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ABSTRACT: Metasurfaces have the potential to revolutionize imaging technologies due to their extreme control of phase,
polarization, and amplitude of the incident light. They rely upon enhanced local interaction of light to achieve the desired phase
profile. As a consequence of the enhanced local interaction of light, metasurfaces are highly dispersive. This strong dispersion has
been recognized as a primary limitation as it relates to realizing conventional imaging with metasurfaces. Here, we argue that this
strong dispersion is an added degree of design freedom for computational imaging, potentially opening up novel applications. In
particular, we exploit this strongly dispersive property of metasurfaces to propose a compact, single-shot, and passive 3D imaging
camera. Our device consists of a metalens engineered to focus different wavelengths at different depths and two deep networks to
recover depth and RGB texture information from chromatic, defocused images acquired by the system. In contrast with other
metasurface-based 3D sensors, our design can operate in the full visible range with a larger field-of-view (FOV) and can potentially
generate dense depth maps of complicated 3D scenes. Our simulation results on a 1 mm diameter metalens demonstrate its ability to
capture 3D depth and texture information ranging from 0.12 to 0.6 m.

KEYWORDS: metasurface, 3D reconstruction, depth from defocus, chromatic dispersion, convolutional neural network

Metasurfaces have emerged as powerful substitutes to
conventional diffractive optics.1−6 Similar to diffractive

optical devices, metasurfaces are composed of two-dimensional
arrays of optical scatterers (called meta-elements). However,
their phase gradient does not arise from gradual phase changes
via light propagation. Rather, phase discontinuities due to
enhanced local interaction of light at each meta-element enable
the desired phase gradient.3,7 This enhanced local light
interaction modifies the phase of the incident light at a
subwavelength scale, allowing for function multiplexing and
increased design flexibility (as shown in Figure 1a). These
unique aspects of metasurfaces make them compact and
desirable for many functionalities, including 3D imaging.8−11

Unfortunately, metasurfaces also lead to highly frequency-
dependent phase discontinuities, resulting in much stronger
chromatic dispersion than diffractive optics. For example, a
metalens designed for 532 nm wavelength shows a dramatically
different point spread function (PSF) at 612 and 452 nm
wavelengths as shown in Figure 1b. This strong dispersion has
been recognized as a primary limitation for imaging with

conventional techniques. Computational optics offers one
pathway to overcome strong dispersion. In the recent first
report of computational imaging with a metasurface, meta-
optics and image postprocessing were combined to achieve
direct imaging with white light in the full visible range.12 A
subsequent work extended these techniques to achieve
simultaneous achromatic, varifocal imaging.13 Here, following
these and other recent works,11,14−19 we argue that strong
metasurface dispersion is an added degree of design freedom
for computational imaging, potentially opening up novel
applications. In particular, we exploit the strong dispersion
and high design flexibility of metasurfaces by combining them
with computational optics to demonstrate 3D imaging.
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Compared to typical 3D imaging techniques,20−26 metasur-
face-based 3D cameras can be compact, single-shot, and
passive, without requiring active light sources or multiple
viewpoints/exposures. They enable the miniaturization of 3D
cameras and can be applied to mobile or wearable platforms
with low cost and complexity. Prior metasurface-based 3D
cameras are generally based on depth from defocus (DFD)
techniques.8,9,11,27 In DFD, images are captured at different
levels of defocus from which the depth information is
recovered.28−33 In such cases, a single metasurface could
consist of interleaved metalenses with different focal lengths.8

Alternatively, two adjacent metasurfaces, one with depth-
dependent and the other with a complementary depth-
independent response, could enable the recovery of depth
information.9,11 Both these systems inherit the limitation of
field-of-view (FOV) and are designed for single wavelength
operation. Thus, their light efficiency is limited, which is
disadvantageous for low-power or energy-constrained applica-
tions. Recently, metasurface lenslet based imaging techni-
ques34,35 have been proposed for full-color imaging and depth
estimation. However, such implementations require an extra
main lens (together with the metalens array), making them
more complicated in design and less compact than DFD-based
3D cameras.8,9,11

In this article, we propose a metasurface-based 3D imaging
system that, for the first time, operates in the full visible

spectrum (380−700 nm). An overview of our system is shown
in Figure 1c. Inspired by previous work,36 we exploit the fact
that the reflectance spectra of most real-world objects are
sufficiently broadband37 to simultaneously acquire two-dimen-
sional images of texture and depth. Our system consists of an
optical metasurface that focuses red, green, and blue (RGB)
light with different central wavelengths (460, 530, and 620
nm) at different depths. A sensor located at a fixed distance
from the metasurface captures the RGB image in one shot.
Therefore, the three channels of the captured image are
defocused differently and are sensitive to changes in object
depth. We leverage chromatic differences in the captured
image using two U-Net30,38,40 based convolutional neural
networks (CNN) to create depth maps and sharp RGB image
reconstructions. The deep networks implicitly learn 3D
information from spatial blur and prior statistics and can
produce accurate dense reconstructions.

■ METASURFACE DESIGN

Our metasurface is made of three multiplexed metalenses
having different focal lengths fc for each target wavelength, as
shown in Figure 2a. c ∈ {r, g, b} denotes the target channel
with the central wavelengths λc = {620 nm, 530 nm, 460 nm},
respectively.
The metalens phase profile for each color channel is given

below:

Figure 1. Overview: (a) The enhanced local light interaction of metalenses results in strong chromatic dispersion, a new design axis for
computational imaging. Further, the localized light interaction in meta-elements enables multiplexing of functionalities, increasing design flexibility.
(b) Focusing schematic and point spread functions (PSF) for a thin lens, Fresnel lens, and metalens (all designed for 532 nm) at different
wavelengths. The metalens PSF shows a dramatic spread (when deviated from the design wavelength) due to stronger chromatic dispersion relative
to thin lenses and Fresnel lenses. (c) We exploit the strong dispersion of a metalens to show a compact, single-shot, and passive 3D imaging system.
Different wavelengths focus at different depths, encoding depth information over R (red), G (green), and B (blue) channels of captured color
images. Two deep networks are used to recover depth and RGB texture information from the chromatic, defocused image.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.1c00110
ACS Photonics 2021, 8, 1421−1429

1422

https://pubs.acs.org/doi/10.1021/acsphotonics.1c00110?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00110?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00110?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.1c00110?fig=fig1&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.1c00110?rel=cite-as&ref=PDF&jav=VoR


ϕ λ π
λ

= + + −x y x y f f( , , )
2

( )c c
c

c c
2 2 2

(1)

where (x, y) is the spatial coordinate on the metalens. We
spatially interleave the meta-elements of the three individual
metalenses corresponding to red, green, and blue channels.
Spatially interleaving the three profiles ϕr(x, y, λr), ϕg(x, y, λg),
and ϕb(x, y, λb) results in the overall phase profile Φ(x, y),
shown in Figure 2b.
The phase profile above may be implemented by many

nanophotonic designs.41 For simplicity, we design a metasur-
face that uses geometric phases to achieve the desired phase
profile.17 Our metasurface takes input left-hand circularly
polarized light and outputs right-hand circularly polarized light,
as shown in Figure 2c. The wavelength and depth-dependent
point spread functions of this metasurface are shown in Figure
2d.
To design the individual meta-elements, we employ full-

wave finite-difference time-domain (FDTD) simulations. The
basic metasurface unit cell contains a titanium dioxide nanofin
on a silica substrate, as shown in Figure 3a. By varying the
geometric parameters of the nanofins, we engineer the phase
jump for individual unit cells. Optical constants for silica42 and
titanium dioxide43 are taken from literature, and the back-
ground index is 1. We control the phase discontinuity of each
meta-element using its geometric phase. In this configuration,
each nanofin functions as a half-wave plate, transforming the
helicity of incident circularly polarized light. By rotating the
nanofins by angle θ, as shown in Figure 3a, incident circularly
polarized light is transformed to the opposite helicity and
imparted with a phase of φ = 2θ. Using this method, we can

achieve the full 2π phase range needed for metasurface
operation.
Because we seek to engineer the focal length of the

metasurface lens for red, green, and blue light, nanofins are
designed to maximize efficiency at target wavelengths while
suppressing transmission at other wavelengths. We engineer
the nanofins to maximize polarization conversion efficiency,
which is defined as the transmitted power of light of the output
helicity divided by the total incident power, given below
(assuming LCP incident light).

= ×PCE
transmitted power in RCP

total incident power (LCP)
100

(2)

Optimized nanofin parameters are L = 160 nm, W = 90 nm
for the blue channel; L = 290 nm, W = 60 nm for the green
channel; and L = 380 nm, W = 90 nm for the red channel. In
all cases, H = 600 nm and P = 400 nm. This geometry results
in maximum PCE at target wavelengths for each channel, as
shown in Figure 3b. Phase and PCE are plotted against nanofin
rotation angle for each target wavelength in Figure 3c. These
parameters can be used to implement designed phase profiles
and simulate system PSFs.

■ 3D RECONSTRUCTION
Our system focuses the red, green, and blue light at different
depths, enabling the depth prediction and texture reconstruc-
tion of the captured RGB image of a 3D scene. We make use of
two separate deep networks for the 3D reconstruction. The
pipeline of the networks’ training procedures is shown in
Figure 4. Conceptually there are three steps involved: (a) PSF
simulation, the system PSF is simulated at 21 discrete samples

Figure 2.Metalens design: (a) Design of RGB phase profiles with different focal lengths. (b) RGGB spatial interleaving. Nanofins corresponding to
the three RGB phase profiles are colored red, green, and blue. (c) Multiplexed metalens focuses different colors at different depths on the sensor.
(d) Simulated point spread functions (PSF) for different channels at different depths (PSFs are normalized for visualization). We use the chromatic
dispersion shown in the PSFs to estimate accurate depth maps of a 3D scene.
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in the depth ranging from zr to zb for RGB channels (using
parameters obtained in full-wave simulations); (b) Image
rendering, the image captured by the sensor is rendered as the
convolution of the all-in-focus image and the depth and color
dependent PSF; (c) Depth and RGB reconstruction, the depth
map and RGB image are reconstructed from the captured
image using U-Net based deep networks.
PSF Simulation. We first simulate the PSFs at different

depths based on Fourier optics.44 The metasurface nanofins
spatially modulate the wavefront of the incident light at each
wavelength. This spatial modulation is described by Tλ(x, y),
defined below:

= Φλ λ λT x y A x y x y j x y( , ) ( , ) PCE ( , ) exp( ( , )) (3)

Here, A(x, y) is a circular aperture function, which is 1 within

the diameter of the metasurface and 0 elsewhere. λ x yPCE ( , )
and Φλ(x, y) are the changes to amplitude (square root of
polarization conversion efficiency) and phase induced by the
meta-element located at (x, y). They are obtained from full-

wave simulation. The transmission efficiency and phase shift
differ for different wavelengths due to metasurface dispersion.
The system PSF Pλ,z is the response to a point source at

wavelength λ and distance z from the metasurface plane. We
derive our PSF using light field propagation methods under the
Fresnel approximation, assuming λ ≪ z.

π
λ
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where z′ is the distance between metalens and the sensor, and
(x′, y′) is the coordinate on the sensor plane. Next, the spectral
response of a color sensor κc,λ, is adopted to convert computed
spectral PSFs to color PSFs.

∑ κ′ ′ = ′ ′ ∈ { }
λ

λ λP x y P x y c r g b( , ) ( , ), , ,c z c z, , ,
(5)

Figure 3. Nanofin design: (a) Simulation schematic of metasurface unit cell containing a titanium dioxide nanofin on a silica substrate. Scatterers
convert left circularly polarized (LCP) light to right circularly polarized (RCP) light with an additional geometric phase of 2θ. (b) Polarization
conversion efficiency of nanofin designs optimized for target wavelengths (blue, 460 nm; green, 530 nm; red, 620 nm). Optimized nanofins for the
blue, green, and red channels are 160 nm × 90 nm, 290 nm × 60 nm, and 380 nm × 90 nm, respectively. Nanofin height and periodicity are 600
and 400 nm, respectively. (c) PCE and phase vs rotation angle θ for optimal nanofin geometries at target wavelengths of 460, 530, and 620 nm.
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A simulation of color PSFs at different depths is shown in
Figure 4.
RGBD Rendering. The captured images are then rendered

given the simulated PSFs, all-in-focus RGB images, and depth
maps. The all-in-focus images refer to the image of 3D scenes
captured by a pinhole camera and are considered as the RGB
image ground truth. Similar to PSF-based image formation in
DOE,30,40,45 we treat the 3D scene as a set of segmented layers
as different depths and convolve each layer Ic,z with the
corresponding PSF Pc,z. The rendered image ′Ic for each
channel is computed as

∑′ = * +I I P noisec
z

c z c z, ,
(6)

where * denotes a convolution operator. To account for the
effect of noise, we apply additive Gaussian noise with standard
deviation based on the aperture size, light level, and exposure
duration.
Reconstruction Networks. We use two separate networks

to reconstruct the depth and RGB texture images. The depth
prediction network, as shown in Figure 4, has an encoder-
decoder architecture that can predict pixel-size depth maps.30

It takes as input the three-channel captured RGB image and
outputs the one-channel depth map with the same resolution.
The texture reconstruction network is based on a modified
residual U-Net38,39 in which the differences between the coded
image and the ground truth image (i.e., residual image, which
encourage high-frequency information recovery) are learned.
Such residual learning techniques have been shown to have
good performance in all-in-focus image reconstruction (details
of the network architectures are provided in the Supporting
Information).
During training, the loss of depth prediction and RGB

texture reconstruction are back-propagated to update the
network parameters. We enforce the root mean squared error
for both estimated RGB images I ̂ and predicted depth z.̂ A
gradient-based regularization loss is used for depth estimation
to encourage sharper boundaries.30

α_ = − ̂ + ∇ ̂
N

z z zloss depth
1

( )2 2 (7)

_ = − ̂
M

I Iloss RGB
1

2 (8)

Here, ∇ denotes the spatial gradient operator, α is the weight
of gradient loss, and M and N are the number of pixels in the
RGB image and disparity map.

■ SIMULATION AND RESULTS

To demonstrate our method, we design a metalens-based 3D
camera for the 0.12−0.6 m depth range and simulate its 3D
reconstruction performance. In our design, the metalens
focuses at zr = 0.12 m, zg = 0.2 m, and zb = 0.6 m for the R
(620 nm), G (540 nm), and B (460 nm) channels,
respectively. The sensor is located 57.2 mm away from the
metalens, and the focal lengths are f r = 38.8 mm, fg = 44.5 mm,
and f b = 52.2 mm. The overall phase profile is formed by
multiplexing the three RGB phase profiles in the RGGB
configuration, with a 1 mm2 circular aperture. The simulated
sensor pixel size is 9.6 μm.

Implementation Details. During training, the PSFs are
simulated over 21 discrete depths linearly sampled in the
disparity (i.e., inverse depth) space and 17 wavelengths within
the visible range (380 nm-700 nm in 20 nm intervals). The
spectral response of the color Sony IMX183 CMOS sensor is
used to convert spectral PSFs to color PSFs, as given in eq 5.
In image modulation, we apply Gaussian noise with a standard
deviation of σ = 0.01. The reconstruction networks are trained
end-to-end on the SceneFlow data set,46 a synthetic data set
consisting of dense ground truth disparity maps (enabling our
RGBD rendering) for 35, 454 training, and 4370 testing
images. We use the “cleanpass” subset with only all-in-focus
images (randomly cropped into a size of 256 × 256) to
simulate the captured images for our camera settings. The
network parameters are optimized using Adam optimizer47 (β1
= 0.9, β2 = 0.999) with a batch size of 21 for 50 epochs, on

Figure 4. 3D reconstruction pipeline. We use separate U-Net based reconstruction networks to recover depth and texture information on a 3D
scene from the captured image. The reconstruction networks are trained beforehand with simulated captured images. During training, the depth-
dependent PSF is first simulated for different wavelengths, given the phase and PCE profiles of the designed nanofins. The captured color image is
then rendered using all-in-focus texture and depth map as inputs (by convolving the PSFs with the layered textures to account for the depth-
dependent defocus effect). The two networks take the rendered image as input and estimate the depth map and RGB image. The loss of
reconstructed depth and texture are backpropagated to update the network parameters.
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Figure 5. Comparison with a conventional lens: The conventional lens is designed to have the same focal length (44.5 mm) and focus at the same
depth (0.2 m) as our metalens (for green light centered at 540 nm). In particular, it is designed to have a quadratic height profile

− = + + −( )h x y n x y f f( , )( 1)g g g
2 2 2 (without phase wrapping), where fg = 44.5 mm is the focal length and ng = 1.52 is the refractive index

at 540 nm. The red and blue light is slightly dispersed due to the change of central wavelengths and refractive indices, but will be overall focused
around 0.2 m. As a comparison, our designed metalens (with strong chromatic dispersion and subwavelength scale) can be multiplexed to focus at
very different depths for R, G, and B channels. Shown above are 3D reconstruction comparisons between our metalens and the conventional lens.
The depth maps and RGB textures are reconstructed by the same network architectures. Our metalens outperforms the conventional lens in depth
prediction with higher accuracy and maintains a similar performance in the RGB texture reconstruction.

Figure 6. Performance analysis: (a) Reconstruction results for our simulated metalens. (b) Binned scatter plots for predicted depth as a function of
ground truth. The plot partitions the depth space into rectangular bins and displays the count of depth points in each bin using different shades of
blue (darker shades for more counts). The solid blue curve is the mean of the predicted depth over ground truths. The diagonal solid red line
represents the ideal predictions, and the two dashed red lines represent the ±5% boundaries. For visualization, the x and y axes are linearly sampled
in disparity (inverse depth) space. Most of the predictions fall within the ±5% range of the true depths, over the target depth range of 0.12−0.6 m.
(c) Comparison with a conventional diffractive lens in average reconstruction accuracy. The peak signal-to-noise ratio (PSNR) and the structural
similarity (SSIM) are used on texture reconstruction (the higher the better), and the mean absolute error (MAE) and the normalized MAE
(NMAE, absolute error divided by its ground truth) are used on depth prediction (the lower the better).
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GeForce RTX 2080 Ti GPUs. The regularization weight of the
gradient loss is α = 1.
Results. Simulation results of depth and RGB texture

reconstruction are shown in Figures 5 and 6. We also compare
our metalens with a conventional lens, a case in which the
wavelength dependence is quite small. The conventional lens is
designed to have the same focal length (44.5 mm) and focus at
the same depth (0.2 m) as our metalens (for green light
centered at 540 nm). In particular, it is designed to have a
q u a d r a t i c h e i g h t p r o fi l e

− = + + −( )h x y n x y f f( , )( 1)g g g
2 2 2 (without phase

wrapping), where fg = 44.5 mm is the focal length and ng =
1.52 is the refractive index at 540 nm. The feature sizes of the
conventional lens are all much bigger than wavelength (unlike
designs based on metasurfaces). Therefore, dispersion in such
conventional lenses arises only from material dispersion.
Material dispersion is a small effect for most transparent
materials. On the other hand, metasurfaces can have much
larger dispersion. Metasurfaces rely on the resonant interaction
of light with subwavelength scale nanostructures. The
resonance is a narrowband feature and hence makes the
metasurface highly dispersive. Additionally, the narrowband
operation of metasurface allows interleaving and wavelength-
specific design. In our case, we interleave meta-elements to
multiplex three different metalenses. Each metalens focuses a
different design wavelength at a different depth with
maximized efficiency (polarization conversion efficiency in
our case) while suppressing transmission of other wavelengths
(as shown in Figure 3b). This degree of freedom is not
accessible with conventional lenses. Thus, the use of a
metasurface provides us a way to predict depth information
on 3D scenes with much higher accuracy than with
aconventional lens. A comparison of the reconstruction results
of the conventional lens and our method is shown in Figure 5.
We adopt the same PSF-based RGBD rendering procedure to
simulate its captured images and the same U-Net based
networks to estimate the depth and RGB images. For
quantitative evaluation, the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) are used on
texture reconstruction (the higher the better),48 and the mean
absolute error (MAE) and the normalized MAE (NMAE,
absolute error divided by its ground truth) are adopted on
depth prediction (the lower the better). Our designed
metalens outperforms the conventional lens in depth
prediction accuracy and maintains similar performance in
RGB texture reconstruction. A summary of average recon-
struction performance (over the testing data set) of the
conventional lens and metalens is shown in Figure 6c. To
further analyze the depth prediction accuracy of our metalens,
we show the binned scatter plots for the predicted depth as a
function of ground-truth depth in Figure 6b. The plot indicates
that most of the predicted depths (dark blue) hover within
±5% of the true depths. A small number of depth predictions
for textureless or color-unbalanced objects (light blue) fall
beyond the ±5% range, as the chromatic-defocus cues are not
available for objects without texture or color information.
More simulation results for various scenes are shown in Figure
6a.
In contrast to the two previous designs,8,9 our metalens

spatially multiplexes three lens phase profiles with distinct focal
lengths designed at different wavelengths. Thereby, our design
enables single-shot operation with high transmission efficiency

over the entire visible spectrum. The broadband operation
increases the light efficiency and signal-to-noise ratio (SNR)
compared to a monochromatic system and enables us to
reconstruct RGB color images of scenes. Further, our design
has an advantage over the prior depth-sensor systems. Earlier
designs were based on two adjacent non-overlapping images,8,9

requiring a large sensor and/or limiting the field of view
(FOV). In our system, only one image is captured by the
sensor for simultaneous depth estimation and RGB recon-
struction. Further, the reflectance spectra of most real-world
objects are sufficiently broadband and hence, our technique is
general and applicable to real-world situations.36

■ SUMMARY AND CONCLUSION
We have proposed a metalens 3D sensor that encodes depth
information in color space, that is, different wavelengths focus
at different depths. We take advantage of strong chromatic
dispersion of metalenses to achieve the 3D imaging
functionality over the entire visible spectrum. Compared to
other metalens-based 3D imaging,8,9 this chromatic encoding
eliminates the limitations of spectral bandwidth and field-of-
view, enhances energy efficiency, and is compatible with
various aperture designs.
Our design builds on a previous experimental demonstration

exploiting chromatic dispersion to extend the depth of field of
imaging devices.36 Similar to this past work, we make use of
the fact that the reflectance spectra of most real-world objects
are broadband. Therefore, typical captured scenes contain
sufficient information for simultaneous depth and texture
reconstruction.
Furthermore, we use reconstruction deep networks to

estimate the depth and texture information on a 3D scene
simultaneously. Deep networks provide more reliable dense 3D
reconstructions of complicated scenes compared to traditional
deconvolution methods. Also, deep networks can handle cases
such as transparent objects or textureless regions, which are
challenging for deconvolution techniques.30

Despite the advantages of our approach, some challenges
remain. These include the reconstruction of large textureless
areas and objects with sharp features in their reflectance
spectra. The prediction accuracy tends to be lower for large
depth values because the network estimates depth from
defocus blur, and the defocus phase changes inversely with
depth. Moreover, our metalens is designed for circularly
polarized light, limiting the energy efficiency compared to the
scalar diffractive lenses (polarization insensitive). However, it
can reconstruct 3D information with greater accuracy, making
it useful for low-power applications. Nevertheless, optimizing
the metasurface and system design can significantly mitigate
these limitations. Possible approaches include exploring
polarization-insensitive meta-elements, tuning the focal lengths
of the red, green, and blue metalenses, and employing end-to-
end learning techniques30,40 to jointly optimize the optical and
computational components.
Overall, we have presented, for the first time, a strategy to

implement 3D imaging over the entire visible spectrum in a
single shot. We exploited the strong chromatic dispersion of
metasurfaces and combined it with computational optics to
achieve 3D imaging. Our method can be adapted to various
depth ranges. Here, we demonstrated the design for the depth
range 0.12−0.6 m using a 1 mm aperture. Simulation results
suggest significant improvements in depth prediction accuracy
over conventional lens-based techniques. This work demon-
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strates how computational optics can turn a drawback of
metasurfaces, their strong chromatic dispersion, into a novel
functionality suitable for mobile or wearable platforms.
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