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Abstract. With the advances of satellite remote sensing techniques, we
are receiving huge amount of satellite observation data for the Earth.
‘While the data greatly helps Earth scientists on their research, conduct-
ing data processing and analytics from the data is getting more and
more time consuming and complicated. One common data processing
task is to aggregate satellite observation data from original pixel level to
latitude-longitude grid level to easily obtain global information and work
with global climate models. This paper focuses on how to best aggregate
NASA MODIS satellite data products from pixel level to grid level in
a distributed environment and provision the aggregation capability as a
service for Earth scientists to use easily. We propose three different ap-
proaches of parallel data aggregation and employ three parallel platforms
(Spark, Dask and MPI) to implement the approaches. We run extensive
experiments based on these parallel approaches and platforms on a local
cluster to benchmark their differences in execution performance and dis-
cuss key factors to achieve good speedup. We also study how to make the
provisioned service adaptable to different service libraries and protocols
via a unified framework.

Keywords: Big Data - Data Aggregation - Remote Sensing - Servicelization -
Benchmark

1 Introduction

The advances in climate study in recent years have resulted in astronomical
growth of available climate data. There are two main sources for climate data:
climate simulation model and satellite remote sensing. The paper [15] from Sci-
ence magazine estimates the total worldwide available climate data will increase
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from less than 50 PB in 2015 to about 350 PB in 2030. Among projected data
size in 2030, climate model simulation results and satellite remote sensing data
consist of about 188 PB (54% percent) and 155 PB (44% percent) respectively.

A basic data processing task in climate study is to aggregate satellite ob-
servation data from original pixel level to latitude-longitude grid level to easily
obtain global information and work with global climate simulation models. It is
because most global climate simulation models, such as the climate simulation
models in Phase 6 of the Coupled Model Intercomparison Project, known as
CMIP6 [12], conduct simulation by dividing the Earth into 3-dimensional (lat-
itude, longitude, altitude) grids, and solving physics equations (including mass
and energy transfer) within each grid and its interactions (including radiant ex-
change) with neighboring grids. By aggregating satellite observation data from
pixel level to grid level, Earth scientists can conduct many studies with climate
model simulation data and aggregated satellite observation data since they have
the same granularity. For instance, a climate model can be evaluated via the
comparison between its simulation results with satellite observation data.

This paper addresses two specific challenges in satellite data aggregation: 1)
how to efficiently aggregate data from pixel level to grid level in a distributed
environment, 2) how to provision data aggregation as services so Earth scientists
can achieve data aggregation without downloading data to local machine. To
address these two challenges, we discuss different approaches of parallel data
aggregation and how different factors such as big data platform and sampling
ratio affect the execution performance and aggregation results. We also discuss
how to make provisioned services adaptable to different service libraries and
protocols. The software implementations of our work is open-sourced at [2].

The contributions of this paper are fourfold. First, we propose three parallel
data aggregation approaches and discuss their differences. All approaches can
show good scalability in our experiments with 738 GB input data with the best
speedup ratio as 97.03 when running on 10 distributed compute nodes. Second,
we apply the above data aggregation approaches with three popular parallel
platforms/techniques: Spark [3,9], Dask [4, 18] and MPI [16]. We benchmark
and analyze their performance differences through our experiments. Third, we
apply sampling techniques in our data aggregation approaches to understand
how sampling affects execution speedup and the correctness of the results. Our
experiments show sampling only has less than 1% data loss and its affects on
execution speedup is mixed. Fourth, to work with different service protocols/li-
braries such as REST [17] and ZeroMQ [7], we adopt the Stratus framework [6]
for servicelization of the data aggregation capability. Users only need to change
one parameter to switch from one service protocol/library to another.

The rest of the paper is organized as follows. The background is introduced
in Section 2. The data aggregation logic is explained in Section 3. Section 4
contains our proposed three scalable data aggregation approaches. Section 5
describes the experiments on different scalable aggregation approaches, different
parallel platforms, and different sampling ratios. The servicelization of our data
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aggregation capability is discussed in Section 6. Finally, we discuss related work
in Section 7 and conclude our paper in Section 8.

2 Background

2.1 MODIS Satellite Remote Sensing Data

The MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instru-
ment on board NASA’s Terra (launched in 1999) and Aqua (launched in 2002)
satellite missions as part of the larger Earth Observation System (EOS). MODIS
measures the reflection and emission by the Earth-Atmosphere system in 36
spectral bands from the visible to thermal infrared with near daily global cov-
erage and high-spatial resolution (250m to 1 km at nadir). These measurements
provide a critical observational basis for understanding global dynamics and pro-
cesses occurring on the land, in the oceans, and in the lower atmosphere. MODIS
is playing a vital role in the development of validated, global, interactive Earth
system models that are able to predict global change accurately enough to as-
sist policy makers in making sound decisions concerning the protection of our
environment.

MODIS atmosphere properties products are processed into three levels, i.e.,
Level 1 (L1), Level 2 (L2) and Level 3 (L3). The Level 1 products contain ge-
olocation and the raw reflectance and radiance measurements for all 36 MODIS
spectral bands, at 250 m, 500 m, or 1 km spatial resolutions. The Level 2 prod-
ucts contain the geophysical properties, such as cloud mask, cloud and aerosol
optical thickness, retrieved from the Level 1 products. The retrieval process
is usually based on sophisticated algorithms developed by the MODIS science
teams. Because Level 2 products are derived from the Level 1 products, they usu-
ally have the same or similar spatial resolution. For example, Level 2 MODIS
cloud properties products (product name “MODO06” for Terra and “MYD06” for
Aqua) have a nominal spatial resolution of 1 km. The Level 3 processing pro-
duces Earth-gridded geophysical parameter statistics, which have been averaged
(e.g., daily or monthly), gridded (e.g., 1° x 1° degree), or otherwise rectified
or composited in time and space. The Level 3 MODIS Cloud Properties prod-
ucts contain hundreds of 1° x 1° global gridded Scientific Data Sets (SDSs) or
statistics derived from the Leval 2 products. The Level 1 and Level 2 products
are often called pixel products and the Level 3 products are often called grid-
ded products. Many atmospheric/climate research studies are done using Level
3 data. All three levels of MODIS data are publicly available at [5].

2.2 Parallel Platforms

Spark [3] is one of the most popular big data platform. By following and extend-
ing the MapReduce paradigm [10], Spark embeds computation using high-level
functions like Map, Reduce, CoGroup and Cross, and achieve parallelism by
distributing input data among many parallel tasks of the same function. Spark
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works well with Hadoop distributed file system (HDFS) to achieve parallel com-
putation on partitioned data. It supports multiple programming languages in-
cluding Scala, Java and Python. For job scheduling, Spark employs a master
process communicating with parallel worker processes, maintains a task queue
and distributes the next task in the queue to a worker process after the worker
process finishes its current assigned task.

Dask [4,18] is another scalable platform targeted for big data processing and
analytics. Similar to Spark, a Dask application is composed as a task graph which
can be distributed within one computer or a distributed computing environment.
Dask employs a similar master-worker framework for task scheduling. Because
Dask is implemented in Python, it is native to work with other Python libraries
and packages such as Numpy, XArray, Pandas.

Message Passing Interface (MPI) [16] defines message-passing standard to
achieve parallel computing within a distributed computing environment such
as a cluster. As a dominant model used in high-performance computing, MPI
defines how to distribute tasks to multiple compute nodes and CPU cores and
communicate among the parallel processes on synchronization. Unlike Dask and
Spark, MPI does not use master-worker architecture. Instead, each process is
assigned with a rank number, and the communication and synchronization are
done by sending/receiving messages to/from different ranked processes. MPI
supports multiple programming languages including C, Fortran and Python.

3 MODIS Data Aggregation Logic

MODIS data aggregation from Level 2 to Level 3 requires collecting all relevant
Level 2 data files and calculating corresponding values based on the target vari-
able and the spatial and temporal ranges. In this paper, we focus on monthly
global aggregation of one atmospheric variable, called Cloud Fraction. In this
section, we will first explain how to do it for a single Level 2 cloud proper-
ties product file, namely MYD06/MODO06, then how to combine results from all
relevant Level 2 files.

As shown in Figure 1, the process of generating Level 3 data from Level 2 file
involves four main steps. In the first step, it reads one file from MYD06/MODO06
and its corresponding file from MYD03/MODO03 and produces grid-level counts
for both cloud pixels and total pixels.

In its first step, it reads ‘Cloud Mask_lkm’ variable from the MYD06/MODO06
file, and reads ‘Latitude’ and ‘Longitude’ variables from the MYD03/MODO03
file. Based on MYD/MOD manual and HDF file convention, each of these three
variables is a 2030 x 1354 2D array. Also, their values of three arrays are 1-to-1
mapped, namely the corresponding longitude and latitude value of each cloud
mask value in Cloud_Mask array can be found at Latitude array and Longitude
array respectively using the same array index.

The second step of the process is sampling, which only takes partial data from
the original 2D (2030 x 1354) arrays. Based on Earth’s geographic coordinates,
each latitude grid is about 111 km in distance and each longitude grid is about
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MYDO03 MYDO06
/MODO03 /MODO06
1. Variable [
reading Longitude Latitude Cloud Mask
(2030 x 1354) (2030 x 1354) (2030 x 1354)
5.01| ... |5.10| ... |5.20 ... 293 .. |295| .. (298] ...
585 ... [595| ... |[6.99| ... 299| ... |3.05 .. [3.07] ...
6.23| ... |6.34] ... |6.40| .. 3.10| .. |[3.11| .. |3.12] ..
2. Sampling

3.1 Coordinate 3.2. Retrieve

truncation cloud type
5 5 5 2 2 2 0 0 1
5 5 5 2 3 3 2 3 2
6 6 6 3 3 3 0 1 1
4. Group total pixel and
cloud pixel by grids
5 6 5 6
2 4 0 2 2 0
3 2 3 3 2 2
Total pixel count for each grid Total cloud pixel count for each grid

Fig. 1. Illustration of MODIS data aggregation from Level 2 to Level 3 for a single file.

0-111 km in distance depends on the longitude’s value (0 km for £90° and 111
km for 0°). It means each (lat, lon) grid covers up to 111 km x 111 km area (over
12k pixels). Also based on the nature of cloud coverage, if a pixel is cloudy, its
surrounding pixels are also likely to be cloudy. To reduce the computing load, we
could use different sampling ratios to only aggregate a portion of pixels at 1km
resolution. As shown in the figure, by using sampling ratio 2 for both longitude
and latitude, the number of pixels to be aggregated is only 1/4 of original pixels.

The third step is to convert coordinate resolution from Level 2 to Level 3.
The original latitude and longitude values in MOD03/MYDO03 have precision as
5, while we only need to have integral latitude and longitudes in Level 3 data.
So we need to convert coordinate resolution to integer by removing each value’s
floating part. For instance 25.12345° in Level 2 will be just 25° in Level 3.

The fourth step is to retrieve cloud condition information by doing bit op-
eration. Based on the manual of MOD06/MYDO06, there are four types of cloud
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condition which are encoded as two digits of the values in binary. So by doing
bit operation, we can retrieve the values for cloud condition information. Out of
the four possible values (0, 1, 2 and 3), only 0 value means the pixel is cloudy.
The last step of the process is to calculate the total pixel count and cloud pixel
count for each grid. It first group pixels into corresponding grids. Then it counts
all pixels within each grid to get the total pixel table and only counts zero value
pixels within each grid to get the cloud pixel table.

To get global aggregation results for a month, we need to do the same pro-
cessing in Figure 1 for all relevant files and eventually get results for every grid of
global 180 x 360 longitude/latitude grids. Every 5 minutes, the satellite remote
sensing retrieval algorithm obtains a snapshot data file, called granule, of the
area the satellite covers at the time. Each variable measured by the satellite is
saved as a 2D pixel array in the granule file. The 2D array size of the MODIS
data we work with is 2030 x 1354. Because MODIS Level 2 product contains
such as granule files every 5 minutes, the pixel number for a full day is about
800 million (2030 x 1354 x 288) and the number for a full month is 24.5 billion.
The aggregation process will group these 24.5 billion values into 64,800 (180 x
360) grid bins based on their geographic locations and conduct corresponding
calculations for the pixels within a grid bin. On average, each bin aggregates
values from about 378,700 pixels.

4 Three Scalable MODIS Aggregation Approaches

In this section, we propose three scalable approaches for MODIS data aggre-
gation, each in one subsection. Approach illustrations are in Figures 2-4. The
main differences are task granularity and file/record count, where the numbers
in parentheses, e.g., (2 x 288 x 31), are the file/record number for the step.

4.1 File level scalable MODIS aggregation

The overall logic of our file level scalable MODIS aggregation approach is shown
in Figure 2. The implementations of the same approach in Spark, Dask and MPI
are slightly different because of their programming model difference.

Level 2 files Cloud count aggregation for each file Sum cloud count and total  Level 3 cloud fraction
(2*%288*31) (288*31) count for the whole month  for the whole month

— @ )

/mg%%% N (Files, CloudCounty, TotalCount;)

File,, CloudCount,, TotalCount: CloudCount
(Filep 2 2) dm‘f 2 (CloudCount, TotalCount) —>
shuffling¥

TotalCount

MYDO6 ' i
/MODO6 (——— > (Fileogg+31, CloudCount,gg.51, TotalCountyggs;)

Fig. 2. Illustration of file level parallel aggregation.

We employed MapReduce model in our Spark based file level scalable MODIS
aggregation. Each Map task calls the function shown in Algorithm 1. The func-
tion takes one MOD03/MYDO03 file and one MOD06/MYDOG6 file as inputs and
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generates a 2D (180 x 360) array which which element contains the aggregated
cloud pixel count and total pixel count for each grid. In the algorithm, output
arrays are initialized in line 1, and data are read into three 2D (2030 x 1354)
arrays in lines 2-4. Then line 5 applies the same sampling for all three variables.
Line 6 operates on the two longitude/latitude arrays by truncating the floating
part of the values. Then in the first for loop (lines 7-9), we can find the integral
longitude-latitude grid indices for each pixel and increment the total pixel count
by 1 for the grid. Then we check which pixel is cloudy in line 10 and use the
second for loop (lines 11-14) to update cloudy pixel count based its grid location.

In this approach, the total (MOD03/MYDO03, MOD06/MYDO06) file pair
number is 8928 (288 x 31). By first creating a list of 8928 file pairs and setting
partition number to be 8928, Spark will generate 8928 Map tasks and one task
for each file pair. These 8928 Map tasks run in parallel on distributed nodes. Af-
ter receiving outputs from the Map phase, the two 2D (180x360) arrays of cloudy
pixel count and total pixel count are simply added to two final 2D (180x360)
arrays via a Reduce sum function. The cloud fraction ratio is calculated via
dividing cloudy pixel counts by total pixel counts for each grid.

Algorithm 1: Data aggregation for each file: aggregateOneF'ileData()

Input: MYDO06/MODO6 file path: M06_file; MYD03/MODO3 file path:
MO3 _file
Output: 2D (180x360) array for cloud pixel count and total pixel count of
each grid: cloud_pizel_count, total_pixel _count
1: Initialize cloud_pizel_count and total_pizel_count to all zero 2D (180x360) array
2: Read Cloud_Mask_1km variable from M06 _file file and extract its cloud phase
values to a 2D (2030x1354) array: 2D_pizel_array-cloud_-mask
3: Read Latitude variable values from MO03_file file to a 2D (2030x1354) array:
2D _pizel_array_-lat
4: Read Longitude variable values from M03_file file to a 2D (2030x1354) array:
2D _pizel_array_lon
5: Apply the same sampling ratio for all above three variables
6: Convert floating-point numbers in 2D _pizel_array_lat and 2D _pizel _array_lon to
integral numbers
for each grid location in (2D _pizel_array_lat, 2D _pizel_array_lon) do
Increment total_pixzel_count by 1 for the latitude-longitude grid
end for
: Retrieve element indices in 2D _pizel_array_cloud_mask if the element’s value
shows the pixel is cloudy: cloud_indices.
11: for each index in cloud_indices do
12:  Get integral latitude and longitude values for the index
13:  Increment cloud_pizel_count by 1 for the latitude-longitude grid
14: end for
15: Output (cloud_pizel_count, total_pizel_count)

In our Dask and MPI implementations, we used similar Map function so that
all 8928 tasks from all file pair combinations can be executed in parallel. After
the tasks are done, results are integrated via a for loop.
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There is a major difference among the above implementations using Spark,
Dask and MPI. Both Spark and Dask support dynamic scheduling of tasks by
distributing tasks in the queue to available worker processes. It is particularly
useful for our aggregation application because the tasks’ execution times can
vary from 1 second to 15 seconds. Dynamic scheduling can achieve good load
balance among worker processes. For MPI, we had to programmatically assign
tasks to processes without the knowledge of loads for each process.

4.2 Day level scalable MODIS aggregation

The overall logic of day level scalable MODIS aggregation approach is shown in
Figure 3. In day level scalable MODIS aggregation, each function is similar with
the one in Algorithm 1 except each function processes one day data (288 files)
via an additional for loop. So there will be 31 tasks to be processed in total. Our
tests show the execution times for the tasks are also very different, varying from
380 seconds to 685 seconds. The implementations in Spark, Dask and MPI are
similar with their file level implementations.

Level 2 files Group files into days Parallel cloud count Sum cloud count and total Level 3 cloud fraction
(2*288*31) 31) aggregation for each day count for the whole month  for the whole month
31) ) 0
MYDO03 -
/MODO3 (Day4, FileList;y) ——>(Day4, CloudCounty, TotalCount,) \
(Days, FileListp) —(Days, CloudCount,, TotalCounty) data CloudCount

(CloudCount, TotalCount) —>
TotalCount

shufflin,
MYDO6 - /
MoDos [ (Dayay, FileListgy) ——> (Daygy, CloudCounts;, TotalCountas)

Fig. 3. Illustration of day level parallel aggregation.

4.3 Pixel level scalable MODIS aggregation

The overall logic of pixel level scalable MODIS aggregation approach is shown
in Figure 4. In this approach, each function still processes one file pair like Al-
gorithm 1. The difference lies in how to generate outputs. In stead of generating
two 2D (180 x 360) arrays like the first two approaches, it outputs a list of all
pixels in the input file. By looping through all pixels in the input, each pixel
outputs a tuple of key-value pair. The key element is a tuple of grid information:
(latitude, longitude) and the value element is a tuple of cloudy pixel count. If a
pixel is cloudy, the element is (1, 1), otherwise it is (0, 1). Because each input
file contains a 2D (2030 x 1354) array, the output list has 2,748,620 (= 2030 x
1354) elements.

In our Spark based implementation, we used flatMap to wrap the above
function so that the elements of the output listed are flattened and shuffled
based on their keys, and reduceByKey to group the results based on their grid
information. We do not have implementations in Dask and MPI because they
do not have similar higher-level functions like flatMap and reduceByKey.
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Level 2 files Cloud count for each pixel Cloud count aggregation for each grid Level 3 cloud fraction
(2*%288*31) (31*288*2030*1354) (180*360) Jfor the whole month
()

((Lony, Lat4), (CloudCounty, TotalCounty))
data \ CloudCount

shuffling ((Lony, Laty), (CloudCounty, TotalCounty)) TotalCount

MYDO03

MODO3 ((Lony, Laty), (CloudCounty, TotalCounty)) \ >

((Lony, Latp), (CloudCounty, TotalCounty))

MYDO06

/MOD06 —> ((Lony, Laty), (CloudCounty, TotalCounty)) “————— ((Lonygp, Latsgo), (CloudCountygg-360, TotalCount gy-as0))

Fig. 4. Illustration of pixel level parallel aggregation.

5 Experiments

In this section, we explain the experiments we conducted to benchmark and
evaluate the differences of using different parallel approaches, parallel platforms
and sampling ratios. We choose January 2008 MODIS Level 2 cloud properties
data products from NASA Aqua satellite for our aggregation inputs, which are
8928 MYDO03 and MYDOG6 files. The files are in HDF format and the total data
size is 738 GB. The files are located on a centralized data node and accessed via
network file system (NFS). For software, we used Python (version 3.6.8), Spark
(version 2.4), Dask (version 1.1.4), and MPI (version 1.4.1).

All experiments were done in a local High Performance Computing (HPC)
cluster. Each computer node has two 18-core Intel Xeon Gold 6140 Skylake CPUs
(36 cores in total) and 384 GB of memory. To make fair comparison, we allocate
2 CPU cores and 20 GB memory for each parallel process. By running on 2, 4, 6,
8, 10 and 12 nodes, we can have 36, 72, 108, 144, 180 and 216 parallel processes
respectively.

5.1 Comparison between different parallel approaches

We listed the exact execution times in Table 1 and the speedup in Figure 5. The
bold numbers in the table are the shortest execution times for each distributed
environment size. The speedups are calculated via dividing the execution times
of serial versions of each approach by the execution times in Table 1. We note our
serial version of file level aggregation approach is also used in calculating speedup
of pixel level aggregation because it is difficult to implement serial version of
key-based data shuffling. The table and figure show the performances of file level
parallel aggregation are the best in most cases. We believe a big reason is the task
granularity. By having 8928 tasks and each task processing one pair of files, file
level parallel aggregation approach can keep all processes running in parallel with
assigned tasks for distributed environments in our experiments. Day level parallel
aggregation approach shows the worst performance. We believe one reason is
many processes will be idling once the available process number is greater than
day number (31). Another reason could be the difficulty to achieve load balance
among parallel processes because its task granularity is much higher than file
level approach. The performance of our spark pixel level parallel aggregation
approach is close to spark file level approach. The biggest difference between
these two approaches is the data record number to be shuffled after Map/flatMap
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phase: 8928 records in spark file level approach and 800 million records in pixel
file level approach. We believe the reason that the huge data data record number
in the pixel level approach did not slow down the execution is Spark supports
local partial aggregation at Map phase before data is shuffled across network if
the following phase is reduceByKey function, which is similar to the Combiner
in Hadoop.

Table 1. Execution time results (in Seconds) for scalability evaluation.

Node Spark Dask MPI
number |file level |day level | pixel level |file level | day level |file level |day level
2 256.30 | 803.86 279.81 | 769.82 | 890.84 | 788.10 | 306.51
4 225.07 | 603.66 269.81 | 423.76 | 635.48 | 479.56 | 428.45
6 214.07 | 729.08 245.80 | 422.94 | 595.03 | 326.90 | 434.04
8 197.07 | 464.00 | 152.82 | 335.16 | 593.53 | 205.74 | 329.25
10 181.68 | 690.66 208.77 | 462.80 | 632.09 | 135.10 | 418.66
12 164.30 | 507.79 216.07 | 364.17 | 571.87 | 161.03 | 303.57

100 w2
w4

6

ms

Wm0

75 w12

50

Speedup

25

Spark file level ~ Spark day level Spark pixel level ~Dask file level Dask day level MPI file level MPI day level

Fig. 5. Execution Speedup for scalability evaluation.

5.2 Comparison between different parallel platforms

From Table 1 and Figure 5, we can see Spark achieves the best speedup on
average among all three parallel platforms, especially for the file level approach.
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We believe the reason is Spark can manage task scheduling more efficiently
and achieve better load balancing among parallel processes. For the comparison
between MPI and Dask, the speedups done via MPI are better than those via
Dask in most cases. We think it is due to less coordination overhead for MPI
based parallelization. We also notice the best speed up is achieved by file level
parallelization via MPI on its execution 10 nodes. It shows the advantage of
MPI because of its low coordination overhead, especially if the static scheduling
via the MPI approach happens to achieve relatively balanced work loads among
different nodes.

5.3 Comparison between different sampling ratios

We further evaluated how different sampling ratios will affect the execution times
and aggregation result quality. Because we conduct sampling for both longitude
and latitude direction, sampling ratio of n means only reading 1 out of n? pixels.
We tested our file level parallelization with Spark implementation on multiple
nodes. Table 2 shows the execution times of different sampling ratios on different
nodes where the baseline row is done without parallelization and Spark, and the
no sampling column is for experiments without sampling. The bold numbers in
the table are the shortest execution times for each environment size. From the
table, we can see the execution times increase from no sampling to sampling,
then decrease with higher sampling ratios. We believe the reason is the additional
time for sampling operation could be longer than the time saved for downstream
operations with less data, especially when sampling ratio is low. Further, the
table shows the executions achieve good scalability for all sampling ratios. For
sampling ratio as 5, all parallel executions take less time than corresponding no
sampling executions and the largest speed up ratio is 2.586 when running on 4
nodes.

Table 2. Execution time results (in Seconds) for different sampling ratios.

No Sampling ratio
sampling 2 3 4 5
baseline | 42,817.87 | 133,830.33 | 267,660.87 | 86,225.44 55,484.36
2 nodes 1,254.83 5,395.07 2,509.40 1,510.31 1,008.71
4 nodes 1,460.57 3,312.09 1,272.82 1,045.13 564.79

6 nodes 598.71 2019.24 994.65 590.83 424.14
8 nodes 791.23 506.44 461.81 465.77 415.51
10 nodes 371.49 269.63 450.24 447.98 320.76
12 nodes 259.57 316.91 373.20 474.62 254.23

We also calculated data loss percentage for different sampling ratios based
on Formula 1. It first calculates the percentage of absolute cloud fraction value
difference for each grid, then computes the average for all grids. By using absolute
cloud fraction value difference, not actual value difference, in the formula, we
can avoid offsetting between positive value differences and negative differences.
Our experiments show the data loss percentages are 0.1801%, 0.3021%, 0.4535%
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and 0.6167% when sampling ratios are 2, 3, 4 and 5, respectively. It shows
higher sampling ratio causes a little more data loss percentage, but all data loss
percentages are quite small (below 1%). Further, our experiments show the data
losses are the same when running for different compute nodes, which verifies the
correctness of our approach does not change with compute node numbers.

1 (90,180)

180 * 360
(—90,—180)

CF(iaj)orig - CF(iaj)samp
CF(iaj)orig

(1)

6 Big Data Service for MODIS Aggregation

To simplify on-demand MODIS data aggregation by users, we further provision
the above scalable data aggregation capability as services. In this way, users
do not need to have a distributed environment with proper back-end libraries
installed and download large-scale MODIS data for aggregation. One challenge
we face is how to make the services work with different service libraries/protocols,
such as REST [17] and ZeroMQ [7]. To achieve this flexibility for our services, we
employ an open-source framework called Stratus (Synchronization Technology
Relating Analytic Transparently Unified Services) [6] developed by co-author
Maxwell. We will explain the Stratus framework, and how our data aggregation
services are implemented via Stratus.

The Stratus framework provides a workflow orchestration approach for incor-
porating Earth data analytic services as a unified solution. It defines a common
set of API for workflow and request/response. It consists of a set of orchestra-
tion nodes and each implements a particular composition strategy on a partic-
ular technology and is designed to interface with other Stratus nodes. Then,
an integration framework can be constructed by combining orchestration nodes.
Currently available Stratus service handlers include endpoint, ZeroMQ [7], Ope-
nAPI [1] and REST [17]. Stratus can support them by having a separate imple-
mentation of the same unified API for each specific library/protocol.

In order to expose a capability within the Stratus framework, that capabil-
ity must be wrapped as a Stratus endpoint. A typical Stratus based analytics
service architecture includes: 1) client application used by users to connect to
remote server, 2) server application which accepts connections from the client,
3) endpoint which is a server-side operation for a certain task. In this architec-
ture, a common request language can be established across all the supported
endpoints. A common server is used by the client to submit service requests to
any endpoint. Coordinating workflows composed of services developed by dis-
parate teams requires the combination of multiple orchestration strategies, e.g.,
fan-out, publish-subscribe, distributed task queue, and request-reply.

Our implementation of MODIS aggregation servicelization using Stratus is
illustrated in Figure 6 and its endpoint and client side code are illustrated in
Listing 1 and 2, respectively. For endpoint code, we only need to implement func-
tion operation to define an operation, and function ezecute to call the operation
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Fig. 6. Flexible MODIS Data Aggregation Service.

based on client-side inputs. For client-side code, request specifications are defined
through a Python dictionary object. To switch from one service library/protocol
to another, we only need to change the value for type parameter.

class XaOpsExecutable (Executable):

#Definition of the operation

def operate(self, MO3_dir, MO06_dir):
if self.request[’operation’][0][’name’]=="cloudFraction":

cf = modis.calculateCloudFraction(M03_dir, MO6_dir)

return cf

#Executes the operation.

def execute(self, **xkwargs) -> TaskResult:
inputSpec = self.request.get(’input’, [])
cf = self.operate(inputSpec[’pathl’], inputSpec[’path2’])
result = xarray.DataArray(cf.tolist(), name=’test’)
return TaskResult (kwargs, [result])

Listing 1. Endpoint for MODIS cloud fraction aggregation.

if __name__ == "_ _main__":
settings = dict(stratus=dict(type="rest"))
stratus = StratusCore(settings)

client = stratus.getClient ()

requestSpec = dict(input=dict(pathl1="MYD03", path2="MYDO6",
operation=[dict (name="cloudFraction")])

# Submit the request to the server and wait for the result

task: TaskHandle = client.request(requestSpec)

result: Optional [TaskResult] = task.getResult(block=True)

Listing 2. Client for MODIS cloud fraction aggregation.

7 Related Work

Benchmarking for Big Data Analytics. There have been many studies on
benchmarking for big data analytics including [13,21]. Study [14] compared
Spark and Dask in a deep learning satellite image application and their exper-
iments show Spark achieves better performance. The experiments in [11] show
no significant execution performance differences between Spark and Dask for
their neuroimaging pipeline applications. The work at [8] compares OpenMP,
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OpenMP + MPI, and Spark for K-means clustering on distributed environment.
Our study complements these studies by comparing not only different platforms
but also different scalable data aggregation approaches, and analyzing the rea-
sons for the differences.

Climate Analytics as Services. With the rapid increase of climate data,
researchers have been studying how to apply service oriented architecture in
climate analytics to achieve better efficiency and flexibility than the traditional
way of downloading data to a local machine and then analyzing it. Book [20]
collected recent studies on how to apply cloud computing for Ocean and At-
mospheric Sciences. Among them, the Climate Analytics-as-a-Service (CAaaS)
framework [19] is most similar to our work by addressing both service challenge
and big data challenge. It differentiates two types of services for big climate
data: 1) Analytic Services that run MapReduce style analytic jobs/workflows
and 2) Persistent Services that manage the storage and access of data produced
by Analytic Services. Our work in this paper falls in the Analytic Service cat-
egory by supporting on-demand aggregation of satellite data. Our work further
addresses the service library /protocol variety challenge by employing the Stratus
framework so the same service side implementation can support different service
libraries/protocols with simple configuration change at client side.

8 Conclusions

With astronomical growth of available climate data, we believe big data tech-
niques and service techniques are promising to achieve scalable and on-demand
analytics for climate data. In this paper, we study how to integrate these tech-
niques for a fundamental climate data aggregation application. We proposed
three different aggregation approaches and compared their performance in three
different platforms. From the experiments, we conclude that, while we can achieve
speedup using all approaches and platforms, defining proper task granularity and
dynamic scheduling are key factors to enable good scalability and load balance.
The best speed up ratio we can achieve is close to 100. Our experiments also
show proper sampling ratio design could achieve execution speedup with little
data loss. Last, we discussed how to leverage the Stratus framework to easily
support different service libraries/protocols.

For future work, we will extend our satellite data aggregation capability
for more climate variables (such as cloud top height), more statistics (such as
standard deviation and histogram), more flexible spatial area selection. We also
plan to expose the service on public cloud environments, such as Amazon Web
Service, for users to use without requiring a distributed environment.
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