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Abstract—Current commercial adaptive cruise control (ACC)
systems consist of an upper-level planner controller that decides
the optimal trajectory that should be followed, and a low-level
controller in charge of sending the gas/break signals to the
mechanical system to actually move the vehicle. We find that
the low-level controller has a significant impact on the string
stability (SS) even if the planner is string stable: (i) a slow
controller deteriorates the SS, (ii) slow controllers are common
as they arise from insufficient control gains, from a ”weak”
gas/brake system or both, and (iii) the integral term in a slow
controller causes undesired overshooting which affects the SS.
Accordingly, we suggest tuning up the proportional/feedforward
gain and ensuring the gas/brake is not ”weak”. The study results
are validated both numerically and empirically with data from
commercial cars.

Index Terms—string stability, low-level controller, ACC

I. INTRODUCTION

With the development of vehicle automation, adaptive
cruise control (ACC) systems are now widely available on
commercial vehicles around the world. To be beneficial in
terms of traffic efficiency, ACC systems are expected to
achieve string stability (SS) to ensure that small perturbations
do not amplify along a platoon of vehicles [1], [2], i.e.,
speed fluctuations should be dampened rather than amplified
by the follower [3], [4]. A commercial ACC system is
typically comprised of an upper-level planner and a low-
level controller. The planner uses sensor data to estimate the
kinematic information of preceding vehicles (e.g., spacing,
speed) and outputs a desired speed/acceleration. Then, the
low-level controller is in charge of actually moving the
vehicle towards the desired speed/acceleration target.

In recent years, the SS of ACC systems has drawn increas-
ing attention from the traffic flow community, in the context
of fast developing self-driving technologies and their poten-
tial impact on traffic flow efficiency. Since the ACC modules
on commercial car models are ”black boxes”, researchers can
only collect empirical driving data of the ACC systems, and
retrofit them with controllers or car-following (CF) models
to investigate the SS using simulation [5], [6].
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The SS of ACC systems has been studied since the turn
of the millennium in the control area [7]–[9]. There are
a plethora of studies working towards the design of string
stable ACC or cooperative adaptive cruise control (CACC)
systems. Most studies focus on deriving the theoretical SS
condition of a simplified upper-level planner, and some
studies validate SS performance using real-car experiments
[10], [11]. However, the impacts of low-level controllers have
been consistently neglected. This might be because most cars
used for SS experiments are retrofitted, possibly use different
hardware compared to commercial vehicles and operate on
customized platform such as the robot operating system,
rather than commercial ACC systems.

Existing studies have identified that most commercial ACC
systems are string-unstable [12]. In particular, [9] conjectures
that string-unstable ACCs are likely due to the vehicle actu-
ators driven by low-level controller cannot perfectly follow
the upper-level planner. However, an explicit analysis of
the impact is missing. In addition, [11], [13] recognize the
existence and potential impact of low-level controllers but
still treated them as black-boxes. So far the impact of low-
level controller has not been studied in detail, and pertinent
experiments using real cars are still missing.

Although empirical ACC data has been collected and
used to retrofit commercial ACC vehicles, to the best of
our knowledge, no commercial ACC algorithms have been
thoroughly investigated and evaluated. To fill the gaps related
to evaluating low-level controller and investigating commer-
cial ACC algorithms, this paper dives into the open-source
commercial ACC algorithms in Openpilot [14], a self-driving
software published by Comma.ai, one of the leading self-
driving technology companies with more than 40 million
driven miles [14]. The after-market ACC device of Comma.ai
is called Comma Two, which connects and overwrites the
stock ACC modules on commercial cars with its own self-
driving software Openpilot. The Openpilot software is not
only open-source, but also allows users to customize their
own ACC algorithms and test it on real cars, which is
aligned with the objective of this study, and enables us to
highlight the differences between commercial ACC system in
the real world and the simplified controller/CF models in the
literature. Correspondingly, with an emphasis on the impact
of the low-level controller, this study analytically explores
the impact mechanisms of low-level controller, and leverages
the software (Openpilot) and hardware (Comma Two) from
Comma.ai to validate our findings through simulations and
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real-car tests.
The remainder of the paper is organized as follows:

section II introduces the commercial ACC algorithms used
in Openpilot; section III presents the detailed mechanism
of the impact of the low-level controller on SS; section
IV showcases the simulation results; section V validates the
major findings using real drives on commercial cars running
Openpilot; section VI concludes the paper and discusses
future directions.

II. BACKGROUND

A. Pipeline of the longitudinal control in Openpilot

Fig. 1 shows the pipeline of the longitudinal control of self-
driving cars in Openpilot. The longitudinal control starts with
a planner running at 20hz (equal to the radar sampling rate)
which outputs a target speed, vtarget, or target acceleration,
atarget, based on certain type of (car-following) CF models.
The target value is then passed on to the low-level controller.
Notice that the low-level controller runs at the 100 hz, which
is required by the gas/brake system of a modern car. Hence
every planning period would consist of 5 consecutive control
steps. For the low-level controller, the logic is as follows:
i) the speed or acceleration setpoint, vpid and apid, for each
of the 5 control steps is first computed based on vtarget or
atarget ; ii) then a proportional-integral (PI) or proportional-
integral-feedforward (PIF) controller is designed to achieve
vpid or apid by outputting the control input; iii) the control
input is then fed to a processor that maps it to the actuator
command, which is a gas or brake percent gb for the car.
We refer to this process as the compute gb function. If we
view the control variable as the desired acceleration, then the
compute gb function is a mapping from an acceleration to
a gas/brake percentage. Conversely, we can call the mapping
from gb to the true accelerations the gb2accel function which
largely depends on the engine and braking performances of
a car. The gas/brake percentage is then applied on the ego
vehicle to obtain the true acceleration aego, speed vego, and
position xego.

Fig. 1: Pipeline for longitudinal control.

B. The Upper-level planner

1) The linear planner: As mentioned previously, the plan-
ner can be a linear controller, or a CF model in traffic domain,
or even a model predictive controller. Here we start with
a regular linear-controller type planner with constant time
headway policy (CTH), which is common on commercial
ACC systems. Given a desired time headway τ , and the jam
spacing δ, the desired spacing, sdes, from the front bumper
of the ego vehicle to the rear bumper of the lead vehicle, is
calculated as:

sdes = δ + τ · vlead (1)

Then the planner outputs a target speed vtarget given by (2)
below to reduce the error between the true spacing sego and
the desired spacing sdes by a rate kv . Note that in practice,
kv is a linear function of vego, rather than a constant as in
most existing literature [5], [15].

vtarget = (sego − sdes) · kv + vlead (2)

The actual vtarget will be further constrained by acceleration
limits from multiple sources such as comfortableness, the ve-
hicle dynamics, maximum speed difference from the leader,
and the impact of curves.

2) MPC planner: For a regular commercial vehicle, a
professional solver (for example Acado [16]) is needed for an
MPC planner to compile and run in real time. Consequently,
the MPC controller follows a predefined optimization frame-
work required by the solver. The formulation of the opti-
mization objective and the reference trajectory are two key
components for an MPC problem, while how to solve it is
out of scope for this paper. Now we will introduce these two
key components.

In Openpilot the objective function C(t̂) for the longitudi-
nal MPC at the planning time t̂ is defined as a weighted sum
of four sub-costs, time to collision, spacing, acceleration and
jerk:

C(t̂) =
∑

t̂≤k≤t̂+Tmpc

wttcCttc(k) + wdistCdist(k)

+ waccelCaccel(k) + wjerkCjerk(k)

(3)

where Tmpc is the optimization horizon, the tunable weights
applied here are wttc = 5, wdist = 0.1, waccel = 10,
wjerk = 20. The four sub-costs are defined as: Cttc =
exp{ sdes−sego

(
√

vego+0.5+0.1)/0.3
}−1, Cdist =

sdes−sego
0.05vego+0.5 , Caccel =

aego(0.1vego+1), and Cjerk = jego(0.1vego+1), where jego
is the jerk of ego vehicle (i.e., derivative of acceleration), the
desired spacing sdes for the MPC controller is defined as:

sdes = vego · τ − (vlead − vego) · τ +
v2
ego − v2

lead

2g
(4)

where g is the constant of gravity.
The reference trajectory for the MPC is the predicted

lead vehicle trajectory estimated from a simple dynamics
model in (5), which assumes a decaying acceleration of the
lead vehicle with time parameter τlead (1.5s) and dtp (0.2s)
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denotes the step size along the MPC prediction horizon Tmpc

(2.0s).
alead ← alead(t0) exp(−τleadt̂2/2)

xlead ← xlead + vlead · dtp
vlead ← vlead + alead · dtp

t̂← t̂+ dtp

(5)

By solving the MPC problem (6) at each time step t̂, we
can obtain the atarget for the low-level controller.

min
atarget

C(t̂)

s.t. Point-mass dynamics [17] for the ego car
Predicted dynamics for the lead car in (5)
vtarget ≥ 0

(6)

It is worth noting that the MPC planner can also use
the predicted ego vehicle trajectory as the reference, which
is more straightforward but probably needs a vision-based
machine learning model. Detailed discussion can be found
in [18], [19].

Recall that a linear controller outputs a desired speed
value vtarget, which is all a low-level PI controller needs.
However, it is a different case for a low-level PIF controller
since it needs both vpid and apid. Accordingly, except for the
MPC solver, the MPC planner involves two more variables
vstart(t̂) and astart(t̂), which are updated using the following
rule:

astart ← astart + dt̂/dtp(atarget − astart) (7)

vstart ← vstart + dt̂(atarget + astart)/2 (8)

where dt̂ denotes the time step for the planner to update, and
Tp is the planner step. The usage of vstart and astart will
be introduced shortly.

C. Longitudinal low-level controllers

As shown in Fig.1, for each step in the low-level loop,
the processor LongControl adopts the most recent upper-
level planning variables ( vtarget or atarget, vstart and astart)
updated at 20hz and calculates setpoints vpid or apid for each
low-level iteration running at 100 hz. Simultaneously the PI
or PIF uses vpid or apid to output the control variable and
feeds it to gas/brake system. For the low-level control loop,
it is important to understand how LongControl calculates
vpid or apid. The detailed algorithm is introduced as follows.

If the planner gives a target speed vtarget, the low-level
controller is usually a PI controller. Let t̂ denote the planning
time where the sensor and planner get updated every 0.05s,
and t is the low-level control time with step of 0.01. The
algorithm to compute vpid can be found in Openpilot 0.3.5
and the pseudo-code is shown in Algorithm 1 below.

In short, the current vpid(t) in a PI controller updates
itself by moving towards the given vtarget(t̂) at a maximum
rate bounded by some constraints including the acceleration
limits.

Algorithm 1 Algorithm for vpid with a linear planner

Input: vtarget, vpid(t), vego(t), amax and amin

Output: vpid(t+ 1)
Initialisation: vpid(0) = vego(0)
constant: overshoot allowance oa = 2.0
Start loop to compute vpid(t) for t ∈ [t̂, ˆt+ 1]:

1: if vpid > vego + oa and vtarget < vpid then
2: vpid ← max(vtarget, vego + oa)
3: else if vpid < vego − oa and vtarget > vpid then
4: vpid ← min(vtarget, vego − oa)
5: end if
6: if vtarget > vpid + amax · dt then
7: vpid ← vpid + amax · dt
8: else if vtarget < vpid + amin · dt then
9: vpid ← vpid + amin · dt

10: else
11: vpid ← vtarget
12: end if

If the upper-planner outputs the desired acceleration
atarget, then the low-level control loop usually outputs the
acceleration setpoint apid as well as vpid. A feedforward term
kf · apid is added to form a PIF controller. In Algorithm
2, we show the algorithm for computing apid and vpid
using the atarget, vstart and astart from a MPC longitudinal
planner. Recall the two surrogate variable vstart and astart
are updated in the MPC planning loop.

Algorithm 2 Algorithm for apid, vpid with an MPC planner

Input: most recent atarget, astart, vstart
Output: apid and vpid

Reset: vstart(0) = vego(0) and astart(0) = aego(0)
Low-level loop for vpid(t), apid(t) for t ∈ {t̂, t̂ +
0.01...t̂+ dt̂}:

1: dt = t− t̂
2: apid(t) = astart + dt(atarget − astart)/dtp
3: vpid(t) = vstart + dt(apid(t) + astart)/2

Then we introduce how PI/PIF calculate the control input.
Define the true speed as vego at each control time t, the speed
error as e = vpid − vego, the formulation of PI/PIF control
input is expressed as:

control = kp · e+ ki ·
∫ t

0

e(τ)dτ + kf · apid (9)

where kf , ki and kf correspond to the control gain for
proportional(P), integral(I) and feedforward(F) terms. Note
that they can all be constants or speed-dependent parameters.

The compute gb function then views the control input as
a desired acceleration and maps it to the desired gas/brake
percentage gb:

gb = compute gb(control, vego) (10)
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Note that brake is negative, and gb ranges from [-1,1]. The
gas/brake commands are sent to the control interface of the
car, where the dynamics between the gb and the produced
acceleration can be represented as the gb2accel function:

aego = gb2accel(gb) (11)

We will later show for real cars the gb2accel can be well
approximated by a simple scaling function, for example,
aego = 3gb, and accordingly the compute gb function
should share the same scale factor in the denominator,
e.g. gb = aego/3. This can be achieved with the help of
ACC module on recent car models. Advanced ACC control
interfaces can accept scaled accelerations, or gb equivalently,
as the input and execute it using some unknown model. For
these type of cars, one can view the gb as a scaled acceler-
ation. We consider gb2accel and compute gb functions are
’perfect’ if they just use a single scale factor and match each
other.

III. METHODOLOGY

This section investigates the impact of low-level controllers
through analytical derivation. Correspondingly, we study
the two types of controllers corresponding to linear/MPC
planners.

Assuming the compute gb and gb2accel functions are
”perfect” (i.e., the desired acceleration requested by the
control will approximately equal to the true acceleration aego
responses from the car), we have:

aego ≈ control = kp · e+ ki ·
∫ t

0

e(τ)dτ + kf · apid (12)

Then the whole control loop can be explicitly modeled and
we can study the underlying interactions between low-level
controller and the planner.

A. PI low-level controller and its impact on SS

Consider that the proportional gain has a dominant effect,
and in discrete-time implementation the integral gain and
derivative gain can all be converted into proportional gain,
we omit the integral and derivative term for now:

aego = control ≈ kp(vpid − vego) (13)

For a linear planner as (1) and (2), it satisfies:

ṡlead = vlead − vego = vrel

ṡdes = τ v̇lead

v̇lead = alead

(14)

Substituting (14) into (2), we have:

v̇target = kv(vlead − vego) + (1− kvτ)alead (15)

To investigate the impact on SS, we evaluate the maximum
changes in the ego vehicle target speed, namely ∆vtarget,
which can be calculated by tracking (15) from the time
T1 when the ego car starts to react to the lead vehicle, to

the time T1 + ∆T when the ego car starts to reduce the
overshoot/undershoot (see Fig.2(e)):

∆vtarget = vtarget(T1 + ∆T )− vtarget(T1)

=
∑

T1≤t̂≤T1+∆T

kv(vlead(t̂)− vego(t̂))dt

+
∑

T1≤t̂≤T1+∆T

(1− kvτ)alead(t̂)dt

= kv
∑

T1≤t̂≤T1+∆T

vrel(t̂) + (1− kvτ)alead∆T

(16)

where alead is the average acceleration for the lead vehicle
during ∆T . Since vlead and alead do not change with the
follower, the magnitude of the speed change for the ego
vehicle will only depend on vrel. Also note that 1−kvτ > 0
for rational values of the gain kv and desired time headway
τ .

Then we subtract the lead vehicle speed change during
∆T , to yield the SS index of linear planner Ilinear:

Ilinear =(|∆vtarget| − |∆vlead|)/|∆vlead|

=
kv

|∆vlead|
(

∑
T1≤t̂≤T1+∆T

|vrel(t̂)| − τ |alead|∆T )

(17)

which can be applied to both acceleration and deceleration
cases. A smaller Ilinear is desirable as it corresponds to
better SS. If Ilinear > 0 the speed change is amplified
from leader to follower, yielding a string unstable case.
Although (17) does not directly involve low-level variables,
the impact of the low-level controller can be described as
follows: for a fixed planner, a slow-response controller moves
the follower more slowly, which further makes the relative
speed vrel larger, and also takes longer ∆T to stabilize. A
faster controller can track the planned speed faster, reduces
the speed amplification ∆vtarget and thus improves SS.

The SS index (17) also sheds some light to the impact of
the planner. Note that kv , i.e., how fast the planner react
to spacing, and the desired headway τ can affect SS as
well. If the planner is more sensitive to spacing change (i.e.,
with a larger kv), the ACC system is more likely to be
string unstable (i.e., larger ∆vtarget will make the planned
trajectory harder to track). For the impact of time headway
τ , (17) indicates larger headway can benefit the SS, which
is consistent with the recent empirical finding [20] from a
few commercial ACC systems. Remarkably, the theoretical
analysis of string stability in the frequency domain also
achieves the similar findings, i.e. the larger time headway
can reduce the ∞−norm and 2−norm of the string stability
transfer function [10], [17], [21].

B. PIF low-level controller and its impact on SS

As stated before, a PIF controller works with an MPC
planner. Recall Algorithm 2 uses atarget, vstart and astart
to calculate the low-level setpoints vP id and aPid.
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In (8) we can assume the initial astart equals to zero, thus
the astart sequence can be simplified using only atarget from
the MPC planner, which leads to:

astart(t̂) =

bt̂/dt̂c−1∑
n=0

dt̂

dtp
(1− dt̂/dtp)bt̂/dt̂c−1−natarget(ndt̂)

(18)

where
⌊
t̂/dt̂

⌋
is a floor function to calculate index for the

planning step of t̂ starting from zero. Substitute (18) into
(8), the changes of vstart can be described using atarget:

2/dt̂ ·∆vstart =
∑

T1≤t̂≤T1+∆T

atarget(t̂)+

bt̂/dt̂c∑
n=0

dt̂/dtp(1− dt̂/dtp)bt̂/dt̂c−1−natarget(ndt̂) (19)

Correspondingly, the SS index of the MPC planner Impc

can be derived as:

Impc = (|∆vstart| − |∆vlead|)/|∆vlead|

= −1 +
∑

T1≤t̂≤T1+∆T

|atarget(t̂)|
dt̂

2|∆vlead|

+

bt̂/dt̂c∑
n=0

dt̂(1− dt̂/dtp)bt̂/dt̂c−1−n

dtp|∆vlead|
|atarget(ndt̂)|

(20)

Similarly, smaller Impc means better SS. Here for an MPC
controller, a slow low-level controller will trigger the planner
to produce larger desired acceleration |atarget(ndt̂)| and thus
increase the Impc, which means the SS is undermined.

In this section we sought to derive two indexes to measure
the SS for the linear+PI and the MPC+PIF ACC systems. The
mathematical derivations in (17) and (20) do not have explicit
low-level variables yet, but they suggest the same finding;
that a fast controller (which enables faster decay of tracking
error) can help the SS and vice versa. Note that (17) and
(20) also indicate the SS is the outcome of the interactions
and coupling effect between the planner and the low-level
controller. Note that our indexes are essentially the same as
the well-known transfer function used in control theory, but
are derived in the time domain rather than the frequency
domain. A strict proof is omitted due to space constraints.

IV. SIMULATION RESULTS

This section reinforces the theoretic findings through nu-
merical simulations running on the same planner and low-
level control algorithms. To simulate the actuator system, we
assume gb = 1

3control and aego = 3gb. This assumption
will be justified by data from real cars in the next section.

A. Actuator performance

First we investigate the impact of the gas/brake system
(the gb2accel function). While the compute gb implies
gb = 1

3control, the true accelerations induced by the gb
values are unknown, which could be larger or smaller than
control. The unknown relationship from gas/brake to true
acceleration largely depends on each vehicle’s engine and
braking performance. While the dynamics might be com-
plex, we can specify whether the actuator is overshooting
if aego > control, or undershooting if aego < control.
We present the impact of an undershooting actuator and an
overshooting actuator on SS of a linear+PI ACC system. The
simulation results are shown in Fig.2 and Fig.3, respectively.

(a) spacing (b) vtarget

(c) vpid (d) speed

Fig. 2: The impact of an undershooting actuator on SS: the
order of the figures is intended to show the cause and effect,
but also is a loop.

The overshooting actuator (see Fig.3(e)) achieves sig-
nificantly better SS than the undershooting actuator (see
Fig.2(d)). Also, for the time ∆T that the follower needs to
stabilize, Fig.2 and Fig.3 suggest that the slow controller
needs longer time. Both findings are consistent with our
interpretation of the mathematical derivations (17) and (20).

B. Control gains

Nest, we investigate the impact of the control gains,
and assume the actuator system is not undershooting or
overshooting. In simulation, it means gb = control/scale
and aego = scale ∗ gb share the same scale parameter. This
assumption will be verified with data from real cars.

1) Integral gain: While integral (I) gain is designed to
reduce steady-state error and is almost indispensable in
real-world implementation, the integral accumulation also
brings negative impact on the SS. For longitudinal control of
vehicles, we notice I gain can: i) sometimes have opposite
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(a) spacing (b) vtarget

(c) vpid (d) speed

Fig. 3: The impact of an overshooting actuator on SS

sign against the proportional term (see Fig.4(c)), which
cancels out the proportional control for reducing the error;
ii) accumulate quickly with a rapid speed changes in target
speed, which can undermine SS; and iii) take long time
to settle down. Accordingly, inappropriate I gain can make
the controller slower and cause frequent overshoot from the
setpoint, as shown in Fig.4(b). Combining the two effects,
we see a string unstable platoon in Fig.4(a).

2) Proportional gain: For a controller with only pro-
portional (P) gain, the impact of P gain is similar to the
actuator’s overshooting or undershooting effects, given the
perfect compute gb function and the gb2accel introduced in
section II. From Fig.4(d), we can see a scaled P gain changes
the control in the same way that a scaled gb2accel function
does. Thus, it is safe to say increasing P gain could help SS as
an overshooting actuator does. Due to space constraints, we
briefly show the differences of SS from low-level controllers
with small P gain and with large P gain.

3) Feedforward gain: In a PIF controller, the feedforward
term is Kf · apid. Overall P works to reduce speed error
and feedforward (F) gain directly provides an acceleration
command. Thus, F gain is usually set as 1 and dominates
the control input among the three gains in the PIF controller.
In the simulation, we executed the MPC+PIF loop and
compared the default and doubled F gain, as shown in Fig.6.

The comparison results suggest that tuning up the F gain
can also make the low-level controller faster, see Fig.6(b)
and (d), which improves the SS; see Fig.6 (a) and (c). We
also observed that P and I terms can sometimes work against
the F term because apid and e = vpid − vego can have
different signs. Notice that although 2Kf brings better SS,
the controller is too sensitive towards errors and creates
fluctuations in steady state. Hence, a proper F gain for

(a) vtarget:P+I (b) vtarget:P only

(c) slow control:P+I (d) fast control:P only

(e) overshoot:P+I (f) accurate shoot:P only

Fig. 4: The impact of integral term on SS

(a) small (1*P) gain (b) large (2*P) gain

Fig. 5: Impact of P gain on SS

preventing over-sensitive to small errors is also necessary.
To summarize, in terms of the impact of control gains

on the SS, we achieve the similar finding: increasing P
and F gain will help SS if they are not too large to cause
oscillations. In addition, integral accumulation can lead to
overshooting that damages SS.

V. VALIDATION ON REAL CARS

In this section we validate the above findings using data
from commercial vehicles running the ACC algorithms.
Specifically, we use Comma Two, an after-market device
from Comma.ai that can overwrite the stock ACC commands.

896

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 29,2021 at 17:08:16 UTC from IEEE Xplore.  Restrictions apply. 



(a) speed with small F (b) control with small F

(c) speed with large F (d) control with large F

Fig. 6: The impact of F gain on SS

The authors have a custom fork1 of the Openpilot and
have published some branches with the different upper-level
planners and low-level controllers mentioned earlier.

A. Relation between gas/brake to acceleration
First we show the data collected from a 2020 Toyota

Corolla and a 2019 Honda Civic, as validation for the
assumption of a ”perfect” compute gb function we used in
numerical simulations.

(a) Toyota (b) Honda

Fig. 7: Relation between gas/brake and acceleration on real
cars

Fig.7 proves that a simple scale function is a good fit to the
relationship between gas/brake and true acceleration. Note
that we are using market vehicles without any modifications
on the hardware system. This means the relationship can be
easily transferred. 2

1https://github.com/HaoZhouGT/openpilot: Includes implementation of
ACC+PI, MPC+PIF, and IDM+PIF for self-driving longitudinal control

2This finding is a bit surprising but may be because modern ACC
modules can accept direct acceleration commands as inputs and execute
the acceleration in a desired manner. However, we are not sure the gb is
gas/brake percentage, it might be a scaled desired acceleration for ACC
modules to execute. According to Openpilot community [22], at least the
new ACC modules from General Motor and Toyota after 2020 are potentially
applying such a logic.

B. Validation of the integral impact

Integral term can induce overshooting from a low-level
controller to the overshooting of lead vehicle speed and
thus undermines the SS. The Fig.8(a) showcases a string
unstable example where the follower overshoots the lead
vehicle around step 3500, meanwhile the Fig.8(b) clearly
shows that integral accumulation (orange curve) is occurring
and dominates the control.

(a) integral accumulation (speed)(b) Integral accumulation (con-
trol)

Fig. 8: Impact of integral on SS in a real drive

C. Validation of the impact of a fast/slow low-level controller

As indicated earlier, the P or F gains and the gas/brake
system share a similar mechanism to affect the SS via the
low-level controller. The major finding is that a fast low-level
controller improves SS and a slower controller undermines
it.

To verify this, we compare two low-level controllers
sharing the same planner (MPC) but with different low-
level parameters. Specifically, the fast low-level controller
uses 1.0Kp, 0.33Ki, 1.2Kf and an overshooting compute gb
defined as gb = 1/3 · control. By contrast, the slow
low-level controller adopts 0.5Kp, 0.33Ki, 1.0Kf and an
undershooting compute gb defined as gb = 1/5 · control.
The numbers before control gains are scales of the default
values.

(a) fast low-level controller (b) slow low-level controller

Fig. 9: Impact of a fast/slow low-level controller on SS

Fig.9 displays the two real-world drives using a fast/slow
low-level controller. The ego vehicle follows a human-driven
lead vehicle in natural driving where the lead vehicle changes
its speed occasionally on a curvy road. It is apparent that the
fast low-level controller is able to dampen the lead speed
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changes while the slow low-level controller amplifies them.
The results suggests better SS can be obtained from a fast
low-level controller.

To show how a fast low-level controller can achieve SS,
Fig.10(a) displays the detailed P, I, F terms in the control
input. As stated before, a more dominanting F term can help
SS, and P gain is expected to be consistent with F term, not
cancel out its effect. Also we would like to limit the impact of
integral overshoot. Additionally, Fig.10(b) shows that vstart
is close to vego, which provides support for our method to
use vstart to investigate the impact on SS in section III.

(a) P, I, F in control (b) vstart is close to vego

Fig. 10: A real SS ACC with a fast low-level controller

VI. CONCLUDING COMMENTS AND OUTLOOK

The paper introduces, for the first time, open-source com-
mercial ACC algorithms to analyze the impact of low-level
controller on SS. It finds a fast-response low-level controller
can improve SS while a slow-response controller can under-
mine it despite having a string stable planner. Accordingly,
we infer that it would be more beneficial to focus efforts
on improving the low-level controller rather than designing
more string stable ACC/CACC models which have become
available in some recent cars.

We suggest focusing future research efforts on: i) novel
design to prevent the integral overshoot in low-level con-
trol; ii) better understanding the MPC controller design and
leveraging traditional CF models as alternatives and iii) fine-
tuning of a fast low-level controller on real cars that balances
the SS, safety and driving comfort.
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