. This can be achieved
by first allocating to each user as much of the resource

as necessary up to their SLA and then distributing
the remaining resource arbitrarily among users with
additional demand. The versatility of our setting
stems from the limited feedback in the form of binary
information about idle and busy users. In our cloud
computing context, full demand information or even
visible queue lengths are unrealistic assumptions.

1.2. Our Results and Contributions
We design a simple and efficient online algorithm that
achieves approximate work maximization as well as
approximate SLA satisfaction even in the limited feed-
back model that we consider. For work maximization,
we analyze the performance by comparing our algo-
rithm to the optimal offline dynamic allocation that
knows all the data up front. In contrast, our online al-
gorithm receives limited feedback even in an online
setting. Thus, our aim is to minimize the quantity

workh∗
1,: : : ,h

∗
T
−workalg � ∑T

t�1

∑
i
w∗

t(i) −
∑T
t�1

∑
i
wt(i),

where workh∗
1,: : : ,h

∗
T
is the optimal offline work done

by dynamic allocations, h∗
1, : : : ,h

∗
T, w

∗
t � (w∗

t(1), : : : ,
w∗

t(N)) is the work done at time t by these alloca-
tions, and workalg is the work done by the algorithm
with allocations h1, : : : ,hT and work wt �
(wt(1), : : : ,wt(N)) at time t. The objective of the deci-
sion maker is to minimize this quantity by con-
structing a sequence of good allocations that
approach the best allocations in hindsight. Note that
our benchmark is dynamic rather than the more
common static offline optimum usually considered
in regret minimization (Arora et al. 2012, Shalev-
Shwartz 2012, Hazan 2019). Similarly, for SLA satis-
faction, our benchmark is the total work done for a
user if they were given β(i) resources for each time
1 ≤ t ≤ T. We give a bicriteria online algorithm that
achieves nearly the same performance as the bench-
marks if the resources for the latter are slightly
more constrained than that of the algorithm. Algo-
rithm 1, which we formally describe in Section 2,

Figure 1. (Color online) Example of Loads andWork for 3 Users

Notes. The dashed lines show each user’s workload. The solid areas represent the work done by the users. The dotted lines depict SLAs.

T [0,T=3] [T=3+ 1, 2T=3] [2T=3+ 1,T]
ht(1) 1 0 0.5
ht(2) 0 0.4 0.2
ht(3) 0 0.6 0.3

t [0,T=3] [T=3+ 1, 2T=3] [2T=3+ 1,T]
ht(1) 1 0 0
ht(2) 0 1 0
ht(3) 0 0 1

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 3



follows a multiplicative weight approach. The idea
is to boost the allocations of active users by a factor
greater than 1, with more emphasis on users with
current allocation below their SLA. This intuition
translates into a simple update that ensures high
utilization of the resource and SLA satisfaction, for-
mally, as follows.

Theorem 1. For any input parameter 0 < ε ≤ 1=10, SLAs
β � (β(1), : : : ,β(N)) satisfying β(i) ≥ 2ε=N and online
loads L1, : : : ,LT ∈ RN

≥0, Algorithm 1 achieves the following
guarantees:

1. Approximate Work Maximization. Let h∗
1, : : : ,

h∗
T ∈ [0,1]N be an optimal offline sequence of allocations such

that
∑

ih
∗
t(i) � 1 for all 1 ≤ t ≤ T. Then

workalg ≥ (1− ε)workh∗
1,: : : ,h

∗
T
−O Nε−2log(N=ε)

( )
:

2. Approximate SLA Satisfaction. There exists p̃ �
p̃(N,ε) �O(N2ε−3log(N=ε)) such that for any user i and
time t, if we take h′

1, : : : ,h
′
T ∈ [0,1]N to be any sequence of al-

locations with h′t(i) ≤ β(i), then
∑t
τ�1

wτ(i) ≥ 1− 2ε( )∑t
τ�1

w′
τ(i) − β(i)p̃,

where w′
t is the work performed by the allocations

h′
1, : : : ,h

′
T.

The first part of Theorem 1 asserts that if T is known for
the system, we can achieve workoffline −workalg ≤
O(T2=3logT) with ε �Θ(N1=3=T1=3). However, this choice

of ε is suboptimal for SLA satisfaction. We can achieve an

improved bound for SLA satisfaction (when t � T) by pick-

ing ε �Θ(N1=3=T1=4). If T is unknown, we can use a stan-

dard doubling trick; see, for example, Shalev-Shwartz

(2012). Summarizing, we obtain the following result.

Corollary 1. For ε �Θ(N1=3=T1=4), Algorithm 1 guaran-
tees

workh∗
1,: : : ,h

∗
T
−workalg ≤O(N1=3T3=4 +N1=3T1=2

log(NT)) �O(N1=3T3=4),
where h∗

1, : : : ,h
∗
T are optimal offline dynamic allocations.

As T grows, Corollary 1 guarantees that the rate
of work done by our algorithm workalg=T ap-
proaches the rate of work done by the optimal dy-
namic solution workh∗

1,: : : ,h
∗
T
=T. We emphasize again

that this is a stronger guarantee using the much
more powerful optimal dynamic solution as a
benchmark, rather than the typical static allocation
used in regret analysis for online algorithms. Such a
guarantee can be obtained in our model because the
incomplete work remains stored in the queues until

we are able to finish it; this allows the algorithm to
catch up with the incomplete work.

The second result in Theorem 1 states that the work
done by any individual user is comparable to the
work done by their promised SLA. In other words,
the user’s queue length is not much larger than it
would be under a static SLA allocation. By using

ε �Θ(N1=3=T1=4), we obtain the following result.

Corollary 2. Let ε �Θ(N1=3=T1=4). For a user i,

QT(i) ≤Q′
T(i) +O(NT3=4log(NT)), where Qt is the queue

given by Algorithm 1 and Q′
t is the queue induced by any

dynamic policy h′
1, : : : ,h

′
T with h′t(i) ≤ β(i).

We remark that we need to bound the SLAs away
from ε=N; in Theorem 1, we use the bound
β(i) ≥ 2ε=N. This condition is necessary in our analysis
to guarantee that there is an overprovisioned
(ht(i) > β(i)) user from which we can move allocation
to an underprovisioned user. See Theorem 4 for de-
tails and a more relaxed bound.

Corollary 1’s guarantee is near-optimal asymptoti-
cally in T in terms of work maximization, as the fol-
lowing result shows. The proof of this result appears
in Appendix D.

Theorem 2. For any online deterministic algorithm A for
our model, there is a sequence of online loads L1, : : : ,LT
such that workh∗

1,: : : ,h
∗
T
−workA �Ω

��
T

√( )
, where h∗

1, : : : ,
h∗
T are optimal offline dynamic allocations.

Our algorithm follows a mirror descent approach
(Ben-Tal and Nemirovski 2001, Hazan 2019). Unable
to see the lengths of the queues, a (naive) approach is
to pretend that active users have gigantic queues.
From this approach, we extract a simple update rule
that multiplicatively boosts active users; however, ac-
tive users who are under their SLA are boosted slight-
ly more than other active users. If inactive users are
assigned more than ε of the resource, where ε is the
algorithm parameter, active users ramp up their allo-
cation in few iterations. In the opposite case, at least
1− ε of the resource is assigned to active users, and
the slight boost to users below their SLA ensures a
healthy rebalancing of the resource. We show that this
efficient heuristic strategy is enough to achieve ap-
proximate work maximization and SLA satisfaction.
We remark that the mirror descent interpretation is
used only to provide intuition for the algorithm, and
our proofs follow a different path than the usual
mirror descent analysis. Later, we detail a slight modi-
fication that enjoys the same theoretical guarantees as
Algorithm 1 but in practice exhibits more desirable be-
havior (see Algorithm 2). Intuitively, among active
users, the modified algorithm tries to keep allocations
proportional to their SLAs. This behavior is appealing;

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
4 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



for example, a user A with twice the SLA of another
user B would expect in practice to perform at least
twice as much work. Similarly, user Bwould expect to
receive no less than half of user A’s allocation. This
second algorithm exhibits another interesting feature;
it can be applied to overcommitted regimes with∑N

i�1β(i) > 1, remain work-maximizing, and satisfy a

normalized version of SLA satisfaction (see Section 3.4).
The analysis of the algorithm relies on a primal-

dual fitting approach. For work maximization, we can
write the offline dynamic optimal allocation as a solu-
tion to a linear program and then construct feasible
dual solutions with objective value close to the algo-
rithm’s resource utilization. A crucial ingredient of
the algorithm is the use of entropic projection on the
truncated simplex, which ensures that every user gets
at least a ε=N fraction of the resource at all times. Intu-
itively, this means that any user with a nonempty
queue will recover their SLA requirement in a few
steps.

We do an extensive analysis of our algorithm on
synthetic data as well as real data obtained from CPU
traces of a production service in Microsoft’s cloud. We
aim to quantify the performance of the algorithm on
three objectives: (i) work maximization, (ii) SLA guar-
antee, and (iii) queue behavior. Although our theoreti-
cal results give guarantees for these objectives, we
show experimentally that the algorithm exceeds these
guarantees. We benchmark the algorithm against nat-
ural online algorithms, such as a static allocation as
given by the SLA guarantee, or the algorithm that
aims to proportionally distribute the resource among
active clients (according to their SLA). We also bench-
mark against offline algorithms that know all input
data up front; our algorithm’s performance on various
measures is comparable to the offline algorithms.

This work is organized as follows. In Section 2, we
present the preliminaries and the basic version of the
multiplicative weight algorithm. Section 3 contains
the proof of Theorem 1 in the bicriteria form. We split
the proof into two parts: work maximization in Sec-
tion 3.2 and SLA satisfaction in 3.3. In Section 3.4, we
present the extension of our algorithm and its guaran-
tees. Finally, in Section 4, we present numerical ex-
periments that empirically validate our results, and
we conclude in Section 5.

1.3. Related Work
There has been growing interest in resource allocation
problems arising from cloud computing applications
both from a practical as well as a theoretical stand-
point (Hindman et al. 2011, Narasayya et al. 2013, Va-
vilapalli et al. 2013, Curino et al. 2014, Menache and
Singh 2015, Narasayya et al. 2015, Grandl et al. 2016,
Jyothi et al. 2016, Rasley et al. 2016). The focus of

many of these works has been to understand the
trade-offs between efficiency and ensuring guarantees
to individual users.

On the more theoretical side, the cloud computing
allocation problem has been modeled as a stochastic
allocation problem (Maguluri et al. 2012, 2014;
Maguluri and Srikant 2014). The underlying models
draw inspiration from a large body of work on sto-
chastic network control, originating from the semi-
nal work of Tassiulas and Ephremides (1990, 1993),
followed by additional related research, for example,
on uplink and downstream scheduling in wireless
networks (Neely 2007, 2008). The analytical results
in these papers characterize the stability region of
the arrival processes under certain stochastic as-
sumptions (e.g., i.i.d. processes), and suggest algo-
rithms that achieve maximal throughput. The main
distinction between these works and ours is that we
assume an adversarial input; that is, we do not make
stationary distributional assumptions on the input.
Another difference is that our model centers on the
notion of an SLA that is known to the algorithm.
This allows us to address the overcommited case
(see Algorithm 2), which is especially relevant in
cloud settings.

Despite these modeling differences, there are some
parallels worth mentioning. For example, we design
algorithms with rate of work workalg=T approaching
the optimal offline rate of work; this translates to the
average delay 1

T
∑T

t�1
∑N

i�1Qt(i) converging to the opti-
mal offline average delay. This result can be compared
with the limiting behavior of the Markov process in
many of the stochastic network models. For example,
Neely (2008) studied a system of N users connecting
to a server via ON/OFF channels. The paper presents
an algorithm that ensures bounded average delay
limsupT

1
TE

∑T
t�1

∑N
i�1Qi(t)

[ ]
for any input within the in-

terior of the stability region; here, Qi(t) is the i-th
user’s backlog (queue length) at time t. Much of the
stochastic network literature assumes full knowledge
of queue lengths, for example, the LCQ policy in Tas-
siulas and Ephremides (1993), although there are
studies that limit the information available to the deci-
sion maker in a similar fashion to our model (see
Neely 2007, Li and Neely 2009, Shirani-Mehr et al.
2010, and Maguluri and Srikant 2014).

More broadly, the general problem of online re-
source allocation has been studied in both stochastic
and adversarial settings; we refer the reader to the
books (Albers 2003, Borodin and El-Yaniv 2005, Sri-
kant and Ying 2013) on the topic. Our work differs
from the aforementioned lines of research by combin-
ing the three following elements already present in the
literature. First, as mentioned above, we digress from
the stochastic arrival model to the adversarial setting
and worst-case analysis. This makes our algorithm

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 5



robust against unpredictable users’ demands. For in-
stance, demands in the morning could be totally differ-
ent from demands in the afternoon or the morning of
the next day. We are able to provide a single strategy
that adapts easily to any scenario. Second, we provide
simple online algorithms that perform well even under
limited feedback, a typical situation in cloud systems
in which we can determine the utilization of a resource
only after it has been allocated. Finally, we consider
SLA satisfaction as a measure of user contentment and
seek to satisfy it up to a small error.

There is now an extensive literature devoted to the
pricing of cloud computing services. In (Macı́as and
Guitart 2011) the authors study a genetic model for
generating a suitable pricing function in the cloud mar-
ket. In (Gera and Xia 2011), pricing is studied via a rev-
enue management formulation to address resource
provisioning decisions. See also Passacantando et al.
(2016) and Sharma et al. (2012) for more pricing mod-
els. A closely related topic is fairness in resource alloca-
tion (Zaharia et al. 2010, Ghodsi et al. 2011). Although
we do not directly consider pricing, work maximiza-
tion could be interpreted as a way to obtain extra reve-
nue by allocating unused resources to active users.

More recently, there has been work considering
overcommitment in the cloud (Gordon et al. 2011,
Dabbagh et al. 2015, Cohen et al. 2019), that is, selling
resources beyond server capacity. One of the objectives
of overcommitment is to reduce the number of servers
opened in order to minimize energy consumption. In
our basic model, we do not assume overcommitment,
yet our algorithm can still be applied to that setting
(see Algorithm 2). Specifically, we obtain a normalized
version of SLA satisfaction in the overcommitment set-
ting, where the guarantees depend on how much the
system is overcommitted (see Section 3.4).

A fundamental tool in our design is mirror descent
algorithms (Ben-Tal and Nemirovski 2001). These
first-order iterative algorithms have been widely used
in optimization (Ben-Tal and Nemirovski 2001), online
optimization, and machine learning (Shalev-Shwartz
2012, Mohri et al. 2018, Hazan 2019) to generate up-
date policies under limited feedback. Similarly, multi-
plicative weight algorithms have been widely studied
in optimization (Plotkin et al. 1995, Arora et al. 2012),
online convex optimization (Hazan 2019), online com-
petitive analysis (Buchbinder and Naor 2009), and
learning theory (Freund and Schapire 1997, Shalev-
Shwartz 2012). Our results bear some resemblance to
regret analysis, where typically the benchmark is the
optimal offline static policy (Freund and Schapire
1997, Abernethy et al. 2008, Bubeck et al. 2012, Shalev-
Shwartz 2012, Hazan 2019); the use of a dynamic
benchmark (as in our work) is scarcer in the literature,
see, for example, Zinkevich (2003), Hall and Willett
(2015), Mokhtari et al. (2016), and Zhang et al. (2017).

2. Algorithm
2.1. Preliminaries
For N ≥ 1, we identify the set of users with the set
[N] � {1, : : : ,N}. For 0 < ε < 1, we call an allocation h �
(h(1), : : : ,h(N)) ∈ [0,1]N a (1− ε)-allocation if

∑
ih(i) ≤

1− ε. We assume N ≥ 2, that is, the system consists of
at least two users.

For any t, we define the set of active users at that
time as the set of users with nonempty queue and de-
note this set by At. Observe that ht(i) � wt(i) for all ac-
tive users. Let Bt � [N]\At be the sets of users with
empty queues at time t; we call these users inactive. At

and Bt correspond to the feedback given to the deci-
sion maker. Also, let A1

t � {i ∈ At : ht(i) < β(i)} be the
set of active users with allocation below their SLA and
A2

t � At\A1
t be the set of active users receiving at least

their SLAs.
We assume without loss of generality that the allo-

cations set by the decision maker always add up to 1.
We propose an algorithm that uses a multiplicative
weight strategy to boost a subset of users by multiply-
ing their allocation by a factor greater than 1. Because
the allocations do not sum to 1 after applying the up-
date, we then project them onto the simplex using the
KL-divergence metric. Furthermore, to ensure that no
user gets an allocation arbitrarily close to zero, we in
fact project onto the truncated simplex,

Δε � {x � (x(1), : : : , x(N)) : ‖x‖1 � 1, x(i) ≥ ε=N, ∀i}:

To fix the notation, let πΔε
(·) be the projection func-

tion onto Δε using Kullback-Leibler divergence (KL-
divergence for short), that is, πΔε

(y) :� argminx∈Δε∑
ix(i)log(x(i)=y(i)), where y � (y(1), : : : ,y(N)) ∈ RN

≥0. In
Appendix A, we show how to efficiently compute this
projection. The following proposition states some ba-
sic facts that are useful in our analysis. The proof ap-
pears in Appendix A.

Proposition 1. Let y ∈ RN
+ , x � πΔε

(y) and
S � {i : x(i) � ε=N}. Then:

(a) If y(1) ≤ y(2) ≤⋯≤ y(N), then S � {1, : : : ,k} for some
k ≥ 0.

(b) x(i) � y(i)eµiC, where C � 1− εN|S|=∑j∈Sy(j)
( )

, µi ≥
0 for all i and µi � 0 for i ∉ S.

(c) x can be computed inO(N logN) time.

2.2. The Multiplicative Weight Algorithm
We propose an algorithm that follows a multiplica-
tive weight strategy (see Algorithm 1). We describe
here the basic approach given by the mirror descent
algorithm. In Section 3.4, we present an extension of
the algorithm that in practice shows a better relation
between the allocations and the ratios between the
SLAs.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
6 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



Algorithm 1 (Multiplicative Weight Update Algorithm).
Input: Parameters 0 < ε ≤ 1

10 , 0 < η < 1
3.

1. Initialization: h1 any allocation over Δε and λ � ε2

8N.
2. For t � 1, : : : ,T do
3. Set allocation ht.
4. Read active and inactive users At and Bt.

A1
t � {i ∈ At : ht(i) < β(i)}, A2

t � At\A1
t .

5. Set gain function gt(i) �
1+λ i ∈ A1

t

1 i ∈ A2
t

0 i ∈ Bt

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ .

6. Update allocation:

ĥt+1(i) � ht(i)eηgt(i):
ht+1 � πΔε

(ĥt+1):
Intuitively, the algorithm boosts active users at the

expense of inactive ones and boosts users slightly
more if they are currently under their SLA. The algo-
rithm update rule comes from a mirror descent
approach applied to a Lagrangian relaxation of a
work-maximization linear function at time t. More for-
mally, under the assumption that active users have a
huge queue, we aim to maximize the objective∑

i∈At
wt(i) subject to wt(i) ≥ β(i) for i ∈ At. The update

rule is obtained after applying a mirror descent with a
KL-divergence distance generating function over the
simplex to the Lagrangian relaxation of the previous
problem (see Ben-Tal and Nemirovski 2001, Boyd and
Vandenberghe 2004). We restrict the projection to the
truncated simplex so that no user gets an allocation
too close to 0. We use this update rule solely to guide
the algorithm’s decisions; however, the proofs of
work maximization and SLA satisfaction do not fol-
low from the standard analysis of mirror descent.

3. Analysis
To give the analysis of the algorithm and prove Theo-
rem 1, we prove the following stronger guarantees
about Algorithm 1. We compare its performance to
the optimal offline dynamic strategy that uses at most
a 1− 4ε fraction of the resources at each time step.

Theorem 3. Given loads L1, : : : ,LT, for any ε > 0 and η >
0 such that ε ≤ 1=10, Algorithm 1 guarantees

workh∗
1,: : : ,h

∗
t
−workalg,t ≤ 8

N
ε2η

ln(N=ε),

for any time 1 ≤ t ≤ T, where h∗
1, : : : ,h

∗
T is the optimal

offline sequence of (1− 4ε)-allocations and workalg,t �∑
i
∑t

τ�1wτ(i) is the work done by Algorithm 1 until
time t.

The first guarantee of Theorem 1 regarding work
maximization now follows simply from Theorem 3.
Given any offline dynamic policy h1, : : : ,hT such that

∑
iht(i) � 1, we define ht :� (1− 4ε)ht, which satisfies

the assumption of Theorem 3. Now we have

workalg ≥workh1,: : : ,hT
− 8

N

(ε=4)2η ln(4N=ε)

≥ (1− 4ε) ·workh1,: : : ,hT − 2000
N
ε2η

ln(N=ε),

where the first inequality follows from Theorem 3. To
argue the second, let w1, : : : ,wT and w1, : : : ,wT, re-
spectively, denote the work performed by allocations
h and h. Then, (1− 4ε)w1, : : : , (1− 4ε)wT are feasible
work patterns that the allocations h1, : : : ,hT could do,
since in this setting we have 1− 4ε capacity and
the same workload. Therefore, (1− ε)workh1,: : : ,hT ≤
workh1,: : : ,hT

, because the users try to use their alloca-
tions at maximum.

Similarly, for SLA satisfaction, we prove a stronger
bicriteria result that implies the SLA guarantee in
Theorem 1.

Theorem 4. Let 0 < ε ≤ 1=10 and 0 < η ≤ 1=3. Take any
SLAs β(1), : : : ,β(N) such that β(i) ≥ eη(1+λ)ε=N, where
λ � ε2=8N, and let p̃ � 32N2=ε3ηln(N=ε). Then, for any
user i and time t ≤ T− p̃, if we take h′

1, : : : ,h
′
T to be alloca-

tions such that h′t(i) � 1− 2ε( )β(i), the work done by Algo-
rithm 1 for user i satisfies

∑t+p̃
τ�1

wτ(i) ≥
∑t
τ�1

w′
τ(i),

where w′
t is the work done by the allocations

h′
1, : : : ,h

′
T. Moreover,

∑t
τ�1wτ(i) ≥ ∑t

τ�1w′
τ(i)− β(i)p̃.

3.1. The Offline Formulation
Before presenting the proof of Theorem 3, we state the
offline LP formulation of the maximum work problem
for (1− ε)-allocations. We denote by wt � (wt(1), : : : ,
wt(N)) the work done for each user at time t. Given
loads L1, : : : ,LT, the offline formulation and its dual
LP are given in Figure 2. As written, the dual LP in-
cludes a change of variable; see Appendix B for de-
tails. Constraints (2) state that the work done for any
user up to time t by the allocation cannot exceed the
user’s loads up to that time. Constraints (3) limit the
work performed at time t to at most a 1− ε fraction of
the resource. The LP (Dε)will be of special importance
in the analysis. Using our algorithm, we will construct
a dual feasible solution.

Observe that (Pε) is feasible and bounded since the
feasible region is a nonempty polytope. Let vPε

be the
optimal value of (Pε). The following proposition gives
a simple characterization of vPε

; the proof appears in
Appendix B.

Proposition 2. vPε
�min0≤t≤T

∑t
s�1

∑
i Ls(i) + (1− ε)(T− t)( )

.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 7



3.2. Work Maximization
In this section, we prove Theorem 3. Our first lemma
characterizes the implications of the update rule. The
proof follows from a careful analysis of the dynamics
using the KL-divergence and appears in Appendix B.

The first result of the lemma shows the behavior of
active users’ allocations when the system is underutil-
ized (≤ 1− ε). In this case, all of the active users re-
ceive a multiplicative boost in their allocation. The
second result shows a more general behavior (see also
Lemma 2). In this case, active users with allocation be-
low their SLA do not decrease their allocations,
whereas the other active users might decrease their al-
location, but in this case, the multiplicative penaliza-
tion will be less severe.

Lemma 1. Let c � εη=(4N). Then, Algorithm 1 satisfies
the following:

1. Suppose
∑

i∈At
ht(i) ≤ 1− ε. If i ∈ At, then ht+1(i) ≥

ht(i)(1+ c):
2. In general, Algorithm 1 satisfies ht+1(i) ≥ ht(i) for i ∈

A1
t and ht+1(i) ≥ ht(i)(1− εc) for i ∈ A2

t .

Proof of Theorem 3. Given loads L1, : : : ,LT ∈ RN
+ , con-

sider the following {0, 1}-matrix M of dimension N ×
T that encodes the information about the status of
queues obtained while running Algorithm 1:

Mi,t �
0 i's queue is empty at t,Qt(i) � 0,

1 i's queue is not empty at t,Qt(i) > 0:

{

Let s̃ � ln(N=ε)=(εc), where c is defined in Lemma 1.
Now, pick s? to be the maximum nonnegative integer
s (including 0) such that

∑s
t�1

∑
i
Lt(i) ≤

∑s+s̃
t�1

∑
i
wt(i) (7)

Claim 1. Consider any block of time [r, r+ s̃] where r > s?;
then there exists a user i such that Mi,r′ � 1 for all
r′ ∈ [r, r+ s̃].

Proof. Suppose not. Then we claim that s � r satisfies
condition (1). Consider any user i and let r′i ∈ [r, r+ s̃]
be such that Mi,r′i � 0. Then, work done by the user i
up to time r+ s̃ is at least

∑r+s̃
t�1

wt(i) ≥
∑r′i
t�1

wt(i) �
∑ri′
t�1

Lt(i) ≥
∑r
t�1

Lt(i):

Now summing over all i, we get the desired
contradiction. w

We now prove the following claim that shows that
the algorithm ensures that, on average, the total re-
source utilization after s? is close to 1− 4ε. The proof
of the claim relies on Lemma 1 and appears in Appen-
dix B.

Claim 2. Let B � [r, r+ s̃) with r > s? be a consecutive
block of s̃ time steps, and let B′ � {t ∈ B :

∑
j∈At

ht(j) ≤
1− ε} be the time steps in B with low utilization. Then,
|B′| ≤ 4εs̃, and therefore,

∑T
t�s?+1

∑
iwt(i) ≥ (1− 4ε)

(T− s?) − s̃:

Now, consider the following feasible dual solution
of (D4ε); γt(i) � 1,βt � 0 for all users i and t � 1, : : : , s?,
and γt(i) � 0,βt � 1 for all users i and t � s? + 1, : : : ,T.
Observe that

∑T
t�1βt � T − s?. For optimal

(1− 4ε)-allocations h∗
1: : : ,h

∗
T, we obtain

workh∗
1,: : : ,h

∗
T
≤ vdual(γ1, : : : ,γT,β1, : : :βT) work duality

( )
�∑s?

t�1

∑
i
Lt(i) + (1− 4ε)(T− s?)

≤ ∑s?+s̃
t�1

∑
i
wt(i) + (1− 4ε)(T− s?) choice of s?( )

≤∑s?
t�1

∑
i
wt(i) + s̃ + ∑T

t�s?+1

∑
i
wt(i) + s̃ Claim 2( )

�workalg + 8
N
ε2η

ln(N=ε):

where we have used
∑s?+s̃

t�s?+1wt(i) ≤ s̃ and the definition
of s̃. w

Figure 2. The Primal and Dual LP Formulation for the MaximumWork Problem

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
8 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



3.3. SLA Satisfaction
In this section, we prove Theorem 4. Recall that λ �
ε2=(8N) and A1

t � {i ∈ At : ht(i) < β(i)} are the set of ac-
tive users receiving less than their SLAs and that A2

t �
At\A1

t is the set of active users receiving at least their
SLA. Analogous to Lemma 1, we have the following
lemma, whose proof appears in Appendix B.

Lemma 2. Assume that ε ≤ 1=10, η ≤ 1=3 and β(i) ≥
2ε=N for all users. Then, for any i ∈ A1

t , Algorithm 1 guar-
antees ht+1(i) ≥ ht(i)(1+ c′), where c′ � εηλ=(2N).
Proof of Theorem 4. Let p̃ � 
ln(N=ε)=ln(1+ c′)�,
where c′ is defined in Lemma 2. Now, we proceed by
induction on t to prove that

∑t+p̃
τ�1wτ(i) ≥ ∑t

τ�1w′
τ(i),

where w′
t is the work done by the allocations

h′
1, : : : ,h

′
T. Clearly, the case t � 0 is direct.

Take t ≥ 1 and suppose that the result is true for t – 1.
If there exists r ∈ [t, t+ p̃] such that user i’s queue is
empty, then∑t+p̃

τ�1
wτ(i) ≥

∑r
τ�1

wτ(i) �
∑r
τ�1

Lτ(i) ≥
∑t
τ�1

w′
τ(i):

Therefore, assume that for all τ ∈ [t, t+ p̃] we have
that user i’s queue is nonempty. By the induction hy-
pothesis, ∑t−1+p̃

τ�1
wt(i) ≥

∑t−1
τ�1

w′
τ(i):

In order to complete the proof, we need to prove that
wt+p̃(i) ≥ wt

′(i). We proceed as follows. Suppose that
for all τ ≥ t we have wτ(i) < (1− ε)β(i). By Lemma 2, at
each time τ ∈ [t, t+ p̃] the allocation of user i increases
multiplicatively by a rate (1+ c′). Therefore,

wt+p̃(i) ≥ ε

N
(1+ c′)̃p ≥ 1 ≥ β(i),

a contradiction. From the previous analysis, we obtain
the existence of τ? ∈ [t, t+ p̃] such that wτ?(i) ≥
(1− ε)β(i). By using Lemmas 1 and 2, we can show
that the allocation hτ(i) will never go below (1− εc)
(1− ε)β(i) for all τ ≥ τ?. In particular, wt+p̃(i) ≥ (1− εc)
(1− ε)β(i) ≥ (1− 2ε)β(i) ≥ wt

′(i). w

3.4. Extension to Proportionality and
Overcommitment

In the previous subsections, we have introduced the
first version of the multiplicative weight algorithm.
We explained how we deduced our algorithm using
mirror descent and proved its theoretical guarantees.
Even though Algorithm 1 guarantees individual SLA
satisfaction, this simple policy can lead to undesirable
results that do not respect the ratio between alloca-
tions. If one user has an SLA twice the size of another,
it would be reasonable for the former to expect alloca-
tions at least twice as big as the latter’s if both are

consistently busy. Likewise, the second user would
expect allocations no less than half of the first user’s.
In other words, both users should expect shares that
respect the ratio between their SLAs.

To illustrate this unsatisfactory behavior in Algo-
rithm 1, we run it with three users having SLAs β(1) �
0:5, β(2) � 0:3 and β(3) � 0:2. We set η ≤ 1=3 and
ε ≤ 1=10. For simplicity, the initial allocation will be
uniform. In our example, user 1 is always idle. User 2
consistently demands one unit of resource. User 3 be-
gins idle and remains so until user 2’s allocation
reaches 1− ε. This takes roughly ηε−1 time steps; call
this time t0. Starting at time t0, user 3 demands unit
loads every time step for the rest of the horizon. Initial-
ly, the allocations are uniformly 1/3 for everyone. Be-
tween time 1 and t0, user 2’s allocation increases until it
hits 1− ε, since this user is the only active user. After t0,
user 3 becomes active and has an allocation below his
or her SLA. Therefore, the algorithm redistributes allo-
cation from user 2 to 3 until user 3’s allocation hits 0.2.
After this, allocations remain stable at approximately
ht(1) � ε

3 , ht(2) � 0:8− ε
3 and ht(3) � 0:2. User 2 receives

about four times the allocation of user 3 if ε is small
enough. However, a better allocation for users 2 and 3
is β(2)

β(2)+β(3) � 3
5 and

β(3)
β(2)+β(3) � 2

5, respectively. These alloca-
tions reflect the ratio β(2)=β(3) between active users.

Given this, we propose a slight modification of
Algorithm 1, shown in Algorithm 2. As before, the
plan is always to benefit active users. However, this
time, we boost active users slightly more if they fall
behind their “proportional SLA” among active users.
Intuitively, if there are n < N active users for a long
period of time, the allocation of these active users
should converge to their proportional share.

Algorithm 2 (Extended Multiplicative Weight Update
Algorithm).

Input: Parameters 0 < ε ≤ 1
10 , 0 < η < 1

3.
1. Initialization: h1 any allocation over Δε and λ � ε2

8N.
2. For t � 1, : : : ,T do
3. Set allocation ht.
4. Read active and inactive users At and Bt. A1

t �
i ∈ At : ht(i) < (1− ε) β(i)∑

j∈At
β(j)

{ }
, A2

t � At\A1
t .

5. Set gain function gt(i) �
1+λ i ∈ A1

t

1 i ∈ A2
t

0 i ∈ Bt

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ .

6. Update allocation: ĥt+1(i) � ht(i)eηgt(i), ∀i and
ht+1 � πΔε

(ĥt+1)
For technical reasons, the set A1

t , the active users
with allocation below their proportional share among
active users at time t, has to be defined as{
i ∈ At : ht(i) < (1− ε) β(i)∑

j∈At
β(j)

}
. The reason behind this

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 9



choice is to ensure that if A1
t ≠ ∅ and the resource is

nearly fully utilized, that is,
∑

i∈At
ht(i) ≥ 1− ε, then

there is a different active user j≠ i from which we can
move allocation to i. This is fundamental in the proof
of Theorem 6 below.

In terms of work maximization and SLA satisfac-
tion, Algorithm 2 provides exactly the same guaran-
tees as Algorithm 1.

Theorem 5. Given loads L1, : : : ,LT, for any ε > 0 and η >
0 such that ε ≤ 1=10, Algorithm 2 guarantees

workh∗
1,: : : ,h

∗
t
−workalg,t ≤ 8

N
ε2η

ln(N=ε),

for any time 1 ≤ t ≤ T, where h∗
1, : : : ,h

∗
T is an optimal off-

line sequence of (1− 4ε)-allocations, and workalg,t �∑
i
∑t

τ�1wτ(i) is the overall work done by Algorithm 2 until
time t.

The proof of Theorem 5 is exactly the same as the
proof of Theorem 3. To see this, observe that the proof
of Theorem 3 uses only the fact that the allocations of
every active user get a multiplicative boost whenever
the usage is below 1− ε. The last statement is true
since Lemma 1 also holds in this case.

For SLA satisfaction, we have the following stron-
ger statement.

Theorem 6. Let 0 < ε ≤ 1=10, 0 < η ≤ 1=3, λ � ε2=(8N)
and p̃ � 32N2ε−3η−1ln(N=ε). Take any SLAs β(1), : : : ,
β(N) such that β(i)∑

kβ(k)
≥ eη(1+ε) ε

(1−ε)N. Then, for any user i

and time t, if we take h′
1, : : : ,h

′
T to be the allocations such

that h′t(i) � 1− 2ε( ) β(i)∑
kβ(k)

, the work done by Algorithm 1

for user i satisfies ∑t+p̃
τ�1

wτ(i) ≥
∑t
τ�1

w′
τ(i),

where w′
t is the work done by the allocations h′

1, : : : ,h
′
T.

Moreover,
∑t

τ�1wτ(i) ≥ ∑t
τ�1w′

τ(i) − β(i)∑
kβ(k)

p̃.

The proof of this result is similar to the proof of
Theorem 4. A subtle difference is that the analog of
Lemma 2 holds if we add the hypothesis∑

i∈At
ht(i) > 1− ε. We skip the proof for brevity.

Lemma 3. Assume that ε ≤ 1=10, η ≤ 1=3 and β(i)∑
kβ(k)

≥
eη(1+ε) ε

(1−ε)N for all users. In Algorithm 2, if
∑

k∈At
ht(k) >

1− ε, then for any i ∈ A1
t we have ht+1(i) ≥ (1+ c′)ht(i),

where c′ � εηλ=(2N).
Lemmas 1 and 3 ensure that any active user gets a

multiplicative boost of at least (1+ c′). Therefore, any
user that is active p̃ consecutive times will have an al-
location of at least (1− 2ε) β(i)∑

kβ(k)
. Then, by following

the same inductive proof of Theorem 4, we obtain
Theorem 6.

If the resource is not overcommitted,
∑

kβ(k) ≤ 1
this result implies that Algorithm 2 ensures for each
user i an amount of work comparable with

β(i)∑
kβ(k)

≥ β(i); that is, we obtain the standard SLA sat-

isfaction guarantee. In the overcommitment regime,∑N
i�1β(i) > 1, we do retain some performance guaran-

tees. The update according to almost-normalized
SLAs in Algorithm 2 still works, and Theorem 5’s
work maximization guarantee still applies, as its
proof does not rely on the SLAs. On the other hand,
Theorem 6 states that individually, each user does
work comparable to their normalized SLA. If the
level of overcommitment is not large, each user is
still guaranteed service “almost” at their SLA; for
example, if the resource is overcommitted by 10%,
each user receives service comparable to 1:1−1 ≈ 91%
of their SLA.

Another interesting byproduct of the work maximi-
zation guarantee is the following result.

Corollary 3. Under the assumptions of Theorem 4,
suppose there is a time 1 ≤ τ ≤ T with

∑τ
t�1

∑
iwτ

′(i) �∑τ
t�1

∑
iLt(i); that is,. the optimal offline (1− 4ε)

-allocation is able to finish all work up until τ. Then, the
sum of queue lengths at time τ induced by Algorithm 2 is
at most 8Nε−2η−1ln(N=ε). In particular, at time τ each
user’s queue length is at most this value.

In practical settings, it is commonplace to assume
that an arrival rate is lower than the work process-
ing rate. In stochastic settings, stationary states
cannot be achieved without this assumption; see,
for example, Tassiulas and Ephremides (1990). In
our context, this can be reinterpreted as having
times within the operating horizon where the opti-
mal offline solution is able to finish all work arriving
up until that time. At these particular times, the cor-
ollary guarantees that Algorithm 2’s queue lengths
are constant. In other words, the algorithm does not
starve individual users to achieve work maximiza-
tion and keeps their queues short, an appealing
property in cloud systems.

4. Experiments
In this section, we empirically test Algorithm 2 against
a family of offline and online algorithms. We aim to
measure the performance on both synthetic data as
well as real CPU traces from a production service in
Microsoft’s cloud. We quantify the performance on
the following three criteria:

• Work maximization. We compare the overall
work done by Algorithm 2 against various benchmark
algorithms.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
10 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



• SLA guarantee. We examine the extent to which
our algorithm achieves the cumulative work of the stat-
ic SLA policy for each user. We do so by measuring the
cumulative work over plausible time windows.

•Queue length.We compare the 2-norm of the indi-
vidual queues over time. We use this metric as a proxy
for the system latency, which is not captured by our
theoretical results.

We consider the following online algorithms,
against which we benchmark our algorithm:

• Static SLA Policy (Static). Each user gets their SLA
as a constant, static allocation. We call this algorithm
Static.

• Proportional Online (PO). In each iteration, ev-
ery active user will get their SLA normalized by the
sum of SLAs of active users (just their SLA if there
are no active users). This simple algorithm seems
suitable for a practical implementation; however, its
performance can be arbitrarily bad in terms of
work maximization. The formal description appears
in Algorithm 4 in Appendix E. We call this
Algorithm PO.

•OnlineWorkMaximizing (OWM). This algorithm
divides users into three categories: A, B, and I (active
users with allocation, actives users without allocation,
and inactive users). At each iteration, the resource is
divided uniformly among users in A. If a user in A be-
comes inactive, they are moved to I. If a user in I be-
comes active, they are moved to B. When A becomes
empty, we move all users from B to A. In Appendix C,
we prove that this method is work maximizing. How-
ever, this greedy strategy is not guaranteed to satisfy
SLA constraints for general input loads. We call this al-
gorithmOWM.

We also consider the following offline algorithms,
against which we benchmark our algorithm.

•Optimal 1-allocations (PG). The optimal offline so-
lution to the workmaximization problem. This solution
is computed using Algorithm 3, which we call Propor-
tional Greedy (PG). This algorithm can be considered
as the offline counterpart of Proportional Online.

• Optimal (1− ε)-allocation (restPG). Offline
solution to the work maximization problem with re-
source restricted to 1− ε, where ε is the parameter of
Algorithm 2.

4.1. Synthetic Experiment
4.1.1. Description of the Experiment. In this experi-
ment, we consider a synthetically generated input
sequence, which we use to examine how online al-
gorithms adapt to different conditions. Specifically,
our system consists of three users with SLAs of
β(1) � 0:2, β(2) � 0:3 and β(3) � 0:5. We consider a
time horizon of T � 3, 000, 000. The load input se-
quence is divided into six periods: Pi �

(i− 1)T=6, iT=6[ )
for i � 1, : : : , 6. In each period, only

two users demand new resources. During the first
three periods, the random demand has a mean pro-
portional to the users’ SLA. In the following three
periods, the random demand changes to a distribu-
tion with uniform mean among users demanding
resources. Specifically:

• During P1, only users 2 and 3 demand the follow-
ing loads. At the beginning of P1, that is, t � 1, user 2
demands a large load of L1(2) ~ T

6 ·Gamma 2000,( 1
2000 ·

β(2)
β(2)+β(3) ) and L1(3) � 0. During the rest of period P1,

Lt(2) � 0 and Lt(3) ~Gamma 2000, 1
2000 · β(3)

β(2)+β(3)
( )

. User 1

demands nothing during this entire period. Similar
loads are set for period P2 and P3.

• Similarly, during P4, users 2 and 3 demand Lt(i) ~
Gamma 2000, 1

2000 · 12
( )

for i � 2, 3. During P, users 1 and 2

demand Lt(i) ~Gamma 2000, 1
2000 · 12

( )
for i � 1, 2. During

P6, users 1 and 3 demand Lt(i) ~Gamma 2000,( 1
2000 · 12 )

for i� 1, 3.
The expectation of a gamma(k,θ) random variable

is given by kθ, and the variance is given by kθ2 (see,
e.g., Feller 1957). For example, in period P1, user 2’s

expected load is T
6

β(2)
β(2)+β(3), with variance 1

2000
β(2)

β(2)+β(3)
( )2

.

Similarly, user 3’s expected total load is T
6

β(3)
β(2)+β(3).

Thus, the expected overall load is T=6, exactly the
length of the period. A brief summary of gamma dis-
tribution’s properties is given in Appendix F.

We instantiate Algorithm 2 with η � 1
3 , ε � 0:02 and

T � 3, 000,000.

4.1.2 Results
4.1.2.1. Work Maximization. In Figure 3, we present
the cumulative work difference between PG and Al-
gorithm 2 (solid blue line with star), restPG and Al-
gorithm 2 (red dashed line with triangle), PO and
Algorithm 2 (solid magenta line), static and Algo-
rithm 2 (solid green line with small circle), and
OWM and Algorithm 2 (solid cyan line with large
circle). Intuitively, one positive unit of difference
implies the corresponding algorithm is ahead of Al-
gorithm 2 by one unit of time.

First, we consider the comparison with online al-
gorithms static, PO, and OWM. Algorithm 2 outper-
forms Static significantly, by roughly 700, 000 units
of time. During the first half of the experiment, PO
shows good performance, but in the second half of
the experiment (when the load distribution
changes), Algorithm 2 outperforms PO. This shows
that Algorithm 2 can adapt to changing input se-
quences that PO cannot adapt to. Finally, OWM sur-
passes Algorithm 2 during the whole experiment,

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 11



with a performance similar to PG; this is an ex-
pected result since OWM is work maximizing.

With respect to offline algorithms, PG outperforms
Algorithm 2 by roughly 10,000 time units. On the
other hand, Algorithm 2 surpasses restPG by approxi-
mately 20,000 units. This shows that Algorithm 2 in-
deed performs better than the offline optimum with a
slightly reduced amount of resources, as guaranteed
by the theoretical results.

4.1.2.2. SLA Satisfaction. Among online algorithms,
static and PO satisfy SLA restrictions by design, but as
seen earlier, they are not competitive in terms of work
maximization. We focus on the comparison between
OWM and Algorithm 2 as far as SLA satisfaction is
concerned. Although OWM performs extremely well
in work maximization, this comes at a significant price
in SLA satisfaction. In Figure 4, we depict empirically
this behavior by plotting the instantaneous work done
by users 2 and 3 by OWM and Algorithm 2 during pe-
riod P1. We empirically observe that Algorithm 2 ap-
proximately satisfies user 3’s SLA, but OWM does not
allocate the user any resources. Such an extreme be-
havior arises because OWM is geared toward work
maximization rather than SLA satisfaction.

4.1.2.3. Queue Lengths. In Figure 5, we present the
2-norm of queues induced by Algorithm 2 (solid
blue), static (solid magenta with star), PO (solid cyan
with large circle), and OWM (solid black with trian-
gle). Once again, we can interpret one unit of norm as
one unit of latency. Experimentally, we observe that
static shows the worst performance with a final
2-norm of 524,000 units. Algorithm 2 ends with a
2-norm of 10,000 units, PO with 26,970 units, and
OWM with 381 units. As remarked above, even
though OWM induces very small queues, this comes
at the cost of not satisfying SLA requirements.

4.1.2.4. Summary. Among all online algorithms,
Algorithm 2 is able to best balance work maximization
and SLA satisfaction. In particular, Algorithm 2 is only
slightly worse in terms of work maximization com-
pared with OWM; this is expected since Algorithm 2
always reserves a small fraction of the resource for each
user, regardless of activity. Furthermore, our results
show that the actual total work done by Algorithm 2
is much better than the theoretical guarantee of
Theorem 5, because it substantially outperforms (1− ε)
OPT (restPG). Finally, we observe small queues
throughout the entire horizon, which is key for main-
taining reasonable latencies.

4.2. Experiment With Real Data
We next describe the results of our computational
study using real-world data. For these experiments,
we obtained CPU traces of a production service on
Azure, Microsoft’s public cloud. The data consists of
demand traces of six different users over a time win-
dow of approximately 10 days.

To show Algorithm 2’s robustness with respect to
(short-term) real data, we also consider the following
measurement:

• Instantaneous SLA. We focus on a modified SLA
satisfaction criterion because of the relatively short ho-
rizon (about 14,000 minutes); we assess Algorithm 2’s
performance in the following way. For a user i and any
time t, we compare the cumulative work done by user i
in Algorithm 2 during a time window [t, t+ τ) versus
the cumulative work done by the same user i under a
static SLA policy during the time window [t, t+ τ). In
order to have a meaningful comparison, at time t, we
run the static SLA policy with the queues of Algorithm
2 at time t. The motivating question is, “What happens if
at time t and the next τ time steps we run the static policy in-
stead of Algorithm 2?” For this experiment, we used τ �
500 minutes.

Figure 3. (Color online) Difference Between Algorithms’Work

Notes. Alg is short for Algorithm 2. Observe that the differences “OPT - Alg” and “OWM - Alg” slightly overlap.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
12 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



Figure 4. (Color online) InstantaneousWork for Users 2 and 3 During period P1

Note. User 3 does not receive any allocation in OWMuntil user 2 finishes all of his or her work.

Figure 5. (Color online) 2-Norm of Queues

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 13



The dataset consists of demand traces of six users of
exactly 14,628 minutes (approximately 10 days). Each
user is assigned their normalized average workload as
SLA. (Because the data are proprietary, we cannot dis-
close actual SLAs.) For the purpose of the experiment,
we run Algorithm 2 with parameters ε � 0:01 and
η � 1

3.

4.2.1. Results. 4.2.1.1. Work Maximization. We depict
in Figure 6 the following differences: cumulative work
done until time t by optimal 1-allocations (PG) and Al-
gorithm 2, (1− ε)-allocations (restPG) and Algorithm 2,
PO and Algorithm 2, static and Algorithm 2, and OWM
and Algorithm 2. In a similar fashion to the previous
experiment, one positive unit can be interpreted as
Algorithm 2 being one unit (minute) of work behind,
and one negative unit means Algorithm 2 is ahead by
a minute.

We observe that Algorithm 2 outperforms all online
benchmarks. Against static, the final difference is 105
units, with a maximum difference of 167 units.
Against PO, the final difference is 25 units, with a
maximum difference of 37. Finally, against OWM, the
final difference is 20, with a maximum difference of
21. Surprisingly, for this dataset, Algorithm 2 is able
to surpass even OWM.

Regarding the offline algorithms, PG surpasses
Algorithm 2 during the whole experiment as ex-
pected, with a final difference of 14 units. On the other
hand, Algorithm 2 outperforms restPG by 26 units by
the end of the experiment.

4.2.1.2. Instantaneous SLA. In Table 1, we report
statistics on the differences between the cumulative
work done in time windows [t, t+ τ) by static and
Algorithm 2 for each user. For each t and each user
i, the exact formula is ri(t) � ∑t+τ−1

r�t w′
r(i) −∑t+τ−1

r�t wr(i),
where wr(i) is the work done by user i under

Algorithm 2 and wr
′(i) is the work done by user i

with static (with queues at t given by Algorithm 2).
The table shows the minimum, maximum, average,
and standard deviation of {ri(t)}t when τ � 500
minutes. A positive unit means Algorithm 2 is out-
performed by static during [t, t+ τ) under the same
initial conditions by one unit of time. In general,
we observe that all users show negative empirical
average difference. This result empirically suggests
that Algorithm 2 ensures approximate SLA satisfac-
tion, even for small time windows. For instance,
user 3 occasionally has a high difference (46.4
units), mostly due to times t where Algorithm 2 al-
locates the user a small amount of resource but a
huge load is incoming during the window [t, t+ τ).
The experiment tells us that averaging out these
“bad” times ensures good performance under the
SLA criterion. Furthermore, we tested values of τ �
60, 500, and 1,000 minutes; larger windows im-
prove the results, with lower maximum and aver-
age values.

4.2.1.3. Queue Lengths. In Figure 7, we present the
2-norms of queues given by the online benchmark

Figure 6. (Color online) Difference of CumulativeWorks

Table 1. Statistics for the Difference Between the
Cumulative Works of Our Algorithm and Static over Time
Windows [t, t+ τ)
User Minimum Maximum Mean SD

User 1 −31.1 21.7 −4.6 13.8
User 2 −122.3 46.9 −31.2 49.2
User 3 −90.8 46.4 −7.2 29.5
User 4 −49.7 18.5 −0.8 12.9
User 5 −42.6 22.6 −5.85 14.0
User 6 −21.9 14.9 −0.6 6.4

Note. For each user i we present the minimum, maximum, average,
and standard deviation over the sequence of differences {ri(t)}t.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
14 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



algorithms and Algorithm 2. As usual, we can interpret
one unit as the respective algorithm’s latency, that is,
lateness with respect to the overall users’ demand.
Compared against the online algorithms, we empirical-
ly observe the superiority of Algorithm 2, because it
has the smallest latency most of the time. Algorithm 2
ends with a 2-norm of roughly 44 units, an average
length of 22 and a maximum length of 92. PO ends
with a 2-norm of approximately 68, an average length
of 32 and a maximum length of 126. OWM ends with a
2-norm of 68, an average of 32 and maximum of 113.
Finally, static shows the worst behavior, with a final
2-norm of 103, an average of 91 and maximum of 231.
For this dataset, Algorithm 2 shows a remarkable per-
formance, considering particularly that Algorithm 2 al-
ways reserves ε=N resource for each user.

4.2.1.4. Summary. Algorithm 2 performs very well
in terms of work maximization compared with all
other online algorithms and exceeds the theoretical

guarantees. Furthermore, SLA requirements are typi-
cally satisfied, even when measured over relatively
short time windows. Finally, as in the previous experi-
ment, the algorithm maintains small queues com-
pared with other online algorithms.

5. Conclusion
We have proposed a new online model for dynamic
resource allocation of a single divisible resource in a
shared system. Our framework captures basic proper-
ties of cloud systems, including SLAs, limited system
feedback, and unpredictable (even adversarial) input
sequences. We designed an algorithm that is near-
optimal in terms of both work maximization and SLA
satisfaction (Theorems 1, 5, and 6). Furthermore, our
second algorithm, Algorithm 2, can be applied in an
overcommitment regime with similar guarantees,
which could be of additional merit for some applica-
tions. We derived a simple expression for the offline

Figure 7. (Color online) 2-Norm of Queues

Figure 8. (Color online) PDF of Different Gamma Distributions

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 15



work maximization problem that allowed us to rein-
terpret the algorithm’s dynamics as an approximate
solution of the optimal (offline) work maximization
LP. Numerical experiments show that our algorithm
is indeed able to achieve a desirable trade-off between
work maximization and SLA satisfaction. In particu-
lar, comparisons with offline algorithms (PG and
restPG) indicate that our algorithm is empirically
work maximizing. Furthermore, unlike other plausi-
ble online algorithms, our algorithm is able to quickly
adapt to unexpected changes in demand and still ap-
proximately satisfy the underlying user SLAs. Our
model and results may be extended in various direc-
tions of interest to the operations research and cloud
computing communities.

A natural extension for single-resource systems is to
model priority among users. Typically, users with high-
er priority should be given resources before their lower-
priority counterparts. A challenge in this setting is how
to define the metric corresponding to work maximiza-
tion. One possibility is to have different weights for dif-
ferent users, corresponding to their priority, and then to
maximize the weighted total work while satisfying
SLAs. Directly extending our algorithms to this case
means a user’s multiplicative boost depends on their
priority. However, our analysis in this paper does not
apply because we use the fact that users’ work is inter-
changeable, whereas the identity of who performs the
work is critical in the prioritized case.

Another challenging extension is the management
of multiple resources (e.g., CPU, I/O bandwidth,
memory), where different users or jobs may require
the resources in different proportions. This extension
requires a fundamental redefinition of our model,
where work done for a user is a function of the multi-
ple resources allocated and may also depend on a
particular job’s characteristics. In many real-world
scenarios, a job’s resource demands are often comple-
mentary, for example, RAM and CPU usage. This ob-
servation may motivate a possible extension in which
we still treat all users’ loads as one-dimensional quan-
tities, and the work performed by a user is a relatively
simple function of their allocations, for example, a
concave nondecreasing function.

Acknowledgment
The authors thank Vivek Narasayya for useful discussions.

Appendix A: Projecting on D«

Proof of Proposition 1. Let y ∈ RN
+ . The projection of y

on Δε corresponds to the solution of the convex problem

(Q)
min

∑
ix(i)ln

x(i)
y(i)
( )

∑
ix(i) � 1

x(i) ≥ ε=N

Its Lagrangian (see Boyd and Vandenberghe 2004) is

L(x,λ,µ) � ∑
i
x(i)ln x(i)

y(i)
( )

− λ
∑
i
x(i) − 1

( )
−∑

i
µi x(i) −

ε

N

( )
:

Using the FO conditions,
∀i : x(i) � y(i)eµi+λ−1 � y(i)eµiC:

and the SO conditions,

µi ≥ 0, ∀i, and x(i) > ε

N
⇒ µi � 0:

Let S � {i : x(i) � ε=N} and T � [N]\S. Then, using∑
ix(i) � 1, we obtain

eλ−1 � 1− ε
N |S|∑

i∈Ty(i)
:

This proves part (b). Now, suppose we have
y(1) ≤⋯≤ y(N). If i, j ∈ T, then x(i) � y(i)eλ−1 and x(j) �
y(j)eλ−1, and then

x(i) ≤ x(j)� y(i) ≤ y(j):
That is, in T, the variables preserve their ordering.
If i ∈ S and j ∈ T, then y(i)eλ−1+µi � x(i) � ε=N <

x(j) � y(j)eλ−1, which implies y(i) < y(j) using that µi ≥ 0.
Now, let k �min{i ∈ T}, which is a well-defined number
using constraint

∑N
i�1x(i) � 1. We claim that for any j ≥ k,

j ∈ T, that is, T corresponds to the interval [k,N]. By con-
tradiction, suppose that j > k does not belong to T; then,
y(j) < y(k) by previous calculus. However, y(j) ≥ y(k) by the
ordering of y, a contradiction. With this, the algorithm to
project is clear, we sort y, and then we test increasingly
the possible set S � {1, : : : , k− 1} for k � 1, : : : ,N and select
the best candidate. This proves (a).
We say that S is feasible if there is a feasible solution x

such that S � {i : x(i) � ε=N}. In the following paragraphs,
we prove that the first feasible solution found in this pro-
cess is the right one.
Observe that once S � {1, : : : , k} is feasible, then S′ �

{1, : : : , j} remains feasible for all j ≥ k. Indeed, if S �
{1, : : : , k} is feasible, then

1 � ε

N
k+∑

i∈T
x(i):

Now, increasing S to S′ � {1, : : : , k+ 1} means that we pick
x(k+ 1) > ε=N, and we decrease it to ε=N. Therefore, x(k+
2), : : : ,x(N) must increase. Therefore, S′ remains feasible.
The proof for general case j ≥ k follows by induction.
Now, we claim that if S � {1, : : : , k} is feasible, then S′ �

{1, : : : , k+ 1} cannot have better optimal value. Indeed, the
difference between the objective S′ and S is

∑k+1
i�1

ε

N
ln

ε

Ny(i) + 1− ε

N
(k+ 1)

( )
ln

1− ε

N
(k+ 1)∑

i≥k+2
y(i) −∑k

i�1

ε

N
ln

ε

Ny(i)

− 1− ε

N
k

( )
ln

1− ε

N
k∑

i≥k+1
y(i)

� ε

N
ln

ε

Ny(k+ 1) + 1− ε

N
(k+ 1)

( )
ln

1− ε

N
(k+ 1)∑

i≥k+2
y(i)

− 1− ε

N
k

( )
ln

1− ε

N
k∑

i≥k+1
y(i)

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
16 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



The function f (x) � xlnx is convex for x > 0. Now, pick

x � ε
Ny(k+1), y � 1−ε

N(k+1)∑
i≥k+2y(i)

, and λ � y(k+1)∑
i≥k+1y(i)

. Then

λx+ (1−λ)y � y(k+ 1)∑
i≥k+1

y(i)
ε

Ny(k+ 1)
( )

+

∑
i≥k+2

y(i)∑
i≥k+1

y(i)
1− ε

N (k+ 1)∑
i≥k+2

y(i)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 1− ε

Nk∑
i≥k+1

y(i):
Then, using the convexity of f , we obtain the result. This
implies that the first feasible prefix S that we find is the
optimal one. Therefore, by ordering y in O(N logN) time
and then running a binary search, we can find S in
O(N logN) time. This finishes the proof of (c). w

Appendix B: Omitted Proofs

B.1 Proofs of Section 3.1
Here, we present dual stated in the offline formulation of
the maximum work problem. We have the LP

(Pε)
max

∑N
i�1

∑T
t�1wt(i)∑t

s�1ws(i) ≤ ∑t
s�1Ls(i) ∀t, i (1)∑N

i�1wt(i) ≤ 1 − ε ∀t (2)
wt ≥ 0 ∀t

Using the variables αt(i) for constraint (1) and βt for
constraint (2), we obtain the dual

(Dε)
min

∑N
i�1

∑T
t�1αt(i)

∑t
s�1Ls(i) + (1− ε)∑T

t�1βt∑T
s�tαs(i) + βt ≥ 1 ∀t, i (1′)
α,β ≥ 0

Using the change of variable γt(i) � ∑T
s�tαs(i), we obtain

the stated dual

(Dε)
min

∑N
i�1

∑T
t�1Lt(i)γt(i) + (1− ε)∑T

t�1βt
γt(i) + βt ≥ 1 ∀t, i (1′)

γt ≥ γt+1 ∀t (2′)
β,γ ≥ 0

Proof of Proposition 2. We prove each inequality sepa-
rately. Let 0 ≤ t? ≤ T be such that

∑t?
s�1

∑
iLs(i)+

(1− ε)(T− t?) �min0≤t≤T
∑t

s�1
∑

iLs(i) + (1− ε)(T− t). Consid-
er the dual solution (β,γ) such that γt � 1, βt � 0 for
t � 1, : : : , t?, and γt � 0,βt � 1 for t � t? + 1, : : : ,T. Then, by
weak duality,

vPε
≤ vdual(β,γ) �

∑t?
s�1

∑
i
Ls(i) + (1− ε)(T− t?)

� min
0≤t≤T

∑t
s�1

∑
i
Ls(i) + (1− ε)(T− t):

Now, consider the greedy algorithm that in each iteration
gives enough allocation to the users in order to complete
their work, starting with user 1, then user 2, and so on. We
restrict the algorithms’ allocations to (1− ε)-allocations.
We denote by workgreedy the work done by this algorithm.
As usual, we denote by wt the vector of work done at time
t. Let t? be the maximum nonnegative t such that∑

iwt(i) < 1− ε. Observe that
∑t?

s�1
∑

iws(i) � ∑t?
s�1

∑
iLs(i).

Then

min
0≤t≤T

∑t
s�1

∑
i
Ls(i) + (1− ε)(T− t) ≤∑t?

s�1

∑
i
Ls(i) + (1− ε)(T− t?)

�workgreedy ≤ vPε
,

since vPε
is the optimal solution. w

Remark 1. This max-min result shows that the greedy al-
gorithm is optimal for solving (Pε) and also shows how to
compute the dual variables. Finally, solving (Pε) can be
done efficiently in O(NT) by running the greedy algorithm.

B.2 Proofs of Section 3.2
In what follows, we denote by St the users with allocation
ε
N at time t.

Proof of Lemma 1.
1. First, for i ∈ At we have

ht+1(i) � ht(i)eηgt(i)eµi 1− ε
N |St+1|

( )∑
j∈S̄ t+1 ĥt+1(j)

≥ ht(i) 1− ε
N |St+1|

( )
e−η

∑
j∈S̄ t+1 ĥt+1(j)

:

We divide the analysis into two cases: Bt ∩ S̄t+1 ≠ ∅ and
Bt ⊆ St+1.
For Bt ∩ S̄t+1 ≠ ∅ we have

e−η
∑
j∈S̄ t+1

ĥt+1(j) ≤ eλη
∑

j∈S̄ t+1∩At

ht(j) + e−η
∑

j∈S̄ t+1∩Bt

ht(j)

� eλη
∑
j∈S̄ t+1

ht(j) − (eλη − e−η) ∑
j∈Bt∩S̄ t+1

ht(j)

≤ eλη 1− ε

N
|St+1|

( )
− ε

N
(eλη − e−η) (since ht(i) ≥ ε

N
)

≤ (1+ 2λη) 1− ε

N
|St+1|

( )
− ε

N
λη+ η− η2

2

( )
≤ 1− ε

N
|St+1| + 2λη− ε

N
η 1− η

2

( )
(using 1 +λη ≤ eλη ≤ 1+ 2λη, e−η ≤ 1− η+ η2

2
)

≤ 1− ε

N
|St+1| − εη

4N
:η ≤ 1and 2λ ≤ ε

4N

Therefore,

1− ε
N |St+1|

( )
e−η

∑
j∈S̄t+1 ĥt+1(j)

≥ 1− ε
N |St+1|

1− ε
N |St+1| − εη

4N
≥ 1
1− εη

4N
≥ 1+ εη

4N
,

using 1
1−x ≥ 1+ x when x ∈ (0, 1). Hence, ht+1(i) ≥

ht(i)(1+ εη=(4N)).
Now, if Bt ⊆ St+1, then S̄t+1 ⊆ At. We have

e−η
∑

j∈S̄ t+1 ĥt+1(j)
1−

ε

N
|St+1|

≤ (1− ε)eλη
1− ε

N
|St+1|

≤ (1− ε)eλη
1− ε+ ε

N

≤ (1− ε)(1+ 2λη)
1− ε+ ε

N

(eλη ≤ 1+ 2λη since 2 λη < 1)

≤ 1− ε+ 3λη

1− ε+ ε

N

� 1−
ε

N
+ 3λη

1− ε+ ε

N

:

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 17



Because
ε
N+3λη
1−ε+ ε

N
≥ ε=N, we obtain

ht+1(i) ≥ ht(i) 1
1− ε

N
≥ ht(i) 1+ ε

N

( )
≥ ht(i) 1+ εη

4N

( )
:

2. The monotonicity of ht(i) with i ∈ A1
t is easy to see. Let us prove

the second statement:

e−η
∑

j∈S̄ t+1 ĥt+1(j)
1− ε

N
|St+1|

≤ eλη
∑

j∈S̄t+1ht(j)
1− ε

N
|St+1|

≤
eλη 1− ε

N
|St+1|

( )
1− ε

N
|St+1|

≤ eλη

≤ 1+ 2λη � 1+ εc,
since λ � ε2

8N. Then, for i ∈ A2
t ,

ht+1(i) ≥ ht(i) e
η(1− ε

N |St+1|)∑
j∈S̄ t+1 ĥt+1(j)

≥ ht(i) 1
1+ εc

≥ ht(i)(1− εc): w

Proof of Claim 2. Now, let [s? + 1, : : : ,T], and let us divi-
de this interval into blocks of length s̃ with a possible last
piece of length at most s̃. Let L be one of these blocks,
and let i be the user given by claim 1, that is, Mi,r � 1 for
all r ∈ L. Consider L′ � {t ∈ L :

∑
j∈At

ht(j) < 1− ε}. By using
part 1 of Lemma 1, user i increases his or her allocation
multiplicatively in L′ by a factor of (1+ c). Observe that
for t ∉ L′, user’s i allocation can increase or decrease, de-
pending on ht(i). However, by lemma by part 2 of 1, we
know that ht(i) will not decrease by a huge amount. Let
k′ � |L′|, and then i increases his or her allocation for k′
times and decreases it for at most s̃ − k′ times. Therefore,
k′ maximum value is such that

ε

N
(1+ c)k′(1− εc)̃s−k′ � 1,

and therefore,

k′ ≤ ln(N=ε) + s̃ln(1− εc)−1
ln((1+ c)=(1− εc))

≤ 1+ c
c(1+ ε) ln(N=ε) + ε(1+ c)

(1+ ε)(1− εc) s̃

ln
1+ c
1− εc

≥ c(1+ ε)
1+ c

, ln
1

1− εc
≤ εc
1− εc

( )
≤ ε(1+ c)

(1+ ε) s̃ +
ε(1+ c)

(1+ ε)(1− εc) s̃ s̃ � ln(N=ε)
εc

( )
� ε

1+ c
1+ ε

1+ 1
1− εc

( )
s̃

≤ 3εs̃: for N ≥ 2 and ε ≤ 1
10

( )
Hence, L′ is at most a fraction of s̃, and with this,∑
t∈L

∑
i
wt(i) ≥ (1− ε)(s̃ − k′) ≥ (1− ε) 1− 3ε( )s̃ ≥ (1− 4ε)|L|:

Summing over all blocks we conclude the desired
result. w

B.3 Proof of Section 3.3

Proof of Lemma 2. If A1
t � ∅, the result is vacuously true.

Suppose that A1
t ≠ ∅. First, we prove that under the as-

sumption of Lemma 2, we have Ā1
t ∩ S̄t+1 ≠ ∅. For j ∈ St+1,

we have
ε

N
� ht+1(j)

�
ĥt+1(j)eµi (1− ε

N
|St+1|)∑

k∈S̄t+1 ĥt+1(k)

≥
ht(j)(1− ε

N
|St+1|)∑

k∈S̄t+1ht(k)eη(1+λ)
,

(since µi ≥ 0)

This implies that ht(j) ≤ ε
N e

η(1+λ) < β(j). Because ∑
jht(j) �

1, i ∈ A1
t , and

∑
jβ(j) � 1, we must have that there is a user

j≠ i with allocation ht(j) ≥ β(j). Clearly, j ∉ St+1 and j ∉ A1
t .

Therefore, Ā1
t ∩ S̄t+1 ≠ ∅.

Following the proof of Lemma 1, for i ∈ A1
t , we have

e−η(1+λ)
∑
j∈S̄t+1

ĥt+1(j) ≤
∑

j∈S̄t+1∩A1
t

ht(j) + e−ηλ
∑

j∈S̄t+1∩Āt1

ht(j)

� ∑
j∈S̄t+1

ht(j) − (1− e−λη) ∑
j∈S̄t+1∩Āt1

ht(j)

≤ 1− ε

N
|St+1| − ε

N
(1− e−λη)

(since S̄t+1 ∩ Āt1≠ ∅)
≤ 1− ε

N
|St+1| − ελη

2N

1− e−x ≥ x
2
for x ∈ [0, 1]

( )
:

Therefore,

ht+1(i) ≥ ht(i) 1 − ε
N |St+1|

1 − ε
N |St+1| − ελη

2N

≥ ht(i) 1 + ελη

2N

( )
: w

Appendix C: Greedy Online Algorithm
In this section, we prove that the following greedy alloca-
tion strategy is almost optimal in work maximization. The
algorithm divides the users into three categories: A, non-
empty queue users with nonzero allocation; B, nonempty
queue users with zero allocation; and I, empty queue users
with zero allocation. At time t, a user i ∈ A is left in A if he
or she still has nonempty queue; otherwise we will move
the user to I. A user i ∈ I will be moved to B if that user’s
queue becomes nonempty; otherwise the user will remain
in I. Finally, if all users from A are moved to I, then we
will move all B to A; otherwise we will leave B untouched.
In any case, we will distribute uniformly among the users
that remain in A.
Users move from A to I, I to B, and B to A. Let wt be

the work done by the algorithm, and let w′
t be the optimal

offline work.

Theorem 7. For any loads L1, : : : ,LT ∈ RN
≥0 and any ε > 0,

this greedy Algorithm guarantees∑T
t�1

∑
i
wt(i) + 2

N2

ε
≥∑T

t�1

∑
i
w′

t(i)

wherew′
t is the work done by the optimal offline sequence of

(1− 2ε=N)-allocations.
Proof. Let t? be the maximum t ≥ 0 such that∑t+N2

s�1
∑

iws(i) ≥ ∑t
s�1

∑
iLs(i). By claim 2, we know that each

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
18 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS



interval [r, r+N2=ε), with r > t?, has a user with a non-
empty queue. As in claim 2, we divide the interval [t? +
1,T] into blocks of length N2=ε with a last block of length
at most N2=ε. Pick any of these blocks, say L, and let
L′ � {t ∈ L :

∑
iwt(i) < 1}. It is easy to see that |L′| ≤ 2N, and

therefore, summing over all block, we have
∑

t≥t?+1∑
iwt(i) +N2=ε ≥ (T− t?)(1− 2ε=N). The conclusion follows

applying weak duality to (P2ε=N). w

Remark 2. Against the best 1-allocations, we can opti-
mize ε and obtain ε � ��������

N3=T
√

. This greedy strategy will be
O( �����

NT
√ ) far from the optimal dynamic work. Observe that

this matches the lower bound in Theorem 2.

Appendix D: Lower Bound

Theorem 8. For any online deterministic algorithm A setting
at each time 1-allocations, with an underlying queuing sys-
tem, and with the same limited feedback as Algorithm 1,
there exists a sequence of online loads L1, : : : ,LT such that
workh∗

1,: : : ,h
∗
T
−workA �Ω

��
T

√( )
, where h∗

1, : : : ,h
∗
T are the opti-

mal offline dynamic 1-allocations.

Proof. We consider the case with N � 2 users; the general
case reduces to N � 2 by loading jobs only to two users.
Let A be an online algorithm for allocating a divisible re-
source for 2 users and with underlying queuing system
and limited feedback. Without loss of generality, we can
assume that the allocations sets by A always add up to 1
at every time step.

We will construct a sequence of loads Lt � (Lt(1),Lt(2))
that at every time will add up to 1. This will ensure that
the overall work done by the optimal offline dynamic pol-
icy will be T. On the other hand, we will show that this
sequence of loads will lead to large queue length for at
least one of the users. The main ingredient is to use the
fact that the algorithm receives limited feedback about the
state of the system, that is, which users have empty
queue. In particular, this implies that if there are two dis-
tinct sets of load vectors Lt and L′t for some interval t ∈
[r, s] such that the queues remain nonempty on both these
sequences, then the resource allocation to the users in the
two load sequences must be identical.

We will divide the time window [1,T] into phases. Each
phase will begin with a configuration of queues, say,
Q � (Q(1),Q(2)), where one of the queues is empty and the
other one nonempty. We set q �Q(1) +Q(2), and we denote
by qi the q at phase i. We define q0 � 0. We will prove that
at the end of each phase i ≥ 1, qi+1 ≥ qi + 1=4, with all qi+1
cumulated in one queue and the other queue empty.

Initially, the algorithm has a fixed deterministic alloca-
tion h1 � (h1(1),h1(2)). If h1(1) ≤ h1(2), then we load
L1 � (0,1). Otherwise, we load L1 � (1, 0). In any case, we
have q1 ≥ 1=2 and all q1 in one queue.

Now, we will describe how the general phases work. For
the sake of simplicity, we will describe the phase starting at
time t � 1. We have queue configuration Q � (Q(1),Q(2))
with q > 0. By the initial phase, we can assume that q ≥ 1=2.
Moreover, we can assume that only one of the queues is
nonempty; this point will be clear after we describe how
the phase works, and it is clearly true for phase 1. Phase i
with q � qi will last at most 2q+ 2 time steps.

Suppose that Q(1) � 0 and Q(2) > 0. If h1(1) � 1, then we
load L1 � (0,1), and the phase ends with q increased by 1
and user 1’s queue empty. Therefore, we can assume that
h1(1) < 1. Our first load will be L1 � (h1(1) + ε,h2(2) − ε),
with 0 < ε < 1

4 small enough and such that both queues are
nonempty. The following loads will be Lt � ht, the alloca-
tion of A at time t. Observe that the first load will ensure
that both users see nonempty queues until the end of the
phase. Moreover, user 1 always has exactly ε remaining in
his or her queue.

• If there is a time τ? ∈ [1, 2q+ 1] such that hτ? (1) ≥ 1=2, then we
change the load at time τ? for Lτ? ′ � (0, 1). This will increment q by at
least 1=2− ε ≥ 1=4, and the phase ends. Observe thatQτ?+1(1) � 0.

• We can assume now that for the loads Lt � ht we always have
ht(1) < 1=2 for all t ∈ [2, 2q+ 1]. We change the loads to Lt′ � (1, 0) un-
til time τ? in which user 2 empties his or her queue. Recall that the
feedback of the algorithm is only the set of empty queues at every
time step. Thus the behavior of A under Lt and Lt′ will be the same
until time τ?. Now, we change load Lτ? by Lτ? ′ � (1− hτ? (2) +
Qτ? (2) − ε′,hτ? (2) −Qτ? (2) + ε′) with 0 < ε′ < 1=4 small enough. This
will ensure that queue 2 will be exactly ε′. Now, in an extra step, we
load Lτ?+1 � (1, 0). Again, we have q increased by at least 1=4, and
this ends the phase. Observe thatQτ?+2(2) � 0.
The analysis is similar for Q(1) > 0 and Q(2) � 0. Ob-

serve that at the end of each phase, only one queue is
nonempty, and the other one is empty. In any case, we
have the desired increment. With this, we can set the fol-
lowing recurrence, q0 � 0, qi−1 + 1=4 ≤ qi ∀i ≥ 1. We de-
duce that qi ≥ i=4. Now, let m be the number of phases. By
construction, each phase lasts at most 2qi + 2. Then
T ≤ ∑m

i�1(2qi + 2) ≤ 40q2m, where we have used
4qm ≥ 4qi ≥ i ≥ 1. From here, we deduce that qm ≥ �������

T=40
√

.
Now, the work done by the algorithm and the unful-

filled work in the queues must add up the overall load.
Then qm +workA � T �workh∗

1,: : : ,h
∗
T
, from which we obtain

the result. w

Appendix E: Additional Algorithms

Algorithm 3 (Proportional Greedy)
Input: Sequence of loads (Lt)Tt�1 and SLAs β(1), : : : ,β(N).
1. For t � 1, : : : ,T do
2. wt(i) ← 0,∀i ∈ [N].
3. Rem← 1.

4. Rem(i) ←Qt−1(i) + Lt(i),∀i ∈ [N].
5. Repeat

6. A←{i : Rem(i) > 0}.
7. Σ←∑

i∈At
β(i).

8. i∗ ← argmink∈ARem(k).
9. If Rem(i) < β(i)

Σ Rem, then

10. wt(i∗) ← wt(i∗) +Rem(i∗).
11. Rem← Rem−Rem(i∗).
12. Rem(i∗) ← 0.
13. Else
14. for k ∈ A, do
15. wt(k) ←wt(k) + β(k)

Σ Rem.

16. Rem(k) ← Rem(k) − β(k)
Σ Rem.

17. Rem← 0:

18. until Rem � 0 or {i : Rem(i) > 0} � ∅; end

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 19



Algorithm 4 (Online Proportional)
Input: Sequence of loads (Lt)Tt�1 and SLAs β(1), : : : ,β(N).
1. Initial distribution h1 � (β(1), : : : ,β(N)),
2. For t � 1, : : : ,T, do
3. Set ht and obtainAt � {i :Qt(i)≠ 0},
4. Update ht+1(i) � β(i)∑

j∈Aβ(j)

5. If A � ∅, then ht+1 � h1.

Appendix F: Gamma Distribution
Recall that a gamma distribution (Feller 1957) is character-
ized by two parameters: the shape k > 0 and the scale
θ > 0. The PDF of a gamma(k,θ) is given by 1

Γ(k)θk xk−1e−x=θ,

where Γ(k) � ∫ ∞
0
uk−1e−udu is the standard gamma function.

See Figure 8 for PDFs of different gamma distribution for
various choices of k and θ.

Proposition 3. Let X ~Gamma(k,θ). Then, E[X] � kθ and
Var(X) � kθ2.

References
Abernethy J, Bartlett PL, Rakhlin A, Tewari A (2008) Optimal strate-

gies and minimax lower bounds for online convex games.
Accessed May 1, 2018, https://repository.upenn.edu/statistics_
papers/164.

Albers S (2003) Online algorithms: a survey. Math. Programming
97(1-2):3–26.

Arora S, Hazan E, Kale S (2012) The multiplicative weights update
method: a meta-algorithm and applications. Theory Comput. 8(1):
121–164.

Ben-Tal A, Nemirovski A (2001) Lectures on Modern Convex Opti-
mization: Analysis, Algorithms, and Engineering Applications,
vol. 2 (Siam, Philadelphia).

Borodin A, El-Yaniv R (2005) Online Computation and Competitive
Analysis (Cambridge University Press, Cambridge, UK).

Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge
University Press, Cambridge, UK).

Bubeck S, Cesa-Bianchi N, et al (2012) Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. Foundations
TrendsVR in Machine Learn. 5(1):1–122.

Buchbinder N, Naor JS (2009) The Design of Competitive Online Algo-
rithms via a Primal-Dual Approach (Now Publishers, Inc., Hano-
ver, MA).

Cohen MC, Keller PW, Mirrokni V, Zadimoghaddam M (2019)
Overcommitment in cloud services: Bin packing with chance
constraints. Management Sci. 65(7):2947–3448.

Curino C, Difallah DE, Douglas C, Krishnan S, Ramakrishnan R,
Rao S (2014) Reservation-based scheduling: If you’re late
don’t blame us! Proc. ACM Symposium Cloud Comput. (ACM),
1–14.

Dabbagh M, Hamdaoui B, Guizani M, Rayes A (2015) Efficient data-
center resource utilization through cloud resource overcommit-
ment. 2015 IEEE Conf. Comput. Comm. Workshops (INFOCOM
WKSHPS) (IEEE), 330–335.

Feller W (1957) An Introduction to Probability Theory and Its Applica-
tions (John Wiley & Sons, New York).

Freund Y, Schapire RE (1997) A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Sys-
tem Sci. 55(1):119–139.

Gera A, Xia CH (2011) Learning curves and stochastic models for
pricing and provisioning cloud computing services. Service Sci.
3(1):99–109.

Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker S, Stoica I
(2011) Dominant resource fairness: Fair allocation of multiple
resource types. NSDI 11:24.

Gordon A, Hines M, Da Silva D, Ben-Yehuda M, Silva M, Lizarraga
G (2011) Ginkgo: Automated, application-driven memory over-
commitment for cloud computing. ASPLOS RESoLVE Workshop,
1–6.

Grandl R, Chowdhury M, Akella A, Ananthanarayanan G (2016)
Altruistic scheduling in multi-resource clusters. OSDI, 65–
80.

Hall EC, Willett RM (2015) Online convex optimization in dynamic
environments. IEEE J. Sel. Top. Signal Process. 9(4):647–662.

Hazan E (2019) Introduction to online convex optimization.
Preprint, submitted September 7, https://arxiv.org/abs/1909
.05207

Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz
RH, Shenker S, Stoica I (2011) Mesos: A platform for fine-
grained resource sharing in the data center. NSDI 11:22.

Jyothi SA, Curino C, Menache I, Narayanamurthy SM, Tumanov A,
Yaniv J, Mavlyutov R, et al. (2016) Morpheus: Toward automat-
ed slos for enterprise clusters. OSDI, 117–134.

Li Cp, Neely MJ (2009) Energy-optimal scheduling with dynamic
channel acquisition in wireless downlinks. IEEE Trans. Mobile
Comput. 9(4):527–539.

Macı́as M, Guitart J (2011) A genetic model for pricing in cloud
computing markets. Proc. 2011 ACM Symposium Appl. Comput.
(ACM), 113–118.

Maguluri ST, Srikant R (2014) Scheduling jobs with unknown
duration in clouds. IEEE/ACM Trans. Networking 22(6):
1938–1951.

Maguluri ST, Srikant R, Ying L (2012) Stochastic models of load bal-
ancing and scheduling in cloud computing clusters. Proc. IEEE
INFOCOM (IEEE), 702–710.

Maguluri ST, Srikant R, Ying L (2014) Heavy traffic optimal re-
source allocation algorithms for cloud computing clusters. Per-
formance Evaluation 81:20–39.

Menache I, Singh M (2015) Online caching with convex costs. Proc.
27th ACM Symposium Parallelism Algorithms Architectures
(ACM), 46–54.

Mohri M, Rostamizadeh A, Talwalkar A (2018) Foundations of Ma-
chine Learning (MIT Press, Cambridge, MA).

Mokhtari A, Shahrampour S, Jadbabaie A, Ribeiro A (2016) Online
optimiziation in dynamic environments: improved regret rates
for strongly convex problems. Decision Control (CDC), 2016
IEEE 55th Conf., (IEEE) 7195–7201.

Narasayya V, Das S, Syamala M, Chandramouli B, Chaudhuri S
(2013) SQLVM: performance isolation in multi-tenant rela-
tional database-as-a-service. 6th Biennial Conf. Innovative
Data Systems Res.

Narasayya V, Menache I, Singh M, Li F, Syamala M, Chaudhuri
S (2015) Sharing buffer pool memory in multi-tenant rela-
tional database-as-a-service. Proc. VLDB Endowment 8(7):
726–737.

Neely MJ (2007) Optimal energy and delay tradeoffs for multi-
user wireless downlinks. IEEE Trans. Inform. Theory 53(9):
3095–3113.

Neely MJ (2008) Order optimal delay for opportunistic scheduling
in multi-user wireless uplinks and downlinks. IEEE/ACM Trans.
Networking 16(5):1188–1199.

Passacantando M, Ardagna D, Savi A (2016) Service provisioning
problem in cloud and multi-cloud systems. INFORMS J. Com-
put. 28(2):265–277.

Plotkin SA, Shmoys DB, Tardos É (1995) Fast approximation algo-
rithms for fractional packing and covering problems. Math.
Oper. Res. 20(2):257–301.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
20 Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS

https://repository.upenn.edu/statistics_papers/164
https://repository.upenn.edu/statistics_papers/164
https://arxiv.org/abs/1909.05207
https://arxiv.org/abs/1909.05207


Rasley J, Karanasos K, Kandula S, Fonseca R, Vojnovic M, Rao S
(2016) Efficient queue management for cluster scheduling.
Proc. Eleventh Eur. Conf. Comput. Systems (ACM), 36.

Shalev-Shwartz S (2012) Online learning and online convex
optimization. Foundations TrendsVR Machine Learn. 4(2):
107–194.

Sharma B, Thulasiram RK, Thulasiraman P, Garg SK, Buyya R (2012)
Pricing cloud compute commodities: A novel financial
economic model. Proc. 2012 12th IEEE/ACM Internat. Sympo-
sium Cluster, Cloud Grid Comput. (ccgrid 2012) (IEEE Computer
Society), 451–457.

Shirani-Mehr H, Caire G, Neely MJ (2010) Mimo downlink schedul-
ing with non-perfect channel state knowledge. IEEE Trans.
Comm. 58(7):2055–2066.

Srikant R, Ying L (2013) Communication networks: an optimization, con-
trol, and stochastic networks perspective (Cambridge University
Press, Cambridge, MA).

Tassiulas L, Ephremides A (1990) Stability properties of constrained
queueing systems and scheduling policies for maximum
throughput in multihop radio networks. 29th IEEE Conf. Deci-
sion Control (IEEE), 2130–2132.

Tassiulas L, Ephremides A (1993) Dynamic server allocation to par-
allel queues with randomly varying connectivity. IEEE Trans.
Inform. Theory 39(2):466–478.

Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans
R, Graves T, et al (2013) Apache hadoop yarn: Yet another re-
source negotiator. Proc. 4th Annual Symposium Cloud Comput.
(ACM), 5.

Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, Stoi-
ca I (2010) Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. Proc. 5th Eur. Conf.
Comput. Systems (ACM), 265–278.

Zhang L, Yang T, Yi J, Rong J, Zhou ZH (2017) Improved dynamic
regret for non-degenerate functions. Neural Information Proc-
essing Systems.

Zinkevich M (2003) Online convex programming and generalized
infinitesimal gradient ascent. Proc. 20th Internat. Conf. Machine
Learn. (ICML-03), 928–936.

Sebastian Perez-Salazar is a PhD student in the H. Mil-
ton Stewart School of Industrial & Systems Engineering
(ISyE) at Georgia Institute of Technology. His research inter-
ests lie in the intersection of optimization under uncertainty
and dynamic resource allocation. His research has focused
on optimization problems in cloud computing, online adver-
tising, and scheduling problems.

Ishai Menache got his PhD in Electrical Engineering from
the Technion, Israel. He was a postdoctoral associate at the
Laboratory for Information and Decision Systems at MIT.
Ishai has been with Microsoft Research since 2011, where he
is the founder and manager of the Cloud Operations Re-
search (CORE) group. His research focuses on developing
large-scale optimization frameworks for cloud systems and
applications. He is also interested in systems and network-
ing, optimization, and machine learning.

Mohit Singh is an associate professor in the H. Milton
Stewart School of Industrial & Systems Engineering (ISyE)
at Georgia Institute of Technology. Singh’s research interests
include discrete optimization, approximation algorithms,
and convex optimization. His research has focused on opti-
mization problems arising in cloud computing, logistics, net-
work design, and machine learning.

Alejandro Toriello is an associate professor in the
H. Milton Stewart School of Industrial & Systems Engineer-
ing (ISyE) at Georgia Institute of Technology. He currently
holds the Benatar Early Career Professorship. His research
interests lie in discrete and dynamic optimization and its
applications, especially in logistics, transportation, cloud
computing, and online advertising.

Perez-Salazar et al.: Dynamic Resource Allocation in the Cloud
Operations Research, Articles in Advance, pp. 1–21, © 2021 INFORMS 21


	s1
	s1A
	s1B
	s1C
	s2
	s2A
	s2B
	s3
	s3A
	s3B
	s3C
	s3D
	s4
	s4A
	s4A1
	s4A2
	s4A2a
	s4A2b
	s4A2c
	s4A2d
	s4B
	s4B3
	s4B3e
	s4B3f
	s4B3g
	TF1
	s4B3h
	s5
	s6
	s7
	s8

