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Causality study investigates cause-effect relationships among different variables of a system and has been 
widely used in many disciplines including climatology and neuroscience. To discover causal relationships, 
many data-driven causality discovery methods, e.g., Granger causality, PCMCI and Dynamic Bayesian 
Network, have been proposed. Many of these causality discovery approaches mine time-series data and 
generate a directed causality graph where each graph edge denotes a cause-effect relationship between 
the two connected graph nodes. Our benchmarking of different causality discovery approaches with real-
world climate data show these approaches often generate quite different causality results with the same 
input dataset due to their internal learning mechanism differences. Meanwhile, there are ever-increasing 
available data in virtually every discipline, which makes it more and more difficult to use existing 
causality discovery algorithms to produce causality results within reasonable time. To address these two 
challenges, this paper utilizes data partitioning and ensemble techniques, and proposes a flexible two-
phase causality ensemble framework. The framework first conducts phase 1 ensemble for partitioned 
data and then conducts phase 2 ensemble from phase 1 ensemble results. Based on the framework, we 
develop two ensemble approaches: i) data ensemble at phase 1 and algorithm ensemble at phase 2, 
and ii) algorithm ensemble at phase 1 and data ensemble at phase 2. To achieve scalability, we further 
parallelize the ensemble approaches via the Spark big data analytics engine. The proposed ensemble 
approaches are evaluated by synthetic and real-world datasets. Our experiments show that the proposed 
approaches achieve good accuracy through ensemble and high scalability through data-parallelization in 
distributed computing environments.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Causality [1] is a fundamental research topic studying cause-
effect relationships among different components of a system and 
causality study can help explain why the system has certain behav-
iors. Causality learning/discovery has been widely studied and ap-
plied in many disciplines including climatology and neuroscience.

Many data-driven causality learning approaches have been pro-
posed to mine time-series data [2], such as Granger causality [3], 
PCMCI [4], Dynamic Bayesian Network [5], and Convergent Cross 
Mapping [6]. These approaches take time-series data of two or 
more variables in a system as input and produce their predictions 
on cause-effect relationship among these variables. For instance, 
the work at [7] uses Granger causality to study cause-effect re-
lationships among multiple climate variables and shows that sea 
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surface temperature changes at pacific ocean near equator, an in-
dicator of the El Niño-Southern Oscillation (ENSO) climate phe-
nomenon [8] can cause abnormal surface temperature, pressure 
and precipitation remotely.

One challenge with the variety of different causal discovery 
approaches is that these approaches often lead to divergent causal-
ity conclusions from the same dataset, which makes it difficult 
to explain and use data-driven causality discovery results. There 
have been some studies comparing different causality discovery 
methods [9,10]. For example, the experiments on comparing three 
causality discovery algorithms show there are only 83% overlap-
ping among the results on average [10]. Yet there is still a lack 
of comprehensive framework to effectively integrate these diverse 
algorithms.

The other challenge to be tackled by this paper is the ever-
increasing volume and dimension of available data for causality 
discovery. For instance, total worldwide climate data volume is 
projected to increase from 5 PB in 2010 to 350 PB in 2030 [11]. 
It is more and more difficult to use existing causality discovery al-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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gorithms to handle the increasing dimensionality and resolution of 
these climate datasets. Meanwhile, data volume is just one factor 
for time complexity of many causality discovery algorithms. As an 
example, a popular Granger causality algorithm’s execution time 
grows quadratically with the increase of either of the three factors: 
data record number, variable number and time lag number [12].

To address the above two challenges, this paper applies data 
partitioning and ensemble techniques to achieve scalable and accu-
rate causality learning. Ensemble learning [13] is a meta machine 
learning algorithm which combines multiple base or individual 
learners in order to get better overall learning accuracy. In this 
paper, we propose a two-phase hybrid causality ensemble learn-
ing framework by first partitioning data into smaller sizes, and 
conducting a phase 1 ensemble for each data partition, then con-
ducting phase 2 ensemble from phase 1 ensemble results. The 
framework can be easily parallelized through big data engines 
like Spark [14] or Flink [15], and is adaptable to different ensem-
ble approaches. To the best of our knowledge, this study is the 
first supporting both scalable and ensemble learning for causality 
discovery. The software implementations of our work are open-
sourced at [16].

The contributions of this paper are as follows.

• We propose a flexible two-phase causality ensemble frame-
work by first conducting phase 1 ensemble for partitioned data 
and then conducting phase 2 ensemble from phase 1 ensem-
ble results. The hybrid framework can combine learning results 
from different data partitions (namely data ensemble), and dif-
ferent algorithms (namely algorithm ensemble).

• Based on the above flexible framework, we propose two en-
semble approaches for parallel causality ensemble learning via 
Spark [14] and the MapReduce programming model [17]. The 
first one conducts data ensemble in phase 1 and algorithm en-
semble in phase 2. The second one conducts data ensemble 
and algorithm ensemble in the opposite order.

• We did experiments on synthetic and real-world datasets to 
evaluate our proposed scalable ensemble framework and ap-
proach, which show that our approaches can achieve both 
better accuracy and almost linear speedup.

This paper is an extension of our conference paper [18]. The 
major extensions include: 1) we expand the two-level hybrid 
causality framework to not only data-algorithm ensemble, but 
also algorithm-data ensemble; 2) we add experiments on both 
algorithm-ensemble and data-algorithm ensemble approaches and 
analyze their differences from the experiment results; 3) we ap-
ply our proposed methods to a real-world climate phenomenon: 
causality analysis of dynamics and thermodynamics variables near 
Arctic region.

The rest of the paper is organized as follows. The background 
is introduced in Section 2. The two-phase hybrid causality ensem-
ble learning framework is explained in Section 3. Then, Section 4
describes the ensemble approaches and Section 5 explains how 
to parallelize these ensemble approaches. Experiment section 6
includes the data, experiments and evaluations. Related work dis-
cussion is in Section 7. Finally, Section 8 concludes our paper.

2. Background

2.1. Ensemble learning

Ensemble learning [13] is a meta machine learning algorithm 
which uses multiple learning methods to obtain better predic-
tive performance than learning from any of the constituent meth-
ods. Since 1990, ensemble learning methods have become a major 
learning paradigm because of both empirical good performances 
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in real-world applications [19] and theoretical proof on its ad-
vantages [20]. Many state-of-art data mining approaches/packages, 
e.g., random forest [21] and XGBoost [22], are based on ensemble 
learning. Many ensemble learning algorithms have been proposed 
and they mainly vary in the following three aspects: 1) what are 
base/individual learners, 2) how each base learner learns from in-
put data, 3) how to combine results of base learners. For base 
learner selection, if base learners used in an ensemble learning be-
long to the same type, e.g. decision tree or neural network, the en-
semble algorithm is called homogeneous ensemble. Otherwise, it is 
called heterogeneous ensemble. On how each learner learns, there 
are three main approaches and they mostly differ in how input 
data is fed to base learner. The first approach, called stacking en-
semble [23], uses the same input data for all base learners. Bagging 
ensemble [24], as the second approach, uses different sampling re-
sults from the original input data for different base learners. The 
third approach is boosting ensemble [25] which uses multiple base 
learners iteratively and, in each iteration, assigns higher weight to 
data whose learning accuracy was low in previous iterations. On 
base learner combination, common methods are majority voting 
and weighted majority voting [26].

Overall speaking, our proposed approach belongs to heteroge-
neous ensemble because the base/individual learners are differ-
ent. Moreover, our work utilizes majority voting, while combining 
stacking ensemble and bagging ensemble in a flexible way. Tradi-
tional bagging ensemble takes sampling of the original input data. 
Since we are dealing with time-series data sets, random sampling 
removes chronologicity and breaks temporal causal relationships 
between the variables, so our approach divides dataset to several 
partitions on their index.

2.2. Causality discovery methods

Existing causal relationships discovery methods can be catego-
rized into two types depending on the input data sets types: 1) 
learning from multivariate independent and identically distributed 
(i.i.d.) data and 2) learning from multivariate time-series data. The 
learning results from a multivariate causality approach can be de-
noted as a directed graph (see an example at Fig. 1) where each 
graph edge denotes a cause-effect relationship conditioned on all 
other variables in the graph.

In this subsection, we explain three multivariate causality dis-
covery approaches towards time-series input data, namely multi-
variate (graphical) Granger causality [12], PCMCI [4] and dynamic 
Bayesian network [5] and their algorithm details. Because they all 
belong to the same casualty discovery category and their learning 
results can be modeled as directed graphs, we could conduct en-
semble learning using these algorithms as base learners which will 
be explained in later sections.

2.2.1. Multivariate Granger causality
Granger causality was proposed in 1969 as a predictive model 

in economics by Nobel Laureate Clive W. Granger. The Granger 
causality is defined as follows. One time series x Granger causes 
another time series y, if and only if the regression for y based 
on past values of both x and y is statistically significant than the 
regression of y only based on past values of y. Let the lagged vari-
able x be xt−i for i from 1 to maximum lag P , and similarly, the 
lagged y be yt−i . To evaluate Granger causality, it first does the 
following two linear regressions:

yt = a11 · yt−1 + a12 · yt−2 + ... + a1P · yt−P + ε1 (1)

yt = a21 · yt−1 + ...+a2P · yt−P +b21 · xt−1 + ...+b2P · xt−P + ε2

(2)
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Fig. 1. Causality graph example.

Then it compares whether the regression function in Equation 
(1) performs better in accuracy than Equation (2) when predicting 
yt . To decide which regression has better accuracy, Granger causal-
ity often uses a statistical hypothesis test method such as F -test or 
Chi-squared (χ2) test to get a p-value to determine statistical sig-
nificance.

To address the limitations of generating spurious causal rela-
tionships by the above pair-wise Granger causality method, multi-
variate Granger causality discovery, a.k.a. graphical Granger causal-
ity discovery fits a vector autoregressive model (VAR) to time-
series data [27]. To demonstrate conditional Granger causality in 
VAR model, let Xp

l=1 denote {x1, x2, ..., xp}, from time t = 1 to t = p

and similarly, Y p
l=1 as {y1, t2, ..., yp}, with coefficient matrix A1, 

B1, C1, D1, the first joint VAR model is as follows.{
yt = A1 · Y P

l=1 + B1 · X P
l=1 + ε1t

xt = C1 · X P
l=1 + D1 · Y P

l=1 + ε2t
(3)

with the prediction error covariance matrix being:

CovMatrix =
[

var(ε1t) cov(ε1t, ε2t)
cov(ε2t, ε1t) var(ε2t)

]
(4)

Besides lagged variables X P
l=1 and Y P

l=1, when a new variable 
z is taken into account, with Z p

l=1 representing {z1, z2, ..., zp}, the 
new VAR model is:⎧⎨
⎩

yt = A2 · Y P
l=1 + B2 · Z P

l=1 + C2 · X P
l=1 + ε3t

zt = D2 · Y P
l=1 + E2 · Z P

l=1 + F2 · X P
l=1 + ε4t

xt = G2 · Y P
l=1 + H2 · Z P

l=1 + I2 · X P
l=1 + ε5t

(5)

Correspondingly, the prediction error covariance matrix of VAR 
model in (5) is:

� =
⎡
⎣ var(ε3t) cov(ε3t, ε4t) cov(ε3t, ε5t)
cov(ε4t, ε3t) var(ε4t) cov(ε4t, ε5t)
cov(ε5t, ε3t) cov(ε5t, ε4t) var(ε5t)

⎤
⎦ (6)

Similar to the pairwise Granger causality testing, we care about 
whether introducing z can improve the prediction of y and how 
significant the improvement is. From the VAR model in Equation 
(3) of variable y and x, and the VAR model in Equation (5) of 
variable y, z, and x, the conditional Granger causality test from z
to y conditioned on x, denoted as (z → y|x), is:
F -test(var(ε1t), var(ε3t)) (7)

From F -test in Equation (7), we can get a p-value and compare 
the p-value to a threshold to conclude whether z Granger causes 
y conditioned on x.

2.2.2. PCMCI
PCMCI is a causal discovery method described in [4] which 

identifies relevant variables for conditioning and estimates causal-
ity graph from time-series data. The method makes use of a “time 
series graph” made of nodes representing the state variables at 
different time-lags. If the time lag is denoted by l, a causal link 
is notated xt−l −→ yt , and this link exists if xt−l is not condition-
ally independent of yt given the past of all variables. Assuming 
3

the causal structure does not change over time, the same links are 
present at each time step.

The parents P(x) of a variable x are defined as the set of all 
nodes with a link towards x. However, estimating these parents 
directly by testing for conditional independence on the whole past 
is problematic due to high-dimensionality and because condition-
ing on irrelevant variables leads to biases.

PCMCI estimates causal links by a two-step procedure [4]:
1. Condition-selection: For every variable α, estimate a superset 

of parents P̃(αt) with an iterative Markov discovery algorithm [28]
such as PC1 algorithm. The condition-selection step reduces the 
dimensionality and avoids conditioning on irrelevant variables.

2. Momentary conditional independence (MCI): To test whether 
xt−l −→ yt with MCI, it evaluates:

xt−l ⊥ yt | P̃(yt), P̃(xt−l) (8)

Equation (8) checks momentary conditional independence condi-
tions between xt−l and yt , and makes null hypothesis of xt−l and 
yt are conditionally independent given P̃(yt) and P̃(xt−l). To draw 
a causal link, if the null hypothesis is rejected, we say that xt−l
causes yt .

2.2.3. Dynamic Bayesian network
Bayesian network [29] is one of many probabilistic graphical 

models which consists of a directed acyclic graph (DAG) and con-
ditional probability distributions (CPDs) associated with each node 
in the model. Bayesian network can be used to make predictions, 
and decision making under uncertainty.

Dynamic Bayesian network [5] is similar to Bayesian network 
but with temporal extension, making it an appropriate graphical 
model to use for temporal datasets. The two main steps to creating 
a probabilistic graphical model are structure learning and parame-
ter learning.

In this paper, we adopt the approach in [9] for dynamic 
Bayesian network learning. The approach first expands variable set 
by adding new variables for each original variable through time 
lagging. For instance, P new variables can be created from original 
variable x: xt−i for i from 1 to maximum lag P . With the expanded 
variable set, the K2 algorithm [30] is used to search through all 
possible causality graph structures and identify which structure 
has the highest possibility to produce the data. In this score-based 
structure learning approach, Bayesian information criterion (BIC) 
scoring is used. Next, after causality graph is generated for ex-
panded variable set, the causality graph is simplified by removing 
lagged variable and combining the causality edges. For instance, 
two edges xt−2 −→ yt−1 and xt−3 −→ yt are combined to one edge 
x −→ y in the final graph.

Moreover, for the sake of computational time, the time-series 
data is partitioned into bins. Each bin defines a set of sub ranges, 
then the data is assigned to each labeled bin. For example, if the 
lowest value of the dataset is -5, and the highest value is 5. With 
the total bin number 10, a value of 1.2351 can be placed in a bin 
labeled 7, whose range is [1, 2). This approach increases the state 
counts of each variable and allows for faster computation.

3. A flexible two-phase causality ensemble learning framework

To deal with both increasing volume of available input data and 
increasing variety of different causality discovery algorithms, we 
propose a flexible two-phase causality ensemble framework that 
achieves ensemble of both multiple causality discovery algorithms 
as base learners and multiple data partitions as base learner input 
data. Before diving into the details of this hybrid framework, we 
first explain how ensemble could be done with only data ensemble 
and algorithm ensemble. We note most causality discovery algo-
rithms generate not only cause-effect relationships, but also time 
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Fig. 2. A flexible two-phase ensemble framework for causality discovery.
lag and probability of each relationship. In this paper, we only fo-
cus on structure causality ensemble, namely how multiple directed 
graphs can be combined into one, and leave the ensemble of time 
lag and probability of causal edges for future work.

3.1. Algorithm ensemble for causality discovery

Algorithm ensemble approach deals with algorithm variety by 
applying different causality discovery algorithms as base learners 
with the same input data and later combining all base learner 
results. Each causality discovery algorithm mines the same time-
series dataset and produces its own directed graph where nodes 
denote time series variables and each directed edge denotes a 
cause-effect relationship between the two connected variables. Be-
cause each base learner works on the same input data, the nodes 
of result graphs are the same for different base learners. But dif-
ferent base learners could produce different causality edges. Then 
by applying a certain base learner combination method, such as 
majority voting, we can derive a new directed graph as ensemble 
result. The nodes in the ensemble graph are the same with the 
results in each base learner. For graph edges, we can iterate all 
possible edges of the graph and decide whether this edge should 
be in the ensemble graph by combining corresponding edges in 
base learner graph result. If we use majority voting as combina-
tion method, an edge will be in ensemble graph only if the edge 
appears in more than half of base learner graphs.

By applying algorithm ensemble, the ensemble result is often 
more accurate than utilizing only one single causality discovery al-
gorithm. However, when the size of input time-series dataset gets 
larger, the execution time of algorithm level ensemble increases 
dramatically because every base learner will take longer time to 
finish. Thus, a non-scalable algorithm ensemble approach is not 
enough to meet the challenge of dealing with the increasing data 
size.

3.2. Data ensemble for causality discovery

Data ensemble approach deals with data volume challenge by 
first partitioning data into smaller datasets, then using the same 
causality discovery algorithm as base learners with data partitions, 
and later combining all base learner results. Data partitioning is of-
ten done horizontally, not vertically, so that each data partition can 
still have all variables needed for multivariate causality learning. 
For time-series data, we need to preserve time dependency and 
4

lagging within each data partition. So, instead of doing sampling in 
common bagging ensemble methods, data partitioning can be done 
by splitting the overall time ranges into smaller time ranges. Sim-
ilar to algorithm ensemble, the nodes of resulting causality graph 
are the same for different base learners and edges of the graphs 
might be different. Then we can derive ensemble graph using the 
same base learner combination method in the previous subsection. 
The limitation of this approach is that it does not deal with variety 
of causality learning algorithms.

3.3. Two-phase hybrid ensemble for causality discovery

To address the challenges of diverse causality discovery results 
and increasing data size, we further integrate data ensemble and 
algorithm ensemble into one hybrid framework. As illustrated in 
Fig. 2, it conducts two-phase ensemble. In the hybrid ensemble 
framework, the input data is first partitioned into N data slices. 
Then phase 1 causality discovery is done based on the N data 
slices to get phase 1 ensemble result. In the end, phase 1 ensemble 
results are reduced to one final output through phase 2 ensemble.

This generic and flexible framework can be implemented in 
two ways. The first way, called data-algorithm hybrid ensemble, 
conducts data ensemble first in phase 1 and then algorithm en-
semble in phase 2. The second way, called algorithm-data hybrid 
ensemble, conducts algorithm ensemble first in phase 1 and then 
data ensemble in phase 2. For data-algorithm hybrid ensemble, the 
count of discovered causality graphs, namely M in Fig. 2, is the 
same with the count of base learners because we get one causality 
graph from each causality discovery algorithm via data ensemble 
at phase 1. For algorithm-data hybrid ensemble, M equals N be-
cause it applies different algorithms and ensembles their results to 
get one causality graph for each data partition at phase 1.

4. Two-phase hybrid ensemble causality discovery approaches

Based on the flexible framework explained in previous sec-
tion, two ensemble approaches are developed: 1) data-algorithm 
hybrid ensemble and 2) algorithm-data hybrid ensemble, as illus-
trated in Figs. 3 and 4, respectively. These two approaches are 
designed to effectively learn causal relationships from three data-
driven causality learning approaches: Multivariate Granger causal-
ity (MGC ), PCMC I and Dynamic Bayesian Network (DBN).

The data-algorithm hybrid ensemble approach (see Fig. 3) de-
notes that data ensemble happens in phase 1, then algorithm en-
semble happens in phase 2. In this approach, the input data is 



P. Guo, Y. Huang and J. Wang Big Data Research 26 (2021) 100252

Fig. 3. Illustration of data-algorithm hybrid causality ensemble learning approach.

Fig. 4. Illustration of algorithm-data hybrid causality ensemble learning approach.
first partitioned into N slices. Then, each of the causality dis-
covery method (MGC , PCMC I and DBN) is executed on all 
the partitioned data to get one causality output directed graph 
for each data slices. For example, MGC outputs MGC_Result1, 
MGC_Result2, ... MGC_ResultN . Different methods are executed 
in serial in the order of MGC , PCMC I , DBN . The outputs from 
all partitioned data slices corresponding to each causality method 
are collected for phase 1 ensemble. The phase 1 ensemble re-
sults are computed by majority voting. In its final step, the phase 
1 ensemble results of each causality method (MGC_Ensemble, 
PCMC I_Ensemble and DBN_Ensemble) are reduced using ensem-
5

ble methods again to get phase 2 ensemble causality result as final 
output.

The algorithm-data hybrid ensemble approach (Fig. 4) has dif-
ferent workflow from the previous approach: algorithm ensemble 
happens in phase 1, and data ensemble happens in phase 2. In the 
beginning, the whole data set is still partitioned into N partitions. 
However, for each partition of the data, different causality meth-
ods are executed to output the result for this specific partition. For 
instance, the data_partition_1 is executed by MGC , PCMC I and 
DBN to get MGC_Result_1, PCMC I_Result_1 and DBN_Result_1. 
Then the results of all causality discovery methods for each data 
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Algorithm 1: Data-Algorithm Ensemble (Data-Algorithm_En-
semble).
Input: Different causality discovery methods: Multivariate Granger 

causality: MGC , PCMCI: PCMC I , Dynamic Bayesian Network: DBN ,
Time-series data: D ,
Number of data partitions: N
Output: A directed causality graph: G = (V , E)

1: Partition data D into N partitions as
{d} = d1, d2, ..., dN

2: Get EMGC = Data-Algorithm_Phase_1(MGC, {d})
3: Get E PCMC I = Data-Algorithm_Phase_1(PCMC I, {d})
4: Get EDBN = Data-Algorithm_Phase_1(DBN, {d})
5: ## Phase 2 edge ensemble:
6: for unique edges {ei} in EMGC , E PCMC I and EDBN do
7: Count ei appearance in EMGC , E PCMC I and EDBN as ni
8: if ni ≥ 2 then
9: Add ei to final graph G

10: end if
11: end for
12: Output G = (V , E)

Algorithm 2: Phase 1 Ensemble for Data-Algorithm Ensem-
ble (Data-Algorithm_Phase_1).
Input: Causality discovery method: Causality,
Data partition set: {d}
Output: A set of directed edges in Graph corresponding to causality 

discovery method: Ecausality

1: for each data partition di in {d} do
2: Get causality edge set from causality computation:

Ei = Causality(di )
3: end for
4: ## Phase 1 edge ensemble:
5: for unique edges {e j} in all Ei do
6: Count e j appearance in all Ei as n j

7: if n j > N/2 then
8: Add e j to Ecausality

9: end if
10: end for
11: Output Ecausality

partition are combined through phase 1 ensemble. In phase 2 en-
semble, the final output causality results are generated using all 
the phase 1 ensemble results.

4.1. Data-algorithm hybrid ensemble

The data-algorithm ensemble approach includes two algo-
rithms. Algorithm 1 (Data-Algorithm_Ensemble) is for the full two-
phase hybrid ensemble approach and illustrated in Fig. 3. Algo-
rithm 2 (Data-Algorithm_Phase_1) is for phase 1 data ensemble 
corresponding to each phase 1 ensemble block in Fig. 3.

The input of the Data-Algorithm_Ensemble (Algorithm 1) in-
cludes different causality discovery methods, which are multi-
variate Granger causality (MGC ), PCMCI (PCMC I) and Dynamic 
Bayesian Network (DBN), time series input data D , and the num-
ber of data partitions N . The logic of Algorithm 1 for the whole 
ensemble process is as follows. In line 1, the input dataset D is 
first partitioned into N slices by its timestamp as {d} = d1, d2, ..., 
dN where the time interval of each slice is only 1/N of the original 
time series. Then it calls Algorithm 2 (Data-Algorithm_Phase_1) to 
execute each causality discovery method to get phase 1 ensemble 
causality edge set EMGC , E PCMC I and EDBN from all the data par-
titions in lines 2-4. Finally, in lines 6-11, phase 2 ensemble result 
is computed by majority voting on edge set of all causality mining 
methods, EMGC , E PCMC I and EDBN , that if two or more causality 
ensemble edge sets contain the same edge, this edge is added into 
final output graph G = (V , E) with V denoting nodes and E as 
edges in line 12.

The phase 1 data ensemble in the data-algorithm ensem-
ble approach, namely Data-Algorithm_Phase_1 is shown in Algo-
6

Algorithm 3: Algorithm-Data Ensemble (Algorithm-Data_En-
semble).
Input: Different causality discovery methods: Multivariate Granger 

causality: MGC , PCMCI: PCMC I , Dynamic Bayesian Network: DBN
Time-series data: D ,
Number of data partitions: N
Output: A directed causality graph: G = (V , E)

1: Partition data D into N partitions as {d} = d1, d2, ..., dN

2: for each data partition di in {d} do
3: Run phase 1 ensemble on data partition di to get edge set 

Edi = Algorithm-Data_Phase_1(MGC, PCMC I, DBN, di )
4: end for
5: ## Phase 2 edge ensemble:
6: for unique edges {e j} in all Edi do
7: Count e j appearance in all Edi as n j

8: if n j > N/2 then
9: Add e j to final graph G

10: end if
11: end for
12: Output G = (V , E)

rithm 2. Its inputs include the specific causality discovery method 
Causality, and the partitioned time-series data set {d}. In lines 1-3, 
the causality discovery method executes for each data partition di
in {d} to output a causality edge set Ei from Causality(di). Since 
this causality edge set contains edges from each partition, in lines 
5-10, phase 1 ensemble method loops to check if the number of 
a given edge e j appears in more than half of the partition edge 
set. For instance, if there are 10 partitions, and a causality edge 
(x1, x2) appears 6 times in all the partition edge set, it is added to 
the phase 1 ensemble output Ecausality as in line 8 then be output 
as in line 11.

4.2. Algorithm-data hybrid ensemble

The algorithm-data hybrid ensemble approach also contains 
two algorithms: Algorithm 3 (Algorithm-Data_Ensemble) for the full 
two-phase hybrid ensemble approach as illustrated in Fig. 3 and 
Algorithm 4 (Algorithm-Data_Phase_1) for its phase 1 algorithm en-
semble.

The Algorithm-Data_Ensemble (Algorithm 3) algorithm requires 
the same input as the Data-Algorithm_Ensemble algorithm: the 
causality discovery methods of MGC , PCMC I , DBN , the time se-
ries input data D and the number of data partitions N . In line 1 of 
Algorithm 3, the input time-series data D is first partitioned into 
N slices as {d} = d1, d2, ..., dN . In next step, from lines 2-4, for each 
data partition di , the algorithm for phase 1 ensemble (Algorithm-
Data_Phase_1) is called with input of the causality discovery meth-
ods (MGC , PCMC I , DBN) and the current data partition di to get 
phase 1 ensemble output of edge set Edi . Then, in lines 6-11, phase 
2 ensemble is executed on all edge set Ed1 , Ed2 , ..., EdN . In these 
edge set, every unique causality edge in the {e j} is checked to see 
if it appears in more than half of the partition number N as major-
ity voting in lines 8-10. Finally, all voted causality edges are added 
to final graph and output as a directed graph result G = (V , E).

The phase 1 ensemble for algorithm-data hybrid ensemble ap-
proach is called Algorithm-Data_Phase_1 and shown in Algorithm 4. 
The input of this phase 1 ensemble algorithm contains the three 
causality mining methods (MGC , PCMC I and DBN) and the spe-
cific data partition (di). From line 1 to line 5 of the algorithm, for 
each causality discovery method, this data partition is fed to the 
method to get its causality edge result set. Majority voting is ap-
plied on all causality edges result set EMGC , E PCMC I and EDBN in 
lines 7-12. For instance, if a causality edge e = (x1, x2) appears in 
EMGC and EDBN but not in E PCMC I , it still passes majority voting, 
and is saved to the output ensemble of this data partition as Edi
in line 10. Finally, the algorithm outputs phase 1 edge ensemble 
result Ed in line 13.
i



P. Guo, Y. Huang and J. Wang Big Data Research 26 (2021) 100252
Algorithm 4: Phase 1 Ensemble for Algorithm-Data Ensem-
ble (Algorithm-Data_Phase_1).
Input: Causality discovery methods: MGC , PCMC I , DBN
Time-series data partition: di
Output: A set of directed edges in Graph corresponding to this specific 

partition di : Edi
1: for MGC , PCMC I , DBN do
2: Get EMGC = MGC(di)
3: Get E PCMC I = PCMC I(di)
4: Get EDBN = DBN(di)
5: end for
6: ## Phase 1 edge ensemble:
7: for unique edges {e j} in EMGC , E PCMC I , EDBN do
8: Count e j appearance in EMGC , E PCMC I and EDBN as n j

9: if n j ≥ 2 then
10: Add e j to Edi
11: end if
12: end for
13: Output Edi

5. Parallel two-phase hybrid causality ensemble learning via 
spark big data engine

When facing large volume of datasets, like research done for 
big data machine learning [31,32], scalable algorithms are also cru-
cial to reduce computation time for causality discovery. To achieve 
scalability for our approaches, the above two-phase hybrid causal-
ity ensemble approaches are further implemented in parallel via 
Spark [14] to deal with big data in two aspects: 1) automatic data 
partitioning and 2) parallel function mapping.

Regarding the data partitioning part in our parallel implementa-
tion, the data is first load into Spark as resilient distributed dataset 
(RDD), then it is automatically partitioned by timestamp of each 
record, as in the phase 2 ensemble for both data-algorithm hy-
brid ensemble and algorithm-data hybrid ensemble approaches, 
in Algorithm 1 line 1 and Algorithm 3 line 1, respectively. More 
specifically, every data partition, as a chunk of the large distributed 
dataset, is assigned an index for phase 1 ensemble in next step.

For parallel function mapping, the parallelization of data-
algorithm hybrid ensemble is implemented in its phase 1 ensem-
ble, as in Algorithm 2 lines 1-3. With Spark RDD partitioning, now 
each data partition di becomes an RDD partition. Then these RDD 
partitions are mapped to be transformed by the causality discov-
ery method Causality in parallel then be reduced as edge set Ei
for later phase 2 ensemble computation. For algorithm-data hybrid 
ensemble approach, the parallelization is in its phase 2, located in 
lines 2-4 of Algorithm 3. Algorithm 4 (Algorithm-Data_Phase_1) is 
mapped to execute in parallel with each of the partitioned RDD 
{di} with index i from its input. Then, all phase 1 ensemble results 
are reduced for phase 2 ensemble to generate the final output 
graph.

6. Experiments

6.1. Experiments setup

6.1.1. Environment
The experiments were conducted on top of the HPCF2018 clus-

ter at the University of Maryland, Baltimore County [33], where 
each computing node has two 18-core Intel Skylake CPUs, 384 GB 
of memory and a 120 GB SSD disk. For our experiment environ-
ment, each cluster contained one master node and several worker 
nodes. Moreover, the Spark programs are managed by Slurm work-
load manager [34] in standalone cluster mode.

For software, we used Python (version 3.6.8), Spark (version 
2.4). In our experiments, each node contains one executor, each 
driver/executor’s memory is 200 GB, and partition number is set 
as 48.
7

6.1.2. Baseline approaches and parameter settings
We employed seven baseline approaches in our experiments. 

The first three were single causality discovery approaches: Mul-
tivariate Granger causality (MGC ), PCMC I and Dynamic Bayesian 
Network (DBN). The next three were corresponding data ensemble 
approaches for each of the three single causality discovery ap-
proaches following the way described in Section 3.2. The last one 
was an algorithm ensemble approach by combining all the three 
single causality discovery approaches following the way described 
in Section 3.1. For experiment parameter settings, we set the max-
imum time lagging as 3 for synthetic data and 14 for real-world 
data. We also set the p-value threshold as 0.05 for both MGC and 
PCMC I tests. Besides, the total bin number for DBN was set to 
5 to reduce computation time. In PCMC I method, we utilize its 
different conditional independence tests for linear and nonlinear 
causality discovery. For nonlinear conditional independence tests, 
as we have large dataset, RCOT test is applied.

6.2. Experiments with synthetic datasets

6.2.1. Dataset description
The datasets used in our experiments are mainly in two cate-

gories: synthetic data and real-world data. For synthetic data, we 
generated four datasets based on predefined equations to evaluate 
our proposed algorithms’ performance. One important reason for 
synthetic dataset generation is to know causality ground truth so 
we could evaluate learning result accuracy. Similar to the synthetic 
datasets generation approach for Granger causality and DBN eval-
uation in [9], we generated our synthetic datasets based on linear 
and nonlinear causal dependency Equation (9) and Equation (10), 
where εs are random noises. All the xs are initialized as 0, and the 
εs are drawn from normal distribution and not dependent on time 
t . The causality graphs for the equations can be found at Fig. 1
and Fig. 5. The linear and nonlinear datasets with different sizes 
(namely 1 million and 10 million for row numbers) were gener-
ated using the same equations correspondingly.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = 0.95 · √2 · x1(t − 1) − 0.90 · x1(t − 2) + ε1
x2(t) = 0.5 · x2(t − 1) + ε2
x3(t) = −0.5 · x1(t − 1) + 0.25 · √2 · x3(t − 1)

+0.25 · √2 · x2(t − 1) + ε3
x4(t) = −0.95 · x4(t − 1) − 0.25 · √2 · x3(t − 1) + ε4
x5(t) = 0.5 · x1(t − 1) + 0.95 · x2(t − 2) − 0.25 · √2 · x3(t − 1)

+0.5 · x5(t − 1) + ε5

(9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = 0.125 · √2 · exp(−x1(t − 1)2/2) + ε1
x2(t) = 1.2 · exp(−x1(t − 1)2/2) + ε2
x3(t) = −1.05 · exp(−x1(t − 1)2/2)

+0.2 · √2exp(−x2(t − 2)2/2) + ε3
x4(t) = −1.15 · exp(−x1(t − 2)2/2)

+0.2 · √2 · exp(−x4(t − 1)2/2)
+1.35 · exp(−x3(t − 1)2/2) + ε4

x5(t) = −1.15 · exp(−x2(t − 1)2/2) + ε5

(10)

6.2.2. Consistency evaluation
Result consistency with different data partitions. We tested 

the consistency of our two-phase ensemble algorithms with dif-
ferent data partitions as 48, 100, 150 and 200. The experiments 
show both two-phase algorithm-data ensemble and two-phase 
data-algorithm ensemble generate the same results under these 
different data partition settings. It demonstrates the stableness of 
our ensemble approaches. We only chose 48 for the following ex-
periments.
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Table 1
Result matrix similarity of linear 10M synthetic dataset.
Matrix 
Similarities

MGC PCMCI DBN Data-level 
Ensemble 
MGC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-level 
Ensemble

Two-phase 
Algorithm-data 
Ensemble

Two-phase 
Data-algorithm 
Ensemble

MGC 1.000 0.750 0.600 1.000 0.857 0.500 0.857 0.857 0.857
PCMCI 0.750 1.000 0.600 0.750 0.857 0.500 0.857 0.857 0.857
DBN 0.600 0.600 1.000 0.600 0.667 0.889 0.667 0.667 0.667
Data-level 

Ensemble MGC
1.000 0.750 0.600 1.000 0.857 0.500 0.857 0.857 0.857

Data-level 
Ensemble 
PCMCI

0.857 0.857 0.667 0.857 1.000 0.556 1.000 1.000 1.000

Data-level 
Ensemble DBN

0.500 0.500 0.889 0.500 0.556 1.000 0.556 0.556 0.556

Algorithm-level 
Ensemble

0.857 0.857 0.667 0.857 1.000 0.556 1.000 1.000 1.000

Two-phase 
Algorithm-data 
Ensemble

0.857 0.857 0.667 0.857 1.000 0.556 1.000 1.000 1.000

Two-phase 
Data-algorithm 
Ensemble

0.857 0.857 0.667 0.857 1.000 0.556 1.000 1.000 1.000
Fig. 5. Nonlinear synthetic data ground truth causal graph.

Result consistency with different individual causality discov-
ery methods. Since the causality discovery methods produce dif-
ferent results, to quantify the similarity coefficients, we used the 
well-known matrix distance calculation to measure Jaccard coeffi-
cients for different combinations of the model results. All pair-wise 
matrix similarities among different methods for linear 10M and 
nonlinear 10M synthetic data are presented in Table 1 and Table 2, 
respectively. From the two tables, we have the following four ob-
servations. First, the results from the three base learners are quite 
divergent (0.650 for linear dataset average similarity and 0.478 for 
nonlinear dataset average similarity). Second, by doing data-level 
ensembles for the three base learners, the results are a little more 
divergent for linear dataset (0.637 for average similarity), but more 
similar for nonlinear dataset (0.738 for average similarity). Third, 
the results from data-level ensembles are still different from those 
algorithm-level ensembles (0.804 for linear dataset average simi-
larity and 0.469 for nonlinear dataset average similarity). Fourth, 
the results from the two-phase ensembles are identical (1.000 for 
both linear and nonlinear dataset average similarity). It shows our 
two-phase ensemble approach is an effective way to achieve con-
sistent results.

6.2.3. Accuracy evaluation
We employ Structural Hamming Distance (SHD) metric [35] to 

compare accuracy of different approaches. SHD is a common met-
ric to measure the difference between two directed graphs with 
the same node set. SHD value is defined as the total step count of 
three types of actions needed to transform from one direct graph 
to another direct graph: 1) reversing an edge’s direction, 2) re-
moving an extra edge, 3) adding a missing edge. We calculate SHD 
between ground truth graph and each learned graph. The lower 
SHD value means the more similarity between the two graphs, so 
the algorithm that generates the learned graph is more accurate.

Single Causality Discovery Methods. Our first experiment com-
8

pared the correctness of single causality discovery method of 
MGC , PCMC I and DBN . The comparison results for 1M and 10M 
linear and nonlinear data sets are in left three columns of Table 3. 
It shows that different causality discovery methods had quite dif-
ferent results with these four data sets.

Single-phase Causality Ensemble Methods. We also measured 
the accuracy of the three data ensemble baseline approaches and 
the algorithm ensemble causality ensemble approach. The results 
were shown in the middle four columns of Table 3. For linear 
datasets, we could see from the table that both data ensemble and 
algorithm approach could achieve the same or better accuracy than 
single causality discovery approaches. For nonlinear datasets, data 
ensemble approaches still performs better in accuracy; however, 
algorithm ensemble could perform a little bit worse due to two 
algorithms making the same wrong prediction on certain edges.

Two-phase Hybrid Causality Ensemble Methods. The results of 
the two hybrid causality ensemble approaches, namely algorithm-
data ensemble and data-algorithm ensemble, are shown in the 
right two columns of Table 3. In the experiments, our hybrid 
causality ensemble approaches achieve perfect accuracy because 
their SHD values are all zero. In linear experiments, compared 
to data ensemble and algorithm ensemble baseline approaches, 
our two-phase hybrid causality ensemble approaches could get the 
same or better results. In nonlinear experiments, two-phase hybrid 
ensemble approaches achieve better accuracy than both data en-
semble and algorithm ensemble. They both perform better than all 
the baseline approaches in accuracy for all the data sets.

6.2.4. Comparison with other causality discovery methods
We compare our two-phase hybrid ensemble methods with two 

state-of-art causality discovery methods: Directed Acyclic Graph-
Graph Neural Networks (DAG-GNN) [36] and Temporal Causality 
Discovery Framework (TCDF) [37] using their public GitHub im-
plementations. In the comparison, 1M linear and nonlinear syn-
thetic datasets are used. Moreover, since these two methods are 
both neural network methods and their results differ with differ-
ent hyperparameter settings, we generate outcomes using different 
hyperparameter settings. The results are shown in Tables 4 and 5
for DAG-GNN and TCDF respectively.

In Table 4, two sets of hyperparameters are tuned in our exper-
iments: t and τ . t is a threshold for causal edges where an edge 
will not be in final causal graph if its corresponding adjacency 
matrix value is smaller than t . τ is a regularization parameter. 
The default values are t = 0.3 and τ = 0.0. We note that DAG-
GNN method is originally for causal discovery for iid data, not 
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Table 2
Result matrix similarity of nonlinear 10M synthetic dataset.
Matrix 
Similarities

MGC PCMCI DBN Data-level 
Ensemble 
MGC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-level 
Ensemble

Two-phase 
Algorithm-data 
Ensemble

Two-phase 
Data-algorithm 
Ensemble

MGC 1.000 0.550 0.583 0.667 0.583 0.417 0.883 0.500 0.500
PCMCI 0.550 1.000 0.300 0.421 0.368 0.263 0.450 0.316 0.316
DBN 0.583 0.300 1.000 0.667 0.75 0.714 0.545 0.857 0.857
Data-level 

Ensemble MGC
0.667 0.421 0.667 1.000 0.875 0.625 0.500 0.750 0.750

Data-level 
Ensemble 
PCMCI

0.583 0.368 0.750 0.875 1.000 0.714 0.545 0.857 0.857

Data-level 
Ensemble DBN

0.417 0.263 0.714 0.625 0.714 1.000 0.363 0.833 0.833

Algorithm-level 
Ensemble

0.883 0.450 0.545 0.500 0.545 0.363 1.000 0.455 0.455

Two-phase 
Algorithm-data 
Ensemble

0.500 0.316 0.857 0.750 0.857 0.833 0.455 1.000 1.000

Two-phase 
Data-algorithm 
Ensemble

0.500 0.316 0.857 0.750 0.857 0.833 0.455 1.000 1.000

Table 3
Structural Hamming Distance (SHD) comparison of single causality discovery approach, baseline ensemble approach, and our proposed two-
phase hybrid causality approach (best results are in bold).

MGC PCMCI DBN Data-level 
Ensemble 
MGC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-
level 
Ensemble

Two-phase 
Algorithm-
data 
Ensemble

Two-phase 
Data-
Algorithm 
Ensemble

Linear 1M 1 1 4 1 1 4 0 0 0
Linear 10M 1 1 3 1 1 4 0 0 0
Nonlinear 1M 5 13 1 4 3 3 4 0 0
Nonlinear 10M 6 6 1 2 1 1 3 0 0

Table 4
Structural Hamming Distance (SHD) comparison of DAG-GNN method static and temporal graphs with different 
hyperparameters (best results are in bold).

t = 0.3, τ = 0.0 * t = 0.2, τ = 0.0 t = 0.3, τ = 1e-07 t = 0.2, τ = 1e-07

Static Linear 1M 11 8 12 7
Nonlinear 1M 6 9 6 7

Temporal Linear 1M 10 9 13 9
Nonlinear 1M 13 11 11 9

Table 5
Structural Hamming Distance (SHD) comparison of TCDF method with different hyperparameters (best re-
sults are in bold).

Hidden layers = 0 
Kernel size = 4 *

Hidden layers = 0 
Kernel size = 6

Hidden layers = 1 
Kernel size = 4

Hidden layers = 1 
Kernel size = 6

Linear 1M 3 3 5 4
Nonlinear 1M 3 2 2 4
for time-series data. Directly applying iid data methods on time-
series dataset might introduce complicated dependencies between 
contemporaneous data Xt and Yt [38]. One way to utilize the iid 
causal method for time-series data is to treat each variable with 
time lag as a new variable. Thus, in Table 4, we show static results 
and temporal results. Static results indicate that the data points 
are treated as iid records and directly fed into the model. As a 
comparison, for the temporal results, the time-series data are first 
augmented by time lag, then the full augmented lagged dataset 
is used as the input. Moreover, the initial result graph is reduced 
to an output graph by shrinking all the lagged variables to its 
original variables. For instance, the edge xt−3 → yt−1 is reduced 
to x → y. Finally the edges with too small probabilities are fil-
tered out. We find that DAG-GNN algorithm is sensitive to the 
hyperparameters and the results are quite different in terms of 
9

SHD. For the linear synthetic dataset, the best result is the static 
graph with t = 0.2 and τ = 1e − 07. And for nonlinear synthetic 
datasets, the best graphs are static graphs with t = 0.3, τ = 0.0
and t = 0.3, τ = 1e − 07.

For the TCDF method, since it is originally developed for time-
series dataset, we directly utilized the authors’ original implemen-
tation. As shown in Table 5, we configured two hyperparameters, 
which are hidden layers and kernel size. The default values are 
hidden layers = 0 and kernel size = 4. Based on the TCDF paper, its 
kernel size should be maxlag +1. We use kernel size = 4, which 
means maxlag = 3 and is the same to the maxlag setting in previ-
ous experiments. In addition, we also tried kernel size = 6 to check 
its performance difference. Our experiments show that with differ-
ent hyperparameters combination choices, the output graphs are 
also quite different in terms of SHD. By looking into the internal 
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Table 6
Execution time table for baseline serial experiments on 1M and 10M row linear data (H:MM:SS.SS).

Linear 
Synthetic 
Dataset

MGC PCMCI DBN Data-level 
Ensemble 
MGC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-
level 
Ensemble

1M 0:00:08.16 0:07:23.28 0:27:14.83 0:01:49.78 0:06:35.17 0:28:40.29 0:31:59.37
10M 0:01:21.88 1:31:06.78 5:58:52.31 0:18:52.88 0:54:17.20 3:45:56.39 6:45:01.24

Table 7
Execution time table for baseline serial experiments on 1M and 10M row nonlinear data (H:MM:SS.SS).

Nonlinear 
Synthetic 
Dataset

MGC PCMCI DBN Data-level 
Ensemble 
MGC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-
level 
Ensemble

1M 0:00:07.83 0:24:07.11 0:24:39.91 0:01:13.25 0:28:00.59 0:27:17.02 0:45:26.36
10M 0:01:24.59 4:33:06.51 5:15:30.22 0:18:15.43 3:57:54.57 2:56:27.57 8:47:18.09

Table 8
Execution time table for parallel experiments on 1M linear data.
Linear 1M Data-level 

Parallel Ensemble
MGC

Data-level 
Parallel Ensemble
PCMCI

Data-level 
Parallel Ensemble
DBN

Two-phase 
Ensemble
Algorithm-Data

Two-phase 
Ensemble
Data-Algorithm

4 Worker Nodes 0m19.037s 10m51.091s 2m11.193s 3m44.671s 3m55.372s
6 Worker Nodes 0m20.068s 8m57.787s 1m12.336s 2m15.632s 2m54.335s
8 Worker Nodes 0m20.030s 6m46.573s 1m1.355s 2m4.638s 2m4.477s
logic of how causal edges are produced, we find that TCDF method 
does not find any wrong causes and its attention mechanism is 
able to find the most important cause regarding each effect. But it 
is less accurate in identifying other causes, which is one reason for 
missing some cause-effect edges. The best hyperparameter config-
uration is hidden layers = 6 and kernel size = 4, which gives SHD 
value as 3 for linear 1M dataset and SHD value as 2 for nonlinear 
1M dataset.

Since SHD values of our two-phase ensemble approaches are 
0 for the datasets, it shows our approach has better learning ac-
curacy than these state-of-art methods on these two synthetic 
datasets.

6.2.5. Scalability evaluation
We conducted scalability experiments for our proposed two-

phase hybrid ensemble causality approaches given different sizes 
of data sets at a distributed computing environment mentioned 
above with 5, 7 and 9 compute nodes.

Execution Time. The execution time of all the baseline algo-
rithms is shown in Table 6 and Table 7 for linear and nonlinear, 
1M and 10M dataset testing. The execution time for parallel ex-
periments is shown as in Table 8 and Table 9 for 1M and 10M 
records of linear dataset. For nonlinear dataset, the execution time 
is recorded as in Table 10 and Table 11 for 1M and 10M data cor-
respondingly.

The execution time for parallel experiments is in Table 8, and 
Table 9 for linear experiments. The nonlinear experiments execu-
tion time tables are as Table 10 and Table 11. The Spark based 
parallel implementations of the three data-ensemble baseline ap-
proaches use the same techniques in Section 5. We measured their 
execution time as in the left part of parallel experiments execution 
time tables. We also recorded the execution time of algorithm-data 
ensemble and data-algorithm ensemble showing in right part of all 
execution time tables. The experiments are executed under differ-
ent environment settings using 4, 6 and 8 worker nodes.

For data-level parallel ensemble MGC and DBN, their execution 
time were shorter than those of our hybrid ensemble approaches 
because each of them only employed one causality learning algo-
rithm. But for data-level parallel ensemble PCMCI, it is slower than 
the two-phase ensemble because at the runtime the spark session 
10
encountered idle time for executors in the cluster, thus the com-
putation time is fairly long. However, we did not see the same 
behavior in the two-phase ensemble experiments. It is the rea-
son our two-phase ensemble execution time is faster than PCMCI 
based data-level parallel ensemble. The inner reason for this unex-
pected result will be further investigated. As shown in Table 3, the 
advantages of our hybrid ensemble approaches over these baseline 
approaches are overall learning accuracy.

Speedup. By comparing the execution time our parallel two-
phase approaches in Tables 8, 9, 10, 11 with the execution time 
of our serial algorithm ensemble baseline approach in Table 6 and 
Table 7, we evaluate the speedups of our parallel hybrid ensem-
ble approaches. The algorithm ensemble baseline was executed 
on a single node and called the three single causality learning 
algorithms one after another. Since experiments show our data-
algorithm ensemble implementation and algorithm-data ensemble 
implementation have very similar execution time, we only use 
the execution time of algorithm-data ensemble results to com-
pute speedup. As shown in Figs. 6 and 7, both sets of experi-
ments achieved near linear speed up. Fig. 6 shows the speedups 
of algorithm-data ensemble in comparison to algorithm ensem-
ble baseline for 10M row linear dataset. With 8 worker nodes, the 
speed up is more than 32 times. Similarly, Fig. 7 shows speedups 
of algorithm-data ensemble over algorithm ensemble baseline for 
10M nonlinear dataset. Its speedup, when running with 8 worker 
nodes, reaches 35 times compared to the baseline. Our approaches 
can achieve better than linear speedup because the time complex-
ity of each baseline algorithm is worse than O (n). For instance, 
Granger causality algorithm’s execution time grows quadratically 
with the increase of the data record number [12]. By splitting data 
into N partitions, the execution time for each data partition is less 
than 1/N of the baseline serial approach.

6.3. Experiments with real-world dataset

6.3.1. Dataset description
For real-world dataset, we focus on the problem of warming in 

the Arctic and polar sea ice declining. Regarding the climate data, 
we chose the ERA-5 global reanalysis product [39] from 1999 to 
2018. ERA-5 was the 1.5 ERA-Interim modeling system, including 
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Table 9
Execution time table for parallel experiments on 10M linear data.
Linear 10M Data-level 

Parallel Ensemble
MGC

Data-level 
Parallel Ensemble
PCMCI

Data-level 
Parallel Ensemble
DBN

Two-phase 
Ensemble
Algorithm-Data

Two-phase 
Ensemble
Data-Algorithm

4 Worker Nodes 2m02.216s 51m33.383s 10m46.239s 23m57.703s 24m03.187s
6 Worker Nodes 1m46.703s 35m48.498s 7m55.188s 18m21.925s 18m39.600s
8 Worker Nodes 1m35.964s 22m34.472s 6m46.441s 12m21.128s 12m50.270s

Table 10
Execution time table for parallel experiments on 1M nonlinear data.
Nonlinear 1M Data-level 

Parallel Ensemble
MGC

Data-level 
Parallel Ensemble
PCMCI

Data-level 
Parallel Ensemble
DBN

Two-phase 
Ensemble
Algorithm-Data

Two-phase 
Ensemble
Data-Algorithm

4 Worker Nodes 0m20.195s 13m3.590s 2m19.261s 7m29.080s 7m25.565s
6 Worker Nodes 0m19.066s 11m5.580s 1m28.426s 5m30.104s 5m31.534s
8 Worker Nodes 0m18.492s 8m1.691s 1m1.877s 4m6.277s 4m13.503s

Table 11
Execution time table for parallel experiments on 10M nonlinear data.
Nonlinear 10M Data-level 

Parallel Ensemble
MGC

Data-level 
Parallel Ensemble
PCMCI

Data-level 
Parallel Ensemble
DBN

Two-phase 
Ensemble
Algorithm-Data

Two-phase 
Ensemble
Data-Algorithm

4 Worker Nodes 2m02.023s 39m37.026s 10m46.367s 23m8.639s 24m15.382s
6 Worker Nodes 1m50.979s 28m45.792s 7m52.148s 18m26.094s 18m1.137s
8 Worker Nodes 1m37.207s 25m41.998s 6m54.563s 15m7.396s 16m0.709s

Fig. 6. Speedup of algorithm-data ensemble compared to algorithm ensemble baseline for 10M row linear dataset. With 8 worker nodes, the speedup is more than 32 times.
4-dimensional variational analysis (4D-Var) with a running Inte-
grated Forecast System (IFS) model cycle of 31R2 [40]. From ERA-5, 
users can request lots of atmospheric, land and oceanic climate 
variables from hourly estimates. The data cover the Earth on a 
30 km grid and resolve the atmosphere using 137 levels from the 
surface up to a height of 80 km. We obtained values of seven vari-
ables including 10 meter U wind component, 10 meter V wind 
component, total cloud cover, mean sea level pressure, total pre-
cipitation, shortwave radiation, and longwave radiation [41]. We 
further pre-process the variables by combining shortwave radiation 
and long wave radiation as total radiation variable, and compute 
the 10 meter U wind component, 10 meter V wind component to 
get the wind speed variable. Each variable has 3 dimensions (7307 
x 360 x 180) for day, longitude and latitude respectively. The anal-
ysis was focused on the daily data spanning 20 years, with more 
than 300 GB data. Then we computed the average at Arctic region 
(latitude > 60◦N) for each variable based on the global data. One 
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more variable, the total sea ice extent variable was selected as the 
Arctic sea ice index from National Snow & Ice Data Center [42]. 
In total, our real-world experiment input dataset contains six vari-
ables. In the experiments, the maximum lag is chosen as 14, as 
two weeks.

6.3.2. Consistency evaluation
In experiments with our real-world dataset, the data partition 

number is set to 4, which means 5 years as a chunk. The reason is 
that the causal relationships of the selected atmospheric variables 
should be valid in a long-term and stable environment. By doing 
this, we can also mute the impacts of extreme weather events on 
those causal relations in a specific year (e.g., El Niño).

Result consistency with different individual causality discov-
ery methods. Similar to the result consistency analysis for syn-
thetic datasets, Table 12 shows the result consistency using matrix 
similarities on our real-world dataset experiments. From this ta-
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Fig. 7. Speedup of algorithm-data ensemble compared to algorithm ensemble baseline for 10M row nonlinear dataset. With 8 worker nodes, the speedup is more than 35 
times.

Table 12
Result matrix similarity of real world dataset.
Matrix 
Similarities

GC PCMCI DBN Data-level 
Ensemble 
GC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-
level 
Ensemble

Two-phase 
Algorithm-data
Ensemble

Two-phase 
Data-algorithm
Ensemble

GC 1.000 0.600 0.111 0.889 0.621 0.105 1 0.842 0.842
PCMCI 0.600 1.000 0.067 0.533 0.967 0.100 0.6 0.567 0.567
DBN 0.111 0.067 1.000 0.125 0.069 0.667 0.111 0.118 0.118
Data-level 

Ensemble GC
0.889 0.533 0.125 1.000 0.552 0.118 0.889 0.941 0.941

Data-level 
Ensemble 
PCMCI

0.621 0.967 0.069 0.552 1.000 0.103 0.621 0.587 0.587

Data-level 
Ensemble DBN

0.105 0.010 0.667 0.118 0.103 1.000 0.105 0.176 0.176

Algorithm-level 
Ensemble

1.000 0.600 0.111 0.889 0.620 0.105 1.000 0.842 0.842

Two-phase 
Algorithm-data 
Ensemble

0.842 0.567 0.118 0.941 0.586 0.176 0.842 1.000 1.000

Two-phase 
Data-algorithm 
Ensemble

0.842 0.567 0.118 0.941 0.586 0.176 0.842 1.000 1.000
ble, our observations are as follows. First, the individual causality 
discovery methods still generate quite different results with only 
0.259 similarities on average. Second, the data-level ensemble has 
different results from the algorithm-level ensemble, with the av-
erage similarity only being 0.538. Third, our proposed two-phase 
ensemble methods output identical results, which meets the same 
observation with synthetic dataset experiments.

6.3.3. Accuracy evaluation
To discover causal relations between different variables, the cli-

mate scientists normally conduct interventions or real-life exper-
iments by manipulating the value of a target variable. Since the 
atmosphere is a highly chaotic and non-linear system, it would 
be quite challenging to quantify these relationships, making the 
accuracy evaluation for each method much more difficult. Here, 
we qualitatively determine whether those results are reasonable or 
not.

Fig. 8 demonstrates the domain knowledge graph based on the 
literature in Earth Science. First, there are two-way interactions be-
tween large-scale circulation variability and sea ice changes, which 
are mainly represented by edges (msl ↔ sea ice) and (wind speed 
↔ sea ice) in the figure. A dipole pattern in the mean sea level 
12
Fig. 8. Domain knowledge graph for real-world dataset experiments based on Earth 
Science literature with variables as cloud cover (cc), mean sea level pressure (msl), 
wind speed, precipitation (precip), sea ice extent (sea ice) and total surface radiation 
(total r).

pressure trend in the Arctic was found to drive more sea ice out 
of the Arctic dynamically and enhance sea ice melt by promot-
ing transport of heat and moisture [43–46]. In the meantime, the 
sea ice retreat and increase in open water area can directly modify 
the large-scale circulation patterns, including mean sea level pres-
sure and wind speed [47]. The mean sea level pressure and wind 
speed also actively interact with each other, shown as edge (msl 
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Fig. 9. Causality discovery results for real-world dataset experiments with variables as cloud coverage (cc), mean sea level pressure (msl), wind speed, precipitation (precip), 
sea ice extent (sea ice) and total radiation (total r). Red arrows mean wrong edges based on domain knowledge. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)
↔ wind speed). In addition to dynamical processes, the thermody-
namical processes are also found to affect Arctic sea ice variations. 
The downward longwave radiation at the surface dominates sur-
face warming and therefore enhances sea ice melt in winter and 
spring, while the shortwave radiation becomes more important for 
sea ice variations in summer [48,49]. Sea ice melt/growth can also 
modulate the surface radiation by changing the surface albedo, 
emissivity and temperature [50]. These processes are represented 
by edge (sea ice ↔ total r). Moreover, edge (precip → sea ice) in-
dicates that the magnitude and phase of the precipitation change 
the surface albedo and thus modulate the rate of sea ice melt 
and growth [51,52]. The precipitation in turn could be increased 
by enhanced local evaporation due to sea ice melt [53], shown as 
edge (sea ice → precip). In the meantime, the atmospheric vari-
ables are connected with each other through various processes. 
The edge (cc ↔ precip) represents multiple cloud microphysical 
processes [54,55] for the conversion between rain drops and cloud 
water droplets/ice crystals, such as autoconversion and accretion. 
The large-scale circulation such as mean sea level pressure and 
wind speed would help to form or dissipate clouds; the clouds 
in turn modulate the dynamical or thermodynamical structure of 
the troposphere [56,54]. There processes are indicated by edges 
(msl ↔ cc) and (wind speed → cc). As for the precipitation, the 
large-scale circulation could either be a source or sink, which are 
represented by edges (msl ↔ precip) and (wind speed → pre-
cip) [57,56]. Here, we only consider the immediate effects of cloud 
and precipitation on mean sea level pressure, but their impacts on 
wind fields over a large domain remain uncertain. Therefore, only 
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one direction arrows are plotted in edges (wind speed → precip) 
and (wind speed → cc). Furthermore, the mean sea level pressure, 
precipitation and cloud cover exert a large influence on surface ra-
diation through the changes in temperature, emissivity, scattering 
and absorption, etc. [58], shown as edges (msl → total r), (precip 
→ total r) and (cc → total r). Here, we also consider the direct 
impacts of surface radiation of changes in mean sea level pressure 
(total r → msl), while the indirect impacts of cloud cover and pre-
cipitation on surface radiation are neglected.

The results of real-world dataset experiments are shown as in 
Fig. 9. The red edges in the figure are considered unrealistic based 
on Earth Science knowledge. To compare the results in Fig. 9 and 
the domain knowledge graph in Fig. 8, we calculate SHD scores 
between every result of each approach and the domain knowledge 
graph. We also calculate the precision, recall and F1 score for each 
approach to compare their learning accuracy. As shown in Table 13, 
our two-phase ensemble approach ranks 2nd (next to PCMCI) in 
terms of SHD, and ranks 1st of precision. For recall and F1 score, 
our two-phase ensemble approach gets 3rd ranking because PCMCI 
and data-ensemble PCMCI find many more edges. It shows our ap-
proach also performs very well in discovering causality from our 
real-world dataset.

From Table 3 and Table 13, one interesting finding is that no 
individual method is always the best for the five datasets we ex-
perimented with. For instance, accuracies of MGC and PCMCI are 
much better than DBN in linear 1M, 10M and real-world dataset, 
but they performed much worse than DBN for nonlinear 1M, 10M 
synthetic data. By doing ensemble from these divergent algorithms, 
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Table 13
Accuracy comparison of single causality discovery approach, baseline ensemble approach, and our proposed two-phase 
hybrid causality approach on real-world dataset (best results are in bold).

MGC PCMCI DBN Data-level 
Ensemble 
MGC

Data-level 
Ensemble 
PCMCI

Data-level 
Ensemble 
DBN

Algorithm-
level 
Ensemble

Two-Phase 
Hybrid 
Ensemble

SHD 10 8 22 10 9 21 10 9
Precision 0.833 0.733 0.500 0.875 0.724 0.666 0.833 0.882
Recall 0.681 1.000 0.045 0.636 0.954 0.090 0.681 0.681
F1 0.750 0.846 0.083 0.737 0.824 0.160 0.750 0.770

Fig. 10. Causality discovery results with deep learning methods for real-world dataset experiments with variables as cloud coverage (cc), mean sea level pressure (msl), wind 
speed, precipitation (precip), sea ice extent (sea ice) and total radiation (total r). Red arrows mean wrong edges based on domain knowledge.
our two-phase ensemble approaches show very good generaliza-
tion and outperform almost all individual methods in all experi-
ments.

6.3.4. Comparison with other causality discovery methods
Similar to the comparison in Section 6.2.4, we conduct exper-

iments on real-world sea-ice dataset using DAG-GNN and TCDF 
methods, with results showing in Fig. 10 and Table 14. Besides, 
in the experiments, different hyperparameter configurations have 
been fed into the model as in Section 6.2.4 and we only present 
the best performance results here. For DAG-GNN approach, among 
(t = 0.3, τ = 0), (t = 0.3, τ = 1e −07), (t = 0.2, τ = 0) and (t = 0.2, 
τ = 1e − 07), the best result was achieved with hyperparameters 
t = 0.3 and τ = 0. For TCDF approach, since the maxlag is 14, 
kernel size = 15 is fixed. Different values of hidden layer, namely 0, 
1, 2 and 3, are tested. The best result comes from hidden layer = 2
and kernel size = 15. Also, static and temporal results are gener-
ated using DAG-GNN method. We still use the domain knowledge 
graph (Fig. 8) as the ground truth to calculate the evaluation met-
rics.

As shown in Fig. 10, the DAG-GNN Temporal finds the largest 
numbers of edges among three methods, which are comparable 
with our proposed ensemble methods. It seems that DAG-GNN 
Temporal tends to detect the two-way interactions between all 
variables. In the meantime, it also detects some unrealistic edges, 
for example, total r → wind speed, cc → wind speed, and cc 
↔ sea ice. In comparison, DAG-GNN Static is less efficient to de-
tect those connections, as it produces much fewer edges than 
DAG-GNN Temporal and also generates three unrealistic edges. The 
TCDF only finds one unrealistic edge, however, it generates the 
smallest number of true positive edges compared to other two 
deep learning methods and all ensemble methods.

From the results in Table 14, our two-phase hybrid ensemble 
has highest precision, and ranks 2nd in SHD, recall and F1. DAG-
GNN Temporal has the lowest SHD, highest recall, and highest F1 
score. The recall of DAG-GNN Temporal is high because it finds 
all causal edges in the domain knowledge causal graph (Fig. 8). 
Besides, TCDF ranks 2nd in precision, which means it is also good 
at finding true positive edges. However, its recall is relatively low 
because it only produces very few edges. DAG-GNN Static performs 
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worst in every metric in real-world experiments, and exposes the 
shortcoming of directly apply time-series data as iid data.

6.3.5. Scalability evaluation
Execution Time. The execution time of our proposed two ap-

proaches on real-world dataset under 4, 6 and 8 worker nodes 
is shown in Table 15. Since we are using daily data, the testing 
maximum lag is set to be 30, meaning a month. Usually the real-
world data are nonlinear, so we applied our nonlinear two-phase 
approaches on this dataset. The results show that our approaches 
also have good scalability on causality discovery with large lags.

Speedup. The algorithm ensemble baseline program was exe-
cuted for real-world data, and the wall time is around 3.5 hours. 
So the speedup of two-phase algorithm-data ensemble is done by 
comparing to the baseline as in Fig. 11. The shape of the chart 
is similar to that in Fig. 7. From the figure, the speedup with 8 
worker nodes achieved near seven times speedup compared to the 
baseline. The speedup is not as significant as that of nonlinear syn-
thetic experiment since the partition number is four, which is less 
than that of 48 in the nonlinear synthetic experiment, thus the 
level of parallelization is relatively less.

7. Related work

There have been many studies on ensemble learning and scal-
able/parallel machine learning. But we believe our work is the 
first study dealing with both algorithm variety and data volume 
for causality discovery. We also did not find many studies directly 
on ensemble learning for causality. Because causality graph can 
be categorized as a type of probabilistic graphic model, we first 
discuss and compare with related work on ensemble learning for 
probabilistic graphic models in the first subsection. In the second 
subsection, we further discuss and compare additional big data 
parallel ensemble learning work beyond probabilistic graphic mod-
els.

7.1. Ensemble learning for probabilistic graphic models

To achieve probabilistic graphical model ensemble, using the 
three categories explained in Section 3, existing ensemble learn-
ing approaches can also be categorized into 1) algorithm ensemble 
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Table 14
Accuracy comparison of DAG-GNN (Static, Temporal), TCDF and our proposed two-phase hybrid 
causality approach on real-world dataset (best results are in bold).

DAG-GNN Static DAG-GNN Temporal TCDF Two-Phase Hybrid Ensemble

SHD 20 6 16 9
Precision 0.625 0.786 0.875 0.882
Recall 0.227 1.000 0.318 0.681
F1 0.333 0.880 0.467 0.770

Fig. 11. Speedup of algorithm-data ensemble compared to algorithm ensemble baseline for real-world dataset. With 8 worker nodes and 4 partitions, the speed up is nearly 
seven times.
Table 15
Execution time table for parallel experiments on real-world data (H:MM:SS).

Real-world Dataset Two-phase Ensemble 
Algorithm-Data

Two-phase Ensemble 
Data-Algorithm

4 Worker Nodes 0:52:52 0:54:12
6 Worker Nodes 0:41:17 0:43:21
8 Worker Nodes 0:30:43 0:31:55

for work at [59], 2) data ensemble work at [60–63], and 3) hybrid 
ensemble for both data and algorithm at [64].

In algorithm ensemble category, [59] supports parallel ensem-
ble learning of multiple classifiers on the same data. Both horizon-
tal and vertical parallelization are implemented in the paralleled 
PC algorithm. As a data ensemble approach, [60] first splits the 
training data, then trains Bayesian sub-networks in parallel, finally 
does boosting as ensemble method on the trained sub-networks 
to get the learning result. [61] is also a data ensemble approach 
for Bayesian network learning from big datasets to achieve better 
scalability and accuracy. [62] studies how to conduct data ensem-
ble learning based linear causal model discovery and mainly uses 
bagging ensemble [24] to get different data samples for a spe-
cific causal discovery algorithm and later used different voting 
mechanism to combine the results. [63] extends [62] by consid-
ering additional ensemble strategies including Adaboost [65] and 
GASEN [66]. Similar to our findings, their work also shows en-
semble learning could achieve more accurate causality discovery 
results. Because the dataset used in [62] and [63] is rather small, 
they did not discuss partitioning based data ensemble. As a hybrid 
ensemble approach, [64] conducts two-phase (algorithm ensem-
ble for each data partition and data ensemble for multiple data 
partitions) Bayesian network ensemble learning. The main differ-
ences of the work in this paper and [64] are 1) our algorithm-level 
ensemble belongs to heterogeneous ensemble because each learn-
ing algorithm uses its own causality discovery models, while [64]
belongs to heterogeneous ensemble with different learning algo-
15
rithms of the same Bayesian network model; 2) this paper targets 
causality discovery instead of Bayesian network learning; 3) this 
paper supports two types of two-phase ensemble, namely both 
data-algorithm hybrid ensemble and algorithm-data hybrid ensem-
ble, while [64] only supports data-algorithm ensemble.

7.2. Parallel ensemble learning in big data systems

Besides the probabilistic graphic model related ensemble stud-
ies in the previous subsection, most other big data parallel ensem-
ble learning algorithms are tree based where different trees can be 
trained in parallel with a data subset, then results from multiple 
trees are ensembled via majority voting (e.g., [67]) or tree boost-
ing (e.g., XGBoost [22]). There are two main approaches of data 
partitioning: horizontal data partitioning based on rows and verti-
cal data partitioning based on columns.

[67] contains horizontal data partitioning and parallel learning 
among the data partitions. Input data is first partitioned verti-
cally to divide training data features to independent subsets. Then 
each task loads the data from one feature subset to train an in-
dependent tree and multiple trees can be trained in parallel. For 
XGBoost, PLANET [68] and COMET [69], parallel training is done 
via horizontally partitioned data and they differ in how different 
trees are ensembled.

As a comparison, parallelization in our hybrid ensemble ap-
proaches is done via horizontal data partitioning because all fea-
tures are needed for each training and our data has time depen-
dency. Further, multiple learning algorithms are employed for each 
data partition in our algorithm-data ensemble while the above re-
lated work only employs the same learning algorithm for different 
data partitions.

8. Conclusions

Causality discovery is a fundamental research topic in many dis-
ciplines and discovered cause-effect relationships can help explain 
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why a system has certain behavior or state. Nowadays, data-driven 
causality discovery faces two challenges: 1) the large volume of 
datasets to be learned from and 2) the variety of causality dis-
covery algorithms. To deal with these two challenges, this paper 
proposes a flexible two-phase ensemble causality discovery frame-
work and two approaches for scalable and hybrid ensemble learn-
ing. Experiments show our algorithms outperform baseline ones in 
terms of both accuracy and execute time in most cases.

For future work, we will focus on the following aspects. First, 
we will extend the work to further enable ensemble of time lag 
and probability of causal edges. Second, we will study how to bet-
ter select and merge results from many available individual causal-
ity learning algorithms, i.e. measuring individual learner diversity 
and weighted majority voting, for better ensemble result accuracy. 
Further, we plan to investigate whether and how other ensemble 
approaches, such as boosting ensemble [25,70] could help better 
causality discovery.
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