
1

Modeling Speedup in Multi-OS Environments
Brian R. Tauro, Conghao Liu, and Kyle C. Hale

{btauro@hawk, cliu115@hawk, khale@cs}.iit.edu
Department of Computer Science

Illinois Institute of Technology

Abstract—For workloads that place strenuous demands on system software, novel operating system designs like unikernels, library
OSes, and hybrid runtimes offer a promising path forward. However, while these systems can outperform general-purpose OSes, they
have limited ability to support legacy applications. Multi-OS environments, where the application’s execution is split between a control
plane and a data plane operating system, can address this challenge, but reasoning about the performance of applications that run in
such a split execution environment is currently guided only by expert intuition and empirical analysis. As the level of specialization in
system software and hardware continues to increase, there is both a pressing need and ripe opportunity for investigating analytical
models that can predict application performance and guide programmers’ intuition when considering multi-OS environments. In this
paper we present such a model to place bounds on application speedup, beginning with a simple, intuitive formulation, and progressing
to a more refined model. We present an analysis of the model for a diverse set of benchmarks, as well as a prototype tool to project
multi-OS speedups for applications on existing systems. Finally, we validate our model on state-of-the-art multi-OS systems,
demonstrating that it reliably predicts speedup with 96% average accuracy.

Index Terms—operating systems, multi-kernels, speedup models, performance modeling

F

1 INTRODUCTION

Agrowing number of applications and runtimes place
intense demands on systems which push the tradi-

tional hardware and software stack to its limits. The needs of
these applications often cannot be met by general-purpose
operating systems (GPOSes), either owing to overheads
caused by mismatched abstractions [1], [2], system inter-
ference and jitter from “OS noise” [3], [4], or unnecessary
complexity introduced by a general-purpose OS design [5].

For decades the HPC community has considered—and
in several cases deployed in production [6]–[10]—lightweight
kernels, which employ a simpler and more performant kernel
design. A similar trend permeates commodity computing
today, where an increasing number of systems dedicated
to one application or small set of applications obviates the
need for a GPOS [11]–[13]. Unikernels (and their intellectual
predecessor, Exokernels [14], [15]), take advantage of this
fact to provide an OS tailored to a specific application. The
tailoring process occurs primarily with two design strate-
gies; starting from scratch with a “clean slate” design [1], [2],
[12], [16], [17] or starting with an existing kernel and paring
it down to a minimal state. The latter approach, termed
“rump kernels,” [18]–[21], shares many similarities with the
light-weight kernel design philosophy from the HPC OS
community. In some cases, application developers can even
compile their programs directly from a high-level language
(such as OCaml) into a bootable, application-specific OS
image [22]. Amazon, for example, has recently developed
a custom version of Linux dedicated to running containers
via a lightweight hypervisor.1

While these specialized OSes (SOSes) have been shown
to increase performance, in some cases significantly [1],

1. https://firecracker-microvm.github.io/

[13], [22], [23] one of the biggest challenges facing their
widespread adoption is their non-conformance to POSIX or
the Linux ABI. This means that for users to take advantage
of a new OS, developers must first port applications to work
with the kernel’s system interface. The previously described
scenario in which high-level language (HLL) applications
are compiled into a kernel is actually ideal when exploring
novel OS environments, as the HLL compiler2 controls the
degree to which an application written in the language
leverages OS interfaces (namely, system calls). The burden
of supporting a new OS environment thus lies solely on
the HLL compiler/runtime designer. However, for low-
level systems and scientific computing languages, such as
C and Fortran, or for HLLs which make extensive use
of native interfaces (e.g., Java JNI), the situation is more
complicated. Developers writing their programs in low-
level languages are free to use any subset of the application
binary interface (ABI), and indeed, can even forgo standard
libraries altogether and issue system calls directly using
inline assembly. These applications therefore require more
effort when porting to a new OS, particularly one which
lacks POSIX support entirely, or one which employs a non-
traditional execution environment (e.g., a single address
space or no user/kernel isolation).

One approach to ameliorate this situation involves del-
egation of a portion of the system call interface to another
OS. This approach, sometimes referred to as a multi-kernel
or co-kernel [24] setup, partitions the machine (either vir-
tually [2], [25], [26] or physically [8], [24], [27]–[29]) such
that different OSes control different resources. Usually this
means that a GPOS (such as Linux) acts as the control plane—

2. Or the implementation of the language runtime for
interpreted/JIT-compiled languages

https://firecracker-microvm.github.io/

2

setting up the execution environment, launching applica-
tions, and handling system services—while an SOS acts as
the data plane or compute plane. The rationale is that the ma-
jority of the application’s execution will be in the compute
plane, and any system services unsupported by the SOS will
be delegated to the GPOS via some forwarding mechanism.
We discuss this approach in more detail in Section 2. As
hardware designers employ increasing levels of specializa-
tion [30], OS developers will likely follow suit. Rather than
deploying monolithic kernels with drivers for an array of ac-
celerators, we can expect to see OS deployments consisting
of myriad kernels, each with its own performance properties
and target applications. Thus, the ability to understand how
applications perform in multi-OS environments will become
increasingly important. Underlining this importance, since
our original publication of this work, a real multi-kernel
system (IHK/McKernel [29]) has been deployed on the
world’s currently top-ranked supercomputer system: the
Fugaku machine at RIKEN.

While others have presented empirical analysis of del-
egation [31], and several multi-OS designs exist [24], [28],
[29], [32], there has not yet been an attempt to model these
environments analytically. This presents an opportunity,
as “bounds and bottleneck” analysis can provide valu-
able insight and intuition for novel computing paradigms.
Amdahl’s law [33] and its successors [34], [35] provided
keen insight on the limitations of parallel program perfor-
mance at a time when parallel systems and algorithms were
emerging. Roofline models [36] provide a useful visual tool
for understanding how application performance relates to
architectural limitations. Intuitive tools like the “3 C’s” of
cache misses, while not rigorously formulated, can provide
invaluable insight into program performance and guide
developers’ intuition for tuning performance.

In this paper we provide a mathematical tool along with
a multi-OS emulator which we hope will give insight into
the limitations of program performance in multi-OS envi-
ronments without users having to port their application.
In Section 3, we present and analyze a naı̈ve yet intuitive
model to represent application speedup in a multi-OS setup
and subsequently refine it in Section 3.2 to present a more
accurate picture of reality. We use our model to project the
performance of real-world benchmarks on multi-OS systems
using our multi-OS emulator (mktrace) in Section 4. We
validate our model using real multi-OS systems in Section 5,
discuss its limitations, potential uses, and further refine-
ments in Section 6, and draw conclusions in Section 8.

1.1 Extension of Prior Work
This paper is an extension to work previously published in
the proceedings of MASCOTS 2019 [37]. Since that paper’s
publication, we have made several research contributions
and gained new insights which we summarize here.

New Contributions: Our prior paper did not include an
experimental validation of our models on real multi-kernel
systems. We added that here, using IHK/McKernel [29]
and Intel mOS [28], both of which have been deployed in
production (the former on the world’s top supercomputer).
We made significant improvements to mktrace, our multi-
OS emulator, including increasing its accuracy, its efficiency,

and correctness. We also added more representative
HPC benchmarks to further evaluate our model, namely
LAMMPS (molecular dynamics), CCS QCD (a lattice QCD
miniapp), and the NAS benchmark suite [38]. We refined our
measurement framework to produce more accurate results,
and now give several examples of model parameters that
others can use to estimate multi-OS speedup. While there
have been minor changes and enhancements throughout
the paper, Sections 3, 4, and 6 have undergone major
changes, and Section 5 is entirely new.

New Insights: We have gleaned several new insights with
our extended work. First, we discovered that our prior
assumptions about the cost of system call delegation being
fixed can result in significant model inaccuracies. We ad-
dress that in this paper. We see that real implementations
have significant differences in delegation mechanisms, lead-
ing to surprisingly divergent performance characteristics.
We found that many scientific applications, being compute-
and memory-intensive, are quite resilient to delegation on
real systems, even when a large portion of the system call
interface is delegated. This aligns with experimental results
from others [31]. Since our original paper, we found that for
many scientific workloads, our simpler model suffices and
the model parameters we use in the paper can be applied
for other applications.

2 BACKGROUND

Multi-OS environments are arranged such that compute in-
tensive portions of an application run atop a specialized OS
(compute plane), and system services not supported by that
SOS are delegated to a general-purpose OS (control plane),
which handles the calls and returns the results. There are
two primary concerns when considering this setup: which
calls to forward; and how to forward them. The first concern
might depend on the nature of the calls. For example, if
there is no filesystem support in the SOS, system calls
like read(), write(), and open() must be delegated.
In HPC environments such I/O offload is often employed
to reduce load on the parallel file system (PFS) induced
by concurrent client requests from compute nodes. Instead,
filesystem requests are delegated to an I/O node. In other
cases, the choice of which system calls to delegate might
hinge on time and resources available to the OS developer.
In the interest of time, he or she might implement commonly
invoked system calls in the SOS to optimize for the critical
path, but choose to delegate those invoked infrequently.
Gioiosa et al. showed how this choice can be guided by
empirical analysis [31].

The second concern (regarding the delegation mecha-
nism) depends on the capabilities of the hardware and
software stack, and on the use case. For example, modern
Linux kernels allow for offlining a subset of CPU cores
which can then be controlled by an SOS. IHK/McKer-
nel [29], Pisces [24], FusedOS [32], and mOS [28] leverage
this feature. In this case, because the two OS kernels run on
the same node, delegation can occur between an SOS and
the GPOS using shared memory. If the SOS and GPOS are
running on separate nodes, however, delegation must occur
over the network, which involves marshalling arguments

3

syscall
delegator

syscall
delegate
module

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5

application

limited syscall API

1

2

3

4

5

shared
memory

GPOS

6hardware

specialized kernel

SOS

Fig. 1: High-level architecture of a multi-OS system leverag-
ing the delegate model.

and initiating remote procedure calls (RPC) between nodes,
unless the system supports distributed shared memory.
Remote delegation is necessary for the I/O offloading ex-
ample mentioned previously. In cases where the machine
is partitioned using virtualization, as in Libra [26] and
Hybrid Virtual Machines [2], delegation may occur either
via VMM-managed shared pages or via explicit hypercalls
from guests.

Figure 1 shows an environment that supports local sys-
tem call delegation in a hexa-core machine. The machine is
physically partitioned between a GPOS and SOS such that
they own a subset of the physical resources (memory and
processors). In this case, the GPOS runs on cores 0–2 and
the SOS runs on cores 3–5 (the compute cores). Memory is
assumed to be partitioned such that the physical address
space is split between them (6). When an application
invokes a system call supported by the SOS (1), the SOS
kernel handles it directly. However, when the application
invokes an unsupported system call, it vectors to a handler
in the specialized kernel (2), which communicates with a
component (3) in the GPOS (such as a kernel module),
which fields the original request. In this case, the communi-
cation between the SOS and GPOS is facilitated by a shared
page of memory. This delegation process involves some
subtlety, as the context of the calling (delegator) process
must be mirrored by the handling (delegate) component,
and the system call handler service might exist in the GPOS
kernel or in a user-space process running atop the GPOS, as
in User-level Servers in mOS [28]. After the delegate handles
the system call, it sends back the results to the SOS (4),
which then returns the result to the application (5).

While there are technical differences between existing
multi-OS systems, they all share two primary characteristics
that we will use in modeling them. The first is that they
assume some difference in performance when a program
runs in the GPOS and in the SOS. The second is that some
delegation or forwarding mechanism exists to allow the two
kernels to communicate.

3 THE DELEGATE SPEEDUP MODEL

We now present two versions of a model which represents
the speedup of an application in a multi-OS environment.
For the following, we assume a single-threaded application
(more on this in Section 6) whose computation portion runs
in a specialized (compute plane) OS, and whose system

portion (namely, system calls) runs on a general-purpose
(data plane) OS. Thus, all system calls are initially assumed
to be delegated to the GPOS.

3.1 Naı̈ve Model
We begin by outlining the simplest and most familiar sce-
nario, namely where there is no system call forwarding. In
this scenario, the program is executed entirely on a GPOS.
Let)>A86 be the execution time of the program in this
environment:

)>A86 =)>A86 · ? + (1 � ?) ·)>A86 (1)

Here ? is the percentage of the workload related to
system calls. This, for example, could be calculated by
dividing the number of instructions executed in the kernel3

by the total number of instructions retired during the run of
the program. Such measures are commonly available from
hardware performance counters, but the source of these
terms is beyond our scope.

Now we consider a scenario wherein we execute the
application in an SOS, but forward all system calls to a
GPOS. Let)=4F be the new execution time, and let W be
a constant factor that represents the speedup from running
the computational portion of the workload in the SOS relative
to running the same portion in the GPOS. We hereafter refer
to W as the gain factor of the SOS.

)=4F =)>A86 · ? +
)>A86
W

· (1 � ?) (2)

Using the familiar speedup ratio ()>A86/)=4F), we arrive
at the overall speedup (represented by (=, where the =
corresponds to “naı̈ve”):

(= =
✓
? + 1 � ?

W

◆�1

(3)

This intuitive model has power in its simplicity. Consider
the case where ? ⌧ 1. This corresponds to a workload
that spends very little of its time performing system calls
(control plane), and thus spends most of its time com-
puting. We might say that this application has very high
“operational intensity,” spending more time in user space
than in kernel space. In this case, the application receives a
significant benefit4 from the SOS, and the overall speedup
equation reduces to W. However, to understand how, e.g.,
an I/O-intensive application behaves, we observe that as
? approaches 1, so does the overall speedup. The intuition
here is that a system-only workload will receive no benefit
from the SOS, and will thus spend most of its time in the
control plane. It is important to note just how important ?
is for this model. Consider that as W tends towards infinity,
this speedup relation tends to 1

? .
This succinctly captures the bounded speedup of the

multi-OS environment, and echoes the insight provided by

3. This would include transparent system events such as page fault
exceptions and interrupt handling.

4. This, for example, might be due to guaranteeing cooperative
scheduling or might be due to an address space setup amenable to
(or tailored to) the application.

4

Fig. 2: Speedup in a multi-OS environment ((=) given the
proportion of time an application spends on system calls (?)
and the gain factor (W) from running in the specialized OS.

TABLE 1: Empirically determined system call portion (?) for
SPEC and NAS benchmarks (class C).

Benchmark Description ?

gcc_linux_k Linux kernel compilation 35.05%
bzip2 bzip2 3.74%
cam4_r Atmospheric modeling 0.107%
deepsjeng_r Deep Sjeng chess engine (tree search) 0.0054%
mcf_r Combinatorial optimization 0.00264%
BT Block Tri-diagonal solver 0.000067%
CG Conjugate Gradient 0.00026%
EP Embarrassingly Parallel 0.000152%

Amdahl’s Law. Essentially what this says is that even with
infinite improvement of the computational portion of a work-
load by the specialized OS, the speedup of the application
is bounded by how much it relies on the legacy system
interface. Figure 2 depicts how this model behaves as ? and
W vary. Notice how as ? grows smaller, we reach perfect
linear speedup. The gain factor (W) is the interesting part
of this model, and it very closely resembles the parameter
representing parallelism in Amdahl’s Law. Semantically,
however, they are quite different. In practice, we do not
expect the gain to be very large (likely < 2), but the interplay
between W and ? are still significant for application perfor-
mance. We show speedups on the order of 10⇥ here to show
the general behavior of the model.

One can also use this model from the perspective of a
kernel developer, in which case it can be used to determine
where to focus development efforts. For example, even if
monumental effort is spent improving the computational
aspect of a workload (e.g., by focusing on developing effi-
cient threading libraries), it might make very little impact
if the kernel will run I/O-intensive applications. This of
course echoes the oft-stated design principle, “optimize for
the common case.”

To understand how this model might translate into real
application performance, we first determined ? for a selec-
tion of benchmarks both from the SPEC CPU 2017 and NAS
Serial suite, and projected real application speedup given a
fixed gain (W) factor.

To determine ? empirically, we used strace5 and the

5. strace -c -f -w -D

Fig. 3: Speedup projected by our simple model for SPEC and
NAS benchmarks with varying gain factor (W).

time command for a reference run of the individual bench-
mark.6 We calculate ? by summing the system call times
(measured with strace) spent in the application and com-
puting its ratio to the total execution time (measured with
time).

Furthermore, ? may vary for a particular benchmark
when its inputs are changed. Table 1 shows the empirically
determined values of ? and descriptions for each bench-
mark we used. Figure 3 shows the results of our experiment.
Linux kernel compilation (gcc in the graph) stresses the
system interface the most (due to heavy file I/O), and
thus achieves very little speedup, even with a significant
initial speedup from the SOS, represented by W. The other
benchmarks are skewed towards computation, and thus
achieve sub-linear speedup as W increases.

3.2 Refined Model
While our naı̈ve model can be used as an intuitive tool, there
are several simplifications that make it unrealistic in terms
of predicting performance:

1) The cost of forwarding system calls is ignored. In
the existing model, this means that we assume all of
them are forwarded.

2) Different system calls have different costs (in terms
of execution time).

3) A given system call will have different costs for
different invocations (in most cases determined by
its arguments). Consider, for example, the read()
system call.

4) System calls which are ported to the SOS might have
different cost than the original GPOS version.

5) It is inaccurate to say that the speedup factor (W)
applies uniformly to all non-system instructions in
the program. For example, the SOS environment
might have a simplified paging setup (e.g., identity-
mapped, 1GB pages) which significantly reduces
TLB misses for instruction fetches and loads and

6. Note that in the prior version of this paper we used a simplified
measurement scheme, which resulted in overestimation of the system
call portion.

5

stores, but integer/floating point instructions will
be unaffected unless they involve memory refer-
ences.7

6) Setups where there are more than one GPOS and
more than one SOS are not considered.

In this section, we refine our model by addressing (1),
(2), and (3) above. We intend to refine the model further in
future work to account for the remaining simplifications.

We first must capture the fact that different system calls
can have different costs ((2) and (3)). Let S = {B1, B2, . . . , B=}
be the set of all system calls invoked during a particular run
(with fixed inputs) of program %. We introduce a function
6 : S ! R, such that 6(B) gives the absolute time taken
for all invocations of system call B in the GPOS for the run
of program %. For example, if one program run contained
several invocations of mmap() (which is common), 6(<<0?)
will represent the time taken for all such invocations8 when
run on a general-purpose OS. This function also includes
time spent in the kernel due to, e.g., blocking system calls.

Let ⇠ represent the absolute time taken by the com-
putational portion of the program (that is, all instructions
not executed in the context of a system call). We can then
calculate the total execution time in the default case, where
the program runs entirely in the GPOS and no system call
delegation occurs (represented by C=3) as follows:

C=3 = ⇠ +
’
B2S

6(B) (4)

We then must capture the notion of system call del-
egation. We introduce two functions 5 : S ! R and
1 : S! {0, 1}. The function 5 (B) represents the time required
to forward system calls, defined as:

5 (B) = 2 52=(B) (5)

Here 52 is a constant that represents the base forwarding
cost for all system calls using a particular forwarding mech-
anism, and the function = : S ! N represents the number
of times system call B is invoked. 52 is scaled by a factor
of two to account for the round-trip from the SOS to the
GPOS. That is, a system call is forwarded from the SOS
to GPOS, executed on the GPOS, and the results are sent
back to the SOS, so the forwarding overhead is incurred
twice. 52 will vary widely depending on the software mech-
anisms which implement forwarding and the underlying
interconnect over which system calls are forwarded.9 For
example, for delegation over shared memory (Section 2), 52
would likely be in the ns to `s range For delegation over
a network, this number might be closer to several `s or
several ms, depending on the network characteristics. Note
that delegation over the network may involve more complex
and asymmetric forwarding costs. For example, the forward
trip may involve marshalling system call arguments, and
the return trip from the GPOS might only involve a single

7. This is unless, of course, the instructions cause an exception or
involve addressing modes that necessitate a memory reference.

8. That is, the sum of the execution times for all mmap() invocations.
9. Here we make the simplifying assumption that this cost is indepen-

dent of the system call itself, but this is not strictly true. A forwarding
mechanism that uses marshalling (e.g., over a network) will incur more
forwarding costs for a system call with more arguments.

integer return value. We do not currently take these com-
plexities into account in our model.

The second function, 1(B) is a boolean predicate func-
tion10 which tells us whether or not a particular system call
is delegated:

1(B) =
(

0, if B is not delegated
1, otherwise

(6)

Recall that the program primarily runs in the context of
the SOS, and so receives some performance benefit (repre-
sented before by the factor W) as a result. Thus, as before, we
only apply W to the computational portion of the workload
(⇠). For the system call portion of the workload, we must
differentiate between delegated system calls and local sys-
tem calls (those which have corresponding implementations
in the SOS). We can represent the absolute time taken by all
local system calls (C;>20;) by introducing another function 60

which captures this notion. We use 60(B) to represent the
time taken for all invocations of system call B given the
custom version of B implemented in the SOS.

C;>20; =
’
B2S

(1 � 1(B))60(B) (7)

We then represent the absolute time taken by all delegated
system calls (CA4<>C4) as follows:

CA4<>C4 =
’
B2S

1(B) (6(B) + 5 (B)) (8)

We can now calculate the total time taken (C3) for a setup
where some system calls are delegated:

C3 =
⇠

W
+ CA4<>C4 + C;>20; (9)

Thus, we can represent our new speedup ((A) as

(A =
C=3
C3

(10)

Expanding this out, we get

(A =
⇠ +Õ

B2S 6(B)
⇠
W +Õ

B2S 1(B) (6(B) + 5 (B)) + (1 � 1(B))60(B)

(11)

Intuitively, the more system calls that are forwarded
(those which have 1(B) = 1), the more overhead is incurred,
and speedup is curtailed. Notice that in the denominator, the
time taken by the computational portion is scaled by a factor
of 1

W . An ideal scenario would have 60(B) take less time than
6(B), meaning that an implementation of a system call in
the SOS would be more efficient than its counterpart in the
GPOS. However, going forward, we make the simplifying
assumption that 6(B) = 60(B), so that both implementations
take the same amount of time.

Figure 4 illustrates speedup projections (represented by
(A) using our refined model for a subset of the benchmarks

10. We could also refer to this as a characteristic function or an
indicator function.

6

(a) min. frequency (b) max. frequency (c) random

Fig. 4: Projected speedup when the gain (W) varies for SPEC CPU 2017/NAS benchmarks. This assumes a fixed forwarding
cost (52) of 10 `s and a fixed percentage (90%) of forwarded system calls. Three schemes for choosing which system calls
to forward are shown. From left to right, we select system calls by least frequently invoked (a), most frequently invoked
(b), and randomly (c).

shown in Table 1. We initially fix the forwarding cost, 52 , at
10 `s. This is representative of a scenario where forwarding
occurs over shared memory. We vary W to illustrate the
effects of running the application in the SOS.

Each benchmark in the suite invokes a different set of
system calls, and here we are interested in seeing the effects
of choosing different sets of system calls to forward. In this
case, we show three scenarios. A fixed proportion of 90% of
system calls are forwarded. This proportion reflects what we
have seen on mOS, a real multi-kernel system. In each graph
we vary which system calls constitute that fixed proportion.
In the first two scenarios, system calls are chosen according
to how many times they are invoked. Figure 4a shows the
projected speedup when system calls invoked infrequently
by the application are chosen to be forwarded. This is the
most ideal scenario, as the forwarding overheads will not
be incurred often. Note that in IHK/McKernel, another
multi-kernel system we studied, roughly 30% of system
calls are forwarded. If that proportion were used here, we
would not see much effect on projected speedup since most
of these calls are infrequently invoked (see Figure 6 and
related discussion). Figure 4b shows the speedup when
we choose system calls which are invoked most frequently.
This is not a forwarding policy one should choose, but is
shown here for comparison. Finally, Figure 4c depicts the
results when we make a random choice. Note how differ-
ent benchmarks are affected differently by the forwarding
schemes. Both SPEC CPU and NAS benchmarks achieve
a high speedup no matter the scheme. This is because of
the generally low system call activity in these benchmarks
(as shown in Table 1). However, bzip2 shows significant
difference when we compare the “min. frequency” case with
the “max. frequency” case. To see why, it is illustrative to
study Figure 6, which shows a breakdown of system call
usage for several of the benchmarks. In this experiment
we traced all system calls invoked by each benchmark,
and counted the number of invocations for each individual
system call. We report these counts using a CDF. A point
on this figure thus represents the percentage of system calls
that have been invoked fewer times than the value on the
horizontal axis. Looking at the CDF for bzip2, it is clear

that its speedup is curtailed because it uses a small set
of system calls often (this particular application invokes
read() and write() almost exclusively). It is thus critical
that those system calls are not forwarded. When they are, as
in Figure 4b, performance is severely affected. It is also clear
from the figures that applications which have a more varied
system call distribution will be less affected by selective
forwarding schemes. More generally, workloads showing
system call profiles with more statistical structure will be
more amenable to selective forwarding schemes. This aligns
with intuition and prior experimental results from Gioiosa
et al. [31].

In Figure 5, we choose three benchmarks bzip2 (skewed
system call distribution), Linux kernel compilation with gcc
(uniform distribution of system calls) and one from the
NAS suite, BT class C (compute intensive with very low
system call activity), and show with surface plots how their
projected speedups change as we vary both the forwarding
cost (52) and the gain factor from execution in the SOS.
Here we forward 90% of system calls (those invoked most
infrequently). Note again the log scale on the 52 axis, so
the lower end of the scale indicates forwarding costs in
the nanosecond range, the middle approaches milliseconds,
and the higher end approaches roughly ten seconds. Along
the W axis, all benchmarks achieve a speedup, but note that
from left to right these benchmarks have characteristics less
amenable to system call delegation, respectively. The BT
benchmark achieves the highest speedup, both because it
has a small system call portion, and because that portion
involves very few system calls that are invoked in general.
Linux kernel compilation with gcc has the highest system
call portion and a more uniform distribution of system
calls, which leads to a curtailed speedup, resulting in a
flat surface. For gcc as the forwarding cost increases, we
observe negative speedup (i.e., GPOS performs better than
SOS), when speedup values go below 1 we trim the values
in Figure 5 for better visualization.

Forwarding cost only becomes a significant factor in
the bzip2 and BT cases when it becomes greater than
tens of milliseconds. This is more tolerance to forwarding
overheads than we expected, and indicates that in many

7

(a) (b) (c)

Fig. 5: Projected speedup as the gain (W) and forwarding cost (52) are varied for SPEC benchmarks. The proportion of
forwarded system calls is fixed at 90%, and which calls to forward is determined according to those least frequently
invoked (min. frequency). W is fixed at 2.

Fig. 6: System call profile for selected benchmarks. Note the
log scale on horizontal axis.

practical cases our naı̈ve model may be sufficient.
Figure 7 shows another perspective on forwarding over-

heads. Here, we show the speedup projected by our model
as we vary both the forwarding cost (52) and the percentage
of forwarded system calls (assuming that percentage con-
sists of infrequently invoked system calls). We make two
observations, both of which again align with intuition. The
first is that workloads with more skewed system call distri-
butions are more amenable to delegation, even when a rela-
tively large portion of the system call interface is forwarded.
The second observation is that when these workloads are
not properly accounted for (i.e. when the wrong calls are
forwarded), the performance degradation is dramatic, as
shown in the curve for bzip2. An interesting note about this
visualization is that the “topography” of the speedup curves
directly reflect the structure in the application’s system call
invocation trace. bzip2’s surfaces has a steeper drop-offs
when an increasing number of system calls are forwarded,
indicating a heavy skew in the system call distribution (cf.
Figure 6). The smoother “rolling hill” of the BT benchmark
indicates a small amount of syscall activity, and the more
pronounced drop-off of gcc indicates higher, but more
uniform syscall activity.

Figure 7 shows us that compute-intensive benchmarks

(like BT) are most amenable to multi-kernel environments,
since they are mostly unaffected by forwarding overheads.
In Figure 8, we vary the gain and the proportion of for-
warded calls. The interesting point here is that with the
fixed forwarding cost of 10 `s, we only see an effect for
bzip2 when almost all calls are forwarded (thus capturing
the frequently invoked read() and write() calls). Kernel
compilation and BT are largely unaffected by such small
forwarding overheads.

In Figure 9, we again show the effects of different for-
warding policies, but as a function of varying forwarding
overheads. mcf_r, deepsjeng_r and bzip2 have steep
drop-offs in speedup when the wrong set of system calls
is forwarded. When infrequently invoked system calls are
delegated to the GPOS, forwarding overheads must reach
several hundreds of milliseconds before making a signifi-
cant impact.

4 APPROXIMATE SPEEDUP PROJECTIONS
The primary obstacle in measuring application performance
directly in a multi-OS environment is the OS development
burden required to implement functionality in the SOS. The
simplest case is when the entire system interface is delegated
to a GPOS. In this case, the application benefits solely from
the properties of the execution environment provided by the
SOS (e.g., simplified, deterministic paging and fine-grained
interrupt control), and no development effort is spent port-
ing system calls to the SOS. However, this scenario is not
ideal, as the results from the previous section indicate.
However, it would be useful to project performance before
undertaking the development effort to run an application
directly on a multi-OS system. In this section, we describe
our multi-OS emulator, called mktrace, that enables this
projection, allowing users interested in multi-OS setups to
perform a kind of “what-if” analysis. Users can run their
unmodified programs using our tool to project performance
in a multi-OS setup without investing in a porting effort. We
believe our tool can provide key insights to developers, in
particular those who have no prior experience with multi-
OS systems.

Note that this tool does not actually leverage two sepa-
rate operating systems. Instead, we leverage a Linux kernel

8

(a) (b) (c)

Fig. 7: Projected speedup as the forwarding cost (52) and the proportion of forwarded calls vary, with gain (W) fixed at 2.

(a) (b) (c)

Fig. 8: Projected speedup as the gain (W) and the proportion of forwarded calls are varied. The forwarding overhead (52) is
fixed to 10 `s.

module that employs a kernel thread on the same OS to
serve as a delegate (standing in for the control-plane OS);
this delegate fields system call requests from a running
process. However, the delegation mechanism in mktrace
is similar to real multi-OS systems. For example, in the
case of IHK/McKernel [29], for every process running on
light weight kernel (LWK), a proxy process is created on the
Linux side to handle delegated system calls. At a high level,
the proxy process acts in a similar capacity to our service
threads in mktrace. One difference is that a proxy pro-
cess in a real multi-kernel setup runs in user-space, which
requires an additional context switch to handle delegated
system calls. Using our tool, a configurable subset of system
calls are intercepted by the kernel, which forwards them to
this delegate thread with a tunable forwarding cost. With
this architecture we can experiment with different delega-
tion schemes to determine performance without spending
effort porting an application to a new OS. Our emulator
tool, called mktrace, is freely available online,11 runs on
Linux, and only requires that users load a kernel module
before using it.

The primary technique used by our tool is system call
interposition. This technique has been used primarily for
secure monitoring of kernel activity, both using in-kernel or
user-level approaches [39]–[42] and out-of-kernel by lever-

11. https://github.com/hexsa-lab/mktrace

aging an underlying virtual machine monitor (VMM) [43]–
[45]. Typical interposition tools provide hooking points for
system call entry and exit, but we only need to capture
entries in order to forward them. Figure 10 illustrates how
our tool works. After a user loads our system call interceptor
(a kernel module), system calls can be selectively forwarded,
with tunable forwarding cost. This is achieved by patching
the kernel’s system call table. In the figure, a regular system
call bar() (a) is invoked, which vectors via a system call
table entry (b) to the kernel’s handler for that system call
(c). When a forwarded system call foo() (1) is invoked,
our patched system call table entry (2) vectors instead to
our module (3), which mirrors register state (arguments)
and the execution environment in the calling process (e.g.,
address space). Our module then forwards the system call
to a delegate thread, backed by a separate kernel thread on a
separate CPU (4), which spins for a configurable amount of
time (representing the forwarding delay), and then invokes
the kernel’s original system call handler (5). The results
of the system call execution on the delegate kernel thread
are sent back to the calling process and execution continues
normally.

4.1 Experimental Setup
We conducted our experiments on a system called tinker,
which has a 2.2GHz Xeon E5-2630 CPU with 10 cores and
48 GB RAM. It runs Centos 7.7 with stock Linux kernel

https://github.com/hexsa-lab/mktrace

9

(a) min. frequency (b) max. frequency (c) random

Fig. 9: Projected speedup as the forwarding cost (52) varies. We fix the gain factor (W) to 2 and assume that 90% of system
calls are forwarded.

CPU CPU

sys_foo_wrapper	()	{
				

}	

sys_foo	()	{
				
}	

patched
syscall
table

interceptor moduledelegate thread

foo()

sys_bar	()	{
				
}	

bar()1

2
34

5

a

b

c

application

kernel

Fig. 10: High-level overview of mktrace.

version 3.10.0-1062. Hyperthreading is disabled, and the
BIOS is configured for a static power profile (maximum
performance) to mitigate measurement noise from DVFS.

For these experiments, we selected several benchmarks
from the initial set: bzip2, Linux kernel compilation (kernel
version 5.1.4) with gcc, the SPEC CPU suite, and the NAS
benchmarks (currently the serial versions).

In this section we are not actually running applications
in a real multi-OS system (cf. Section 5), so we cannot
empirically observe the speedup factor W given by running
the application in the SOS. To approximate this factor, we
designed a synthetic benchmark which performs phases of
variable amounts of computation followed by phases of
fixed system call invocations. The computation is a simple
Monte Carlo calculation of c, dominated by floating point
operations. To artificially induce a speedup, we simply vary
the amount of computation (by reducing the number of
trials in the approximation) according to a W value. Thus,
a higher value of W is approximated by a concomitant
reduction in the amount of work done in the computation
phase. The benchmark uses a synthetic system call profile
derived from traces gathered from bzip2 (skewed system
call profile, I/O intensive) and BT (uniform distribution of
system calls, compute intensive) using strace.

4.2 Experiments

We first run the benchmarks described above in a stan-
dard Linux environment and then using our mktrace tool,
which approximates delegation. We measured the minimum

overhead of forwarding using this mechanism (represented
by 52 in previous sections) to be 6.3 `s, measured with 1000
trials. This is quite close to the forwarding costs incurred by
real multi-kernels, as we will see in Section 5. In all cases,
because of the small forwarding overhead, there is very little
impact on performance. The largest overhead we observed
for mktrace was less than 1% across all benchmarks when
using the “min. frequency” syscall profile.

As described above, we now attempt to incorporate
the gain factor (W) by approximating gain using a variable
amount of computation. Figure 11 shows the projected
speedup from both the naı̈ve model and the refined model
for the synthetic benchmark compared to the speedup em-
pirically determined with mktrace. In this figure, we see
how the measured speedup of the benchmark changes with
a varying gain factor. The curve labeled “empirical speedup
using mktrace” represents speedup relative to the default
setup on Linux without any system call delegation.

In Figure 11a we delegate >75% (similar to mOS) system
calls with a system call profile derived from a bzip2 trace.
Here the refined model matches the measured speedup
closely. In Figure 11b we only delegate 30% of system calls
(similar to IHK/McKernel). We see that for higher W values
the gap between refined speedup and measured speedup
increases. In Figure 11c, the system call profile is derived
from BT, a compute-intensive benchmark. The predicted
speedup from both models converge in this case because
forwarding costs are negligible.

The small gap we see between the predicted speedup
and the measured speedup in Figure 11b we discovered
was due to the fixed forwarding cost assumption our model
makes. Depending on how the delegation mechanism is
implemented, there is actually some non-determinism in
this cost (for example due to queueing and thread wake-up
latencies).

In order to understand this further, we run the syn-
thetic benchmark (with the bzip2 system call profile) with
a forwarding cost derived using three summary statistics:
mean, min, and max. The forwarding cost is estimated by
taking the time difference between a system call running
with and without mktrace. Figure 13 shows us that using
the minimum measured forwarding cost gives us the best
speedup prediction, suggesting a skewed distribution. This

10

(a) bzip2 profile; 90% forwarded (b) bzip2 profile; 30% forwarded (c) BT profile; 90% forwarded

Fig. 11: Projected speedup when the gain (W) varies for the synthetic benchmark.
.

(a) bzip2 (b) BT

Fig. 12: System call profiles for bzip2 and BT, derived with strace. Note the log scale on vertical axis of the first figure.

Fig. 13: Model sensitivity to different summary statistics for
derived forwarding cost (52).

is not too surprising, since very rarely kernel events like
interrupts and context switches will inflate the forwarding
cost.

5 EXPERIMENTAL VALIDATION

In this section, we validate our model by comparing its
speedup projections with actual execution time on real

multi-OS systems. We study two multi-kernel systems that
have been deployed in production and that have quite
different designs: IHK/McKernel12 from RIKEN and Intel’s
mOS.13 We configure both mOS14 and IHK/McKernel15

such that one core (the LWK core) and 15GB RAM are
dedicated to the SOS. We select 15 GB as this was the
maximum memory we could allocate for a single core in
IHK/McKernel on our tinker testbed.

5.1 IHK/McKernel
IHK/McKernel runs HPC applications on a light-weight
kernel (LWK) to achieve scalable execution [29], but notably
the complete Linux API is available via system call delega-
tion. McKernel acts as the LWK and is primarily designed
for HPC; it is launched from IHK, the shim on the Linux
side. McKernel retains a binary compatible ABI with Linux
and it implements only a small set of performance-sensitive
system calls, delegating the remainder to Linux. For every
process running on McKernel there is a process spawned on
Linux called the proxy process. The proxy process facilitates

12. commit hash 62153.
13. mOS v0.7.
14. lwkctl -c lwkcpus=0.1 lwkmem=15g
15. mcreboot.sh -t -c 1 -m 15

11

system call delegation. It provides an execution context
on behalf of the application so that delegated calls can be
directly invoked in Linux. The list of system calls handled
by IHK/McKernel, can be found in a kernel header.16 We
use this information in our refined model to estimate the
forwarding cost for delegated system calls.

5.2 mOS
mOS uses a different design [28]. While the fundamental
concepts of mOS remain similar, mOS incorporates the LWK
code directly in a Linux kernel image. The mOS system
call delegation mechanism is quite different from the proxy
process approach. mOS retains Linux kernel compatibility at
the level of its internal kernel data structures, which enables
it to migrate threads directly into Linux. mOS implements
system call delegation by migrating the issuer thread into
Linux, executing the system call, and migrating the thread
back to the LWK component. The list of system calls handled
by mOS, can be found in a kernel header.17

5.3 Experiments
To validate our models experimentally, we selected bench-
marks from the SPEC CPU 2017 [46], NAS Class C [38],
and LAMMPS [47] benchmark suites, in addition to the
CCS QCD miniapp (Class 1) from RIKEN’s FiBER Miniapp
Suite [48]. We only use benchmarks that were able to run on
both multi-OS systems. These are listed in Table 2.

We compare the performance of the benchmarks run-
ning purely on Linux with multi-OS performance, for both
mOS and IHK/McKernel. Both mOS and IHK/McKernel
are designed to improve the performance of large-scale
parallel applications, not sequential benchmarks. Since our
model currently only captures sequential setups, we are not
looking for a performance improvement on the benchmarks
relative to Linux. Rather, we are looking to validate the
projections of our model using real systems. We direct
readers interested in multi-OS performance benefits and
scaling studies to work by Gerofi et al. [49].

We measure the absolute execution time of the bench-
marks on the various platforms for ten trials and report
the medians in Figure 14. We can see that for most applica-
tions, IHK/McKernel and mOS have similar performance to
Linux, which again is not surprising given that these bench-
marks run sequentially on a single core. We observe that
I/O-intensive applications such as bzip2, which involves
frequent system calls, has an advantage on Linux since the
multi-OS systems suffer from forwarding costs on system
call-intensive workloads.

Our goal here is to compare these execution times to
our models’ predictions. In general, one seeking to use our
models could derive estimates for model parameters (W, 52 ,
and the syscall profile) with microbenchmarking, profiling,
or by using reported performance numbers from relevant
multi-OS papers or developers. We provide example pa-
rameters here. To do so, we use both microbenchmarking

16. See syscall_list.h, available at https://github.com/
RIKEN-SysSoft/mckernel

17. See include/linux/syscalls.h, available at https://github.
com/intel/mOS

Fig. 14: Runtime of selected SPEC, NAS Class C, LAMMPS,
and CCS QCD benchmarks on Linux, IHK/McKernel, and
mOS (lower is better).

and profiling with the benchmark suites to arrive at suit-
able parameters, which could be used by others evaluating
speedup for similar workloads.

We calculate the forwarding cost parameter (52) for
IHK/McKernel and mOS separately by running a delegated
system call natively on Linux and subtracting its execution
time from the time it takes to run the same system call in the
relevant multi-OS system. We take the minimum measured
value over 1000 trials. Table 3 shows the results (measured
in `s) of four delegated system calls. Based on these results,
we set the round-trip forwarding cost (2 52) to the smallest
measurement observed for each system (6.28`s on McKer-
nel and 6.46`s on mOS). Note that our measurement tool
invokes these system calls directly using assembly wrappers
and the syscall instruction to avoid including the costs
of user-space system call code (i.e., the syscall wrappers in
libc).

For the gain parameter (W), we first determine a
benchmark-specific gain factor for each of the benchmarks in
our suites, then aggregate these using a summary statistic
which we will use for the actual W parameter in the model.
For brevity, we only show results using the median in
this paper. To determine a benchmark-specific W value, we
plugged in the forwarding cost and the overall speedup
measured from benchmark runs into our refined model
and solved for W for each benchmark. Table 4 shows our
derived, benchmark-specific W values. For IHK/McKernel
most benchmarks have W in the range of ⇠0.96–1.1. For mOS,
the gain factor ranges between ⇠0.98 and 1.1. If we exclude
bzip2 (not representative for HPC workloads), W ranges
from ⇠0.99–1.1 for both multi-OS systems. This is in line
with what we expect from single-core, compute-intensive
benchmarks.

Figure 15 compares our model predictions with mea-
sured speedups. Figure 15a shows the SPEC benchmarks,
Figure 15b shows the NAS benchmark suite, and Figure 15c
shows the LAMMPS and CCS QCD benchmarks. The left
halves of the figures show projections and measurements for
IHK/McKernel, and the right side depicts mOS. We show
speedup projections from our naı̈ve model (every syscall

https://github.com/RIKEN-SysSoft/mckernel
https://github.com/RIKEN-SysSoft/mckernel
https://github.com/intel/mOS
https://github.com/intel/mOS

12

TABLE 2: Selected benchmarks and parameters from the SPEC CPU 2017, NAS Class C, LAMMPS, and CCS QCD
benchmarks for model validation.

Benchmark Description Invocation Extra Parameters

bzip2 File compression bzip2 bigfile.txt -
cam4_r Atmospheric modeling ./cam4_r -
deepsjeng_r Deep Sjeng chess engine (tree search) ./deepsjeng_r ref.txt -
lbm_r Fluid dynamics ./lbm_r 3000 reference.dat

0 0 100_100_130_ldc.of -
mcf_r Combinatorial optimization ./mcf_r_base.sys_call_fw_1-m64 inp.in -
namd_r Molecular dynamics ./namd_r --input apoa1.input --output

apoa1.ref.output --iterations 65 -
parest_r Optical tomography with finite elements ./parest_r ref.prm -
BT Non-linear PDE solver (using block tri-diagonal) ./bt.C -
CG Estimates minimal Eigenvalue of a sparse matrix ./cg.C -
EP Generates independent Gaussian deviates ./ep.C -
FT Solves a 3D PDE using fast Fourier transform ./ft.C -
IS Sorts small integers using bucket sort ./is.C -
LU Non-linear PDE solver (using Gauss-Seidel) ./lu.C -
MG Multi-grid on a sequence of meshes ./mg.C -
SP Non-linear PDE solver (using scalar penta-diagonal) ./sp.C -
LJ Lennard-Jones atomic fluid simulation ./lmp_serial -in in.lj 104 time steps
Chain Simulation of bead-spring polymer chain melt ./lmp_serial -in in.chain 104 time steps
EAM Simulation of Cu metallic solid using EAM method ./lmp_serial -in in.eam 104 time steps
Chute Chute flow simulation for packed granular particles ./lmp_serial -in in.chute 105 time steps
Rhodo Simulation of Rhodopsin protein ./lmp_serial -in in.rhodo 103 time steps
CCS QCD Lattice quantum chromodynamics miniapp ./ccs_qcd_solver_bench_class1 tolerance=0,

kappa=0.124d0,
Lws=1.0d0

TABLE 3: Measured round-trip forwarding costs for dele-
gated system calls in IHK/McKernel and mOS.

Benchmark Measured 2 52 (min., in `s)

IHK/McKernel mOS

write_to_file 6.28 7.56
fstat 7.05 7.06
uname 8.05 7.60
write_to_console 10.36 6.46

Benchmark
Derived W Syscalls Forwarded

IHK/McKernel mOS IHK/McKernel mOS

bzip2 0.96 0.98 25% 90%
cam4 r 0.99 1.01 35% 88%
deepsjeng r 1.00 1.00 25% 83%
lbm r 1.00 1.01 31% 85%
mcf r 1.00 1.01 23% 77%
namd r 1.01 1.00 25% 83%
parest r 0.98 1.00 36% 79%
BT 1.01 1.01 33% 87%
CG 1.00 1.02 33% 87%
EP 1.00 1.00 33% 87%
FT 0.99 0.99 33% 87%
IS 1.00 1.00 25% 83%
LU 1.00 1.00 33% 87%
MG 1.01 1.01 33% 87%
SP 1.00 1.00 33% 87%
LJ 1.00 1.00 27% 80%
Chain 1.00 1.00 27% 80%
EAM 1.00 1.00 31% 81%
Chute 1.00 1.01 27% 80%
Rhodo 0.99 1.01 27% 80%
CCS QCD 1.01 1.01 21% 91%

TABLE 4: Derived W values and percentage of system calls
forwarded for both multi-kernels.

delegated) and our refined model. For both, we use two
methods to supply a W parameter to our model. In the
first, we use an estimated gain factor by using empirical
measurements from others. In particular, we referred to
speedup measurements from Gerofi et al. [49], where the
improvements from running in a multi-OS system vary from
4% to 280%. We pick the lowest of these (4% improvement
observed in LAMMPS, HACC, and QBOX benchmarks on
a single node) as a conservative estimate for W, as the
larger improvements arise from these systems running at
scale. We also show projections using a W value computed
as an aggregate (median) of the benchmark-specific values
reported in Table 4.

In Table 4 we also report the percentage of system
calls delegated in IHK/McKernel and mOS; we observe
that IHK/McKernel delegates a small set of system calls
while mOS delegates >70% system calls. In Figures 15a
and 15b the projected speedup values using an aggregate
W parameter are closest to the mark. This is unsurprising,
since this value was derived from the same benchmarks
whose speedup is being projected here. The naı̈ve model
and the refined model project similar speedups for most
benchmarks, since on the whole they invoke system calls
infrequently. To determine the accuracy of our models, we
compute the mean absolute percentage error (MAPE) of
its predictions relative to the measured overall speedups
on mOS and IHK/McKernel. The refined model achieves
99.30% accuracy and 99.43% accuracy for IHK/McKer-
nel and mOS, respectively (using the median aggregate W
value). Using parameter estimates from prior work, the
refined model achieves 96.18% and 96.79% accuracy, re-
spectively. In practice, a user of this model may not be
able to directly determine W, so the estimated parameters
represent a more realistic scenario. One thing to note here
is that, provided a fairly close estimate of W is given, our

13

(a) SPEC CPU benchmarks and bzip2.

(b) NAS benchmarks (class C).

(c) LAMMPS and CCS QCD benchmarks.

Fig. 15: Empirical speedup on IHK/McKernel (left) and mOS (right) compared to model predictions. We use an aggregate
W value of 1.003 for IHK/McKernel and 1.007 for mOS. We use an estimated W of 1.04 for both multi-OS systems.

naı̈ve model will likely suffice to quickly project speedup
for compute- and memory-intensive workloads. It can thus
be helpful in guiding developers in deciding whether or not
to use a multi-OS system.

6 DISCUSSION AND LIMITATIONS
What is clear from the previous section is that using the
models we presented, one can develop intuition for how
an application will behave in a multi-OS setup. The models
can guide development efforts when designing a custom
OS for a multi-OS environment. Notably in the case of
compute intensive benchmarks, with forwarding costs up to
the microsecond range, the naı̈ve model matches the refined
model quite well, indicating that it would be sufficient
for single-node setups, as well as multi-node setups with
low-latency interconnects. Thus for the single node case,

our intuitive model is both simple and accurate. While we
determine the parameters for our model in this paper using
manual experiments, a good estimate for them would suffice
for coarse speedup projections, a likely use case for our
models. Parameters could also be determined automatically
by profiling application code or by running a suite of
microbenchmarks.

There remain several limitations with these models,
however. The primary limitation is that they assume a single
delegator thread and a single delegate thread (one on the
GPOS and one on the SOS). While this is a reasonable setup
for serial workloads, it is unrealistic for parallel applications,
where system call requests from the delegator might come
from several cores (application threads) or several machines.
In this case, a single delegate (GPOS) thread servicing these
requests would be inadequate unless the workloads collec-

14

µ

λ0

GPOS SOS

… λn-1

.

.

.
single

delegate thread

delegator threads

Fig. 16: Simple "/"/1 queueing model for = delegator
threads and a single delegate thread.

tively involve few system calls, thus minimizing queueing
delays. As we have seen, this is actually not an unreason-
able expectation for HPC applications, so an enhancement
involving simple queueing models is possible. For example,
Figure 16 shows a single GPOS delegate thread modeled as
an "/"/1 queue (Poisson arrivals and exponential service
times). Here we assume each of = application threads makes
system call delegation requests following a distinct Poisson
arrival process, _: . By the merging property, these arrivals
sum as follows.

_C>C0; =
=�1’
:=0

_: (12)

The delegate thread handles system call requests follow-
ing exponential service times, with average service rate `.
The _: and ` parameters can be easily determined with
application traces. Using Little’s Law we can then determine
the average queueing delay , for system call delegation
requests (subtracting out service times):

, =
1

` � _C>C0;
� 1

`
(13)

We can then estimate speedup by incorporating this into
our refined model in Equation 11, adding , ⇥ =(B) to the
system call service times 6(B), where =(B) is the number
of invocations of syscall B and , is the average queueing
delay determined above. While a careful analysis of such
queueing models is outside the scope of this paper, it is
worth discussing their limitations. In workload scenarios
that require more than one delegate thread, an initial treat-
ment might extend the model to an "/"/2 (multiple server)
model. However, the primary issue here is that treating the
service rate as a memoryless process ignores confounding
performance factors caused by concurrent request streams.
Concurrent system call requests coming from two delegator
threads may actually both touch the same shared state in
the GPOS. For example, in Linux, two concurrent mmap()
calls will both mutate the region tree in the parent pro-
cess’s task struct. The locking overheads caused by such
shared accesses will not be included in a simple queueing
model, so it would likely overestimate speedup. Similarly,
such a model would not account for low-level hardware
overheads sensitive to thread placement, e.g., those due
cache coherence traffic and NUMA. We plan to explore more
sophisticated queueing models in future work, building on
prior work from Pan et al. on analytical models for lock
contention and cache performance [50]–[52].

The fixed forwarding cost assumptions we make are
also a limitation. This assumption will amplify inaccuracies
when we move to multi-node systems.

7 RELATED WORK

As far as we are aware, we are the first to model speedup
analytically for multi-OS environments. We refer readers to
Gioiosa et al. for an excellent empirical study of system
call delegation [31]. Our work was inspired by Amdahl’s
original formulation of parallel speedup [33], Gustafson’s
refinement [34], and Sun and Ni’s extended model for
incorporating memory-bound programs [35]. One might
view a multi-OS setup as a general distributed system,
where forwarded system calls are simply treated as RPCs.
In its simplest case, such a system might suitably be mod-
eled using a LogP model [53]. However, models like LogP
primarily relate to the communication/computation ratio,
and furthermore do not consider the asymmetry between
execution times and system interfaces in different operating
systems. Our model, in contrast, is designed to capture this
asymmetry. As we extend our speedup model to include
concurrently executing SOS and GPOS threads, we intend
to draw on existing models of parallel computation. Appli-
cations limited by system call usage can be viewed through a
lens of “operational intensity,” which others have visualized
using roofline models [36], [54]. While roofline models are
based on architectural characteristics rather than properties
inherent to the application and system software stack, we
believe they could be adapted to provide insight for multi-
OS systems, and we plan to explore this further in follow-up
work.

8 CONCLUSION

We introduced two models to guide intuition on application
speedup when a program’s execution is split between two
operating systems. We illustrated in detail how speedup
gained by running in an environment provided by a heavily
optimized OS can be curtailed by system call delegation
overheads and by poor choice of forwarding policies. We
showed that applications with skewed system call distribu-
tions can tolerate higher forwarding overheads when a good
forwarding policy is selected, but suffer from more dra-
matic effects when we forward the wrong system calls. To
measure the effect of these overheads on real applications,
we presented an open-source tool called mktrace which
approximates forwarding overheads on existing systems.
Using this tool, we demonstrated how to make speedup pro-
jections for applications without actually deploying them on
a multi-OS system. We also provide reasonable parameters
for our model that others can use to project speedups.
Finally, we validated our model using two real multi-OS
systems, one of which is deployed on the world’s top-
ranked supercomputer, Fugaku. Our model achieves 96.18%
and 96.79% accuracy in these settings.

In future work, we plan to extend our models to include
multi-OS systems that do not assume a single delegator
and delegate thread, but rather employ varying degrees of
parallelism, for example using multi-server queueing mod-
els. We also plan to extend mktrace to support multi-node

15

systems. Finally, we plan on investigating other perspectives
on multi-OS speedup, including roofline models.

ACKNOWLEDGMENTS

We thank Rolf Riesen and Balazs Gerofi for their valuable
input, without which our mOS and McKernel experiments
would not have been possible. We also thank Peter Dinda
for insightful discussions, and the anonymous reviewers for
their helpful feedback for improving the manuscript. This
work is supported by the United States National Science
Foundation (NSF) via grants CNS-1718252, CNS-1730689,
CNS-1763612, CCF-2028958, and CCF-2029014.

AVAILABILITY

Our speedup projection tool, mktrace, is freely available
online at https://github.com/hexsa-lab/mktrace. Our data
and experimental scripts are also freely available.

REFERENCES

[1] K. C. Hale and P. A. Dinda, “A case for transforming parallel
runtimes into operating system kernels,” in Proceedings of the
24C⌘ ACM Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’15, Jun. 2015.

[2] ——, “Enabling hybrid parallel runtimes through kernel and
virtualization support,” in Proceedings of the 12C⌘ ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, ser. VEE ’16, Apr. 2016, pp. 161–175.

[3] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to OS interference using kernel-level noise
injection,” in Proceedings of Supercomputing, ser. SC ’08, Nov. 2008.

[4] A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla, and
M. Valero, “A quantitative analysis of OS noise,” in Proceedings
of the 25C⌘ IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS ’11, May 2011, pp. 852–863.

[5] K. C. Hale and P. A. Dinda, “An evaluation of asynchronous
events on modern hardware,” in Proceedings of the 26C⌘ IEEE
International Symposium on the Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, ser. MASCOTS ’18, Sep.
2018.

[6] S. M. Kelly and R. Brightwell, “Software architecture of the light
weight kernel, Catamount,” in Proceedings of the 2005 Cray User
Group Meeting, ser. CUG’05, May 2005.

[7] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski,
“Experiences with a lightweight supercomputer kernel: Lessons
learned from Blue Gene’s CNK,” in Proceedings of Supercomputing,
ser. SC ’10, Nov. 2010.

[8] A. Gara, M. A. Blumrich, D. Chen, G. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V.
Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow,
T. Takken, and P. M. Vranas, “Overview of the Blue Gene/L system
architecture,” IBM Journal of Research and Development, vol. 49,
no. 2, pp. 195–212, Mar. 2005.

[9] D. Wallace, “Compute Node Linux: Overview, progress to date &
roadmap,” in Proceedings of the 2007 Cray User Group Meeting, ser.
CUG’07, May 2007.

[10] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell, “Pala-
cios and kitten: New high performance operating systems for
scalable virtualized and native supercomputing,” in Proceedings
of the 24C⌘ IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS’10, Apr. 2010.

[11] T. E. Anderson, “The case for application-specific operating sys-
tems,” in Proceedings of the 3A3 Workshop on Workstation Operating
Systems, Apr. 1992.

[12] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “OSv—optimizing the operating system for virtual
machines,” in Proceedings of the 2014 USENIX Annual Technical
Conference, ser. USENIX ATC’14, Jun. 2014.

[13] S. Peter and T. Anderson, “Arrakis: A case for the end of the
empire,” in Proceedings of the 14C⌘ Workshop on Hot Topics in
Operating Systems, ser. HotOS XIII, May 2013.

[14] D. R. Engler and M. F. Kaashoek, “Exterminate all operating
system abstractions,” in Proceedings of the 5C⌘ Workshop on Hot
Topics in Operating Systems, ser. HotOS V, May 1995, pp. 78–83.

[15] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An
operating system architecture for application-level resource man-
agement,” in Proceedings of the 15C⌘ ACM Symposium on Operating
Systems Principles, ser. SOSP ’95, Dec. 1995, pp. 251–266.

[16] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad,
and K. Begnum, “IncludeOS: A minimal, resource efficient
unikernel for cloud services,” in Proceedings of the 7C⌘ IEEE
International Conference on Cloud Computing Technology and Science,
ser. CloudCom ’15, Nov. 2015, pp. 250–257. [Online]. Available:
https://doi.org/10.1109/CloudCom.2015.89

[17] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo,
“EbbRT: A framework for building per-application library oper-
ating systems,” in Proceedings of the 12C⌘ USENIX Symposium on
Operating Systems Design and Implementation, ser. OSDI ’16, Oct.
2016, pp. 671–688.

[18] A. Kantee, “The design and implementation of the anykernel
and rump kernels,” Ph.D. dissertation, Aalto University, Helsinki,
Finland, 2012.

[19] A. K. , “The rise and fall of the operating system,” USENIX ;login,
vol. 40, no. 5, pp. 6–9, Oct. 2015.

[20] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones,
O. Krieger, R. Mancuso, and L. Woodman, “Unikernels: The next
stage of linux’s dominance,” in Proceedings of the Workshop on Hot
Topics in Operating Systems, ser. HotOS XVII, May 2019, pp. 7–13.
[Online]. Available: https://doi.org/10.1145/3317550.3321445

[21] R. Nikolaev, M. Sung, and B. Ravindran, “LibrettOS: A
dynamically adaptable multiserver-library OS,” in Proceedings of
the 16C⌘ ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’20, Mar. 2020, pp. 114–128.
[Online]. Available: https://doi.org/10.1145/3381052.3381316

[22] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels:
Library operating systems for the cloud,” in Proceedings of the 18C⌘
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS’13, Mar. 2013, pp.
461–472.

[23] S. Lankes, S. Pickartz, and J. Breitbart, “HermitCore: A unikernel
for extreme scale computing,” in Proceedings of the 6C⌘ International
Workshop on Runtime and Operating Systems for Supercomputers, ser.
ROSS’16, Jun. 2016.

[24] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti, “Achieving
performance isolation with lightweight co-kernels,” in Proceedings
of the 24C⌘ International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’15, Jun. 2015, pp. 149–160.

[25] K. C. Hale, C. Hetland, and P. A. Dinda, “Multiverse: Easy
conversion of runtime systems into os kernels via automatic hy-
bridization,” in Proceedings of the 14C⌘ IEEE International Conference
on Autonomic Computing, ser. ICAC’17, Jul. 2017.

[26] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove,
K. Kawachiya, O. Krieger, B. Rosenburg, E. Van Hensbergen, and
R. W. Wisniewski, “Libra: A library operating system for a JVM
in a virtualized execution environment,” in Proceedings of the 3A3
International Conference on Virtual Execution Environments, ser. VEE
’07, Jun. 2007, pp. 44–54.

[27] B. Kocoloski and J. Lange, “XEMEM: Efficient shared memory
for composed applications on multi-OS/R exascale systems,” in
Proceedings of the 24C⌘ International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’15, Jun. 2015, pp.
89–100.

[28] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen,
“mOS: An architecture for extreme-scale operating systems,” in
Proceedings of the 4C⌘ International Workshop on Runtime and Operat-
ing Systems for Supercomputers, ser. ROSS ’14, Jun. 2014, pp. 2:1–2:8.

[29] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the scalability, performance isolation and device
driver transparency of the IHK/McKernel hybrid lightweight
kernel,” in Proceedings of the 30C⌘ IEEE International Parallel and
Distributed Processing Symposium, ser. IPDPS ’16, May 2016, pp.
1041–1050.

[30] J. L. Hennessy and D. A. Patterson, “A new golden age for

https://github.com/hexsa-lab/mktrace
https://doi.org/10.1109/CloudCom.2015.89
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3381052.3381316

16

computer architecture,” Communications of the ACM, vol. 62, no. 2,
pp. 48–60, Jan. 2019.

[31] R. Gioiosa, R. W. Wisniewski, R. Murty, and T. Inglett, “Analyzing
system calls in multi-OS hierarchical environments,” in Proceedings
of the 5C⌘ International Workshop on Runtime and Operating Systems
for Supercomputers, ser. ROSS ’15, Jun. 2015.

[32] Y. Park, E. V. Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
K. D. Ryu, and R. W. Wisniewski, “FusedOS: Fusing LWK perfor-
mance with FWK functionality in a heterogeneous environment,”
in Proceedings of the IEEE 24C⌘ International Symposium on Computer
Architecture and High Performance Computing, ser. SBAC-PAD ’12,
Oct. 2012, pp. 211–218.

[33] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of the
Spring Joint Computer Conference, ser. AFIPS ’67 (Spring), Apr. 1967,
pp. 483–485.

[34] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of
the ACM, vol. 31, no. 5, pp. 532–533, May 1988.

[35] X.-H. Sun and L. M. Ni, “Another view on parallel speedup,” in
Proceedings of the ACM/IEEE Conference on Supercomputing, ser. SC
’90, Nov. 1990, pp. 324–333.

[36] S. Williams, A. Waterman, and D. Patterson, “Roofline: An in-
sightful visual performance model for multicore architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[37] B. Tauro, C. Liu, and K. C. Hale, “Modeling speedup in multi-
OS environments,” in Proceedings of the 27th IEEE International
Symposium on the Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, ser. MASCOTS ’19, Oct. 2019.

[38] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS parallel benchmarks-summary
and preliminary results,” in Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, ser. SC ’91. New York, NY, USA:
Association for Computing Machinery, Aug. 1991, pp. 158–165.
[Online]. Available: https://doi.org/10.1145/125826.125925

[39] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure
environment for untrusted helper applications confining the wily
hacker,” in Proceedings of the 6C⌘ USENIX Security Symposium, ser.
SSYM ’96, Jul. 1996.

[40] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of Computer Security,
vol. 6, no. 3, pp. 151–180, Aug. 1998.

[41] K. Jain and R. Sekar, “User-level infrastructure for system call in-
terposition: A platform for intrusion detection and confinement,”
in In Proceedings of the Network and Distributed System Security
Symposium, ser. NDSS ’00, Feb. 2000.

[42] N. Provos, “Improving host security with system call policies,” in
Proceedings of the 12C⌘ USENIX Security Symposium, ser. SSYM ’03,
Aug. 2003.

[43] K. C. Hale, L. Xia, and P. A. Dinda, “Shifting GEARS to enable
guest-context virtual services,” in Proceedings of the 9C⌘ International
Conference on Autonomic Computing, ser. ICAC ’12, Sep. 2012, pp.
23–32.

[44] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware
analysis via hardware virtualization extensions,” in Proceedings of
the 15C⌘ ACM Conference on Computer and Communications Security,
ser. CCS ’08, Oct. 2008, pp. 51–62.

[45] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM monitor-
ing using hardware virtualization,” in Proceedings of the 16C⌘ ACM
Conference on Computer and Communications Security, ser. CCS ’09,
Nov. 2009, pp. 477–487.

[46] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017:
Next-generation compute benchmark,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’18. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 41–42. [Online]. Available: https://doi.org/
10.1145/3185768.3185771

[47] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp.
1–19, 1995. [Online]. Available: https://www.lammps.org/

[48] K.-I. Ishikawa, Y. Kuramashi, A. Ukawa, and T. Boku,
“CCS QCD miniapp,” Mar. 2017. [Online]. Available: https:
//github.com/fiber-miniapp/ccs-qcd

[49] B. Gerofi, R. Riesen, M. Takagi, T. Boku, K. Nakajima, Y. Ishikawa,
and R. W. Wisniewski, “Performance and scalability of lightweight
multi-kernel based operating systems,” in Proceedings of the 32=3

IEEE International Parallel and Distributed Processing Symposium, ser.
IPDPS ’18, May 2018, pp. 116–125.

[50] X. Pan, J. Lindén, and B. Jonsson, “Predicting the cost of lock
contention in parallel applications on multicores using analytic
modeling,” in Proceedings of the 5C⌘ Swedish Workshop on Multi-Core
Computing, ser. MCC ’12, 2012.

[51] X. Pan and B. Jonsson, “Modeling cache coherence misses on
multicores,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, ser. ISPASS ’14, Mar.
2014, pp. 96–105.

[52] ——, “A modeling framework for reuse distance-based estimation
of cache performance,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software, ser.
ISPASS ’15, Mar. 2015, pp. 62–71.

[53] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a realistic
model of parallel computation,” in Proceedings of the 4C⌘ ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPOPP ’93, May 1993.

[54] K. Z. Ibrahim, S. Williams, and L. Oliker, “Roofline scaling
trajectories: A method for parallel application and architectural
performance analysis,” in Proceedings of the International Conference
on High Performance Computing and Simulation, ser. HPCS ’18, Jul.
2018, pp. 350–358.

Brian R. Tauro received his B.Tech in Com-
puter Science from Karunya University, and his
MS in Computer Science from Illinois Institute
of Technology. He is currently a PhD student in
the HExSA Lab at Illinois Institute of Technol-
ogy, advised by Dr. Kyle C. Hale. His research
interests include low-level systems software, the
intersection of compilers and operating systems,
and operating systems security.

Conghao Liu received his BS degree in soft-
ware engineering from East China Normal Uni-
versity, and his MS in computer science from
Illinois Institute of Technology. He is currently a
PhD student in the HExSA Lab at Illinois Institute
of Technology, advised by Dr. Kyle C. Hale. His
research interests include virtualization, high-
performance computing, computer architecture,
and operating systems for fog computing.

Kyle C. Hale received his BS degree in com-
puter science from the University of Texas
at Austin, and his MS and PhD degrees in
computer science from Northwestern Univer-
sity. He is an assistant professor of Com-
puter Science at Illinois Institute of Technology.
His research interests include operating sys-
tems, virtualization, high-performance comput-
ing, computer architecture, and systems secu-
rity. His research group creates software and
hardware artifacts that are freely available online

(https://github.com/HExSA-Lab).

https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://www.lammps.org/
https://github.com/fiber-miniapp/ccs-qcd
https://github.com/fiber-miniapp/ccs-qcd

