
1.  Introduction
Precipitation is an essential component of global water cycle. Understanding precipitation (including rate, 
phase, and microphysics) is a long-standing scientific research topic. Heavy precipitation induced water-re-
lated natural hazards like flash flood, debris flow, and inundation cause numerous fatalities and economic 
losses (Hong et al., 2007, 2012; Li et al., 2020). Ground-radar based Quantitative Precipitation Estimation 
(QPE) like MultiRadar MultiSensor (MRMS) system provides nation-wide seamless radar mosaic and pre-
cipitation measurements to issue early warnings of such disasters.

Satellite remote sensing products are one of the novel technologies being applied to measure precipitation 
during the last 3 decades due to its broad spatial coverage and uninhibited view in complex terrains (Mei 
et al., 2014; Sarachi et al., 2015). Satellite-based precipitation products (SPPs) utilize the information provid-
ed by visible-infrared (VIS-IR) channel from geostationary (GEO) satellites and microwave (MW) channel 
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from Low Earth Orbiting satellite (LEO). Despite GEO satellites on board has higher temporal resolution 
compared to LEO, they inherit some deficiencies such as nonpenetrable in precipitating clouds, and thus 
GEO-derived precipitation is an indirect estimate, associated with large uncertainties at fine scale. On the 
other side, MW sensors can penetrate clouds and are sensitive to hydrometeors in the atmosphere, yielding 
more accurate precipitation estimates (Adler et al., 2001).

The MW precipitation retrieval algorithms have been evolving throughout decades for better SPPs accuracy. 
Wilheit and Hutchison (1997) related the rainfall rates to the increase of the brightness temperature relative 
to the cold surface. Weng et al. (2003) utilized the low frequencies to derive rain rates and high frequencies 
to detect rainy clouds over ocean surface. The National Environmental Satellite Data, Information Ser-
vice (NESDIS)/Microwave Surface and Precipitation Products System (MSSPS) then derived the IWP with 
two MW channels (89 and 150 GHz) in the Advanced Microwave Sounding Unit (AMSU) and correlated 
IWP to surface rain rate to make it operational (Vila et al., 2007). Laviola and Levizzani (2011) proposed a 
way to retrieve rainfall rate over land and ocean using water vapor absorption lines corresponding to the 
three 183 GHz channels on AMSU. Even though above methods search for the relationships between hydro-
meteors and brightness temperature, they are still constrained for three facets (1) large amounts of data to 
construct the empirical relations, (2) limited adaptivity to local environmental changes, (3) lack of accuracy 
to accommodate further applications (e.g., early warning of natural hazards).

To take advantage of massive data volumes in recent years, researchers have extensively introduced some 
data-driven approaches (Wang et al., 2020). Machine learning (ML) or deep learning (DL) due to its pow-
erful capacity to solve highly nonlinear problems, is becoming ubiquitous across research fields. Some ML/
DL based approaches in satellite precipitation retrievals, like Precipitation Estimates from Remotely Sensed 
Information using Artificial Neural Network family (Ashouri et  al.,  2015; Behrangi et  al.,  2009; Hong 
et al., 2004; Hsu et al., 1999; Sadeghi et al., 2019) have demonstrated their potentials. Regarding AMSU 
platform, Surussavadee and Staelin (2009) first collected multiple channels along with information from 
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) cloud resolving model to fit into a separate 
neural network over different surface types. Nevertheless, it is still challenging to determine the input fea-
tures to be included in the “black box” model.

Additionally, most of the previous studies of precipitation estimates for AMSU only focus on the collocated 
pixel point (Surussavadee & Staelin, 2009; Vila et al., 2007; Weng et al., 2003). If a “parallax effect” is in-
cluded, then it has to be taken into account that the respective interception altitude of different frequency 
channels and scan strategy result in location shift of the sensed object (Bauer et al., 1998; Guilloteau & 
Foufoula-Georgiou,  2020). Hence, some studies propose the use of neighboring pixels as auxiliary data 
(Guilloteau & Foufoula-Georgiou,  2020; Hong et  al.,  1999). Beyond that, Earth's surface features, flight 
dynamics (e.g., azimuthal angle and ascending/descending orbit) contribute to the difference of observed 
signals and derived rainfall as well (Kummerrow et al., 2015; Mo, 2010). In this study, we attempt to answer 
two scientific questions: (1) Is data-driven based approach applicable in AMSU MW precipitation retrieval? 
(2) How to interpret the model results with reference to the microphysics of precipitation characteristics? 
Specifically, the divided specific objectives are:

1.	 �Exploration of the potentials of ML-based model in AMSU precipitation retrieval
2.	 �Evaluation of the performance gain from precipitation identification, compositing different input fea-

tures, and precipitation classification
3.	 �Physical interpretation of the segmentation and ensemble ML/DL model

To achieve that, we inject the level-2 AMSU product onboard National Oceanic and Atmospheric Admin-
istration (NOAA) 18 and 19 into the ML/DL models with MRMS data being the reference over the conter-
minous United States (CONUS). The following chapters are structured as: Section 2 introduces the four 
designed simulations and modeling details; Section 3 includes the data sets being used in this study; Sec-
tion 4 presents the results of this study with a case study; and Section 5 concludes this study along with 
recommendations for future works.

LI ET AL.

10.1029/2020EA001423

2 of 15



Earth and Space Science

2.  Materials and Methods
The AMSU on board the NOAA15 was first launched in July 1998, aiming to accelerate the development of 
more atmospheric products, for example, Cloud Liquid Water (CLW), Rain Rate (RR), and Ice Water Path 
(IWP). Afterward, NOAA-16, NOAA-17, NOAA-18, and NOAA-19 were sequentially launched with AMSU 
sensors to compensate for the spatiotemporal gaps. AMSU contains A and B two modules. The AMSU-A 
includes 15 channels which are designed to obtain the atmospheric temperature profiling; AMSU-B has 5 
channels at high frequencies measuring atmospheric moisture profile. AMSU adopts cross-track scan strat-
egy that is perpendicular to the satellite’s orbital track to gain a broader swath. Due to the frequency differ-
ences, the AMSU-A has an instantaneous view of 3.3° within ± 48°, providing a nominal spatial resolution 
at nadir of 48 km. The AMSU-B provides a spatial resolution at nadir of around 15 km because of higher 
frequency channels and makes three scans of 90 observations with a spacing of 1.1°. Due to the advantage 
of large swath of 1,650 km, it covers more global areas per scan than other constellation satellites.

2.1.  Matching MRMS and AMSU Observations

The collocation of the MRMS data uses two steps: In the first step, we filtered the MRMS data sets that co-
incide with the overpass of the AMSU instrument. The orbits of NOAA-18 are very similar, and NOAA-18 
follows NOAA-19 in orbit—with a time difference of ∼1 h in 2012 and 2013. In the second step, the MRMS 
data points got averaged to AMSU resolution. The MRMS spatial resolution (∼1 km) is much smaller than 
the footprint size of any AMSU-A (∼45 km) or AMSU-B channel (∼15 km) channel, so we average the 
MRMS data to make the data sets comparable. A collocation algorithm was applied, that looked for the 
MRMS data point closest to the center of the AMSU-footprint. Based on this center point, a mean value was 
calculated with the surrounding pixels to get a footprint average. We used all data points within a circular 
footprint for nadir, assuming a circular footprint of 15/45 km, respectively. We expanded this to elliptic 
footprints with increasing eccentricity for higher scan angles, based on calculated Earth-surface projection 
calculations. The multiple-use of MRMS points was allowed because a possible overlap of footprints was 
possible. We calculated two sets, one for the channels of AMSU-B (15 km at nadir) and the other one for 
channels of AMSU-A (45 km at nadir), so both options were available.

2.2.  Data Split

Total 4,163 orbits are split into training, testing, and validation period with the relative sample sizes of 0.8, 
0.1, and 0.1, respectively. For each orbit, we crop the granule into patches composed by 64 × 64 pixels. These 
patches are considered only when the areal mean of surface precipitation rate exceeds 0.5 mm/h to elimi-
nate no-rain samples. Consequently, the selected imageries for training, testing, and validation category are 
8693, 568, 661, respectively. The training samples can further be increased with data augmentation meth-
ods, but in this rainfall identification task, increase in sample sizes only bring marginal benefits.

2.3.  Nonlocal Features

Apart from the auxiliary data set used in this study, nonlocal features (i.e., neighboring pixels) are includ-
ed to account for the aforementioned “parallax effect” and to preserve the continuity of the precipitation 
structure. Inspired by Hong et al. (1999), four variability indices of the brightness temperature (VI, VC, VM, 
and VX) are included in this study, and their definitions are in the following. VI is to examine the mean 
85 GHz brightness temperature difference; VC is defined as the brightness temperature difference between 
the center pixel and averaged value of eight surrounding pixels; VX is the maximum temperature enhance-
ment due to emission for the 23.8 GHz; VM is the maximum depression due to scattering at 85 GHz.
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  VX Max Bc BiT T�

  VM Min Bc BiT T�

where n is the number of surrounding pixels; BcT  is brightness temperature in the central pixel; BiT  is bright-
ness temperature of the surrounding pixels. The nonlocal features (VI, VC, VM, VX) are proven effectively 
to detect convective/stratiform precipitation in several studies (Hong et al., 1999; Kummerrow, 1996).

2.4.  Algorithm Description

The semantic segmentation is a prevalent deep learning model based on Convolutional Neural Networks 
(CNN) in image segmentation tasks (LinkNet; Chaurasia & Culurciello, 2017). It adopts a LinkNet structure 
in which input features are first upsampled by four times and then downscaled to its original size. Each block 
in Figure 1 is a combination of multiple kernels that are used to convolve the preprocessed satellite imagery. 
The advantages of the LinkNet structure over other frameworks are (1) minimum tunable parameters and 
(2) increased receptive field. Hereafter, we refer the rainfall identification problem (i.e., rain or no rain) to 
the segmentation task. The cost function is the weighted sum of Dice score, Intersection over Union (IOU) 
and Balanced Cross Entropy (BCE) as described in Table 1. With respect to the optimizer, the Rectified Adam 
(RAdam) is chosen, which is a variant of Adam that rectifies the variance of the adaptive learning rate (Liu 
et al., 2019). The results are then sigmoid transformed and filtered with thresholds to predict the dichotomy 
based on the optimized Receiver Operating Characteristic (ROC) curve. After rain/no-rain segmentation, the 
Random Forest (RF) is used as the ensemble algorithm for precipitation prediction. The numbers of estimators 
and max depth are set to 100 and 50 for all experiments in order to control variables, and the cost function used 
is the Mean Square Error (MSE). The schematic flowchart of the processes described is illustrated in Figure 1.
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Figure 1.  Schematic view of input components and four designed simulations (S1, S2, S3, and S4).
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2.5.  Training Strategy

Based on the separated samples discussed earlier, the training and valida-
tion samples are first injected into the algorithm to tune the model param-
eters. The validation samples are evaluated at the end of each epoch to gain 
the out-of-bag estimates. Afterward, the best parameters were determined 
based on the validation results instead of training results to improve the ro-
bustness of the algorithm. The number of epochs is set to 100, and the best 
parameter set is obtained at the 86th epoch with the lowest cost value. We 
acknowledge that having more training epochs may improve the training 
scores, but the final decision is made based on the best validation score.

2.6.  Experiment Design

Four simulations are configured for the precipitation rate prediction to 
discover the underlying relations: (1) Simulation 1 incorporates AMSU-A 
3 channels and AMSU-B 5 channels directly into ensemble trees without 
rain segmentation; (2) Simulation 2 includes rain segmentation before 
predicting rainfall rate; (3) Simulation 3 in contrast to Simulation 2, in-
corporates not only local features (8 channels), but also nonlocal features 
(VI, VC, VM, VX), surface types, diurnals, azimuthal angles, and DEM; 
(4) Simulation 4 adds ensemble tree classification to predict precipitation 
types prior to prediction in addition to the same process to Simulation 
3. In summary, Simulation 2 is designed to investigate the importance 
of rain segmentation, and Simulation 3 uncovers the feature importance 
while Simulation 4 is to explore the performance gain by including pre-
cipitation types.

2.7.  Evaluation Indicators

All the metrics containing categorical comparisons and continuous com-
parisons are summarized in Table 1. Among these metrics, Dice, BCE, 
IoU are used for the cost function in the training process and the remain-
ing are used in the evaluation stage including probability of detection 
(POD), false alarm rate (FAR), critical success index (CSI), BIAS, Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), and correlation 
coefficient (CC).

2.8.  Interpretable ML/DL

The ML models are oftentimes conceptualized as “black box” because 
of the perceived inability to understand how ML makes its predictions. 

However, the importance of uncovering the “black box” is obvious: (1) Knowing how the model works; (2) 
Understanding the limitations of the model; (3) Innovating the model for better performance; (4) Identify-
ing novel structures and relationships in data aided by ML to guide future research. For both segmentation 
and ensemble algorithms, we attempt to interpret the model intermediate products. For the CNN-based 
segmentation task, the Gradient-weighted Class Activation Mapping (Grad-CAM) approach proposed by 
Selvaraju et al. (2019) is adopted to perceive the relative importance of channels to rainfall identification 
problem. The basic idea is to use the gradients of the weights of the network propagating to the final convo-
lutional layer to produce a localized heatmap which highlights the importance of each input features. With 
respect to the ensemble trees-based algorithm, the respective feature importance is calculated based on the 
averaged decrease of impurity from each feature. It is worth noting that the inferred importance is only 
relative to each feature, which is also regarded the limitation of this mean-impurity based approach. That 
is to say, the intercorrelated features may be less significant because the algorithm only needs to utilize one 
while the others are recognized as redundant information.
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Metrics Formula Best value
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Notes. True positives, true negatives, false positives, and false negatives 
are denoted as TP, TN, FP, and FN, respectively in the table; x and y 
correspond to estimates and references. The sample sizes are referred as 
n.
Abbreviations: BCE, Balanced Cross Entropy; CC, correlation coefficient; 
CSI, critical success index; FAR, false alarm rate; IOU, Intersection over 
Union; MAE, Mean Absolute Error; POD, probability of detection; RMSE, 
Root Mean Square Error.

Table 1 
Computational Metrics
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3.  Data Sets
3.1.  Advanced Microwave Sounding Unit

AMSU inferred rainfall rate has been made operational in the Micro-
wave integrated Retrieval System (MiRS) at (https://www.star.nesdis.
noaa.gov/mirs/index.php). The current algorithm applies 1D Variational 
Retrieve Scheme (1DVRS) to provide robust hydrometeorological vari-
ables including the CLW and IWP at different channels, followed by a 
vertical integration to obtain the vertical profile. Thereafter, the rainfall 
rate variable is calculated by a multilinear regression model with param-
eters trained offline over different surface types (Boukabara et al., 2013; 
Iturbide-Sanchez et al., 2011). In this study, we obtained this operational 
product as benchmark to compare with our data-driven approach.

There are 4,163 orbits in total overlaid with the CONUS, starting from 
March 1, 2012 to July 30, 2013. In this study, three window channels for 
AMSU-A on board NOAA18 and NOAA19 are selected with the frequen-
cy at 23.8 GHz, 31.4 GHz, and 89.0 GHz because they are linked to atmos-
pheric moistures and are sensitive to intense and moderate rain; the other 

five scattering channels for AMSU-B are all included because they are more sensitive to snow and light rains 
over land. The selected channels are summarized in Table 2.
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Name Frequency (GHz) Polarization NEDTa (K)

c1_AMSU-A 23.8 Vertical 0.30

c2_ AMSU-A 31.4 Vertical 0.30

c15_ AMSU-A 89.0 Vertical 0.50

c1_ AMSU-B 89.9 ± 0.9 Vertical 0.37

c2_ AMSU-B 150 ± 0.9 Vertical 0.84

c3_ AMSU-B 183.31 ± 1.0 Vertical 1.06

c4_ AMSU-B 183.31 ± 3.0 Vertical 0.70

c5_ AMSU-B 183.31 ± 7.0 Vertical 0.60
aNEDT stands for noise-equivalent temperature which is used to quantify 
the sensitivity of the detector of thermal radiation. The channel number 
is followed by “c.”

Table 2 
Channels From AMUS-A and -B Used in This Study

Figure 2.  The boxplot of segmentation results for four categories. Each sample is the 64 by 64 patch, comparing 
LinkNet model (dark green) and the benchmark (black) against MRMS. CSI, critical success index; FAR, false alarm 
rate; MRMS, MultiRadar MultiSensor; POD, probability of detection.

https://www.star.nesdis.noaa.gov/mirs/index.php
https://www.star.nesdis.noaa.gov/mirs/index.php
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3.2.  MultiRadar MultiSensor

The MRMS product provides a radar-gauge merged precipitation estimates over the CONUS (Zhang 
et al., 2016). It integrates 180 operational radars, including 146 S-band and 30 C-band radars, creating a 
seamless 3D radar mosaic across the CONUS and Southern Canada. The rigorous quality control steps have 
made this product been one of the most accurate QPEs in the CONUS (Chen et al., 2020; Li et al., 2020) and 
also made it intensively applied to flash flood monitoring. The precipitation flags in the MRMS provides 
eight distinct features in total: missing, no precipitation, cool stratiform, warm stratiform, snow, overshoot-
ing, convective, hail, and warm rain.

3.3.  Auxiliary Data

Beyond precipitation measurements, the surface type data set and the Digital Elevation Model (DEM) data 
are included from https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MCD12C1_T1 and https://neo.sci.
gsfc.nasa.gov/view.php?datasetId=SRTM_RAMP2_TOPO. The surface type data contain two main catego-
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Figure 3.  The weights of each channel contributed to the final prediction. The binary predict is obtained from a single 
threshold approach.

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MCD12C1_T1
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SRTM_RAMP2_TOPO
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=SRTM_RAMP2_TOPO
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Figure 4.  Scatter plot of benchmark and four simulation results. In each subgraph, the left panel is training period and 
the right is testing period: (a) Benchmark, (b) Simulation 1, (c) Simulation 2, (d) Simulation 3, and (e) Simulation 4. CC, 
correlation coefficient; MAE, Mean Absolute Error; RMSE, Root Mean Square Error.
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ries (land and water). Over land, nine classes of natural vegetation, three classes of developed lands, two 
classes of mosaic lands, and three classes of nonvegetated lands are further specified to compensate the 
distinct emissivity from different land covers. Both the surface type and the DEM are retrieved from orbit 
locations with nearest neighbors.

4.  Results and Discussions
4.1.  Rainfall Segmentation

Figure  2 illustrates the performance (four categorical indices) of the DL-based approach (LinkNet) and 
benchmark. For the PODs, the indicator of the detectability, the median value is around 0.56%, 30% higher 
than benchmark; the 25th and 75th percentile of the values for the LinkNet are 0.42 and 0.65 while 0.35 and 
0.56 for the benchmark, which indicates the advancements of the LinkNet in rainfall detection. Addition-
ally, the LinkNet also has prominent improvement of 1-FAR over the benchmark as the median value rises 
from 0.7 to 0.9; the other two interquartile are 0.82 (25th) and 0.92 (75th) for the LinkNet while 0.5 (25th) 
and 0.85 (75th) for benchmark. Notably, the interquartile range for the LinkNet (0.1) is 71% lower than 
benchmark, which indicates the variance is rather small. The CSI, as a combination of POD and FAR, is 
56% higher than the benchmark for LinkNet with respect to the median. The Dice score is another variant of 
diagnostic testing that weights twice on the true positives (TP), and the median Dice score for the LinkNet 
is still about 40% higher than benchmark. In summary, the deep learning-based approach is significantly 
improved across all the indicators than the benchmark.
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Figure 4.  continued
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With the improved rain segmentation performance, it is still doubtful 
about the logics behind: How does the deep learning model make de-
cisions? By further applying the Grad-CAM (Selvaraju et al., 2019), one 
can interpret the black box and perceive what is behind the scene. In 
Figure 3, the weights of each input channels are depicted from which the 
higher frequency channels (i.e., beyond 89 GHz) contribute significantly 
more to the final end-product than the low frequencies (i.e., 23.8 and 
31.4 GHz). Especially at 183.31 ± 3.0 GHz, it shows the highest similarity 
with the final product in the southeast. Despite the scattering signal is 
even stronger at 183.31 ± 7.0 GHz with further penetration compared 
to other two channels at 183.31 GHz, it is possibly saturated by surface 
emission (Edel et al., 2019; G. Hong et al., 2005). This result aligns well 
with previous studies that mainly relied on the scattering signals to 
identify rain or delineate precipitating clouds (Ferraro et al., 2000; Gro-
dy, 1991; G. Hong et al., 2005; Weng et al., 2003).

4.2.  Precipitation Predictions

The scatter plot from Figure 4 depicts the performance of the benchmark and four simulations for both the 
training period and testing period; Table 3 complements the illustration of performance gain with cascad-
ing improvement. Since the testing period is more representative to attest the robustness of the algorithm, 
we thus mainly focus on the testing results. First, the benchmark offsets from the reference the most in 
Figure 4a, with the systematic bias over 1,000% and the instantaneous errors (MAE and RMSE) are 21.13 
and 40.07 mm/h; the CC is about 0.30, which is not considered successful. Figure 4b shows the testing 
results and validation results from Simulation 1, where the eight channels from the AMSU are injected 
into ensemble algorithm without identifying rain region. All the indicators have demonstrated profound 
improvements contrasting benchmark (BIAS = −30%, MAE/RMSE = 1.83/4.14 mm/h, CC = 0.4). However, 
because of the imbalanced sample sizes of rainy and nonrainy pixels, the algorithm has been trained mostly 
without rains and thus results in an underestimation. After the implementation of rain segmentation in 
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Item BIAS (%) MAE (%)
RMSE 

(%) CC (%) Baseline

Simulation 1 −102.9 −91.4 −89.6 29.0 Benchmark

Simulation 2 −130.7 −42.9 −43.9 10 Simulation 1

Simulation 3 11.8 −4.81 −3.42 13.6 Simulation 2

Simulation 4 −24.8 −14.1 −13.7 32.0 Simulation 3

Abbreviations: CC, correlation coefficient; MAE, Mean Absolute Error; 
RMSE, Root Mean Square Error.

Table 3 
Performance Gains (%) for Four Simulations

Figure 5.  The relative importance (percentage) for each feature for precipitation prediction.
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Simulation 2, the underestimation issue has been addressed as shown in Figure 4c with the BIAS down to 
9%; the MAE, RMSE, and CC for Simulation 2 have been further improved to 1.04 mm/h, 2.34 mm/h, and 
0.44 in contrast to Simulation 1. With the inclusion of nonlocal features in Simulation 3, the bias slightly 
increases (BIAS = 10.79%) with others indices (MAE, RMSE, CC) are all improved (0.99 mm/h, 2.26 mm/h, 
0.5) as opposed to Simulation 2. Lastly, the feature of precipitation type dramatically improves the perfor-
mance compared to all other simulations. In contrast to Simulation 3 standalone, the bias and MAE (RMSE) 
have reduced by 24.8% and 14.1% (13.2%), accompanied with CC rising from 0.50 to 0.66.

Table 3 shows the relative percent changes in each simulation referenced on the corresponding baselines. 
Among these changes, the most significant one for instantaneous errors (i.e., MAE and RMSE) comes from 
the ensemble tree algorithm in replacement of the original retrieval which only considered two channels; 
the largest improvement for the BIAS (130.7%) is by including the segmentation algorithm which reduces 
zero-rain samples to avoid overweighting on no-rain; for the CC, the greatest change occurs from Simula-
tion 3 to Simulation 4 by adding the prediction of precipitation types with which the predicted precipita-
tion rate can line up with respective precipitation mechanisms (i.e., higher rates for rainfall and lower for 
snowfall). Notably, nonlocal features only bring marginal gains (below 5% for the MAE and RMSE and even 
worse BIAS) but it still improves the CC by 13.6%.

In summary, the progressive improvements are from the cascading simulations with more features. First, 
identifying rainfall regions with segmentation algorithm benefits addressing underestimation problems 
and controls the bias to be around 10%. Second, the nonlocal features slightly help to reduce the instanta-
neous errors but increase the correlation. Last, the predicted precipitation types help to largely improve the 
metrics by above 10%, which illustrates the importance of precipitation classification.
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Figure 6.  A case study of a summer storm (May 28, 2013). (a) MRMS observed precipitation type, (b) predicted precipitation type, (c) MRMS observed 
precipitation rate, (d) predicted precipitation rate by the Simulation 4, and (e) precipitation rate by the benchmark. MRMS, MultiRadar MultiSensor.
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Figure  5 shows the relative importance of each feature based on the impurity node method. Among 
these features, the AMSU-B channel 1 (89.9  +  0.9  GHz) ranks as the most important feature, followed 
by the AMSU-A channel 15 at frequency 89 GHz. Moreover, the AMSU-B channel 2 (150 ± 0.9 GHz), 5 
(183.31 ± 7.0 GHz), and the AMSU-A channel 1 (23.8 GHz) all exceed the relative importance of 80%. Nota-
bly, the 89 GHz and 150 GHz channels are currently used to derive the rain rate in the benchmark, which is 
a physically based approach. Consequently, the data-driven approach can reveal the physics behind. Some 
localized features such as longitude, latitude, and the DEM have the relative importance beyond 60%, which 
suggests the location/terrain is a unique feature to distinguish. The nonlocalized features , that is, the VX, 
VC, VI, and VM are relatively less significant, possibly due to the large grid size (i.e., 40  km) in which 
the parallel effect is not prominent. Notably, even though surface types are ranked as the least important 
feature, it does not imply surface types are not correlated with rainfall rates. This is because surface type 
information is already reflected in the emission map (brightness temperature), and therefore the node-
based importance ranking gives less weights on the redundant information.

4.3.  Case Study

To further affirm the advances of Simulation 4 in extreme events, we apply the same pipeline with the 
testing data in NOAA19. Two representative events are selected to investigate the performance, one for a 
convective rainfall event, and the other one for a snowstorm.

4.3.1.  Convective Precipitation

In May 2013, a significant tornado outbreak swept the Midwest CONUS and Great Plains. This system 
produced a convective rainfall that resulted in a record-breaking rainfall in North Dakoda and Nebraska. 
Figure 6 depicts the performance of our proposed system. It is obvious that the benchmark dramatically 
overestimates the rainfall rates, which is on par with the previous investigations; however, our model suc-
cessfully predicts the spatial pattern and the magnitude of the rainfall rates. With respect to the precipita-
tion types, the convective structure in the center (99W, 40N) is well captured by our model. However, the 
surrounding regions with stratiform rainfall have been underestimated. Overall, this case demonstrates the 
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Figure 7.  A case study in 2013 North America Blizzard (February 8, 2013). (a) MRMS observed precipitation type, (b) predicted precipitation type, (c) MRMS 
observed precipitation rate, (d) predicted precipitation rate by the Simulation 4, and (e) precipitation rate by the benchmark. MRMS, MultiRadar MultiSensor.
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capacity of our model to predict the convective precipitation type, preserve the spatial patterns, and reduce 
the systematic bias compared to the benchmark.

4.3.2.  2013 North American Blizzard

In the early February of 2013, the heavy snowstorm and hurricane-force winds in the northeastern United 
States caused tremendous damages to the local economy. The snowfall rates in Connecticut and Long Island 
reached up to 7.5–10 cm/h and the radar reflectivity exceeded 55dBz (Ganetis & Colle, 2015). The NOAA19 
flew over these regions at 9 a.m. in the morning that, is able to record the early stage of this event. Figure 7 
shows the prediction of precipitation type and rates. First, our model captures the major precipitation sys-
tems spatially, such as the dominating convective precipitation in the north and the snowstorm in the coast. 
However, similar to the convective case, this model still underestimates the surrounding pixels in a precip-
itation system, which could be improved by applying spatial filter or morphological detections. Second, in 
terms of the rates, our model certainly exhibits less error compared to the benchmark. Again, the spatial 
features are well preserved. In this case, our model could predict the snowfall comparably with the MRMS 
system; while future improvement is also needed to address the underestimations.

This study serves as a broad assessment on this new developed system, with comparison to the existing 
system. It is obvious that our model outperforms original precipitation estimates across all metrics. Beyond 
that, this system can successfully predict precipitation types, which is proven to be essential when mapping 
different precipitation types into rates. However, it might be challenging for a ML/DL model to adapt to lo-
cal environmental changes. To realize this point and understand the limitations of this model, future studies 
will focus on the transferability and assessments on different surface types.

5.  Conclusions
In this study, we explored the applicability of the ML/DL based approach in satellite precipitation retrieval 
and interpretability of the “black box” model with connection to physical understanding. The main findings 
are summarized as follows:

�(1)	� This data-driven approach (the LinkNet segmentation + ensemble tree) can efficiently predict the sur-
face rain rate with reduced bias, MAE, and RMSE by 99.2%, 96.0%, and 95.0% and with increased CC 
by 120% compared to benchmark

�(2)	� Identifying rainfall sufficiently reduces the underestimation (130% reduction on BIAS) caused by unbal-
anced training samples; Including precipitation types further improves the correlation by 32% between 
predictions and observations. However, the nonlocal features only bring marginal benefit compared to 
other gains

�(3)	� For rain/no rain segmentation, channels at higher frequencies are more efficient to identify rainfall 
because on land, scattering signals are more distinguishable from the background surface emissions

�(4)	� For precipitation prediction, the 89 and 150 GHz channels are ranked as the most important features 
that are also used in the existing retrieval algorithm. Beyond that, the combination of AMSU-A and 
AMSU-B channels helps to distinguish precipitation signals. Surface types even though are an impor-
tant indicator, can be learned from the brightness temperature and hence are ranked as the least impor-
tant feature

This study explores the applicability and efficiency of machine learning in the satellite precipitation re-
trievals and also how we can interpret the ML “black box” to connect with the physics. We acknowledge 
that the performance could be further improved by tuning the hyperparameters throughout grid search or 
evolutionary algorithms. For the future tasks, it is worth developing the percentile-based ensembles that 
output a range of rainfall rates instead of a deterministic value. Such approach can meet different user de-
mands in operation. For instance, for extreme weather prediction, one may mainly focus on high percentiles 
to reduce miss-capturing; for drought forecasts, one will rely on low percentiles to safeguard future water 
management. To other existing SPPs, this work provides a framework that could be utilized to enhance the 
quantification of precipitation in a more comprehensive way.
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Data Availability Statement
The AMSU brightness temperature data on board NOAA-18 and NOAA-19 are accessed from the website 
(https://www.ncdc.noaa.gov/cdr/fundamental/amsu-brightness-temperature) (Ferraro et  al.,  2016), and 
the MRMS gauge-corrected hourly rainfall rate is accessed from https://mtarchive.geol.iastate.edu (Zhang 
et al., 2016). Data are retrieved in the continental United States and from 2012 to 2013.
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