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ABSTRACT: Mechanical force can evaluate intramolecular interactions in macromolecules.
Because of the rapid motion of small molecules, it is extremely challenging to measure
mechanical forces of nonspecific intermolecular interactions. Here, we used optical tweezers to
directly examine the intermolecular mechanical force (IMMF) of nonspecific interactions
between two cholesterols. We found that IMMFs of dimeric cholesterol complexes were
dependent on the orientation of the interaction. The surprisingly high IMMF in cholesterol
dimers (~30 pN) is comparable to the mechanical stability of DNA secondary structures.
Using Hess-like cycles, we quantified that changes in free energy of solubilizing cholesterol
(AGSOlubihty) by S-cyclodextrin (fCD) and methylated SCD (Me-fCD) were as low as —16
and —27 kcal/mol, respectively. Compared to the AG,ii, Of cholesterols in water (5.1 keal/
mol), these values indicated that cyclodextrins can easily solubilize cholesterols. Our results
demonstrated that the IMMF can serve as a generic and multipurpose variable to dissect
nonspecific intermolecular interactions among small molecules into orientational components.
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hen two molecules interact with each other, inter-

molecular force (IMF)” is used to evaluate the strength
of the interaction. IMF can be quantified by chemical energy,
which offers a convenient way to directly compare different
types of IMF. However, as a thermodynamic variable, chemical
energy is pathway independent and cannot probe the
directionality of molecular interactions. Both pathway and
directionality, however, are essential factors to render a full
picture of kinetic intermolecular interactions. For example,
folding or unfolding energy trajectories of proteins are
dependent on the direction of a process in which intermediates
with different local energy minima are located.

Mechanical force is a kinetic variable that is dependent on
both pathway and direction of a process.”” Recent technical
advances on the application and measurement of picoNewton
forces® are instrumental to the development of interdisciplinary
fields, such as mechanobiologyé_8 and mechanochemistry,g’10
in which mechanical forces participate in biology and
chemistry processes, respectively. Many mechanical properties
of polymers and biomacromolecules, such as proteins and
nucleic acids, have been portrayed by single molecule force
spectroscopy (SMFES)''™" in optical tweezers, magnetic
tweezers, or AFM instrument.'' However, almost all measure-
ments are focused on the intramolecular interactions inside a
particular molecule. It is rare to follow intermolecular
interactions from a mechanical perspective.'” It is even more
challenging to investigate the mechanochemistry between two
small molecules which have large freedom of motion. One
reason for this difficulty is the low throughput of the SMFS. It
is difficult to repeatedly probe the interaction between two
small molecules. Upon dissociation of the two interacting
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molecules, it is time-consuming to locate and track the next 4s
pair of molecules for measurement. In addition, once two 49
molecules are forced apart, it is almost impossible to evaluate so
the same molecule pair again, which increases the measure- s1
ment noise due to the stochastic variation in consecutive s2
sampling practice. s3
Our recent success in the investigation of individual host— s4
guest pairs has provided a solution to increase the throughput ss
of SMFS and to address the issue of the variation in stochastic s6
sampling. This has been achieved by introducing a linker s7
between two interacting molecules so that the two components ss
do not escape to the surroundings after mechanical so
dissociation. As a result, the same molecular pair can 6o
repeatedly form an interacting complex for the next round of 61
measurement on a single-molecule platform. 62
In this work, this strategy has been catapulted to probe the 63
intermolecular mechanical force (IMMF)'® during the ¢4
interaction of two cholesterol molecules. As a small molecule, 65
cholesterol is an essential constituent of cell membrane and a 66
precursor for many important biomolecules such as cortico- 67
steroids hormone, sex hormones, and vitamin D.'®'7 ¢
Cholesterol contains a large hydrophobic motif (central planar
fused rings and a flexible hydrocarbon tail, see Figure 1) and a 70 f1
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Figure 1. Schematic diagram for single molecular mechanical unfolding of cholesterol dimers with different orientations (bottom insets). The self-
assembled construct is sandwiched between two dsDNA handles, which are tethered between two optically trapped polystyrene beads by
streptavidin (strep)/biotin and digoxigenin (dig)/antidigoxigenin (anti-dig) interactions. Cholesterol structure is shown in the top inset.
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Figure 2. Mechanical dissociation of cholesterol dimers with different orientations. A typical stretching (red) and relaxing (black) force—extension
curve, rupture force (IMMF) histogram, and change-in-contour-length (AL) histogram for a cholesterol dimer pulled from (A) head-to-tail
direction, (B) head-to-head direction, and (C) tail-to-tail direction. The dotted line in the middle panel depicts 24 pN. N and n represent the total
numbers of data points and molecules, respectively, for each experiment. The histograms are fitted by Gaussian curves. See SI Figure S15 for fitting

based on the equation proposed by Dudko.'

71 small hydrophilic motif (the hydroxyl headgroup). The central crystal may form in artery plaques, which can cause

. .. 25
7, hydrophobic rings have two faces: a flat and smooth face that atherosclerosis conditions.
Given the importance of cholesterol molecules in various

-3 has no substituents (the a face) and a rough face with methyl
.4 groups (the B face). Owing to its structural complexity,
75 cholesterol may form a dimer in which two a faces interact
-6 with each other.'® Cholesterol dimers play a fundamental role

physiological and pathological processes, here we directly
measured the IMMF between two interacting cholesterols
(dimer) in aqueous buffer by a single-molecule mechanochem-

ical assay in an optical tweezers instrument (Figure 1). Unlike

77 in many functions such as those that occur in the cell the IMF which is a thermodynamic variable, IMMF provides a
19-24 o . .

7,5 membrane. When cholesterol molecules aggregate, the mechanical information between cholesterol molecules. This
79 dimer is the simplest unit based on which the cholesterol produces an unprecedented perspective on the kinetic aspect
B https://doi.org/10.1021/acs.jpclett.1c03142
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of small molecule interactions. Surprisingly, we found that the
IMMFs between two nonspecifically interacting cholesterol
molecules are comparable to the unfolding force of DNA
tetraplexes,”**® while higher than the unzipping force of DNA
duplexes.”” By uniquely manipulating orientations of individual
cholesterol molecules, we further evaluated the mechanical
anisotropy in the interaction of the cholesterol dimers. Finally,
the changes in free energy of dissociation of cholesterol dimers
were compared with those of cholesterol—cyclodextrin
complexes. This allowed us to determine, for the first time,
the change in free energy of solubility of cholesterol in p-
cyclodextrin (fCD) or methylated SCD (Me-fCD), two
compounds widely used to extract cholesterols from cell
membranes or artery plaques. This IMMF measurement
therefore provides convenient and direct quantification of the
fundamental nonspecific intermolecular processes among small
molecules.

Based on different cholesterol alignments, a cholesterol
dimer can have three possible orientations: head-to-head,
head-to-tail, and tail-to-tail (Figure 1). To evaluate the IMMF
of cholesterol dimers with these three orientations, we
modified cholesterols either at the alkyl tail with an alkyne
group or the hydroxyl head extended with an azide group. The
modified cholesterol was conjugated to a single-stranded DNA
by copper(I) catalyzed cycloaddition reaction (Figures S1—
S11)."°° The conjugate was finally incorporated in our single-
molecule platform by self-assembly of DNA strands (Figure 1).
The platform contained a polythymidine (T,,) ssDNA linker
which helps keep two cholesterols in close proximity even after
the dimer is dissociated. This linker facilitated repeated
intercholesterol association and dissociation events. The entire
molecular setup was anchored to two optically trapped beads
by using affinity linkages of streptavidin/biotin and digox-
igenin/antibody, respectively (Figure 1).

Using this setup, we first evaluated the mechanical stability
of the cholesterol dimer with a misaligned orientation. This
was achieved by pulling one cholesterol from the hydroxy head
and the other cholesterol from the alkyl tail end (Figure 1,
inset). Mechanical dissociation and association of cholesterol
dimers were carried out by moving one trapped bead away
from the other. This process increased tension in the DNA
tether, leading to the dissociation of the cholesterol dimer,
which was manifested by a sudden rupture event in a force—
extension (F-X) curve (Figure 2A, left). After mechanical
breaking of the cholesterol dimer, one bead was moved toward
another, relaxing the tension in the DNA tether. Since two
dissociated cholesterol molecules were still in proximity due to
the presence of the T,y linker, the cholesterol pair would
interact again for another cycle of dissociation—association
experiment. From these repetitive force ramping experiments,
we constructed a rupture force histogram (Figure 2A, middle),
which revealed an average IMMF of 24 pN for this type of
cholesterol dimer orientation. After the cholesterol dimer is
dissociated at 24 pN, the T40 linker will be fully stretched,
which leads to an extended molecular construct. By calculating
the change in the contour length (AL) due to this extension
(Figure 24, right), we found the AL value was close to that
expected from the release of the T40 linker after breakage of
the cholesterol dimer (see SI and Figure S12 for detailed
calculation). This suggested that observed rupture events were
due to the dissociation of cholesterol dimers at a specific
IMME.

To confirm that the observed IMMF was indeed due to the
dissociation of two cholesterols, we performed two control
experiments. In the first control, we incorporated only one tail-
modified cholesterol in the single-molecule platform. In the
second control, we integrated a head-modified cholesterol in
our DNA platform. In each control, we did not observe any
rupture event, suggesting there should be no interaction
between cholesterol and the DNA template used in the IMMF
measurement platform. Thereby, the rupture events observed
in the F—X curves in Figure 2 were indeed dissociations of
cholesterol dimers.

Next, we changed the association/dissociation of the
cholesterol dimer from the head—tail to the head—head
orientation. This was achieved by attaching both cholesterols
to the IMMF measurement platform via their hydroxy heads
(head-to-head) (Figure 1). The rupture force histogram
showed an IMMF of 29 pN (Figure 2B), a value higher than
the head-to-tail pulling (24 pN). This can be attributed to a
better match in molecular shape between two cholesterols for
this head-to-head orientation, which increased the interfacial
area of the cholesterol dimer associated via hydrophobic
interactions. To test this hypothesis, we prepared another
construct in which cholesterol dimers are associated and
dissociated from the alkyl tails (tail-to-tail) (Figure 1). We
found that the average IMMF for this orientation was 31 pN
(Figure 2C). This IMMF was again higher than that of the
head-to-tail orientation, suggesting that tail-to-tail orientation
also had more contact area between two interacting cholesterol
molecules than that in the head-to-tail orientation. Such an
orientational effect is of high clinical importance since
interaction strength among cholesterol molecules can decide
how well cholesterol crystals in the artery plaques are dissolved
by chemical agents.

To understand the molecular mechanisms of the cholester-
ol—cholesterol interactions, we performed molecular dynamic
(MD) simulations (see SI for details) on the mechanical
dissociation of the three different dimer conformations studied
in single-molecule force measurements. All simulations of
dimer dissociation were set to be along either in-plane or out-
of-plane of the cholesterol a faces. However, the final rupture
conformation shows the strong tendency of dimer dissociation
along the in-plane trajectory, except for the misaligned case,
signaling this is most likely the lowest energy pathway of the
dimer rupture. MD simulations gave two different values of
dissociation force, ~ 97 pN and ~82 pN for the head-to-head/
tail-to-tail and the head-to-tail orientations, respectively
(Figure S16 for the in-plane and Figure S17 for the out-of-
plane dissociations). In Figure S16, we showed that the head-
to-head/tail-to-tail dissociation forces were larger than that of
head-to-tail misaligned contact conformation with statistical
significance. These results were consistent with the trend of
force histograms shown in Figure 2. However, because of the
long flexible DNA handles connected to cholesterol dimers, we
could not completely exclude the possible misaligned
orientations. But it was clear that the majority of dimer
conformations upon association followed the aligned orienta-
tion. It is noteworthy that MD simulation gave higher force
values due to the requirement of a much higher pulling rate
(0.002 A/ps here) used in the field.">*'~**

To quantify the contact area in the cholesterol dimer, we
counted the number of C and O atoms within S A between the
two cholesterol molecules (blue and orange atoms in Figure
S17). For the head-to-head/tail-to-tail contact, we counted 40
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Figure 3. A schematic diagram to determine the change in free energy of solubilization ( AGSOlubmty) of cholesterol in the Me-fCD or fCD molecule

(green barrel) by using a process analogous to the Hess cycle.

215 + 2 atoms, while in the head-to-tail, we only found 33 + 4
216 atoms in their contact plane. This result signifies that the
217 contact area in the head-to-tail dimer is smaller than that in the
218 head-to-head or tail-to-tail dimer, while the latter two clearly
219 have more stable a—a face-to-face contact conformation
220 (Figure S16A). Such a finding explains why the head-to-tail
221 contact often cannot maintain the face-to-face separation (flip/
222 rolling separation) during the pulling, leading to a lower
223 dissociation force which is in accordance with the experimental
224 findings.

225 After measurements of IMMFs in all three cholesterol
226 dimers with different orientations, we further evaluated the
227 stability of cholesterol dimers from free energy perspectives.
228 To this end, we calculated the dissociation works of these three
229 cholesterol dimers, from which changes in free energy of
230 dissociation (AGgigeciation) Were retrieved by using ]arz;rnski
231 nonequilibrium equation (see Supporting Information).””****
232 We found AGyiiociation €qual to 9.2 + 1.6, 11.6 + 0.7, and 13.4
233 + 0.9 kcal/mol, respectively, for the head-to-tail, head-to-head,
234 and tail-to-tail orientations (see Table S2 and Figure S13 for
235 the dissociation work histograms). It is noteworthy that each
236 AGgigeociation T€Presents the combination of the AG to break a
237 cholesterol dimer and that to stretch the T40 loop (Figure 1),
238 the latter of which remains the same for all intermolecular
239 systems using the T40 loop. It is clear that the thermodynamic
240 stability of the tail-to-tail cholesterol dimer is significantly
241 different from that of the head-to-tail or the head-to-head
242 dimers at the confidence level of 99.9% (Student’s ¢t test),
243 which is consistent with different intercholesterol contact areas
244 revealed by MD simulations above.

245 With this set of AGyigociation fOr different cholesterol dimers,
246 we proceeded to calculate the change in free energy of
247 solubilization (AGsolubﬂity) of cholesterol in S-cyclodextrins (/-
248 CD) or methylated -CD, two well-known biomolecules for
29 cholesterol extractions.”*™*” By using the Hess-like cycle
250 (Figure 3), AGggbiiy can be calculated in eq 1,

251 A Gsolubility =A Gcholesterol dimer A Ghost-cholesterol (1)

where AGgjesterol dimer 1S the change in free energy of 252
dissociating cholesterol dimers (either the head—tail, head— 253
head, or tail—tail orientation) and AG g cholesterol i the free 2s4
energy change to dissociate host—cholesterol complex (host: 255
Me-fiCD or fCD). By obtaining the AGyog cholesterol TOM 0OUr 256
recent work (Figure 4A and Figure S14, here AGiog cholesterol 257 f4
contains the AG to break a host-cholesterol complex and to 258
stretch the T40 loop, the latter of which remains the same for 259
all the systems using the T40 loops),"> we found that all 260
AGggiubiity Values of cholesterol inside the JCDs are negative. 261
In contrast, the AGpiiiy of cholesterol in water was found to 262
be positive in the literature (5.1 kcal/mol).”” These data 263
indicate that solubilization of cholesterols in fCD or Me-fCD 264
is a spontaneous process. In addition, the AGupuey Of 265
cholesterol in Me-fCD (—16.05 kcal/mol) is more negative 266
than SCD (—8.9 kcal/mol), which is in full agreement with the 267
finding that Me-BCD is more effective with respect to SCD to 268
solubilize cholesterol due to its increased size of the 269
hydrophobic cavity."® Similarly, we discovered that AGorpiliy 270
of the cholesterol in misaligned cholesterol dimers is more 271
negative than that in aligned cholesterol dimers (Figure 4B). 272
This result indicated that fully aligned cholesterol molecules 273
are more difficult to dissolve, which is in agreement with 274
increased IMME for these dimers. Finally, when cholesterols 275
enter cyclodextrins with a head(hydroxyl)-on fashion, the 276
cholesterol solubility becomes larger (Figure 4B). This result 277
has been rationalized by simulations in which stronger 278
interactions persist between the hydroxy head of a cholesterol 279
and the wide opening of the cyclodextrin.'® 280
Bulk methods such as isothermal titration calorimetry (ITC) 281
and surface plasmon resonance (SPR) have been used to 28
investigate affinity complexes of biological molecules with 283
defined interaction orientations. However, in small molecules 284
such as cholesterols discussed here, the interactions are often 285
nonspecific without a predominant binding mode. For these 286
cases, the ensemble average approaches can only give an 287
average description of overall nonspecific interactions. Our 288
IMMEF allows to precisely dissect specific interactions among 289
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Figure 4. Summary diagram for changes in the free energy of solubilization of cholesterols in SCD or Me-fCD with different interaction directions.
(A) Left: Change in free energy (AG) associated with the dissociation of fJCD-cholesterol complex pulled from the head (top) and tail (bottom) of
the cholesterol (chol). Middle: Change in free energy (AG) associated with the dissociation of the cholesterol dimer pulled from the head-to-head
(top), head-to-tail (middle), and tail-to-tail (bottom) orientations. Right: Change in free energy (AG) associated with the dissociation of Me-fCD-
cholesterol complex pulled from the head (top) and the tail (bottom) of the cholesterol. (B) Changes in free energy of solubilization (AGgpiy) of
cholesterols are dependent on the disruption orientations of cholesterol—cholesterol dimers (top) as well as on the orientation of a cholesterol
(bottom notation) entering either f-CD (green) or Me-3-CD (brown). Slanted arrowheads depict increasing magnitudes of AG bty

200 many nonspecific binding modes, such as the head-to-head/
291 tail-to-tail and the head-to-tail interacted cholesterol dimers.
292 This offers an unprecedented opportunity to understand
203 molecular interactions, such as solubilities, from a perspective
294 of defined orientations (Figure 4).

205 In conclusion, we demonstrated that the intermolecular
206 mechanical force (IMMF) can be directly measured for
297 interactions between small molecules. Such IMMEF indicated
208 that fully aligned cholesterol dimers have a stronger interaction
299 than misaligned dimers. The solubility of cholesterol in fJCD

has been rationalized by the magnitude of IMMF, which ,
represents a new and generic variable to describe solubility of , |

chemicals beyond the cholesterols studied here. Given the ,

importance of the cholesterol in various cellular and biological 203

processes, the mechanisms of and the insights on the

cholesterol dimer interaction revealed here are expected to 205

understand a range of physiological and pathological processes , -

involving cholesterols. 307
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