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Abstract

Self-driving technology companies and the research community are accelerating the pace of use of machine learning longitudi-
nal motion planning (mMP) for autonomous vehicles (AVs). This paper reviews the current state of the art in mMP, with an
exclusive focus on its impact on traffic congestion. The paper identifies the availability of congestion scenarios in current data-
sets, and summarizes the required features for training mMP. For learning methods, the major methods in both imitation
learning and non-imitation learning are surveyed. The emerging technologies adopted by some leading AV companies, such as
Tesla, Waymo, and Comma.ai, are also highlighted. It is found that: (i) the AV industry has been mostly focusing on the long
tail problem related to safety and has overlooked the impact on traffic congestion, (ii) the current public self-driving datasets
have not included enough congestion scenarios, and mostly lack the necessary input features/output labels to train mMP, and
(iii) although the reinforcement learning approach can integrate congestion mitigation into the learning goal, the major mMP
method adopted by industry is still behavior cloning, whose capability to learn a congestion-mitigating mMP remains to be
seen. Based on the review, the study identifies the research gaps in current mMP development. Some suggestions for conges-
tion mitigation for future mMP studies are proposed: (i) enrich data collection to facilitate the congestion learning, (ii) incor-
porate non-imitation learning methods to combine traffic efficiency into a safety-oriented technical route, and (iii) integrate

domain knowledge from the traditional car-following theory to improve the string stability of mMP.

Self-driving cars are around the corner, quite literally.
And yet, despite numerous studies (/-7) on the potential
impacts of autonomous vehicles (AVs) and connected
and autonomous vehicles (CAVs) on traffic flow, a reli-
able car-following (CF) model describing the longitudinal
dynamics of AVs is still lacking. This makes evaluating
the impact of AVs on traffic flow challenging. Recent
empirical experiments reveal that the existing longitudi-
nal control systems on level-2 AVs are string unstable
(8—10), which indicates that small perturbations (e.g.,
speed fluctuations) tend to grow upstream of a platoon,
and eventually lead to full stop-and-go motions. Those
empirical findings are surprising, and indicate that AVs
might cause more traffic congestion even than human
drivers. The results also distinguish from the successful
design or implementation of the string-stable longitudinal
controller in the literature, including both adaptive cruise
control (ACC) and cooperative adaptive cruise control
(CACC) algorithms (/1-15). It is conjectured here that

the gap between the practice and the theory may result
from: (i) the longitudinal control of level-2 AVs, also
known as ACC, not factoring string stability in its design;
(ii) in real-world scenarios, some other issues (e.g., safety,
efficiency, comfort, or user acceptability) being weighted
more than string stability performance, thus the control-
ler will suppress the string stability properties to satisfy
other performance metrics (/6); and (iii) the hardware
equipment (sensing devices and actuators) not being
capable of realizing the string-stable control command.
The rough and choppy measurements, and the slow-
response actuator installed on economy daily cars,
require the control command to be heavily filtered before
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Table I. Latest Advanced Driver-Assistance System Technologies from Major Automakers in 2020

Automaker Technology Sensors Description
Tesla Autopilot and full self-driving (FSD) Radar + 8 cameras Traffic-aware cruise control (/8)
Nissan ProPILOT 2.0 7 cameras, 5 radars Incorporates 3D high-definition map (23)
and |2 sonars
Toyota Full-speed range dynamic radar Radar + camera Work in full-speed range (24)
cruise control (DRCC)
Honda Honda sensing Radar + camera Collision mitigation braking, speed signs (25)

General Motors Adaptive cruise control (ACC)

with camera

Ford Intelligent ACC
Audi ACC with stop-and-go
BMW ACC with stop-and-go

Camera + radar

Radar + camera
Two radars + camera
Radar + camera

ACC is based on camera

Automatically adapt to speed limit signs (26)
Stop-and-go (27)
Stop-and-go and speed limit compliance (28)

being exerted on the vehicle (otherwise the vehicle would
behave in an undesirably jerky manner), which makes
string stability not achievable. Given the undesired string
unstable ACC, it is possible that current AV systems
might induce more instability than human drivers, which
could induce more traffic congestion and emissions.
From a traffic perspective, there is a critical need for a
deeper understanding of AVs’ longitudinal behaviors to
predict their impact on traffic congestion.

Meanwhile, the current AV technology is fast evolving
thanks to the recent advancements in computer vision
and machine learning. Notably, we are witnessing a fun-
damental shift from the traditional radar-based ACC,
which relies solely on radar (/7), to camera-included
advanced driver-assistance systems (ADAS). The transi-
tion is reasonable and as expected, because the tradi-
tional radar-based ACC has a limited functionality from
its pure reliance on the radar sensor and hard-coded
human-crafted rules. Additionally, the inherent structure
of radar-based ACC may lead to issues such as: (i) inabil-
ity to adapt to variable speed limits, respond to the ambi-
ent traffic proactively, or predict upcoming incidents, (ii)
inability to navigate in stop-and-go traffic because of the
limitations in detecting slow-moving or still objects, and
(iii) to alleviate the traffic oscillations, the hard-coded
CF rules also require more human efforts in examining
and tuning the controller.

This shift from radar to cameras can be game-
changing because vision opens the gate for incorporating
more machine learning methods, such as mMP, for
planning. The leading company, Tesla, is famous for its
camera-based autonomy solution and its latest full self-
driving (FSD) function features “traffic-aware cruise
control” (18). Starting from May 2021, Tesla completely
abandoned radar on new releases of its FSD software
(19). Although FSD’s cruise control demonstrates multi-
ple intelligent features, there is no reliable evidence to
show whether its longitudinal motion planning is pow-
ered by neural networks or the traditional rule-based

ACC with extra augmentations. Recently, many other
automakers have been catching up and also starting to
integrate cameras into the longitudinal control module.
A brief summary could be seen in Table 1. In general
those automakers adopt a similar ADAS, which adds
camera for lane keeping and collision avoidance, and
enables low-speed cruise control in stop-and-go traffic
where a single radar often fails. General Motors (GM)
and Nissan seem to be slightly different. Instead of using
radar, GM’s current ACC function is reportedly only
using camera (20), and its upcoming Super Cruise (2/)
would be a hands-free function using LiDAR maps of
highways. Nissan (22) has delivered level-3 autonomous
driving using a complex suite of sensors similar to that
of Tesla. Nissan also claims to be the first automaker
that incorporates the three-dimensional high-definition
map.

On the other hand, although there exist hundreds of
AYV automakers, there are far fewer AV service providers.
The major ADAS service providers with their major cus-
tomers and collaborators are summarized in Figure 1.
More detailed information on service providers of ADAS
and other AV technologies are attached in the Appendix.
It indicates that, despite the many different brands of
AVs, their impact on traffic flow is likely to be similar to
each other.

While the level-2 market AVs are proprietary and no
explicit knowledge about their longitudinal control meth-
ods is available, the self-driving technology companies/
institutions have been more transparent and exhibited a
clear goal to achieve and adopt the mMP. Waymo pub-
lished its feature-engineering mMP approach in Bansal
et al. (30). Remarkably, an end-to-end mMP model was
recently open-sourced by Comma.ai, an aftermarket self-
driving company which retrofits regular cars with a
mono-camera phone. Similar self-driving service is also
seen at Mobieye (37), part of Intel, which helps regular
cars to function as AVs with only a single camera device.
Similarly, many other self-driving technology companies
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Figure 1. Main suppliers and customers of advanced driver-
assistance systems (ADAS).
Source: Wu (29).

have published their datasets which indicate mMP meth-
ods toward the longitudinal autonomy. Readers are
referred to Scale (32) for a full list of those public self-
driving datasets, which are filtered by data type, traffic
scenario diversity, and annotation. On the other hand, a
plethora of research papers (33-37) have been proposed
to accomplish mMP using different learning approaches.

With all that being said, it is highly possible that mMP
will be the future of AVs, for both level-2 commercial
vehicles and the higher-level FSD cars according to the
definition of the Society of Automotive Engineers. As its
impacts on traffic congestion are essential and have not
yet received enough attention, an in-depth review is nec-
essary to understand the state-of-the-art mMP methods,
with the purpose of promoting more traffic-friendly AVs
in the long run.

There already exist some review works on AV plan-
ning algorithms in the literature, but their focus is not
related to traffic congestion or mMP methods. For exam-
ple, Babak et al. (38) is limited to the engineering per-
spective only, focusing on sensors and embedded systems
for AVs. Tesla (17), Katrakazas et al. (39), and Paden
et al. (40), in the robotics literature, discussed the tradi-
tional motion planning approaches like graph search, tra-
jectory optimization, and optimal control methods,
which are out of the scope of this study. Quite a few
reviews focused on the rule-based AV control, especially
for CACC (41). Attempts to consolidate more relevant

studies on mMP of AVs are available. Ni et al. (42) intro-
duced the development of AVs and basics of deep learn-
ing methods, as well as summarizing recent research on
theories and applications of deep learning for AVs.
However, they aimed to identify challenges and solutions
in learning algorithms and took an overview from the
vehicle perspective. A summary or discussion from the
system perspective, such as the impact of mMP on traffic
congestion, has not been presented. Similar conclusions
can be drawn from the reviews by Schwarting et al. (43)
and Yurtsever et al. (44). To the best of the authors’
knowledge, the only work that overviews learning-based
AV control methods from artificial intelligence (AI) in
the field of transportation engineering is Di and Shi (45).
Nonetheless, that survey was focused primarily on how
to deal with interactions between AVs and human-driven
vehicles, especially by reference to academic works.

Compared with the existing review papers on AV con-
trol, the aim of this study is to provide a comprehensive
outlook to consolidate the existing knowledge base of
upcoming mMP of AVs and their impacts on traffic con-
gestion. Specifically, this review paper aims to answer
the following questions:

e Data: Do existing self-driving datasets contain
congested scenarios? Do they include the necessary
features/labels to train a congestion-mitigating
mMP?

e [earning method: What are the potential strengths
and weaknesses of the typical learning methods in
their impact on traffic congestion?

e Domain knowledge: How could expert knowledge
of traffic flow help the Al community build the
congestion-mitigating mMP?

To this end, the paper is organized as follows. The second
section introduces available open datasets for AV devel-
opment; the third section summarizes learning methods
for AV control; the fourth section discusses the major
limitations and challenges arising from these previous
works; the fifth section proposes how to utilize traffic
domain knowledge to leverage current mMP, and the
final section presents the discussion and outlook based
on this review work.

Datasets for mMP

A typical framework in modern autonomous driving sys-
tems is shown in Figure 2. Among those pillars, the
mMP in this paper falls into the driving policy/path
planning module. Following the pipeline, the related
components of training data, model input and output
are reviewed, as well as the learning methods for mMP.
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Figure 2. Fixed modules in modern autonomous driving systems.
Source: Talpaert et al. (46).

Available Open Datasets

Two recent studies (47, 48) provided good reviews of the
existing open datasets, which covered data scale, con-
tents (camera or LIDAR, object annotation), road sce-
narios (urban streets or highway), weather conditions
and test vehicle type. Most of the current open datasets
are designed to assist computer vision development, even
leaving out the some information (e.g., acceleration, tra-
jectory data) required to mimic human driving. From
the perspective of traffic congestion, Table 2 summarizes
the datasets including the position information that is
necessary for learning mMP. This paper also shows spe-
cific concerns of the driving scenarios and traffic condi-
tions which are certainly related to mMP model.

Among the currently existing datasets, nuScenes (54)
and HighD (62) have shown some consideration of con-
gestion. The nuScenes dataset collected data from
Boston and Singapore, two cities that are known for
their dense traffic and highly challenging driving (242 km
traveled at an average of 16km/h). The HighD dataset
was recorded at six different locations near Cologne,
Germany. However, the authors are not aware of any
studies that have used nuScenes or HighD to train an
autonomous driving system. Recently, more AV compa-
nies from the industry, like Waymo and Lyft, have
released some open datasets. Waymo’s dataset (49) does
not provide direct information on trajectory, one needs
to derive it using kinematics information. Lyft’s dataset
(65) does not cover congestion scenarios. Tesla has not
revealed any plan to publish its dataset yet, but the
authors conjecture that with their large deployment of
vehicle fleets it would be highly possible to gain enough
congestion data. Remarkably, the L3Pilot dataset
will record the autonomous driving behavior and the tra-
jectories of 13 OEM autonomous driving systems, which
includes 1,000 drivers and 100 cars in various driving
conditions (i.e., different weather and traffic conditions)
across 10 countries in Europe. The comprehensive cover-
age and enriched features of the L3Pilot dataset can

significantly enhance the research on autonomous driv-
ing. However, the L3Pilot autonomous project is still
ongoing and the corresponding dataset is not yet avail-
able to the public. Thus, the current overall situation
indicates the lack of consideration of congestion in both
academia and industry. Next-Generation Simulation
(NGSIM), an open dataset consisted of two-dimensional
trajectories, has been widely used in CF studies for
decades. Different from the datasets from the AV indus-
try, the traffic density in NGSIM often varies signifi-
cantly and covers both full states from free flow to traffic
jams. It also exhibits a high degree of vehicle interaction
near traffic bottlenecks like on-ramps or off-ramps. The
diversity of driving scenarios and the interaction among
vehicles makes NGSIM especially valuable for learning
driving behaviors under congestion. However, it does
not provide any image or LIDAR data compatible with
sensors for AVs. Moreover, the OpenACC dataset (64)
provides the highway trajectory data of multiple vehicles
driven by different commercial ACC systems. However,
similar to the NGSIM dataset, the OpenACC dataset
does not provide any video data or vehicle sensor record-
ings that be can leveraged in end-to-end mMP.

A general issue in those open datasets is that it is
unclear whether those miles were driven by human driv-
ers, traditional ACC controllers, or new mMP models. It
becomes a major limitation when researchers attempt to
reverse-engineer those current mMP models or simply
use the data for training. It might also explain why the
applications of those open datasets to transportation
studies are still very limited. Overall, the current datasets
from the self-driving industry are very limited for analyz-
ing the impact of mMP method on traffic congestion.
While more and more commercial ACC products are
expected to be equipped with mMP in the future, it
would be beneficial for research purposes if car compa-
nies were to share their driver data.

Simulator Datasets

While it is costly to collect data from the real world, hi-
fidelity driving simulators have also been developed to
train AVs. CARLA (66) and TORCS (67) might be the
most popular open-source simulators for autonomous
driving research. Related studies based on those simula-
tors can be found in Chen et al. (68), Panwai et al. (69),
Codevilla et al. (70), Mirowski et al. (71), Tan et al. (72).
CARLA can define diverse sensor suites and is also able
to generate congested traffic scenarios. A specific method
of transferring driving policies from simulations to the
real world was shown in Miiller et al. (73). Note that
those simulators also make the reinforcement learning
(RL) method feasible by providing an interactive envi-
ronment for agents to learn.
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Table 2. Open Datasets and Simulators for Training Autonomous Driving Systems

Data Type

Dataset T C  Scenario Traffic Highlights and comments

Waymo (49) Y Y U Light Kinematics derived from speed

Apolloscape (50) Y Y U Light and dense  Cover different traffic densities

KITTI(51) Y Y HU Light and dense  The first autonomous vehicle dataset, mainly used for vision

BDDV (52) Y Y HU Light and dense A large-scale diverse driving video dataset with
comprehensive annotations

Udacity (53) Y Y U Light Driven by ACC, in 2016

nuScenes (54) Y Y HU Dense Boston and Singapore, including congestion

Ford (55) Y Y HU Intermediate Including car-following in congestion

Argoverse (56) Y Y HU Intermediate Annotation and labels included in the video

NGSIM Y N HU Light and dense  Mostly used by car-following model studies

Comma.ai (57) Y Y H Intermediate Driven by ACC and human drivers

Brain4Cars (58) Y Y HU Unclear Behavioral label

CityScapes (59) Y Y U Dense Diverse real-world driving scenes with high-quality annotation

Oxford RobotCar (60) Y Y U Light and dense  Diverse traffic conditions for the whole year in Oxford, UK

UAH (61) Y Y H Intermediate Driving behavior analysis with IOS app

HighD (62) Y N H Light and dense  High-resolution drone data with extracted features

L3Pilot (63) Y Y HU Light and dense  First comprehensive test of OEM(Original Equipment Manufacturer) self
driving systems in European Union

ACC data (9, 10, 64) Y N H Intermediate Trajectories of recent ACC car models

Note: H = highway; U = urban; T = trajectory data; C = camera data; Y = yes; N = no; ACC = adaptive cruise control.

Both academia and industry have been using simula-
tor datasets to test AV software and hardware. For
example, in academia, developers from CMU and MIT
used TROCS and Talos simulators, respectively, to test
their algorithms in simulation before porting them to the
vehicle for practical road test (74, 75). Recently research-
ers have used simulated LiDAR data to develop and test
algorithms for AV off-road ground navigation using the
MSU autonomous vehicle simulator (76). To supply the
critical events and corner cases for the evaluations of
AVs efficiently and effectively, Feng et al. (77) leveraged
RL algorithms to generate naturalistic adversarial critical
events in CARLA to test the safety performance of AVs.
In industry, simulator datasets have been used by car
manufacturers not only to eliminate modeling errors and
validate control systems for AVs (78), but also to evalu-
ate the powertrain performance and the analysis of
energy consumption of AVs (79, 80). Waymo (79, 81)
and Uber (82) developed simulator platforms to generate
realistic scenarios from their real-world datasets to
improve the safety and performance of AVs.

For the impact on traffic congestion, similar
simulation-based methods can be adopted to generate
more driving scenarios related to the traffic efficiency,
besides the safety-oriented experiments. However, even
though the simulation-based method is efficient in gener-
ating supplementary data, simulating realistic behavior
of human drivers in a complex traffic environment
remains a difficult task, because surrogate models
used in simulation will inevitably induce model bias and

over-simplified behaviors. The simulation environment
constructed with such a surrogate model can lead to
undesired and biased performance measure of AVs.
Alternatively, we could use a simple CF model known to
be string stable to train a string-stable mMP. Despite the
potential benefits of simulator datasets, studies incorpor-
ating them to develop a congestion-mitigation mMP
model have not been reported. Some studies from the
transportation research domain might be close (83, 84),
using a simple traffic simulator to train a single AV to
stabilize mixed traffic. However, the studies using more
high-fidelity driving simulator data to investigate string-
stable mMP models have not been found.

Learning Method
Behavior Cloning

A simple yet effective learning method for mMP is to
map model inputs to outputs directly, which can be rep-
resented as a function mapping from the input features s
(e.g., video frames, figure annotations, kinematic infor-
mation of ambient vehicles, etc.) to the output action
space a (e.g., vehicle speed, acceleration, and steering
angle, etc.): F(s) — a. This method is referred to as beha-
vior cloning (BC), a subset of imitation learning. The
classical framework of BC methods for mMP can be clas-
sified into three categories: end-to-end learning, mid-level
learning, and mixed (hybrid) learning approach. These
methods are specifically discussed below:
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(i) End-to-end mMP. The end-to-end learning
approach behaves similarly to a black box, which takes
in the raw video data and outputs the longitudinal vehi-
cle control command (e.g., speed, acceleration, throttle
response). Even though the end-to-end approach pre-
serves the advantages of self-optimizing and requiring
less manual effort in implementation, it does confront
difficulties and challenges in capturing and processing
crucial features from raw video frames. Specifically, the
video data in traffic congestion would contain multiple
clusters and pose great difficulty to image processing and
feature extraction. In addition, the congestion data may
contain undesired noise or become excessively random
for neural networks to learn, which might trigger under-
fitting or over-fitting issues. The strategies reported in
the existing literature solely rely on two categories of
neural networks: convolutional neural networks (CNN)
and recurrent neural networks (RNN). For instance,
Kim and Canny (85), Bojarski et al. (86), Chen and
Huang (87), and Sharma et al. (35) utilized deep CNNs
concatenating with multiple fully connected layers to
predict the vehicle steering wheel angles, which demon-
strated a decent performance in the real-world driving
scenario. Moreover, researchers are also contributing to
the vehicle longitudinal command. Considering the
spatial-temporal characteristics and the memory impact
of vehicle longitudinal trajectories, the long short-term
memory (LSTM) or gated recurrent unit (GRU) aug-
mented deep CNN (52, 88, 89) are applied to artificially
forget or remember the historical frame features to
improve the accuracy of vehicle longitudinal commands
(i.e., speed, acceleration) prediction.

(if) Mid-level learning. The mid-level learning method
is more interpretable compared with end-to-end learning
approach because of its explicit hierarchical structure.
The first segment of mid-level learning is to extract the
useful CF features (e.g., inter-vehicle spacing, relative
speed, lane position, etc.) using computer vision algo-
rithms, then the second segment correspondingly retrofits
the CF model with specific neural network. Remarkably,
Zhou et al. (90) showcased the effectiveness of an RNN-
based CF model in capturing the traffic oscillation char-
acteristics, which provides an insight on including RNN
(e.g., LSTM, GRU) in the deep neural network to retro-
fit the CF behavior in congested traffic condition.
Moreover, some studies (9/—94) have demonstrated that
by arranging the kinematic information of multiple
neighbor vehicles in Laplacian-like feature matrices or
tensors and applying graph convolution network to seize
the inter-dependency and social pooling of data, perfor-
mance in predicting the states of ego vehicles could be
improved. This phenomenon indicates that features with
higher dimension and organized in connected structure
might lead to higher accuracy. Under this circumstance,

it is also significant to evaluate those hand-crafted fea-
tures with regard to the model accuracy and parsimony,
such that a trade-off can be achieved between model
complexity and accuracy.

(ii1) Mixed (hybrid) learning approach. As including
more useful features in the tensor can boost the predic-
tion performance, some studies have also included
another sub-task (e.g., semantic segmentation, image
augmentation) to extract those useful features in the
training process or incorporated other information (e.g.,
vehicle kinematic states, ambient traffic information)
into the end-to-end learning to improve the model accu-
racy. For instance, George et al. (34), Yang et al. (95),
Hsu et al. (96), and Li et al. (97) pooled the vehicle kine-
matic information with the features obtained from video
frames using concatenating layer to enhance the predic-
tion of steering angle and acceleration. Xu et al. (52)
conducted a semantic segmentation aside of the longitu-
dinal and lateral end-to-end learning, and added the loss
function of semantic segmentation to the driving loss
function of end-to-end learning to reinforce the predic-
tion accuracy. It was found that the simultaneous learn-
ing of semantic segmentation could outperform both the
end-to-end and mid-level learning methods.

Remarkably, the BC method has gained wide popu-
larity within the industry. Waymo’s research paper (30)
reported that, even with 30 million examples and mid-
level input and output for motion planning, a pure BC
method is not sufficient to train a safe AV. To tackle
this, they synthesized more “corner” cases through add-
ing perturbations to the normal driving data. However,
it is conjectured that it might not lead to much difference
since the longitudinal motion planning under normal
driving scenarios is not strengthened by “corner” cases.
Although Tesla has not published any official research
documents on its motion planning technology, from its
investor conference event in April 2019 (98), one could
speculate that Tesla most probably adopts the BC
method as well, and the supervised learning model is
evolving with the large deployment of vehicle fleets on
the roads. Currently, Tesla is adopting a feature-
engineering approach rather than an end-to-end method.
Evidence can be found from the videos (99) on the
Autopilot official website, in which entities such as vehi-
cles, traffic lights, or cones are all labeled and annotated
separately. Moreover, at the Scaled Machine Learning
conference in February 2020 (/00), Tesla revealed the
neural network architecture applied in the FSD, from
which it appears that Tesla is applying a HydraNet for
pooling different neural networks which conduct differ-
ent tasks of perceptions and predictions (e.g., labeling,
annotation, semantic segmentation, per pixel depth pre-
diction) but share the same backbone. Correspondingly,
the HydraNet fuses the information from all cameras
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and radars to create a bird’s-eye view for navigating the
vehicle.

IRL and GAIL

Another pipeline of imitation learning is to recover the
implicit reward function of human driving using inverse
reinforcement learning (IRL). IRL defines the cost func-
tion of a trajectory ¢y and maximizes the probability of
expert demonstration:

Pl = Zexp (= o) (1

where 7 is a state-action trajectory, and Z is the integral
of exp(— cor) over all trajectories that are consistent
with the environment dynamics (/07). The parameters 6
are optimized to maximize the likelihood of the demon-
strations. If the cost function is learned, one can simply
use RL to find the policy that behaves identically to the
expert. The first IRL study for autonomous driving was
that of Abbeel and Ng (/02), which proved that it is pos-
sible to “guess” the cost function for some simple task
like highway driving by approximating it with a linear
combination of some hand-selected features. Related
works can be found in Sadigh et al. (103), Gonzilez
et al. (/04), and Sharifzadeh et al. (/05). However, linear
assumption of the reward function will lead to ill-posed
problems, because the probability of expert behaviors
can be maximized by many different parameters 6. Thus
IRL was extended to maximum entropy ILR by Ziebart
et al. (106). However, IRL methods are typically compu-
tationally expensive in their recovery of an expert cost
function and generally require RL in an inner loop.

Noticing the immense computational cost in recovery
of the true reward policy, Ho and Ermon (/07) found
that human driving behaviors can be mimicked directly
using generative adversarial imitation learning (GAIL)
without discovering a cost function first. GAIL trains
the self-driving policy my to perform expert-like beha-
viors by rewarding it for “deceiving” a classifier Dy, that
discriminates between the policy and expert state-action
pairs. Suppose driving is a sequential decision-making
task following a stochastic policy mg(s,a), which maps
an observed road condition s to a distribution over driv-
ing actions a. Sample a set of simulated state-action pairs
Xo = (S0,a0), (s1,a1)...(s7, ar) using parameterized policy
g, and the expert behaivor pairs xz from mg, the GAIL
objective is:

mdfilx mein V(0,d) = E, a)~y, [l0g Dy (s, a)]
+ E(s,a)wxe [1 - lOgD¢(S, a)}

In a recent work, GAIL was applied to the task of
autonomous driving on highway scenario using NGSIM

dataset (/08). The result shows that the recurrent GAIL
is surprisingly able to capture many desirable properties
consistent with real trajectories. Bhattacharyya et al.
(109) extended GAIL to multi-agent learning for highly
interactive driving cases. Although the methodology of
GAIL is sound, there do not appear to be more follow-
up studies from the academic community or industry.

Reinforcement Learning (RL)

The success of imitation learning largely depends on the
availability and distribution of labeled data, which are
costly to collect. To circumvent this problem, another
stream in mMP is working on the non-imitation method,
RL, which follows a pipeline as shown in Figure 3. Since
RL methods need expert-designed reward functions, they
can be designed according to the basic driving rules for
autonomous driving, such as gaining faster speed and
avoiding collisions. Pan et al. (//0) used RL to train an
autonomous driving policy with a pre-defined reward
function encouraging higher speed and penalizing
crashes. In more recent work, Chen et al. (///) imple-
mented several deep RL methods and showed good driv-
ing performance with dense surrounding traffic. Guo
et al. (/12) used the RL method to learn the longitudinal
motion planning for AVs to reduce fuel consumption as
well as to maintain acceptable travel time. Shalev-
Shwartz et al. (/13) applied multi-agent RL in a highly
interactive merging case to generate a set of feasible tra-
jectories and then feed a hand-designed cost function to
the trajectory planner to select the most smooth and safe
trajectory, which makes the longitudinal motion plan-
ning no longer a pure BC process. DeepTraffic (/14), a
simulation and deep RL environment developed by
MIT, has also shown the success of RL in navigating
AVs on a congested seven-lane highway. Other similar
studies based on RL and traffic simulators can be found
in Sallab et al. (/15), Kendall et al. (//6), and Liang
etal. (117).

It is worth noting that, in the RL context, the model
input also plays an important role because it directly
determines the state space that an RL agent can observe.
Chen et al. (/11) reduced the state complexity through
feature representation based on the raw image, which
makes the problem more tractable and computationally
efficient. Despite some studies using RL to stabilize
mixed traffic in a loop (//8) or near the merging areas
(83), there does not yet appear to have been any success
in learning a string-stable mMP for single AVs.

In summary, the involvement of the major motion
planning methods is shown in Figure 4, which depicts
the transition from traditional rule-based methods to the
state-of-the-art machine learning methods. Note that
most learning methods fall into the range of BC, and
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although many alternative learning methods for BC have
been proposed in the literature, the leading AV compa-
nies still stick to BC (30, 98). Here RL is not considered
as a BC method since RL does not directly learn from
expert demonstration. It does not require large amounts
of data but a high-fidelity simulator. Also, the perfor-
mance of RL heavily depends on the human-designed
reward functions that govern the training process and
resulting policies.

Limitations of mMMP

Based on the previous review, this section will discuss the
current limitations of mMP research with regard to its
impact on traffic congestion.

Systematic Lack of Training Data

Datasets that can completely cover regular driving sce-
narios are still unavailable, let alone the “corner” cases

that threaten the robustness of mMP. No driving data
were found for multi-lane highways, on-ramp and off-
ramp bottlenecks, or generally congested traffic condi-
tions. Since most neural network methods cannot gener-
alize well to unseen situations, the authors believe that
the incompleteness of datasets might lead to biased or
even unpredicatable CF behaviors. Issues of such limita-
tions in biased datasets were also discussed by Codevilla
et al. (119).

Incomplete Feature Representation

While perception modules can extract human-
interpretable features as model inputs for mMP, those
hand-selected features may not fully capture all the influ-
encing factors for driving decisions. For example, the
specific location information might be totally ignored in
model input. From the industry, no information has
been revealed about whether the localization results are
incorporated into motion planning. While human drivers
respond to different locations with varying driving beha-
viors, such as the “relaxation” phenomenon discovered
by Laval and Leclercq (/20), we still do not know
whether mMP will react differently in traffic bottlenecks,
such as on-ramps or off-ramps.

Codevilla et al. (70) and Sauer et al. (121) conditioned
the BC with high-level command input for intersections.
The included high-level commands are able to resolve
ambiguities in the mapping from single image input to
low-level commands (steering and speed). It is argued
here that in highway driving, such ambiguities will also
arise between the exiting and non-exiting vehicles (/20).
Thus it would be worthwhile to incorporate driving
intention in motion planning for AVs. However, only
Tesla (98) has reported a related project to infer the lane
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change intention of leading vehicles and integrate it for
motion planning.

Limitations in Learning Algorithms

According to Kuefler et al. (/08), the BC method has
been successfully used to produce driving policies for
simple scenarios such as CF on freeways. However,
Wheeler et al. (/122) and Lefévre et al. (/123) reported dif-
ferent results when applying BC to nuanced states with
little or no experience, showing that BC can only produce
accurate predictions up to a few seconds. Their results
indicate that BC usually demands large amounts of train-
ing data, and becomes inaccurate when generalized to
unseen experiences. Remarkably, when LSTM or GRU
are included in the neural network to retrofit the longitu-
dinal command, these two types of RNN could also face
difficulties in transfer learning, posing challenges in gen-
eralizing the model. Moreover, the stop-and-go speed
profile and the fluctuated and choppy acceleration trig-
gered by congestion appreciably contribute to the diffi-
culties of retrofitting the vehicle longitudinal command,
entailing a more intelligent neural network model to cap-
ture the fluctuations and discontinuities in the vehicle CF
model during congestion. The poor data distribution
generated from driver heterogeneity in congestion also
contributes to the randomness of the model trained by
BC, which casts extra doubt on the generalization of a
BC model. Thus, BC could significantly suffer from the
scarcity of training data and can be biased because of
poor data distribution.

Although IRL and GAIL can circumvent some of the
issues with the BC method, they still succumb to the pit-
fall of imitation learning methods. Chen et al. (//7) sum-
marized three major issues with imitation learning: (i) it
needs to collect a huge amount of expert driving data in
real-world and in real time, which can be costly and
time-consuming, (ii) it can only learn driving skills that
are demonstrated in the dataset. This might lead to seri-
ous issues given unseen experience in test process, and
(iii) since the human driver experts act as the supervision
for learning, it is impossible for an imitation learning
policy to exceed human-level performance. From the
traffic flow perspective, it is argued here that either BC
or other deep imitation learning methods will be cumber-
some, especially with incomplete datasets lacking the
important driving scenarios mentioned above. According
to Gao et al. (/124), both BC and IRL algorithms impli-
citly assume that the demonstrations are complete, mean-
ing that the action for each demonstrated state is fully
observable and available. Obviously, this assumption
does not hold for the mMP problem.

The existence of limitations with imitation learning
methods highlights the potential of non-imitation

methods like RL in learning a “better” driving policy to
reduce congestion and improve overall traffic efficiency.
It is not easy to achieve, though. The major issue with
using the RL method is the dependence on a reward
function, which must be hand-crafted based on engineer-
ing experience and has to be applicable to all driving sce-
narios (/25). RL methods might cause undesirable
driving behaviors by directly transferring their driving
policy learned in non-congestion states. Besides, it is
argued here that adopting RL transforms the problem of
mMP from imitating human demonstrations to search-
ing for a policy that complies with a hand-crafted reward
rule. Also, it should be pointed out that RL requires
high-fidelity simulation platforms, which must be able to
model accurately the appearance of the environment, the
physics of vehicles, and the behavior of other participants
(98). Especially important is the modeling of vehicle
dynamics to represent the effects of gravity accurately,
which has been found to be a key factor in reproducing
empirical traffic flow instabilities (/26).

In summary, RL seems to be the only hope to develop
“optimal policies” that could potentially outperform
human drivers. Despite the difficulty in designing a good
reward function, and the requirement of a more realistic
traffic environment, it is believed that the “trail-and-
error” principle in RL is worth borrowing. Note that
Tesla already seems to be working in this direction, and
it is able to use the natural traffic environment to test
itsalgorithms and collect ground-truth data. Again, it
remains unknown whether Tesla has considered the con-
gestion impact in its development program.

Traffic Domain Knowledge

Overall, the current research on mMP is devoting most of
its efforts to the long tail safety problem, while its impact
on congestion has been almost completely ignored.
Through the above review, the major limitations in cur-
rent datasets and learning methods have been identified,
and now some potential future studies are proposed
which aim at equipping the learning process with related
traffic domain knowledge to fill in the research gap.

Here the main intellectual achievements in traditional
CF theory are summarized which are probably worth
noting for learning approaches to combine. Concerning
the impact on traffic congestion, the most important
human CF properties might include: memory and pre-
diction, randomness, and string stability.

Memory and Prediction

For memory and prediction, LSTM, a type of RNN, has
been adopted by mMP studies (30, 52, 127) to address
the impact of memory on future speed choice. Lefevre
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et al. (/123) conducted a comparative evaluation of para-
metric and non-parametric approaches for speed predic-
tion during highway driving. Their study showed that
the CF models can perform well for short-term speed
prediction, but deep neural networks behave better for
long-term prediction. To evaluate the relative perfor-
mance of different learning methods on the same dataset,
Kuefler et al. (108) compared the GAIL and BC meth-
ods using the same two-dimensional trajectories from
NGSIM. Their work demonstrated that BC has the best
short-horizon performance, and GAIL outperforms
other methods including CF models for long-horizon
tasks.

The CF models have realized the merits of introdu-
cing memory to improve prediction for a long time.
Studies have also attempted to make some modifications
to the traditional CF models based on their original
form. Lee (/28) revised the linear GHR model (129, 130)
to account for the relative speed over a period of time:
an(t) =[5 M(t — $)AV,(s)ds, where M is the weight func-
tion for the memory impact. Tang et al. (/3/) extended
the optimal velocity model (/32) and found that consid-
ering human drivers’ memory would improve the string
stability of traffic flow. Similarly, Zhou et al. (90) cap-
tured traffic oscillations using a RNN-based CF model,
which indicates that memory and prediction can help
make informed driving decisions for smoother traffic.

It appears that mMP is able to imitate human driving
with such memory and prediction property. For exam-
ple, AVs will decelerate in advance when realizing poten-
tial decelerating or cut-in behaviors ahead of them.
Notably, Elon Musk (98) also mentioned that Tesla can
even predict a curving path that cannot be seen by
humans because of road geometry or limited sight dis-
tance. The prediction power of mMP might outperform
human behavior. Tesla has also demonstrated that its
prediction can be used to infer the intention of other
vehicles, such as cut-in behaviors which will be incorpo-
rated in AVs’ motion planning. It is conjectured such
prediction can improve traffic stability, because AVs can
predict disruptive lane changes and prepare to decelerate
first, instead of abrupt deceleration without any predic-
tion. Those studies and new technologies pertinent to
memory and prediction help to demonstrate the poten-
tial of AVs to dampen future traffic congestion.

String Stability and Safety

The literature has shown that most CF models are unable
to replicate string stability consistent with empirical
human driving data. These models are all deterministic,
including stimulus-response models (/30), optimal velo-
city models (/33), IDM(Intelligent Driver Model) (/34)
and FVDM model (/35), safe-distance model (/36),

desired-headway model (/37), and psycho-physical mod-
els (138, 139).

Sun et al. (/40) conducted a comprehensive review on
the methods for stability analysis and their applicability
to CF models. They classified the traditional CF models
into three categories: basic CF models, time-delayed CF
models, and cooperative CF models, based on the assump-
tion of a connected environment (/40). Common methods
in the literature for string stability analysis have also been
reviewed in detail. However, those methods applicable for
traditional CF models do not apply to mMP because of its
lack of explicit mathematical formulations.

More importantly, Sun et al. pointed out some incon-
sistency between the results using analytical method and
numerical simulation, which may result from some of the
major assumptions or relaxations: (i) since the methods
for string analysis are mostly based on linear equations,
the non-linear CF models are approximated, which
causes certain numerical errors; (ii) the platoon is always
assumed to remain in equilibrium before a small pertur-
bation is added when analyzing string stability, which
goes against real traffic conditions where different driv-
ing regimes need to be considered, and (iii) the methods
of linear stability analysis are only suitable for small per-
turbations and the non-linear effects caused by large per-
turbations such as hard braking do not apply. Those
studies indicate that the string stability of mMP will be
hard to capture because of the non-linear neural network
architectures. Reasonable methods should depend on
numerical studies. Therefore, to analyze the string stabi-
lity of mMP, one has to approximate those proprictary
“black boxes” with traditional CF models or a separate
neural network, and then conduct numerical simulations
for further analysis.

Moreover, safety (collision prevention) is another sig-
nificant issue in mMP (actually it could be weighted the
most in AV control design). In congested traffic, with the
randomness and disturbances induced by human drivers,
abrupt braking could be inevitable to guarantee safety,
which could consequently jeopardize the string stability
performance. Under this circumstance, how mMP will
trade off collision avoidance and the smoothness of traf-
fic in congestion remains to be analyzed and researched.
A feasible direction could be making collision avoidance
a local-level safety objective while using string stability as
a system-level safety objective, and mMP will iteratively
optimize these two objectives. Specifically, the local safety
objective monitors the immediate safety status of the ego
vehicle, preventing collisions with adjacent vehicles dur-
ing driving tasks. The system-level safety objective could
be evaluated as a long-term target, whose focus will be
the smoothness (string stability) of the traffic. The reason
is that the smooth traffic can alleviate the fluctuations of
acceleration and enforce vehicles to operate closer to the
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equilibrium, which can further prevent collisions in the
surrounding traffic. Correspondingly, a specific boundary
function needs to be scrutinizing the safety status during
AV operation. Beyond the boundary, mMP can resort to
optimizing the system-level performance to alleviate traf-
fic oscillation, while within the boundary, the value of
local safety will overwhelm the system-level string stabi-
lity concern. Therefore, the smoothness of traffic can be
an essential criteria of how AVs fit in the traffic in a long-
term perspective, while collision prevention is the critical
function for AVs to operate safely in a short time span.
This is a significant issue to be carefully balanced such
that AVs can scale up and benefit the traffic system.

Randomness

Laval et al. (/14]) showed that stochastic errors during
the acceleration process are the cause of stop-and-go
waves. They developed a parsimonious family of CF
models that are able to reproduce most traffic instabil-
ities, including traffic oscillations and capacity drop,
based on stochastic processes to describe drivers’ desired
accelerations. It was found that this component is crucial
for capturing realistic formation and propagation of traf-
fic oscillations. This is probably the simplest CF model
that captures driver random errors while accelerating
and produces realistic traffic oscillations. Follow-up
models that incorporate human error have also been for-
mulated within this family (/42, /143) and also for other
well-known CF models (/44).

To the best of the authors’ knowledge, the stochastic
property of mMP has not been well addressed or used for
analyzing traffic congestion. It is not advisable, however,
to add stochastic components to these methods because it
will result in exacerbated traffic oscillations. On the con-
trary, one should try to minimize this error as much as pos-
sible, which should have a positive effect on congestion.

Connections Between CF Models and Neural
Networks

While most mMP methods do not show a direct relation-
ship with traditional CF models, it was revealed that a
mathematical equivalence between mMP and CF models
can be found under simple settings (/45). A linear CF
model will become interchangeable with a deep neural
network given the same input and output. For equiva-
lence in a real AV system, Xu et al. (52) showed that an
mMP network can be replaced with a traditional CF
model given speed and distance extracted from sensor
data. It is argued here that mMP and CF models are
mathematically equivalent if the mid-level methods
generate position/distance-based learning affordances
(features) as model input for mMP module. Since CF
models adopt design variables of position and speed and

output acceleration, the mMP will boil down to a similar
problem which maps the position or speed of surround-
ing cars to ego-vehicle acceleration. But such equivalence
does not apply when the output of mMP becomes a pre-
dicted trajectory within a few seconds.

The mathematical connection between mMP and the
CF models should result from the approximation power
of neural networks, which has been discussed rigorously in
the literature. Kolmogorov (/46) proved a general theorem
stating that any real-valued continuous function f* defined
on a n-dimension cube /"(n>2) can be represented as:

2n+ 1 n
f(xl,xz...x,,) = Z d)q( Z ‘IJpq(xp)) (3)
g=1 p=1

where s is a continuous and universal one-variable func-
tion, and ¢ is continuous monotonically increasing func-
tions independent of f. Using Kolmogorov’s theorem,
Véra (147) also gave a direct proof of the universal approx-
imation capabilities of perceptron networks with two hid-
den layers. Those studies may help to explain why neural
networks can successfully replicate CF behaviors of human
drivers and longitudinal control methods of AV.

Discussion and Outlook

This survey serves as a preliminary study to investigate
the impact of AVs on traffic congestion in the future. It
found that mMP is rapidly developing based on the
efforts of the leading technology companies like Tesla
and Comma.ai. Although mMP has not yet been widely
applied, most automakers have already equipped enough
hardware (sensors) to their latest car models to make
mMP possible in the short-term future. Through the
review it was also found that the AV industry has been
mostly focusing on the long tail problem caused by “cor-
ner errors” related to safety, while the impact of AVs on
traffic efficiency is almost ignored. In detail, none of the
existing public datasets provides sufficient data that can be
applied to the training of a congestion-mitigation mMP,
and the major learning approach for mMP adopted by the
industry is still BC. Albeit some non-imitation methods
such as RL are proposed in the literature, there has not
been noticable success in training a congestion-mitigation
or string-stable mMP for AVs in the existing literature, let
alone its implementation in industry.

Research is needed to understand better the character-
istics of mMP and their impact on traffic congestion. The
authors suggest the following research directions.

Analyzing the Impact of AV by Approximation and
Retrofitting

Since the current AV technologies are sealed as “black
boxes,” the only way to understand their behavior and



12

Transportation Research Record 00(0)

impact is to approximate and retrofit AVs using surro-
gate models. Noticing a certain level of equivalence
between CF models and mMP, we can try to approxi-
mate the proprietary mMP by calibrating specific CF
models. Similarly, in light of the universal approximation
power of neural networks, it is also possible to find surro-
gate deep neural network models for currently unknown
mMP models. Therefore, given a trained mMP, there are
two different approaches to understanding its character-
istics, either by calibrating a parameterized CF model or
training a deep neural network as approximation. Both
of the two methods will pave the way for further studies
to analyze the impact of mMP on safety and string stabi-
lity in traffic congestion.

Data Enrichment for Congestion-Oriented Research

Based on this investigation, there is insufficient data suit-
able for researching autonomous driving mMP in con-
gested traffic. Most existing data are biased to emerging
autonomous driving tasks such as object detection or
safety issues in corner cases. Therefore, it is recom-
mended that the industries and academic institutes
should put more emphasis on the collection of data from
AVs (not human-driven vehicles) in congestion, and
potentially publish the data for further insights.

Incorporating Expert Knowledge from Traffic Domains

For future development of mMP it is advisable that plan-
ning agencies create incentives for the AV industry to put

more emphasis on the impact of AVs on traffic conges-
tion, rather than only focusing on the long tail problem
of “corner errors.” Relevant expert knowledge from traf-
fic domains is worth noting, including but not limited to
the properties of string stability revealed by traditional
CF studies, impact of memory and prediction, the sto-
chastic accelerations, and the equivalence between CF
models and neural networks.

Conclusion

The paper has mainly surveyed and discussed the mMP
for AVs, while leaving some other important factors
including connectivity and the cooperation between AV
industry and transportation agencies. The authors believe
the emerging technology of connectivity also provides a
great opportunity to benefit the traffic, as more real-time
data enable AVs to execute traffic-friendly control algo-
rithms. Additionally, the cooperation between AV indus-
tries and transportation agencies is also essential for
improving the performance of AVs in congested traffic,
and providing incentives for the smooth transition from
human-driven vehicles to AVs.

Appendix. Major AV Technology Suppliers
and Customers

A detailed graph showing the relations of major suppliers
and customers in AV technology is included (Figure 5).
A full table is shared via the link: https://wwc20.github
.10/AV-technique-suppliers/

uuuuuuuu

Figure 5. Suppliers and customers of automated vehicle technology.
Source: Wu (29).
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