
Large-Scale Causality Discovery Analytics
as a Service

Xin Wang, Pei Guo, Jianwu Wang
Department of Information Systems, University of Maryland, Baltimore County, Baltimore, MD, United States

{xinwang11, peiguo1, jianwu}@umbc.edu

Abstract—Data-driven causality discovery is a common way to
understand causal relationships among different components of
a system. We study how to achieve scalable data-driven causal-
ity discovery on Amazon Web Services (AWS) and Microsoft
Azure cloud and propose a causality discovery as a service
(CDaaS) framework. With this framework, users can easily re-
run previous causality discovery experiments or run causality
discovery with different setups (such as new datasets or causality
discovery parameters). Our CDaaS leverages Cloud Container
Registry service and Virtual Machine service to achieve scal-
able causality discovery with different discovery algorithms. We
further did extensive experiments and benchmarking of our
CDaaS to understand the effects of seven factors (big data
engine parameter setting, virtual machine instance number, type,
subtype, size, cloud service, cloud provider) and how to best
provision cloud resources for our causality discovery service
based on certain goals including execution time, budgetary cost
and cost-performance ratio. We report our findings from the
benchmarking, which can help obtain optimal configurations
based on each application’s characteristics. The findings show
proper configurations could lead to both faster execution time
and less budgetary cost.

Index Terms—Causality discovery, XaaS, Cloud computing,
Benchmarking, Big data analytics

I. INTRODUCTION

Causality [29] is a fundamental research topic studying
cause-effect relationships among different components of a
system and causality study can help explain why the system
has certain behaviors. Data-driven causality learning/discovery
has been widely studied [22] and applied in many disciplines
including climatology [31] and neuroscience [15]. For in-
stance, study at [31] shows ENSO phenomenon causes surface
air temperature in many remote areas using a data-driven
algorithm, which is consistent with climate models.

In this paper, following XaaS (Everything as a Service)
principle [17], we study how to provision scalable causal-
ity discovery as a service (CDaaS) and mainly address the
following challenges. First, with more and more types of
cloud services available to use, it is not easy to find the
best cloud services for causal discovery from large-scale
datasets. Second, it is difficult to know the best configurations
(including virtual machine instance type and number) based on
different goals such as least budgetary cost, shortest execution
time, and minimal cost-performance ratio.

To address the above challenges, we design an extensible
framework to enable efficient causality discovery from large-
scale datasets on the cloud and evaluate it on both Amazon
Web Services (AWS) and Microsoft Azure cloud. To the best
of our knowledge, our work is the first cloud service for
scalable causality discovery. The implementations of our work
are open-sourced at [2] and the contributions of the work are
summarized below.

• We propose an open-source and extensible causality dis-
covery cloud computing service framework that works on
AWS and Azure cloud. We make our service an end-to-
end, configurable, and automated pipeline to have good
usability.

• To address large-scale available datasets and complicated
software dependencies for different causality discovery
algorithms, our framework utilizes and integrates con-
tainer service and distributed virtual cluster to achieve
scalable causality discovery by dynamic deployment of
the containerized software environment.

• We did extensive experiments to benchmark different
configurations of our CDaaS to explore how to best
provision resources based on certain goals such as short-
est execution times or least budget. We show proper
configurations could lead to both faster execution time
and less budgetary cost.

The rest of the paper is organized as follows. In Section
II, we briefly introduce the cloud services we utilize in our
proposed service and our scalable and hybrid causality dis-
covery framework. In Section III, we express the architecture
and implementation of the proposed causality analytic as a
service framework in detail. Experiments and benchmarking
results are discussed in Section IV. We compared our work
with related studies in V and conclude in Section VI.

II. BACKGROUND

A. Related Cloud Services

1) Cloud Virtual Cluster: Cloud virtual cluster consists
of a group of nodes hosted on virtual machines (VMs) and
connected within one virtual private network. Usually, it can
form a cluster from multiple common VMs connected, while
managing and performing operations within the whole cluster
only through a single master VM. Based on this regular ser-
vice, most clouds provide their advanced VM cluster services.978-1-6654-3902-2/21/$31.00 ©2021 IEEE

As a cloud-based big data platform implemented by Amazon,
Elastic MapReduce (EMR) utilizes a hosted Hadoop [33]
framework running on the web-scale infrastructure of Amazon
Elastic Compute Cloud (EC2). Microsoft also has a similar
big data infrastructure service called Azure HDInsight [26].
Like EMR, HDInsight also provides open-source tools such as
Apache Hadoop, Apache Spark [34], Apache Hive [32] and
many other Apache software. One advantage of cloud virtual
cluster service is that it is easy to set up, configure, and operate
using both graphic user interface (GUI) and command-line
interface, such as AWS CLI [11]. It is also reliable with stable
software releases. Another good feature is its elasticity, which
means users can request any number of instances or containers
to run their applications or utilize its auto-scaling ability to let
the service manage cluster sizes based on utilization.

2) Virtual Private Cloud: Virtual Private Cloud (VPC) or
virtual network enables users to define the isolated, secure,
and monitored virtual network for cloud resources. Users can
easily set up VPC, like AWS VPC [10], to get full control
of the virtual networking environment, with customized cloud
network configuration, such as IP address range selection,
subnet creation, the configuration of routing table and network
gateways. In VPC, a subnet can be either public-facing to
have access to the Internet or private-facing without Internet
access. Moreover, the level of security can be separately
configured in each subnet. For example, in order to connect
between VPCs, cloud resources and on-premise networks, one
of AWS approaches named PrivateLink [12] provides private
connectivity and ensures the security of the network traffic.
It is simple to use since there is no need to set up firewall
rules, path definitions, or routing table. There are two types
of endpoints in PrivateLink: interface VPC endpoints and
gateway load balancer endpoints. The former connects to the
cloud-hosted services, which is used in our work.

3) Container Registry: A container is a standard unit of
software. It makes code and all its dependencies into packages,
then it can be used in different computing environments
rapidly and reliably without complex configurations. Cloud
container registry like Docker Hub [16] and Amazon Elastic
Container Registry (ECR) [7] makes it easy to store, manage,
share, and deploy container images and artifacts anywhere.
There are mainly two choices of cloud container registry:
private or public. For private container registry, the container
software is privately shared within the organization. However,
the public container registry can be found and downloaded by
anyone. In our framework, both public and private container
registries are supported.

B. Scalable and Hybrid Ensemble Causality Discovery

To discover the cause-effect relationships in a system, many
learning approaches exist such as Granger causality [19],
PCMCI [30], Dynamic Bayesian Network [27], and Conver-
gent Cross Mapping [38]. For instance, Granger causality [19]
defines one-time series X Granger causes another time series
Y , if and only if regression-based prediction for Y based on
past values of both X and Y is statistically significant than

regression-based prediction of Y only based on past values of
Y . Causal graph is the most common way to model causal
relationships in which vertices/nodes represent variables and
directed edges represent causal relationships.

Input:

Time-series data

Output:

Causality graph,

adjacency matrix

Data Partition 1

Data Partition 2

Data Partition 3

Data Partition N

...

Data Partition

Phase 1 Ensemble
Result 1

Phase 1 Ensemble
Result 2

Phase 1 Ensemble
Result 3

Phase 1 Ensemble
Result M

...

Phase 1
Ensemble

Phase 2
Ensemble

Phase 2 Ensemble
Result

Fig. 1: Two-phase hybrid ensemble framework for causality
discovery.

On top of these individual algorithms, our previous
work [20], [21] proposed a two-phase hybrid causality dis-
covery ensemble framework, which utilizes data partitioning
and ensemble techniques as in Figure 1 to achieve scalability
and reduce result uncertainty. The ensemble is achieved by
first conducting phase 1 ensemble for partitioned data and
then conducting phase 2 ensemble from phase 1 ensemble
results. The hybrid framework can combine learning results
from different data partitions (namely data ensemble), and
different algorithms (namely algorithm ensemble). Two en-
semble algorithms are implemented: data-algorithm ensemble
and algorithm-data ensemble. The first one conducts data
ensemble in phase 1 and algorithm ensemble in phase 2. The
second one conducts data ensemble and algorithm ensemble in
the opposite order. To achieve scalability, we further parallelize
the ensemble approaches via the Spark big data analytics
engine.

III. CAUSALITY DISCOVERY AS A SERVICE (CDAAS)

To leverage various cloud services and support scalable
causal discovery in the cloud, we design a new cloud service
called Causality Discovery as a Service (CDaaS). We first
introduce the usage pipeline of our proposed CDaaS on
AWS as an example. The proposed architecture and its main
components are discussed next as our logical implementation,
and the physical implementation is introduced followed. To
extend CDaaS beyond one specific cloud, we also discuss its
extensibility on causality algorithms and cloud platforms. This
CDaaS architecture supports the two-phase hybrid ensemble
framework in Section II-B well by processing partitioned data
in parallel among the worker nodes of CDaaS.

A. CDaaS Usage Pipeline

The usage pipeline of CDaaS is shown in Figure 2. Intro-
duced with AWS cloud as an example, the user first needs to
upload or select some time-series datasets. Then the available
causality discovery algorithms can be selected. In the next
step, users can select a single causal discovery algorithm, or
select multiple algorithms to produce ensemble results using

Select causal
discovery algorithms

Set parameters for
each causal

discovery algorithms

Return discovered
causal graph and
adjacency matrix

Create docker file for
selected algorithms

Deploy to ECR

Select instance type,
size, number

Customized
docker image

CDaaSUpload/select dataset

Fig. 2: The causality discovery experiment usage pipeline based on our proposed CDaaS architecture.

our ensemble model explained in Section II-B. After algorithm
selection, with the container-based approach, the system will
automatically create a docker file containing an essential
execution environment based on the selected algorithms, then a
customized docker image will be created and deployed to ECR
to get prepared. With script-based approach, the pre-defined
environment script will be uploaded to the cloud as a bootstrap
file for virtual cluster initialization. After algorithm selection,
the user is also enabled to set parameters for each selected
algorithm. In the next step, the VM instance type, size, and
number can also be configured by the user. After these settings
are done, the CDaaS will be initialized automatically. When
cloud computing of the causality discovery process is done,
the results including discovered causal graph and adjacency
matrix are returned to the user.

B. CDaaS Architecture

Master node
(driver)

Apache Hadoop
YARN (Spark

resource manager)

VPC

AWS

Private
Subnet

Worker node Worker node Worker node...

Public
Subnet

Client mode 1:

Web server

Router

Virtual

Cluster

NAT Gateway

Endpoints

Client mode 2:

Local machine

Client mode 3:

Cloud formation

Docker images from

private or public

ECR

AWS PrivateLinkAWS PrivateLink

AWS PrivateLink
ECR Endpoints

Input:
Time-series dataset; Causal

discovery approach(es),
parameters and commands;

VM Instance type, size, number

Output:

Causality graph and

adjacency matrix
S3

Fig. 3: The architecture of CDaaS on AWS.

We now describe the logical implementation of CDaaS
followed by the usage pipeline introduced in Section III-A. Its
physical implementation is further introduced in Section III-C
and the cloud extensibility is discussed in Section III-D. Our
CDaaS’ architecture is shown in Figure 3. Its inputs include
time-series datasets, causal discovery algorithm selection,
and corresponding parameters, AWS virtual machine (VM)
instance type, size, number, and other configurations. The
final output is the discovered causality graphs and adjacency
matrices.

CDaaS supports three client modes for users to interact with:
1) web server, 2) local machine and 3) cloud formation [5].
In web server mode, a web server is deployed in the public
subnet to communicate with Internet. It hosts its front-end GUI
to get the benchmark configurations from the user and send
them to its back-end. The operations that causality will execute
in virtual cluster are first defined and packaged within a
Lambda function, the function then invoked from the front-end
RESTful APIs and WebSocket APIs through API Gateway.
After the analytics execution is finished in virtual cluster, the
response will be sent to the front-end application with its
detail about the causality output. Within the same VPC, web
server is connected to the VM cluster through a router because
the cluster is inside a private subnet. Another client mode is
local machine. The user provides customized data and config-
urations directly to the VM cluster through an AWS private
link. Local machine mode uses the cloud-specific software
development toolkit (SDK) to handle the execution of data
analytics, which provides flexible management and debugging
interface. The local machine mode requires basic programming
knowledge about Linux commands, so that program engineers
or developers belong to the preferred users of this mode. Cloud
formation mode allows users to code their configurations in
YAML or JSON directly with sample templates, and use
the cloud-specific web-based manager service to manage all
causality resources based on these configurations. By doing
this, the automation stacks and resources will be orderly
and predictably provisioned as a running environment, which
enables the version control of our service. Like the web
server mode, the cloud formation mode also provides web-
based manual operation, which is preferred for end-users since
it does not need much knowledge of implementation and
programming.

In the virtual private cloud, both the public and private
subnet are used in CDaaS architecture. Within our design,
public subnet is used to host the web server and private subnet

is created to launch the virtual cluster. We choose private
subnet because it is more secure by not exposing the traffic
to Internet. Within the private subnet, the VM cannot receive
traffic from Internet directly since they do not been allocated
the elastic IP addresses [13], which are the static public IPv4
addresses for dynamic cloud computing. Besides, each public
and private subnet can be assigned to a security group. The
security group of public subnet allows HTTP and HTTPS
inbound rules from everywhere through IPv4 or IPv6. Instead,
the security group of private subnet only enables all TCP and
UDP connections for EMR cluster computation. Specifically,
the master instance can be set an additional SSH inbound rule
for operation debugging. The outbound rule for both security
groups allows all traffic from everywhere as our default setting.

Within the virtual cluster, the application execution environ-
ment can be loaded as a docker image saved in the container
registry as either the public or private repository. For example
in AWS, since the docker image is in ECR and outside the
AWS VPC, the interface VPC endpoints, powered by AWS
PrivateLink, act as the connector, which enables the resource
manager of the cluster to download docker images from the
chosen ECR registry. After a container is downloaded, the
YARN NodeManager launches it directly inside one docker
container on the host machine of the cluster. By using a
container-based approach, it is easy to deploy libraries and
runtime dependencies for our causality discovery algorithms.
Additionally, due to the different resource capabilities among
cloud providers, we also provide a general script-based ap-
proach. Rather than launching the YARN NodeManager inside
the docker, the script-based approach installs the defined
software environment in all cluster VMs. These bash files
include master and worker-specific scripts, which consisted
of the command-line interface for interacting with operating
systems so that it can be compatible with the virtual cluster
almost in any cloud provider.

The standard storage S3 [9] are used to save input data, exe-
cution log, and output on the cloud, and it requires endpoints to
communicate with the virtual cluster. The execution measure-
ments can be retrieved for execution evaluation. To download
the output to a local machine through the private subnet of
the cluster, a network address translation (NAT) [8] gateway
is set up for communication between the private subnet and
Internet. Finally, the output, which includes causality graphs
and adjacency matrix discovered by the causality algorithm,
is returned to the end-user.

C. Implementation of CDaaS

Following what is shown in Figure 3, we first achieve the
first client mode (web server) by using the AWS Amplify,
which helps users setting up continuous deployment and
hosting, creating an app back-end in the admin GUI, and
managing full-stack environments. Besides the dynamic API
calls over HTTP from Amplify, we also provide RESTful APIs
in Amazon API Gateway which are optimized for serverless
workloads and HTTP back-ends using HTTP APIs. The back-
end Lambda function is then invoked by the bound event of

API Gateway proxy integration. With our implementation, this
Node.js Lambda function enables virtual cluster initialization,
software/docker environment setup, and causality execution
based on the commands delivered by body field of the HTTP
requests. After the causality execution is done, Lambda func-
tion will send a callback of the returned status code. Especially,
the docker image in the current implementation is one general
image containing all supported causality discovery algorithms.
It could be further improved by supporting multiple docker
images so each causality discovery algorithm can be packed
in its own docker image.

We also support end-to-end automatic causality discovery
on AWS cloud using client mode 2, including logging of
execution time and cost. The automation is built on top of
Boto (v2) [1] library, which is an integrated interface to
current and future cloud services offered by Amazon Web
Services. Specifically, our implementation consists of a set of
functions that are specific to AWS services as handy scripts
by using Boto, which can be invoked to perform necessary
cloud automation operations. For example, in order to perform
actions on cloud services and resources, CDaaS connects AWS
by creating a Boto session using authentication credentials.

For client mode 3 (cloud formation), we implement AWS
CloudFormation templates both in its JSON and YAML speci-
fications. The template file contains configuration information
about the cloud resources and pipeline during causality execu-
tion. By manually operations on cloud console web page with
this template, the virtual machine cluster can be deployed and
perform the causality execution.

Within these three client modes, some implementations
can be used directly on Azure and other clouds, like VM
software/docker environment setup scripts, docker images and
files, and the RESTful APIs in front-end environments. Thus
for CDaaS in Azure, we only provide the client mode 3, which
is implemented by using Azure Resource Manager service.
By building the specified JSON template, which includes a
description of the resources and their deployment settings,
Resource Manager enables the user to deploy and manage
resources as a group, and execute causality execution when
initialization is finished.

The docker image in the current implementation is one
general image containing all supported causality discovery al-
gorithms. It could be further improved by supporting multiple
docker images so each causality discovery algorithm can be
packed in its own docker image.

D. Extensibility of CDaaS

To achieve easy extensible service, CDaaS extensibility
should be considered from two parts, including causality dis-
covery algorithms and cloud platforms. The detail is discussed
as follows.

1) Extensibility on causality discovery algorithms: Since
our CDaaS is modularized, it is highly extensible. As shown
in the pipeline in Figure 2, different causality discovery algo-
rithms can be easily selected separately to conduct causality
learning. Regarding our ensemble model explained in Section

TABLE I: Extensibility of CDaaS to other cloud platforms.

Service category Service description Amazon AWS Microsoft Azure Google Cloud
Big data cluster Cloud-based big data platform that hosting Hadoop and Spark cluster. EC2/EMR VM Scale Set/HDInsight Compute Engine/Dataproc

Network security Provide managed and monitored virtual network for resources. VPC Virtual Network Virtual Private Cloud
Container registry Storing and managing container images. ECR Azure Container Registry Artifact Registry

Object storage Secure Cloud storage. S3 Blob Storage Cloud Storage
Web server Building, deploying and scaling web applications and services. Amplify App Service App Engine

Python SDK Easy-to-use interface to access cloud services. Boto/Boto3 .NET Core Cloud SDK

II-B, if more than one algorithm is selected, both causal
graphs of individual causal discovery algorithms and the causal
graph ensemble results from all selected algorithms will be
generated. Also, the parameters of specific causality discovery
algorithms can also be easily changed and tuned.

Besides, new causality discovery algorithms could be easily
added to the system. A new container and corresponding
scripts will be set up to support the additional algorithms,
then be deployed to container registry and directly run on the
virtual cluster.

2) Extensibility on cloud platforms: CDaaS can be exten-
sible to other cloud platforms. Most cloud services provided
by AWS, Azure and Google Cloud can be mapped to each
other. We mainly talk about the CDaaS architecture and
pipeline on AWS in this section, but our work is not tightly
coupled with AWS definitely. To prove the extensibility, we
also implement the partial CDaaS architecture in Azure cloud,
and its implementation is already introduced in Section III-C.
For cloud services we used in CDaaS, other providers also
have very similar services. For each cloud service CDaaS used,
we list its corresponding services in different cloud platforms
in Table I.

IV. EXPERIMENTS AND BENCHMARKING

In this section, we conduct various experiments to bench-
mark how different factors affect the execution time, budgetary
cost, and cost-performance ratio of our CDaaS. The factors
we investigated include Spark submission parameters, VM
instance type and sub-type, VM instance number, VM instance
size, cloud service and cloud provider. We summarize our
findings at the end of each comparison. The findings are useful
to find the optimal configurations based on each application’s
characteristics.

A. Environment Setup

1) Software and dataset: The algorithm in our benchmark-
ing is the Spark-based scalable two-phase hybrid algorithm-
data ensemble causality discovery algorithm described in Sec-
tion II-B. The ensemble contains three data-driven causality
discovery algorithms: Multivariate Granger causality, Dynamic
Bayesian Network, and PCMCI. The data in our experiment
is 10M rows of simulated five variable time-series records,
which is the same as the one used in our previous work [21].
Its data size is around 500 MB.

We present causality discovery analytics in both AWS and
Azure platform. For causality on AWS, all VM instances in the
cluster utilize the EMR release version emr-6.0.0 with Spark
application, which includes Spark 2.4.4 on Hadoop 3.2.1

YARN with Ganglia 3.7.2 and Zeppelin 0.9.0-SNAPSHOT.
For causality on Azure, since HDInsight service does not sup-
port docker-based Spark computation, we instead run causality
in the script-based approach on both clouds for performance
comparison.

The docker environment we implemented is hosted on ECR
in public repository and Docker Hub, with Python 3.7 and R
3.4. The driver’s memory is utilized as much as we can, around
80% of the instance memory. The deploy mode of Spark is the
cluster with YARN resource manager. The data partition level
is 240. The same metric used in our previous work, namely
hamming distance, is employed to measure the quality of the
results. All experiments produce the same causal graphs as
output because all experiments use the same data partition
number, which will generate the same number of Spark tasks.
The differences of the experiments are in how and where the
tasks are executed.

2) Hardware: We mainly introduce the hardware of ex-
periments on AWS. On Azure, we use the VM cluster with
the same computational capability for different cloud eval-
uations. Since both docker and script-based approaches are
run on top of EC2, we discuss EC2 VM cluster types in
our benchmarking experiments. The prices and resources of
the VM instance types are shown in Table II. The prices in
the table are on-demand rates. The experiments are executed
on EC2 general purpose instances m5, memory optimized
instances r5 and compute optimized instances c4, c5 and c5n,
since EC2 clusters are designed with several focused purposes.
The instances sizes we selected are xlarge, 2xlarge, and
4xlarge. All instances utilize Elastic Block Store (EBS) [6] as
storage and initiated in US-West-2 (Oregon) region. Enhanced
networking is enabled to get significantly higher packet per
second (PPS) performance, lower network jitter and lower
latency.

B. Measurement
Like related work such as [25], we also use the following

three metrics to measure our CDaaS.
1) Budgetary cost: When computing the budgetary cost, we

break up the cost of each component and compute cost into
four main parts: VM cost, big data service cost, VPC cost,
and EBS cost. Let C indicate cost, t be the execution time, p
be the price of the service, k be the instance number, and s
as data size, the cost function will be as follows.

Ctotal = CVM (t× p× k) + CBigData(t× p× k)
+CV PC(p× t) + CEBS(s× p)

(1)

In our cost function, namely Equation (1), the hourly rate
of VM (EC2) and big data service (EMR) on AWS already

TABLE II: The prices and resources of different instance types and sizes utilized on AWS.

Instance type Instance sub-type Instance size EC2 hourly price ($) EMR hourly price ($) vCPU Memory (GB)
General purpose m5 xlarge 0.192 0.048 4 16

Memory optimized r5 xlarge 0.252 0.063 4 32

Compute optimized

c5
xlarge 0.170 0.043 4 8
2xlarge 0.340 0.085 8 16
4xlarge 0.680 0.170 16 32

c4
xlarge 0.199 0.052 4 7.5
2xlarge 0.398 0.105 8 15
4xlarge 0.796 0.210 16 30

c5n
xlarge 0.216 0.054 4 10.5
2xlarge 0.432 0.108 8 21
4xlarge 0.864 0.216 16 42

shown on Table II, respectively. We note that even the cloud
uses hourly prices, the bills we received show the calculation
is done based on exact hour time in fraction (e.g., 3.14), not
rounded-up integer hour numbers (e.g., 4). The costs of these
two parts are related to the hour and the instance number.
The VPC price is $0.01 per virtual private cloud endpoint
hour. EBS is a high-performance and block-storage service for
VM cluster, with the cost of $0.10 per GB-month of general
purpose SSD (gp2) provisioned storage.

The above formula only contains the main costs of cloud
services. The minor costs are negligible compared to the main
costs and many of them are charged by accumulated usage,
not the individual one. Specifically, the minor costs we did not
count are: 1) the regional data transfer bandwidth cost, which
includes in/out/between VM availability zones or using elastic
IPs or elastic load balancing ($0.01 per GB); 2) the container
registry storage cost, calculated by the number of GB-hours
that data was stored in the storage ($0.10 per GB-month);
3) all API request cost, including $0.01 per Cost Explorer
API request, $0.03 per 10000 Key Management Service API
request, $0.05 per 10000 Secrets Manager API request, and
$0.50 per 1,000,000 Simple Notification Service API request;
and 4) standard storage cost, calculated by the number of GB-
hours that data was stored in the storage ($0.023 per GB-
month).

2) Execution time: When we record the total CDaaS execu-
tion time, we use wall-clock time, which includes four steps:
1) VPC endpoints creation, 2) VM cluster initialization, 3) VM
software preparation, and 4) execution of causality discovery
algorithms. VPC endpoints creation step runs the creation
command and waits for all required endpoints are ready to be
used. VM cluster initialization time starts from creating the
cluster to its status becoming waiting. VM software prepara-
tion step includes downloading data to cluster, updating built-
in software libraries used by the cluster, installing additional
required packages, and getting connected to cloud container
registry to get ready for Spark job submission. Causality
discovery execution time starts from the submission of the
Spark job to the end of the execution. After that, the logs are
downloaded then the cluster and all endpoints are shut down.
From all experiments we conducted, we draw the box-plots
of time taken for these four steps in Figure 4. The figure
shows the time taken by the first three steps is relatively

constant and much shorter than the time for the fourth step.
The time range of the first three steps accounts for 8.3%, 3.3%,
and 1.7% of the total, respectively. In contrast, the range of
algorithm execution is around 0.5 hours, which accounts for
around 83.3% of the total, which is very large compared to
the previous three steps. So the causality discovery execution
step is the main reason for the wall-clock time differences.

Endpoints
creation

Cluster
initialization

Software
preparation

Algorithm
execution

0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(h

)

Fig. 4: The box-plots for the time taken by different steps of
our CDaaS.

3) Cost-performance ratio: Regarding the cost-
performance ratio computation, suppose the cost-performance
ratio is α, the wall-clock time of the whole experiment is t,
the performance of the program is p, the computed cost is c,
then the ratio equation is below. It is more desirable with the
lower α, excluding other factors.

α =
c

p
=
c
1
t

= c× t (2)

C. Benchmarking Results

We did benchmark to understand the effects of the following
seven factors: 1) Spark parameter setting, 2) VM instance
number, 3) VM instance type, 4) VM instance subtype, 5) VM
instance size, 6) cloud service, and 7) cloud providers. The first
five factors are evaluated only on AWS cloud with container-
based approach, and the last two are evaluated on both AWS
and Azure with script-based approach. For each factor, we
measure from three perspectives: execution time, budgetary

cost, and cost-performance ratio. We report our findings at the
end of each comparison.

The same metric used in our previous work [20], namely
hamming distance, is employed to measure the quality of the
results. All experiments produce the same causal graphs as
output because all experiments use the same data partition
number (240), which will generate the same number of Spark
tasks. The differences of the experiments are at how and where
the tasks are executed.

1) Comparison of Spark dynamic vs static parameter set-
tings: We experimented with three groups of Spark parameter
settings: 1) dynamic allocated executor, 2) static with 2 ex-
ecutors per worker nodes, and 3) static with 4 executors per
worker nodes. Dynamic allocated executor means the number
of executors and the resource is dynamically scaled up and
down based on the workload. The upper bound and lower
bound of dynamic executor numbers are infinity and zero, re-
spectively. Static settings keep the executor number, memory,
and cores fixed during the experiments. The memory of each
driver/worker node are static in each set of experiments. Each
parameter setting is executed on 4, 6 and 8 worker nodes using
m5.xlarge cluster (Figure 5), r5.xlarge cluster (Figure 6) and
c5.xlarge cluster Figure 7), respectively. In each figure, the
cost comparison, time comparison and cost-performance ratio
comparison are plotted.

For m5.xlarge instance, as shown in Figure 5a and Figure
5b, dynamic executor always has the lowest cost and the
shortest wall-clock time, compared to the static of both 2 and
4 executors per node. The results show the same outcome
for experiments we have done using different worker instance
numbers (4, 6 and 8 worker instances). Thus, the cost-
performance ratio is lowest for dynamic executors as shown
in Figure 5c, since it is both cheapest and fastest. The case
is also the same with r5.xlarge and c5.xlarge experiments.
Finding 1: our experiments conclude dynamic executor
allocation is always the best for our Spark-based big data
applications in all three metrics (budgetary cost, execution
time and cost-performance ratio). Because of this, in the
following experiments, all jobs are executed with dynamic
allocated executors.

2) Comparison of VM instance numbers: When compar-
ing how CDaaS performs with different number of VM in-
stances, we still refer to figures as in the previous experiment:
m5.xlarge cluster (Figure 5), r5.xlarge cluster (Figure 6) and
c5.xlarge cluster (Figure 7), respectively. The focus is on dy-
namic executor settings. When looking at m5.xlarge clusters,
the lowest cost is with 6 work nodes, while the shortest wall-
clock time and lowest cost-performance ratio all appear to be
with 8 worker nodes. And the worst performance and wall-
clock time is with 4 worker nodes. So in our experiments,
with a general purpose cluster, the more nodes we use, the
faster it executes with a lower cost-performance ratio.

Previous studies such as [37] have shown it is difficult
to improve both execution time and budgetary cost of cloud
services. In our experiment, comparing using 4 worker nodes
and 8 worker nodes, not only the execution time, the cost

TABLE III: Total cost and the components of m5.xlarge
instance with dynamic executor allocation (unit: $).

Worker instance number EC2 EMR VPC EBS Total
4 0.592 0.148 0.006 0.140 0.887
8 0.564 0.141 0.003 0.140 0.848

TABLE IV: Total time and the components of m5.xlarge
instance with dynamic executor allocation (unit: hour).

Worker
instance
number

Endpoints
creation

Instance
initialization

Instance
preparation

Algorithm
execution

Wall-clock
time

4 0.035 0.095 0.043 0.479 0.618
8 0.032 0.093 0.045 0.188 0.327

decreases. To analyze this seemingly impossible phenomenon,
we break down the cost and time of m5.xlarge instance with
4 and 8 worker nodes in Table III and Table IV respectively.
Because the data partition level in our program is 240, it means
our execution can still achieve a high level of parallelization
when the worker node number increases from 4 to 8. Table
IV shows the algorithm execution time difference is about 2.5
times (0.479 hours for 4 nodes and 0.188 hours for 8 nodes).
It means the improvement in the performance of scaling up
from 4 to 8 worker nodes is better than linear. Because the
algorithm execution time is dominant in total time, the speedup
of the execution results in less cost of EC2, EMR, and VPC
(as shown in Table III). EBS cost is the same because it does
not depend on time. In summary, the speedup of the execution
overweighs the additional cost with more worker nodes, which
results in less cost, better execution time, and thus better cost-
performance.

Similarly, in r5.xlarge and c5.xlarge instance experiments,
the lowest cost is with 6 worker nodes. But the best wall-clock
time and the best cost-performance ratio are with 8 worker
experiments. So with these purpose-optimized clusters, the
trade-off between a lower cost and a lower cost-performance
ratio also exists. The decision of the number of instances will
be made differently based on a budget-focused view or a cost-
performance-focused view. Finding 2: within a sufficient
level of parallelization on worker nodes, our experiments
show both execution time and cost-performance ratio
improve with a larger number of instances. A larger
instance number could also lead to less budgetary cost
for certain instance types.

3) Comparison of general different instance types: Our next
experiments focused on the performance comparison across
the different instance types. The results of costs, wall-clock
time and cost-performance ratio can be found in Figure 8.

When comparing the cost from Figure 8a, the lowest one
appears to be with 6 workers in c5.xlarge. Figure 8b shows
that the shortest wall-clock time is c5.xlarge with 8 worker
nodes. And the best cost-performance ratio is c5.xlarge with
8 worker nodes.

The experiments indicate that the compute optimized in-
stances, namely c5 clusters, achieve the best cost-performance
ratio compared to general purpose instances (m5) and memory
optimized instances (r5). The reason is that our CDaaS is

Dynamic 2 Executors 4 Executors
0

0.5

1

1.5

0.89

1 0.96

0.82
0.91 0.870.85

0.9 0.88

C
os

t
($

)

4 workers 6 workers 8 workers

(a) Cost comparison.

Dynamic 2 Executors 4 Executors
0

0.2

0.4

0.6

0.8

1

0.62

0.71
0.68

0.4
0.46 0.43

0.33 0.35 0.34T i
m

e
(h

)

4 workers 6 workers 8 workers

(b) Time comparison.

Dynamic 2 Executors 4 Executors
0

0.2

0.4

0.6

0.8

1

1.2

0.55

0.71
0.65

0.33

0.42
0.38

0.28
0.31 0.3

R
at

io

4 workers 6 workers 8 workers

(c) Ratio comparison.

Fig. 5: m5.xlarge: Comparison of Spark dynamic vs static parameter settings.

Dynamic 2 Executors 4 Executors
0

0.5

1

1.5

1.14

1.27 1.28

1.04
1.14 1.121.09

1.15 1.19

C
os

t
($

)

4 workers 6 workers 8 workers

(a) Cost comparison.

Dynamic 2 Executors 4 Executors
0

0.2

0.4

0.6

0.8

1

0.63

0.71 0.72

0.41
0.45 0.44

0.34 0.36 0.37T i
m

e
(h

)

4 workers 6 workers 8 workers

(b) Time comparison.

Dynamic 2 Executors 4 Executors
0

0.2

0.4

0.6

0.8

1

1.2

0.72

0.91 0.92

0.42

0.52 0.5

0.37
0.41 0.44

R
at

io

4 workers 6 workers 8 workers

(c) Ratio comparison.

Fig. 6: r5.xlarge: Comparison of Spark dynamic vs static parameter settings.

Dynamic 2 Executors 4 Executors
0

0.5

1

1.5

0.74

0.86

0.75
0.7

0.79
0.70.72

0.76 0.74

C
os

t
($

)

4 workers 6 workers 8 workers

(a) Cost comparison.

Dynamic 2 Executors 4 Executors
0

0.2

0.4

0.6

0.8

1

0.56

0.67

0.57

0.37
0.44

0.38

0.3 0.32 0.31

T i
m

e
(h

)

4 workers 6 workers 8 workers

(b) Time comparison.

Dynamic 2 Executors 4 Executors
0

0.2

0.4

0.6

0.8

1

1.2

0.42

0.58

0.43

0.26

0.35
0.27

0.22 0.24 0.23

R
at

io

4 workers 6 workers 8 workers

(c) Ratio comparison.

Fig. 7: c5.xlarge: Comparison of Spark dynamic vs static parameter settings.

compute-intensive. It achieves better performance with a more
advanced CPU. General purpose m5 clusters perform a little
bit better than memory optimized r5 clusters here, the reason
is the CPU of m5 clusters is slightly better than that of r5
clusters. Also, our service is not memory intensive, so that
larger memory did not help much. Finding 3: results show
that for compute-intensive applications, compute-intensive
instance type gives better execution performance, lower
cost, therefore also better cost-performance ratio.

4) Comparison of different instance sub-types: The ex-
periments of comparison of different instance sub-types are
executed on compute-optimized clusters since it performs
the best in the previous comparison to general purpose and
memory optimized clusters. We select three instance sub-
types in compute-optimized instances: c4, c5, and c5n. The
experiments are executed on these three sub-types, with three
different instance sizes (xlarge, 2xlarge, and 4xlarge) with 8
worker nodes. The results are shown in Figure 9. The lowest
cost appears on c5.xlarge, and the highest performance is
achieved by c5n.4xlarge. Here c5n performs better because
this sub-type has a larger bandwidth than c5 instances. Also,
c5n and c5 have better CPUs than c4 instances. The best cost-

performance ratio is achieved by c5.xlarge instance. Generally
speaking, in our experiments, the c4 instances are relatively
more expensive and slower than the c5 instances. Finding
4: sub-types with faster CPU and larger bandwidth can
speed up the experiments, but the cost is also higher. The
trade-off between cost and performance exists among VM
instances sub-types.

5) Comparison of different VM instance sizes: Since c5
instance gets best the cost-performance ratio in the previous
experiment, we further analyze the influence of different
VM instance sizes on cost, time, and cost-performance ratio
focusing on three different sizes (xlarge, 2xlarge, and 4xlarge),
as shown in Figure 10. For looking into the cost components,
we break down the costs as in Equation (1) illustrated in Figure
10a. The cost components indicate that the EC2 cost is the
largest part. Moreover, since the cost of VPC is less than $0.01
so the plot shows 0. The detailed costs of each component in
different instance sizes can be found in Table V.

The results show that c5.xlarge has the lowest cost, and
c5.4xlarge has the lowest wall-clock time. The best cost-
performance ratio is c5.xlarge, which shows that 4 times less
resources brought around 30% improvement comparing with

m5.xlarge r5.xlarge c5.xlarge
0

0.5

1

1.5

0.89

1.14

0.74
0.82

1.04

0.7

0.85

1.09

0.72

C
os

t
($

)

4 workers 6 workers 8 workers

(a) Cost comparison.

m5.xlarge r5.xlarge c5.xlarge
0

0.2

0.4

0.6

0.8

1

0.62 0.63

0.56

0.4 0.41
0.37

0.33 0.34
0.3

T i
m

e
(h

)

4 workers 6 workers 8 workers

(b) Time comparison.

m5.xlarge r5.xlarge c5.xlarge
0

0.2

0.4

0.6

0.8

1

1.2

0.55

0.72

0.42

0.33

0.42

0.260.28

0.37

0.22

R
at

io

4 workers 6 workers 8 workers

(c) Ratio comparison.

Fig. 8: Comparison of different instance types.

c4 c5 c5n
0

0.5

1

1.5

2

2.5

0.99

0.72

0.9

1.31

1.04

1.28

2.19

1.7

2.04

C
os

t
($

)

xlarge 2xlarge 4xlarge

(a) Cost comparison.
c4 c5 c5n

0

0.2

0.4

0.6

0.8

1

0.37

0.3 0.31
0.26 0.24 0.230.23 0.21 0.2

T i
m

e
(h

)

xlarge 2xlarge 4xlarge

(b) Time comparison.
c4 c5 c5n

0

0.2

0.4

0.6

0.8

1

1.2

0.37

0.22
0.28

0.34

0.25
0.3

0.5

0.35
0.4

R
at

io

xlarge 2xlarge 4xlarge

(c) Ratio comparison.

Fig. 9: Comparison of different compute optimized instances.

c5.xlarge c5.2xlarge c5.4xlarge
0

0.5

1

1.5

2

2.5

0.46

0.72

1.25

0.12 0.18
0.31

0 0 0
0.14 0.14 0.14

0.72

1.04

1.7

C
os

t
($

)

EC2 EMR VPC EBS Total

(a) Cost breakdown comparison.

0

0.2

0.4

0.6

0.8

1

T i
m

e
(h

)

c5.xlarge c5.2xlarge c5.4xlarge
0

0.2

0.4

0.6

0.8

1

1.2

0.3
0.24 0.210.22 0.25

0.35

R
at

io

Time Ratio

(b) Time and ratio comparison.

Fig. 10: Comparison of different instance sizes.

cost time ratio
0

0.2

0.4

0.6

0.8

1

1.2

0.72

0.3

0.22

0.74

0.39

0.29

0.78

0.42

0.33

V
al

ue

Aws EMR Aws VM Azure VM

Fig. 11: Comparison of different cloud ser-
vices and providers.

TABLE V: Total cost and the components of c5 clusters with
xlarge, 2xlarge and 4xlarge sizes (unit: $).

Instance size EC2 EMR VPC EBS Total
xlarge 0.458 0.116 0.003 0.140 0.718

2xlarge 0.721 0.180 0.002 0.140 1.044
4xlarge 1.250 0.312 0.002 0.140 1.704

c5.4xlarge scenario. So the trade-off still exists in the instance
size selection that a larger size of instance gives better perfor-
mance, but it is more expensive. Finding 5: our experiment
indicates that for compute-intensive applications, a larger
instance size performs better with higher cost. The trade-
off between cost and performance exists.

6) Comparison of different cloud services and providers:
We compare two additional factors in this experiment: 1)
differences between EMR and EC2 based virtual environment
in AWS, 2) differences between AWS and Azure. Since Azure
big data service HDInsight currently does not support docker-
based Spark computation, we instead run the experiments
on both AWS and Azure platform using script-based ap-
proach. According to previous findings, we use 8 workers with
c5.xlarge VM on AWS and Standard F4s v2 VM on Azure,

and the Spark application only runs with dynamic executor
setting. The VM used in both AWS and Azure is allocated in
4vCPUs with 8GIB Memory. Figure 11 shows the comparison
between the three methods: EMR based approach for AWS,
and script-based approaches for both AWS and Azure. The
figure shows using EMR service achieves better cost, time
and ratio compared to benchmarking without EMR. We note
EMR service involves extra costs because of its additional
capabilities on top of EC2 service. We believe the reason EMR
achieves less total cost is because the costs saved by not using
EMR service were less than the costs increased by additional
time caused by script-based approach. One advantage of using
script-based approach is the same scripts can be used in
different clouds (such as AWS and Azure). Additionally, when
comparing with different cloud providers among AWS and
Azure, experiments in AWS achieve lower cost, time and cost-
performance ratio, but did not cause much difference, whose
cost, time and ratio achieving accounts for 4.9%, 7.4% and
12.8% better performance, respectively. Finding 6: for our
CDaaS, the execution performs a little better on AWS cloud
compared with Azure and using AWS EMR performs
better than script-based approach in AWS.

D. Benchmarking Summary

The benchmarking experiments show that the dynamic
executor allocation is better than static executor configurations
in running Spark-based applications in cost, time, and cost-
performance ratio. With sufficient parallelism, a larger number
of instances could also help all three measurements. So we
could achieve both faster execution time and less budgetary
cost with proper configuration of Spark executor allocation op-
tion and VM instance number. For compute-intensive models,
compute-intensive instance gives better performance and lower
cost. However, the compute optimized sub-type with better
CPU and larger bandwidth performs better with higher cost.
In addition, a larger instance size performs better with higher
costs. The trade-off between better cost and better performance
exists in these two scenarios. Also, CDaaS in AWS with EMR
performs better than it without EMR, and AWS performs a
little better in experiments compared with Azure.

Our experiments also show different factors could have
significant effects on execution time, budgetary cost, and cost-
performance ratio and no configuration can achieve the best
for all three measurements. In our experiments, the worst
execution time (0.718 hours with configuration of 4 executors
per node, 4 worker nodes on r5.xlarge instances) is 3.64 times
as long as the shortest one (0.197 hours with configuration of
dynamic executors, 8 worker nodes on c5n.4xlarge instances).
In terms of budgetary cost, the most expensive cost ($2.192
with configuration of dynamic executors, 8 worker nodes on
c4.4xlarge instances) is 3.15 times as much as the least ex-
pensive one ($0.695 with configuration of dynamic executors,
6 worker nodes on c5.xlarge instances). In terms of cost-
performance ratio, the worst ratio (0.916 with configuration of
4 executors per node, 4 worker nodes on r5.xlarge instances)
is 4.24 times as large as the best one (0.216 with configuration
of dynamic executors, 8 worker nodes on c5.xlarge instances).

V. RELATED WORK

A. Causality Discovery Services and Platforms

One causality service [4], called Causal Web, is developed
to help discover valid, novel, and significant causal relation-
ships from big biomedical data that lead to new biomedical
insights. Another causality discovery benchmark platform is
called CauseMe [3] and allows users to test their causal discov-
ery algorithms accuracy against various datasets provided by
the platform. The difference between these services and ours
are: 1) they are not cloud services, which makes them hard to
reproduce specific causal discovery processes; 2) their supports
for big data are limited because they do not leverage parallel
computing or big data platforms for scalable execution; 3) they
only support individual causal algorithms while ours supports
both individual causal discovery algorithms and the ensemble
of multiple causal algorithms.

B. Cloud-based Benchmarking for Big Data Analytics

Because of the on-demand and elasticity feature of cloud
computing, the cloud has become a popular environment to

conduct computational science [28] including big data analyt-
ics [24], [35], [39], [40]. Users can easily spin up a virtual big
data cluster in the cloud, run their big data applications, and
then dismantle the environment. There have been also some
studies about big data analytics benchmarking in the cloud. In
paper [36], for considering both hot/cold startup and hot/cold
shutdown of VMs, the authors establish a multi-objective
model to benchmark both performance and cost of cloud
computing platform. VISCERAL [23] developed a cloud-
based framework for experimentation of big data analytics
focusing on the quality of prediction, which is more aiming to
reduce the complexities and barriers to running experiments
on huge representative datasets. PRIMEBALL [18] achieved
a complete and unified benchmark for measuring parallel
cloud processing frameworks for big data applications, whose
strengths are parallelization capabilities supporting cloud fea-
tures and big data properties. The differences between our
work and these related studies can be summarized as follows.
First, our architecture uses and integrates existing cloud ser-
vices as much as possible so that our implementation is much
easier to maintain. It can benefit from the automatic upgrades
of the cloud services such as software library version upgrades.
Second, we conducted more extensive benchmarking experi-
ments by investigating seven factors (big data engine param-
eter setting, virtual machine instance number, type, subtype,
size, cloud service, cloud provider) and the findings from our
benchmarking can help users find the best configuration for
their own big data application.

VI. CONCLUSION

To fill the gap between causality discovery and XaaS on
the cloud, we develop our causality discovery analytics as
a service (CDaaS) on the cloud. We propose an end-to-end
framework fully utilizing cloud services and implement an
automation process for users to execute scalable and hybrid
causality discovery on the cloud. Further, we conducted ex-
tensive experiments to understand how to best provision our
CDaaS on clouds. For the same causality discovery application
from the same dataset, different configurations result in a 3-
5 times difference in terms of execution time, budgetary cost,
and cost-performance ratio. Previous studies such as [37] have
shown execution time and budgetary cost of cloud services
often conflict with each other and it is difficult to improve both.
Our benchmarking shows that we could improve execution
time and budgetary cost with proper configurations.

For future work, we will mainly focus on the following two
aspects. First, we will extend our work to easily publish causal
discovery application executions as public records following
the Research Object framework [14] so they can be referred
via DOI identifiers later. Second, we will study how to utilize
cloud service scheduling techniques [37] to achieve automatic
optimization based on users’ objectives, dataset, and algorithm
selection based on our benchmarking findings.

ACKNOWLEDGMENT

This work is supported by grant CAREER: Big Data Cli-
mate Causality Analytics (OAC–1942714) and grant Cyber-
Training: DSE: Cross-Training of Researchers in Computing,
Applied Mathematics and Atmospheric Sciences using Ad-
vanced Cyberinfrastructure Resources (OAC–1730250) from
the National Science Foundation.

REFERENCES

[1] Boto: A python interface to amazon web services. https://github.com/
boto/boto, 2018. Accessed: 2018-07-11.

[2] Causality discovery as a service. https://github.com/big-data-lab-umbc/
Causality Discovery as a Service, 2021. The corresponding Docker
image: https://gallery.ecr.aws/e0a3g4z6/causality-ensemble and https:
//hub.docker.com/r/starlyxxx/causality-ensemble-dockerhub. Accessed:
2021-10-20.

[3] Causeme: A platform to benchmark causal discovery methods. https:
//causeme.uv.es/, 2021. Accessed: 2021-04-13.

[4] Welcome to ccd docs. https://bd2kccd.github.io/docs/tetrad/, 2021.
Accessed: 2021-04-13.

[5] Amazon Web Services, Inc. Amazon CloudFormation. https://aws.
amazon.com/cloudformation/, 2021. Accessed: 2021-04-13.

[6] Amazon Web Services, Inc. Amazon Elastic Block Store (EBS). https:
//aws.amazon.com/ebs/, 2021. Accessed: 2021-4-13.

[7] Amazon Web Services, Inc. Amazon Elastic Container Registry (ECR).
https://aws.amazon.com/ecr/, 2021. Accessed: 2021-4-13.

[8] Amazon Web Services, Inc. Amazon network address translation
(NAT) gateways. https://docs.aws.amazon.com/vpc/latest/userguide/
vpc-nat-gateway.html, 2021. Accessed: 2021-4-13.

[9] Amazon Web Services, Inc. Amazon Simple Storage Service (S3). https:
//aws.amazon.com/s3/, 2021. Accessed: 2021-4-13.

[10] Amazon Web Services, Inc. Amazon Virtual Private Cloud (VPC). https:
//aws.amazon.com/vpc/, 2021. Accessed: 2021-4-13.

[11] Amazon Web Services, Inc. AWS Command Line Interface. https:
//aws.amazon.com/cli/, 2021. Accessed: 2021-4-13.

[12] Amazon Web Services, Inc. AWS PrivateLink. https://aws.amazon.com/
privatelink/, 2021. Accessed: 2021-4-13.

[13] Amazon Web Services, Inc. Elastic IP addresses . https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html,
2021. Accessed: 2021-4-13.

[14] S. Bechhofer, I. Buchan, D. De Roure, P. Missier, J. Ainsworth, J. Bha-
gat, P. Couch, D. Cruickshank, M. Delderfield, I. Dunlop, et al. Why
linked data is not enough for scientists. Future Generation Computer
Systems, 29(2):599–611, 2013.

[15] M. Ding, Y. Chen, and S. L. Bressler. Granger causality: Basic theory
and application to neuroscience. In B. Schelter, M. Winterhalder, and
J. Timmer, editors, Handbook of Time Series Analysis, pages 437–460.
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, Sept.
2006.

[16] Docker, Inc. Docker Hub. https://www.docker.com/products/docker-hub,
2021. Accessed: 2021-4-13.

[17] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu. Everything
as a service (xaas) on the cloud: origins, current and future trends. In
2015 IEEE 8th International Conference on Cloud Computing, pages
621–628. IEEE, 2015.

[18] J. Ferrarons, M. Adhana, C. Colmenares, S. Pietrowska, F. Bentayeb,
and J. Darmont. Primeball: a parallel processing framework benchmark
for big data applications in the cloud. In Technology Conference on
Performance Evaluation and Benchmarking, pages 109–124. Springer,
2013.

[19] C. W. Granger. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, 37(3):424–438, 1969.

[20] P. Guo, Y. Huang, and J. Wang. Scalable and flexible two-phase
ensemble algorithms for causality discovery. Big Data Research,
26:100252, 2021.

[21] P. Guo, A. Ofonedu, and J. Wang. Scalable and hybrid ensemble-based
causality discovery. In 2020 IEEE International Conference on Smart
Data Services (SMDS), pages 72–80, 2020.

[22] R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu. A survey of learning
causality with data: Problems and methods. ACM Computing Surveys
(CSUR), 53(4):1–37, 2020.

[23] A. Hanbury, H. Müller, G. Langs, and B. H. Menze. Cloud–based
evaluation framework for big data. In The Future Internet Assembly,
pages 104–114. Springer, 2013.

[24] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li. Big data processing in
cloud computing environments. In 2012 12th international symposium
on pervasive systems, algorithms and networks, pages 17–23. IEEE,
2012.

[25] K. Li. Quantitative modeling and analytical calculation of elasticity in
cloud computing. IEEE Transactions on Cloud Computing, 8(4):1135–
1148, 2017.

[26] Microsoft Azure Cloud, Inc. Microsoft Azure HDInsight. https://azure.
microsoft.com/en-us/services/hdinsight/, 2021. Accessed: 2021-4-13.

[27] K. P. Murphy and S. Russell. Dynamic bayesian networks: representa-
tion, inference and learning. 2002.

[28] National Academies of Sciences, Engineering, and Medicine. Repro-
ducibility and Replicability in Science. The National Academies Press,
Washington, DC, 2019.

[29] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge
University Press, New York, NY, USA, 2nd edition, 2009.

[30] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic.
Detecting causal associations in large nonlinear time series datasets.
https://arxiv.org/abs/1702.07007v2, 2018. Accessed: 2018-06-28.

[31] H. Song, J. Tian, J. Huang, P. Guo, Z. Zhang, and J. Wang. Hybrid
causality analysis of enso’s global impacts on climate variables based
on data-driven analytics and climate model simulation. Frontiers in
Earth Science, 7:233, 2019.

[32] The Apache Software Foundation. APACHE HIVE TM. https://hive.
apache.org/, 2021. Accessed: 2021-04-13.

[33] The Apache Software Foundation. Homepage — Apache Hadoop
Project. http://hadoop.apache.org, 2021. Accessed: 2021-04-13.

[34] The Apache Software Foundation. Homepage — Apache Spark Project.
http://spark.apache.org, 2021. Accessed: 2021-04-13.

[35] S. Tsuchiya, Y. Sakamoto, Y. Tsuchimoto, and V. Lee. Big data
processing in cloud environments. Fujitsu Sci. Tech. J, 48(2):159–168,
2012.

[36] B. Wan, J. Dang, Z. Li, H. Gong, F. Zhang, and S. Oh. Modeling analysis
and cost-performance ratio optimization of virtual machine scheduling
in cloud computing. IEEE Transactions on Parallel and Distributed
Systems, 31(7):1518–1532, 2020.

[37] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl. Workflow as
a service in the cloud: architecture and scheduling algorithms. Procedia
computer science, 29:546–556, 2014.

[38] H. Ye, E. R. Deyle, L. J. Gilarranz, and G. Sugihara. Distinguishing
time-delayed causal interactions using convergent cross mapping. Sci-
entific reports, 5:14750, 2015.

[39] E. Zdravevski, P. Lameski, A. Dimitrievski, M. Grzegorowski, and
C. Apanowicz. Cluster-size optimization within a cloud-based etl
framework for big data. In 2019 IEEE International Conference on
Big Data (Big Data), pages 3754–3763. IEEE, 2019.

[40] F. Zulkernine, P. Martin, Y. Zou, M. Bauer, F. Gwadry-Sridhar, and
A. Aboulnaga. Towards cloud-based analytics-as-a-service (claaas) for
big data analytics in the cloud. In 2013 IEEE International Congress
on Big Data, pages 62–69. IEEE, 2013.

