
Using Advanced Vector Extensions AVX-512 for MPI Reductions
Dong Zhong

The University of Tennessee
Knoxville, TN, USA

Qinglei Cao
The University of Tennessee

Knoxville, TN, USA

George Bosilca
The University of Tennessee

Knoxville, TN, USA

Jack Dongarra
The University of Tennessee

Knoxville, TN, USA

ABSTRACT

As the scale of high-performance computing (HPC) systems con-
tinues to grow, researchers are devoted themselves to explore in-
creasing levels of parallelism to achieve optimal performance. The
modern CPU’s design, including its features of hierarchical memory
and SIMD/vectorization capability, governs algorithms’ efficiency.
The recent introduction of wide vector instruction set extensions
(AVX and SVE) motivated vectorization to become of critical impor-
tance to increase efficiency and close the gap to peak performance.

In this paper, we propose an implementation of predefined MPI
reduction operations utilizing AVX, AVX2 and AVX-512 intrinsics to
provide vector-based reduction operation and to improve the time-
to-solution of these predefined MPI reduction operations. With
these optimizations, we achieve higher efficiency for local computa-
tions, which directly benefit the overall cost of collective reductions.
The evaluation of the resulting software stack under different sce-
narios demonstrates that the solution is at the same time generic
and efficient. Experiments are conducted on an Intel Xeon Gold
cluster, which shows our AVX-512 optimized reduction operations
achieve 10X performance benefits than Open MPI default for MPI
local reduction.

CCS CONCEPTS

•Computingmethodologies→Distributed computingmethod-

ologies; Distributed programming languages; • Computer sys-

tems organization→ Very long instruction word; Single in-

struction, multiple data; Heterogeneous (hybrid) systems; • Soft-
ware and its engineering→ Software libraries and repositories.

KEYWORDS

Long vector extension, Vector operation, Intel AVX2/AVX-512, In-
struction level parallelism, Single instruction multiple data, MPI
reduction operation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8880-1/20/09. . . $15.00
https://doi.org/10.1145/3416315.3416316

ACM Reference Format:

Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra. 2020. Using
Advanced Vector Extensions AVX-512 for MPI Reductions. In 27th Euro-
pean MPI Users’ Group Meeting (EuroMPI/USA ’20), September 21–24, 2020,
Austin, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3416315.3416316

1 INTRODUCTION

The need to satisfy the scientific computing community’s increas-
ing computational demands drives to larger HPC systems with
more complex architectures, which provides more opportunities
to enhance various levels of parallelism. Instruction-level (ILP)
and thread-level parallelism (TLP) has been extensively studied,
but data-level parallelism (DLP) is usually underutilized in CPUs,
despite its vast potential. While ILP importance subsides DLP be-
comes a critical factor in improving the efficiency of microproces-
sors [9, 12, 29, 32, 38]. The most widespread vector implementation
is based on single-instruction multiple-data (SIMD) extensions. Vec-
tor architectures are designed to improve DLP by processing mul-
tiple input data simultaneously with a single instruction, usually
applied to vector registers. SIMD instructions have been gradually
included in microprocessors, with each new generation providing
more sophisticated, powerful and flexible instructions. The higher
investment in SIMD resources per core makes extracting the full
computational power of these vector units more significant than
ever.

A large body of literature has been focusing on employing DLP
via vector execution and code vectorization [8, 22, 28], and HPC,
with its ever-growing demand for computing capabilities, has been
quick to embrace vector processors and harness this additional
compute power. Vectorization as an essential factor of processors’
capability to apply a single instruction on multiple data, contin-
uously improves from one CPU generation to the next, by using
larger vector registers, gather/scatter capabilities and much more.
Compared to traditional scalar processors, extension vector proces-
sors support SIMD and more powerful instructions operating on
vectors with multiples elements and can generate orders of mag-
nitude faster memory accesses and data computations. Over the
last decade, the difference between a scalar code and its vectorized
equivalent increased from a factor of 4 with SSE, up to a factor
of 16 with AVX-512 [35], highlighting the importance of employ-
ing vectorized code whenever possible. The conversion of a scalar
code into a vectorized equivalent can be rather straightforward for
many classes of algorithms and computational kernels, as it can
be done transparently by a compiler with auto-vectorization. For
more complex codes, the compiler can or might provide a baseline

1

https://doi.org/10.1145/3416315.3416316
https://doi.org/10.1145/3416315.3416316
https://doi.org/10.1145/3416315.3416316

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra

but developers are also encouraged to provide optimized versions
using widely available compilers intrinsics.

There are efforts to keep improving the vector processors by
increasing the vector length and adding new vector instructions.
As an example, Intel’s first version of vectorized instruction set,
MMX was quickly superseded by more advanced vector integer
SSE and AVX instructions [17, 19, 27], then expanded to Haswell
instructions as 256 bits (AVX2), and then with the arrival of the
Knights Landing processor [35] the more advanced AVX-512 [18]
was introduced supporting 512-bit wide SIMD registers (ZMM0-
ZMM31) as in Figure 1. The lower 256-bits of the ZMM registers
are aliased to the respective 256-bit YMM registers, and the lower
128-bit are aliased to the respective 128-bit XMM registers; The
AVX-512 features and instructions provide a significant advantage
to 512-bit SIMD support. It offers the highest degree of compiler
support by including a unique level of richness in designing the
instructions. Compared to previous architecture and products, it
leverages longer and more powerful registers capable of packing
eight double-precision, or sixteen single-precision floating-point
numbers, or eight 64-bit integers, or sixteen 32-bit integers within
a 512-bit vector. It also enables processing twice the amount of data
elements than Intel AVX2 and four times than SSE with a single
instruction. Furthermore, AVX-512 supports more features such as
operations on packed floating-point data or packed integer data,
new operations, additional gather/scatter support, high-speed math
instructions, and the ability to have optional capabilities beyond
the basic instruction set.

Figure 1: AVX512-Bit Wide Vectors and SIMD Register Set

AVX-512 not only takes advantage of using long vectors but
also enables powerful high vectorization features that can achieve
significant speedup. Those features include but not limited to:

(1) providing a valuable set of horizontal reduction operations
which apply to more types of reducible loop carried depen-
dencies including both logical, integer and floating-point of
high-speed math reductions;

(2) and permitting vectorization of loops with more complex
loop carried dependencies and more complex control flow.

Similarly, Arm announced the new Armv8 architecture embrac-
ing SVE- a vector extension for AArch64 execution mode for the
A64 instruction set of the Armv8 architecture [2, 13]. Unlike other
SIMD architectures, SVE does not define the size of the vector reg-
isters. Instead, it provides a range of different values that permit
vector code to automatically adapt to the current vector length at

runtime with the feature of Vector Length Agnostic (VLA) program-
ming [3, 5]. Vector length constrains in the range from a minimum
of 128 bits up to a maximum of 2048 bits in increments of 128 bits.

At the other end of the programming spectrum, Message Pass-
ing Interface (MPI) [14] is a popular, efficient and portable parallel
programming paradigm for distributed memory systems widely
used in scientific applications. The MPI standard provides an entire
set of communication primitives, between pairs of processes or
between entire groups of processes, allowing applications to com-
pletely tailor its’ use to their needs. Therefore, there is no critical
subset of MPI capability in particular, all MPI aspects are critical
to some computation domains. However, there is evidence that
optimized support for two-sided communications and collective
communications, will benefit a large number of parallel applica-
tions. As an example, machine learning applications running on
distributed systems, critically depend on the performance of an
MPI_Allreduce, a reduction operation, for extensive data sets to
synchronize updating the weights matrix.

Computation-oriented collective operations such asMPI_Allreduce
and MPI_Reduce perform reductions on data along with the com-
munications performed by collectives. These collectives typically
encompass a memory-bound operation, which forces the compu-
tation to become the main bottleneck and limit the overall perfor-
mance of the collective implementation. However, the existence
of advanced architecture technologies introduced with wide vec-
tor extension and specialized arithmetic operations, calls for MPI
libraries to provide support for such extensions, providing special-
ized functions capable to extract most of the computational power
of the processor and unconditionally deliver it to the application.

Unlike more traditional HPC applications that embraced MPI
long ago, machine learning and data science in general, were more
reticent. However, a new trend has arisen lately, certainly in relation
to the growth of the size of the problems, toward a wider use of
MPI for the distributed training.

As mentioned before, the most expensive step in the learning
process, the reduction of the gradients, is entirely dependent on
the performance of MPI_Allreduce with a large amount of data (ba-
sically all the weights on the layer). Such reduction operations in
machine learning applications are commonly seen in synchronous
parameter updates of the distributed Stochastic Gradient Descent
(SGD) optimization [6], which is used extensively in, for exam-
ple, neural networks, linear regressions and logistic regressions.
Usually, this kind of reduction has two aspects: 1) the number of
reduction operations is significant. 2) the data size used by each
reduction operation is extremely large (with an extensive training
model, the data could be in the hundreds of megabytes). Li’s [23]
work explores the performance of allreduce algorithms and uses
task-based frameworks to improve their performance. Specifically
talking about AlexNet on ImageNet [21], it points out that each
step needs to perform a weights reduction with an estimated size of
200MB for extensive model training. Similarly, [30] illustrates that
with SparkNet, updating the weights of AlexNet, a single reduce
operation takes almost 20 seconds, even on five nodes. While it’s
relatively simple to scale the number of execution nodes to the
thousands, the biggest bottleneck remains the allreduce of the gra-
dient values at each step. The size of this reduction is equivalent
to the model size itself, and it is not reduced when more nodes are

2

Using Advanced Vector Extensions AVX-512 for MPI Reductions EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

used. When scaling to large numbers of nodes, the full parameter
set, commonly hundreds of megabytes, must be summed globally
every few microseconds. We can see that, in such cases, reduction
operation dominates the overall time-to-solution in distributed neu-
ral network training, highlighting the need for a more efficient
reduction implementation.

Thus, for many applications it will be crucial to provide a highly
optimized version ofMPI_Allreduce, and this requires to address the
challenge of improving the performance of the predefinedMPI oper-
ations. We tackle the above challenges and provide designs and im-
plementations for reduction operations, which are most commonly
used by the computation collectives - MPI_Reduce, MPI_Allreduce
and MPI_Reduce_Local. We propose extensions to multiple MPI re-
duction methods to fully take advantage of the AVX-512 capabilities
such as vector product to efficiently perform these operations.

This paper makes the following contributions:

(1) We investigate and utilize AVX-512 arithmetic instruction-
s/intrinsics to optimize and speed up a variety type MPI
reduction operations.

(2) perform experiments using the new reduction operations
in the scope of Open MPI on a cluster supporting the Intel
AVX-512 extensions. Different types of experiments are con-
ducted withMPI application, performance evaluation tool
and deep learning benchmark. Furthermore, our implemen-
tation provides useful insight and guidelines on how vector
ISA can be used in high-performance computing platforms
and software.

The rest of this paper is organized as follows. Section 2 presents
related studies on taking advantage of AVX-512 and SVE for spe-
cific mathematics applications, together with a survey about opti-
mizations of MPI to take advantage of novel hardware. Section 3
describes the implementation details of our optimized reduction
methods in the scope of Open MPI using AVX-512 intrinsics and
instructions. Section 4 uses a performance too to evaluate perfor-
mance by different kinds of instruction counts. Section 5 describes
the performance difference between Open MPI and AVX-512 opti-
mized Open MPI and provides a distinct insight on how the new
vector instructions can benefit MPI. Section 6 illustrates the perfor-
mance benefits of our optimized reduction operation in Open MPI
using a deep learning application.

2 RELATED WORK

Different techniques can be roughly classified according to the level
at which the hardware supports parallelism with multi-core and
multi-processor computers having multiple processing elements
within a single machine. Different level of parallelization, including
bit-level, instruction-level, data-level, and task parallelism, are stud-
ied. In this section, we survey related work on techniques taking
advantage of advanced hardware or architectures, which mainly
focuses on data-level parallelization. Novel processors and hard-
ware architectures from different vendors, such as Intel and Arm,
come equipped with long vector extensions, and the usage of those
new technologies in high-performance computing has been studied
by multiple researchers with various programming models and
applications.

2.1 Long vector extension

Lim [24] explored matrix-matrix multiplication based on blocked
matrix multiplication improves data reuse. They used data prefetch-
ing, loop unrolling, and the Intel AVX-512 to optimize the blocked
matrix multiplications, which achieved outstanding performance
of GEMM with single and multiple cores. Kim [20] presented an
optimal implementation of single-precision and double-precision
general matrix-matrix multiplication (GEMM) routines based on an
auto-tuning approach with the Intel AVX-512 intrinsic functions.
The implementation significantly reduced the search space and
derived optimal parameter sets, including the size of submatrices,
prefetch distances, loop unrolling depth, and parallelization scheme.
Bramas [7] introduced a novel quicksort algorithm with a new
Bitonic sort and a new partition algorithm that has been designed
for the AVX-512 instruction set, which showed superior perfor-
mance on Intel SKL in all configurations against two standard refer-
ence libraries. A little closer toMPI, Dosanjh et al. [11] proposed and
evaluated a novel message matching method Fuzzy-matching to im-
prove the point to point communication performance in MPI with
multithreading enabled. The proposed algorithm took advantage
of the AVX vector operation to accelerate matches and demon-
strated that the benefits of vector operation are not only restricted
to computational intensive operations, but can positively impact
MPI matching engines. They also presented an optimistic matching
scheme that uses partial truth in matching elements to accelerate
matches. Intel AVX is not the only ISA to propose vectorized ex-
tensions. Similar studies have been done using Arm’s new scalable
vector SVE. In this work [4], they leveraged the characteristics of
SVE to implement and optimize stencil computations, ubiquitous
in scientific computing which showed that SVE enabled the easy
deployment of optimizations like loop unrolling, loop fusion, load
trading or data reuse. Petrogalli’s work [16] explored the usage of
SVE vector multiple instructions to optimize matrix multiplication
in machine learning algorithm. Zhong [41] used SVE load, gather
and scatter instructions to optimize MPI datatype packing and un-
packing in Open MPI. We can see those work focused on using new
instructions to improve a specific application’s performance or a
specific mathematical algorithm. In our work, we study AVX-512
enabled features more comprehensively for all supported mathe-
matical reduction functions and also provide a detailed analysis of
the efficiency achievements of related intrinsics. Furthermore, we
aim to accommodate the AVX reduction instructions support in
MPI to provide vectorized computations for applications to use.

2.2 MPI reduction operation

Additionally, different techniques and efforts have been studied to
optimizeMPI reduction operations. Traff [37] proposed a simple im-
plementation of MPI library internal functionality that enabled MPI
reduction operations to be performed more efficiently with increas-
ing sparsity of the input vectors. Also [10] analyzed the limitations
of the compute oriented CUDA-Aware collectives and proposed
alternative designs and schemes by combining the exploitation of
the compute capability of GPU and their fast communication path
using GPUDirect RDMA feature to alleviate these limitations effi-
ciently. Luo [25] presented a collective communication framework

3

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra

called ADAPT in Open MPI based on an event-driven infrastruc-
ture. Through events and callbacks, ADAPT relaxed synchroniza-
tion dependencies and maintained the minimal data dependencies.
This approach provided more tolerance to system noise and also
supported fine-grained, multi-level topology-aware collective oper-
ations which can exploit the parallelism of heterogeneous architec-
tures. Hofmann [15] presented a pipeline algorithm for MPI Reduce
that used a Run Length Encoding scheme to improve the global
reduction of sparse floating-point data. Patarasuk’s work [31] inves-
tigated implementations of the allreduce operation with large data
sizes and derived a theoretical lower bound on the communication
time of this operation and developed a bandwidth optimal allreduce
algorithm on tree topologies. Shan [34] proposed to use idle threads
on a many-core node in order to accelerate the local reduction com-
putations, and also used data compression technique to compress
sparse input data for reduction. Both approaches (threading and
exploitation of sparsity) helped accelerate MPI reductions on large
vectors when running on many-core supercomputers.

Most of those work focuses on improving the performance of
communication either by relaxing dependencies or hiding the com-
munication latency behind computation. And for the minority of
those work that endeavors to strengthen the computation part, they
usually have some requirements or limitations of data representa-
tion or need extra hardware such as GPUs. Our AVX-512 arithmetic
reduction optimizations seek to be more general, and use the newly
available vector extensions to provide a straightforward set of pre-
defined MPI operations, with no limitation of data representation
or operations. The implementation supports multiple ISA, covering
most Intel processors versions either with legacy SSE and AVX or
advanced AVX-512.

3 DESIGN AND IMPLEMENTATION

3.1 Intel Advanced Vector Extension

Intel Advanced Vector Extension 2 (Intel AVX2), is a significant
improvement to Intel Architecture. It supports the vast majority
of previous generations 128-bit SIMD float-point and integer in-
structions to operate on 256-bit YMM registers to support 256-
bit operations. AVX2 also enhances a vibrant mix of broadcast,
permute/variable-shift instructions to accelerate numerical compu-
tations. The 256-bit AVX2 instructions are supported by the Intel
microarchitecture Haswell which implements 256-bit data path
with low latency and high throughput. Besides, AVX2 provides
enhanced functionalities for broadcast and permute operations on
data elements, vector shift instructions with variable-shift count
per data element, and instructions to fetch non-contiguous data
elements from memory.

Moreover, Intel Advanced Vector Extensions 512 (Intel AVX-
512) instructions enrich significant supports compared to AVX2.
It provides more powerful packing capabilities with longer vector
length, such as encapsulating eight double-precision or sixteen
single-precision floating-point numbers, or eight 64-bit integers, or
sixteen 32-bit integers within a vector. The longer vector enables
processing of twice the number of data elements than that Intel
AVX/Intel AVX2 can process with a single instruction and four
times than that of SSE. On the other hand, it contributes to more
distinguished performance for the most demanding computational

tasks withmore vectors(32 vector registers, each 512 bits wide, eight
dedicated mask registers), enhanced high-speed math instructions,
embedded rounding controls, and compact representation of large
displacement value.

Furthermore, Intel AVX-512 instructions offer the highest de-
gree of compiler support by including an unprecedented level of
richness in the design of the instructions. Thus, it has better com-
patibility with Intel AVX that is stronger than prior transitions to
new widths for SIMD operations. For SSE and AVX, programs will
suffer from performance penalties once mix them. However, the
mixing of AVX and Intel AVX-512 instructions is supported without
penalty. AVX registers YMM0–YMM15 map into the Intel AVX-512
registers ZMM0–ZMM15, very much like SSE registers map into
AVX registers. Therefore, in processors with Intel AVX-512 support,
AVX and AVX2 instructions operate on the lower 128 or 256 bits of
the first 16 ZMM registers.

3.2 Intrinsics

Intel intrinsics are built-in functions that provide access to the ISA
functionality using C/C++ style coding instead of assembly lan-
guage. Without Intel intrinsic was supported, users had to write
assembly code directly to manipulate SIMD instructions arbitrarily.
However, Intel has defined several sets of intrinsic functions that
are implemented in the Intel Compiler. These types empower the
programmer to directly choose the implementation of an algorithm
while allowing the compiler to perform register allocation and in-
struction scheduling wherever possible. The intrinsics are portable
among all Intel architecture-based processors supported by a com-
piler. The use of intrinsic allows developers to obtain performance
close to the levels achievable and feasible with assembly. The cost
of writing and maintaining programs with intrinsics is considerably
less than writing assembly code. In summary, the intrinsic function
allows SIMD instructions to be manipulated faster, more accurately,
and more effectively than writing lower-level code. We describe
the primary AVX-512 intrinsic functions that we are interested in
our kernel:

(1) __m512i _mm512_loadu_si512 (void const* mem_addr)
Load 512-bits of integer data from memory into a register. The
mem_addr does not need to be aligned on any particular bound-
ary. Generally, this instrinsic is converted into:
vmovdqu32 zmm, m512.

(2) __m512i _mm512_<op>_epi32 (__m512i a, __m512i b) Ap-
ply <op> between packed 32-bit integers in "a" and "b", and
store the results in destination, here we use 32-bits integer as
an example. Generally, this instrinsic is converted into:
vp<op>d m512, m512, m512.

(3) __m512i _mm512_storeu_si512 (void const* mem_addr,
__m512i a) Store 512-bits of integer data from "a" into mem-
ory. mem_addr does not need to be aligned on any particular
boundary. Generally, this instrinsic is converted into:
vmovdqu32 m512, zmm.

3.3 Reduction operation in Open MPI

We implement our advanced reduction operation with AVX, AVX2,
AVX-512 support in a component in Open MPI, based on a Modular

4

Using Advanced Vector Extensions AVX-512 for MPI Reductions EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

Component Architecture [40] that facilitates extending or substitut-
ing Open MPI core subsystem with new features and innovations.
We add our AVX-512 optimization in a specialized component that
implements all predefined MPI reduction operations with vector
reduction instructions, as in Figure 2. From a practical standpoint,
our module will extract the processor feature flag and check re-
lated flags, selecting at runtime the set of functions supporting the
most advanced ISA (AVX-512, AVX2 or AVX/SSE), or fallback to
the default basic module if the processor has no support for such
extensions, as shown in Figure 3. To be more specific, we explicitly
check CPUID – a processor supplementary instruction allowing
software to discover details of the processor, to determine processor
type and whether features such as SSE/AVXs are implemented and
supported.

OMPI with AVX512

Grpcomm

direct

Datatype

Extend Copy

Coll

Reduction

Op

AVX512_OP

…

…

RM

Applications

OS

Figure 2: OpenMPI architecture. The orange boxes represent

components with added AVX-512 reduction features. The

dark blue colored boxes are new modules.

Check feature flag
CPUID.1H:ECX.OSXSAVE = 1?

Check enable state

Check supported
flags:

SSE, AVX2, AVX512

OS provide processor
extended state management

Yes

States
enabled

AVX-512,
AVX2,
SSE

Element-wise
 MPI reduction

No

 AVX2,
SSE SSE

SSEAVX-512 AVX2

Figure 3: Integrate and automatically activate the AVX com-

ponent into the Open MPI build system

To be noted, the computational benefit in our component and
modules can be extended out the scope of reduction operation to
general mathematics and logic operations. This advanced operation
module/code-snippet can be easily adapted to other computational
intensive software stacks.

To use vector instructions in applications, it can be exploited
in several fashions: (a) relying on automatic vectorization support

provided by the compiler; (b) explicitly calling vector instructions
from assembly or via intrinsic functions; (c) adapting intrinsic func-
tions into programming models or languages for applications to
use. The first strategy by using auto-vectorization, is portable and
"future-proof", which means that it can quickly adapt code to a
future generation of processors, with the only required step being
a re-compilation of the code. However, to effectively use automatic
vectorization, programmers must follow guidelines and restrictions
for vectorizable code, and provide compile-time options largely de-
pendent on the capability and efficiency of a specific compiler. And
programmers also need to be aware of the specifics of the instruc-
tions that are supported by a processor. Additionally, compilers
have strong limitations in the analysis and code transformations
phases that prevent an efficient extraction of SIMD parallelism in
real applications [26]. The second method allows more control over
the very low-level instruction stream, but the use of intrinsics is
time-consuming and error-prone for application programmers and
users. For our work, to integrate the use of AVX-512 features in the
Open MPI stack, we prefer to adopt the second approach – we use
intrinsics and compile flags together to guide the compiler in the
vectorization phase to maximize performance.

A reduction is a common operation encountered in many scien-
tific applications. Those applications have large amounts of data-
level parallelism and should be able to benefit from SIMD support
for reduction operation. Especially in deep learning applications,
it needs to frequently calculate and update the gradients, which
is typically very computation extensive. Traditional reduction op-
eration performs element by element of the input buffers, which
executes as a sequential operation or it is possible could be vec-
torized under particular circumstance or with a specific compiler
or constraints. Sometimes it may suffer from dependencies across
multiple loop iterations. Figure 4 illustrates the difference between
a scalar operation and a vector operation for AVX, AVX2 or AVX-
512, respectively. It is an example of a vector instruction processing
multiple elements together at the same time, compared to executing
the additions sequentially. Where a scalar processor would have to
perform a load, an computation and a store instruction for every
element, a vector processor perform one load, one computation
and one store for multiple elements. An AVX-512 SIMD-vector can
process multiple elements at the same time. For example, it can
store 8 double-precision floating-point numbers or 16 integer val-
ues, also allow the computation of those elements by executing a
single instruction. AVX-512 reduction instructions perform arith-
metic horizontally across active elements of a single source vector
and deliver a scalar result.

Intel AVX-512 intrinsic provides arithmetic reduction operation
for integer and float-pointing, also supports logical reduction oper-
ations for an integer type. This gives the chance to create AVX-512
intrinsic based reduction support inMPI which will highly increase
the performance of MPI local reduction. Additionally, AVX-512 can
perform scatter reduction operation with the support of predivector
register, which behaves in a vectorized manner. This profoundly
expands the limitation of consecutive memory layout for reduction
operation to non-contiguous data sets at the same time generic and
efficient, but such operations are not needed for the predefined MPI
reduction operations.

5

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra

float a _mm128 a _mm256 a _mm512 a

float b _mm128 b _mm256 b _mm512 b

a op b _mm256 (a op b) _mm512 (a op b)_mm128 (a op b)

op

=

Figure 4: Example of single precision floating-point values

using : (■) scalar standard C code, (■) AVX SIMD vector of 4

values , (■) AVX2 SIMD vector of 8 values, (■) AVX-512 SIMD

vector of 16 values

Algorithm 1 AVX based reduction algorithm
types_per_step ▷ Number of elements in vector
left_over ▷ Number of elements waiting for reduction
count ▷ Total number of elements for reduction operation
in_buf ▷ Input buffer for reduction operation
inout_buf ▷ Input and output buffer for reduction operation
sizeof_type ▷ Number of bytes of the type of the in_buf /

inout_buf
1: procedure ReductionOp(in_bu f , inout_bu f , count)
2: types_per_step = vector_lenдth(512) / (8 × sizeo f _type)
3: #pragma unroll
4: for k ← types_per_step to count do
5: _mm512_loadu_si512 from in_bu f
6: _mm512_loadu_si512 from inout_bu f
7: _mm512_reduction_op
8: _mm512_storeu_si512 to inout_bu f
9: Update left_over
10: if (le f t_over , 0) then
11: Update types_per_step >>= 1
12: if (types_per_step ≤ le f t_over) then
13: _mm256_loadu_si256 from in_bu f
14: _mm256_loadu_si256 from inout_bu f
15: _mm256_reduction_op
16: _mm256_storeu_si256 to inout_bu f
17: Update left_over
18: if (le f t_over , 0) then
19: Update types_per_step >>= 1
20: if (types_per_step ≤ le f t_over) then
21: _mm_llddqu_si128 from in_bu f
22: _mm_llddqu_si128 from inout_bu f
23: _mm128_reduction_op
24: _mm_storeu_si128 to inout_bu f
25: Update left_over
26: if (le f t_over , 0) then
27: while (le f t_over , 0) do
28: Set case_value
29: Switch(case_value) : {8 Cases}
30: Update left_over

For our optimized reduction operation, we employ and apply
multiple methods to investigate how to achieve the best perfor-
mance on different processors, as shown in algorithm1. For a better
description, in the rest of the paper, we assume that the hardware

supports AVX-512. In the algorithm’s for-loop section: First of all,
we explicitly use 512 bits long vector loads and stores for memory
operation rather than using the memory copy (memcpy) function
provided by the standard library, because some systems and com-
pilers may not perform the best assembling techniques of using
ZMM registers to load and store. After we have the elements loaded
in registers, we apply mathematical vector operation to perform
a reduction on the whole vector. We repeat this pattern until the
remainders cannot fulfill a 512 bits vector, then we fallback to use
YMM registers to process elements that fit in the 256 bits registers.
And so on, then we execute with 128 bits vectors.

Eventually, we reach the last section of the optimization. We
have noticed that depending on the number of elements to apply
the operation on, significant execution time is often spent in the
prologue, that deals with the remainder, those few elements that
cannot fulfill a vector. Intel provides AVX mask intrinsics for mask
operations that can vectorize the remainder loop. Still, significant
overhead is involved in creating and initializing the mask and exe-
cuting a separate and additional code path, which can result in low
SIMD efficiency. The vectorized remainder loops can be even slower
than the scalar executions, because of the overhead of masked op-
erations and hardware. Typically the compiler can determine if
the remainder should be vectorized based on an estimate of the
potential performance benefit. When trip count information for a
loop is unavailable, however, it will be difficult for the compiler
to make the right decision. Therefore, for the remainder, we use
Duff’s device [39] manually implementing a loop unrolling by in-
terleaving two syntactic constructs of C: the do-while loop and a
switch statement, which helps the compiler to optimize the device
correctly. We benefit from two aspects of Duff’s device. First of all,
the loop is unrolled, which trades larger code size for more speedup
by avoiding some of the overhead involved in checking whether the
loop is finished or jump back to the top of the loop. It can run faster
when it is executing straight-line code instead of jumping. The sec-
ond aspect is the switch statement. It allows the code to jump into
the middle of the loop the first time through. Execution starts at the
calculated case label, and then it falls through to each successive as-
signment statement, just like any other switch statement. After the
last case label, execution reaches the bottom of the loop, at which
point it jumps back to the top. The top of the loop is inside the
switch statement, so the switch is not re-evaluated anymore. Our
Duff’s device loop uses eight cases in the switch statement, so the
number of iterations is divided by eight. If the remaining elements
to be processed aren’t multiple of eight, then some elements are left
over. Most algorithms first deal with blocks of 8 elements at a time
and then handle the remainders (less than eight) at the end, but
our Duff’s device code processes the remainders (less than eight)
at the beginning. The function calculates "count % 8" for the switch
statement to figure out what the remainder will be, and jumps to
the case label for that many elements. Then the loop continues to
deal with blocks of eight elements.

Table 1 shows the variety of MPI_Types and MPI_Ops are sup-
ported in our optimized reduction operationmodule, whichmatches
the combination of types and operations defined by theMPI stan-
dard. Table2 lists the supported x86 instruction set architectures and
related CPU flags from legacy SSE to the latest AVX-512 instruction
sets. To be noted, our work mainly focuses on the "Fundamental"

6

Using Advanced Vector Extensions AVX-512 for MPI Reductions EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

Table 1: Supported types and operations

Types uint8 - uint64 float double

MAX ✓ ✓ ✓
MIN ✓ ✓ ✓
SUM ✓ ✓ ✓
PROD ✓ ✓ ✓
BOR ✓ — —
BAND ✓ — —
BXOR ✓ — —

Table 2: Supported CPU flags

Instruction Sets CPU flags

AVX AVX512BW AVX512F AVX2 AVX
SSE SSE4 SSE3 SSE2 SSE

feature instruction set with flag AVX512F, available on Knights
Landing processors and Intel Xeon processors. It contains vector-
ized arithmetic operations, comparisons, type conversions, data
movement, data permutation, bitwise logical operations on vectors
and masks, and miscellaneous math functions. This is similar to
the core feature set of the AVX2 instruction set, with the difference
of more comprehensive and more extended registers, and more
functional supports for float-pointing and integer.

4 PERFORMANCE TOOL EVALUATION

To understand the performance, we analyzed our AVX-512 enabled
Open MPI reduction operation using Performance API (PAPI) [36]
– a tool that can expose hardware counters, allowing developers to
correlate these counters with the application performance. PAPI is
a portable and efficient API to access hardware performance moni-
toring registers/counters found on most modern microprocessors.
These counters exist as a small set of registers that count "events",
which are occurrences of specific signals and states related to the
processor’s function. Monitoring these events facilitates correlation
between the structure of source or object code and the efficiency
of the mapping of that code to the underlying architecture. This
correlation has a variety of uses in performance analysis and tuning.

We aim to use hardware performance counters in PAPI to mea-
sure two aspects: (1) Memory operation instructions: the total num-
ber of load and store instructions. (2) Branching instructions: num-
ber of branch execution instructions including branch instructions
taken and not-taken, instructions mispredicted and instructions cor-
rectly predicted, which have a significant impact on performance.
For example, mispredicted branches can disrupt streams of micro-
ops or cause the execution engine to waste execution resources on
executing streams of micro-ops in the non-architected code path.

Figure 5 shows the total number of instructions, and memory
access instructions of load and store, and branch instructions (due
to the stability of the results we choose not to clutter the graphs
with standard deviation). We can see that for our optimized reduc-
tion operation, the total number of instructions is largely reduced.
Also, memory access and branch instructions have decreased com-
pared to the default implementation in Open MPI. The explanation

Figure 5: Comparison between AVX-512 optimized OMPI

and default OMPI for MPI_SUM reduction with PAPI in-

struction events overview

Figure 6: Comparison between AVX-512 optimized OMPI

and default OMPI forMPI_SUM reductionwith PAPI branch

counters

here is straightforward: longer vectors can load and store more
elements with each instruction than non-vector loads and stores,
which means that we need fewer loads and stores dealing with the
same amount of reduction data. Consequently, this will decrease
the loop iteration. Our implementation reduced the number of loads
and stores instructions by a factor of 90X and 60X, respectively.
At the same time, for branching instructions, our optimization de-
creased by 60X. We also investigated the cache misses of L1 and
L2 caches. Because we are dealing with an extensive contiguous
data, which means data access patterns are very regular and easy
to predict, all predicted accesses will be consumed so that the cache
misses are not showing significant variation.

Figure 6 illustrates the instruction count details of branch instruc-
tions of both AVX-512 optimized implementation and the default
element-wise reduction method. By using long vectors, we largely

7

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra

decreased the "for loop" of the reduction operation. Consequently,
the AVX-512 code has much less control and branching instruc-
tions. Which means we have less conditional branch instructions.
Especially, for conditional branch instructions not taken, we gain
more benefits compare to others, which shows conditional branch
instructions are being correctly predicted.

5 EXPERIMENTAL EVALUATION

We conduct our experiments on a local cluster which is an Intel(R)
Xeon(R) Gold 6254 (AVX512F) based server running at 3.10 GHz. Our
work is based uponOpenMPImaster branch, revision #75a539. Each
experiment is repeated 30 times, and we present the average results.
For all tests, we use a single node with one process, because our
optimization aims to improve the performance of the computation
part of reduction operation rather than the communication.

This section compares the performance of the reduction opera-
tion with two implementations. For Open MPI default reduction op-
eration base module, it performs element-wise computation across
two input buffers. For each loop iteration, it processes two elements.
Our new implementation uses AVX-512 vector instruction execut-
ing reduction operation on the same inputs, but for each iteration,
it deals with two vectors containing all the elements within the
vectors which represent a vector-wise operation. For the reduction
benchmark, we use the MPI_Reduce_local function call to perform
the local reduction for all supported MPI operations using an array
of different sizes.

We present to compare arithmetic SUM and logical BAND. For
the experiments, we flushed cache to ensure we are not reusing
cache for a fair comparison.

Figure 7 and Figure 8 show the result for the MPI_SUM and
MPI_BAND. It should be noted for the default Open MPI’s com-
piler, despite the provided optimization flags, did not generate auto-
vectorized code. Our optimization uses intrinsics which gives us
complete control of the low-level details at the expense of produc-
tivity and portability.

Results demonstrate that using AVX-512 enabled operation the
performance can be improved by order of magnitude compared
with the element-wise operation. To be more specific, when the
total size of the reduction elements is small, the performance ben-
efit remains low. However, when the buffer size bigger than 4KB,
the performance advantage becomes considerable and stable. We
also compare MPI operation together with memcpy, to indicates
the peak memory bandwidth for a similar operation. To make a
fair comparison, we list the complete execution sequence of re-
duction operation and memory copy operation. We can see that
for a MPI reduction operation, it needs two loads from both input
memory, and then an additional computation, eventually followed
by one store to save the results into memory. For memcpy it only
needs one load from source and one store to destination. The re-
sult shows that even with an additional computation included, and
our optimized AVX-512 reduction operation achieves a high level
of memory bandwidth which is comparable as memcpy. To be re-
marked, when the reduction buffer size reaches 1 megabyte, our
implementation achieves almost the same performance as memcpy
which indicates we maximize the memory bandwidth.

Figure 7: Comparison of MPI_SUM with AVX-512 reduction

enable and disable forMPI_UINT8_T together withmemcpy

Figure 8: Comparison of MPI_BAND with AVX-512 reduc-

tion enable and disable for MPI_UINT8_T together with

memcpy

6 DEEP LEARNING APPLICATION

EVALUATION

Over the past few years, advancements in deep learning have driven
tremendous improvement in image processing, computer vision,
speech recognition, robotics and control, natural language process-
ing, and many others. One of the significant challenges of deep
learning is to decrease the extremely time-consuming cost of the
training process. Designing a deep learning model requires design
space exploration of a large number of hyper-parameters and pro-
cessing big data. Thus, accelerating the training process is critical
for research and production. Distributed deep learning is one of
the essential technologies in reducing training time. The critical
aspect to understand in deep learning is that it needs to calculate
and update the gradient to adjust the overall weights. Processes
need to prepare and calculate all the gradient data, which is usually
very large. When such data and calculations are too extensive, users
need to parallelize these calculations and computations. It indicates
the training needs to be executed on distributed computing nodes
working in parallel, and each node works on a subset of the data.
When each of these processing units or workers (CPUs, GPUs, TPUs,

8

Using Advanced Vector Extensions AVX-512 for MPI Reductions EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

etc.) is done calculating the gradient for its subset; they then need
to communicate its results to the rest of the processes involved.

In this section, we investigate and experiment on Horovod [33] -
an open-source component of Michelangelo’s deep learning toolkit
makes it easier to start and speed up distributed deep learning
projects with TensorFlow. Horovod utilizes Open MPI to launch
copies of the TensorFlow program. Open MPI will transparently set
up the distributed infrastructure necessary for processes to commu-
nicate with each other. All the user needs to do is to modify their
program to average gradients using an MPI_Allreduce operation.
Conceptually Allreduce has every process to share its data with all
other processes and applies a reduction operation. This operation
can be any reduction operation, such as sum, max or min. In other
words, it reduces the target arrays in all processes to a single array
and returns the result array to all processes. Horovod uses a ring-
allreduce approach, which is a bandwidth optimal [31] algorithm if
the tensors are large enough, but does not work as efficiently for
smaller tensors. Horovod can also use a Tensor Fusion - an algo-
rithm that fuses tensors together before it calls ring-allreduce. The
fusion method allocates a large fusion buffer and executes the allre-
duce operation on the fusion buffer. In the ring-allreduce algorithm,
each of N nodes communicates with two of its peers 2∗(N - 1) times.
During this communication, a node sends and receives chunks of
the data buffer. In the firstN −1 iterations, received values are added
to the values in the node’s buffer. In the second N − 1 iterations,
after each process receives the data from the previous process, then
it applies the reduction and proceeds to send it again to the next
process in the ring. We can see that during the allreduce processing
phase, there are P ∗ (N - 1) reduction operations that occurred with
big fusion buffer size, which is very computation intensive. Our
AVX-512 optimized reduction operations can significantly improve
the performance of the computation and reduction part of those
collective operations.

192 384 768 1536
of Process

0

100

200

300

400

500

600

Im
ag

es
/s

ec

85.35

154.57

321.35

565.72

90.27

163.79

329.96

646.75
NO_AVX
AVX512

Figure 9: tf_cnn_benchmarks results using Horovod (model:

alexnet) on stampede2 with AVX-512 optimized Open MPI

and default Open MPI

We conducted our experiments on Stampede2 with Intel Xeon
Platinum 8160 ("Skylake" supports AVX512F) nodes; each node

has 48 cores with two sockets. For each node, it has 192GB DDR4
memory. For each core, it has 32KB L1 data cache and 1MB L2.
The nodes are connected via Intel Omni-Path network. We experi-
mented with TensorFlow CNN benchmarks using Horovod with
tensorflow-1.13.1.

Figure 9 shows the performance comparison of our AVX-512
optimized reduction operation and the default reduction operation
in Open MPI for Horovod (with synthetic datasets and AlexNet
model) to train an application called tf_cnn_benchmarks [1]. Com-
paring to default element-wise reduction implementations, with
the increasing number of processes, our design shows increasing
improvements, which start at 5.45% and eventually rise to 12.38%
faster than default Open MPI on 192 processes and 1536 processes
respectively. We notice that the performance benefit increases with
more processes/nodes. It is because with more MPI processes par-
ticipated in reduction operation, the fact that each one of them
is simultaneously using our AVX optimized Open MPI operations
drives up the overall application performance.

7 CONCLUSION

In this paper, we pragmatically demonstrated the benefits of Intel
AVX, AVX2 and AVX-512 vector operations in the context of MPI
reduction operations. We assess the performance advantages of dif-
ferent features introduced by AVX and extended our investigation
and analysis to a fully-fledged implementation of all predefinedMPI
reduction operations. We introduced this new reduction operation
module in Open MPI using AVXs’ intrinsics supporting different
kinds of MPI reduce operations for multiple MPI types. We demon-
strated the efficiency of our vector reduction operation using a
benchmark calling MPI_Reduce_Local. Experiments are conducted
on an Intel Xeon Gold cluster, which shows with AVX-512 enabled
reduction operations, we achieve 10X performance benefits. To
further validate the performance improvements, experiments are
conducted using Skylake processor using a deep learning applica-
tion using distributed model Horovod, which calculates and updates
the gradient to adjust the weights using an MPI_Allreduce. Our
new reduction strategy achieved a significant speedup across all
ranges of processes, with a 12.38% improvement with 1536 pro-
cesses. Our analysis and implementation of Open MPI optimization
provide useful insights and guidelines on how wide vector oper-
ations, in this case, Intel AVX extensions, can be used in actual
high-performance computing platforms and software to improve
the efficiency of parallel runtimes and applications. Our AVX-512
enabled Open MPI proves that taking advantage of hardware ca-
pabilities remains of critical interest to software development, and
that even a small improvement in the MPI implementation can have
a significant impact on applications.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. (1725692); and the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Ad-
ministration. The authors would also like to thank Texas Advanced
Computing Center (TACC). For computer time, this research used

9

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Dong Zhong, Qinglei Cao, George Bosilca, and Jack Dongarra

the Stampede2 flagship supercomputer of the Extreme Science and
Engineering Discovery Environment (XSEDE) hosted at TACC.

REFERENCES

[1] [n. d.]. A benchmark framework for Tensorflow. https://github.com/tensorflow/
benchmarks

[2] ARM. 2018. Arm Architecture Reference Manual Armv8, for Armv8-A architec-
ture profile. https://developer.arm.com/docs/ddi0487/latest/arm-architecture-
reference-manual-armv8-for-armv8-a-architecture-profile

[3] Adrià Armejach, Helena Caminal, Juan M. Cebrian, Rekai González-Alberquilla,
Chris Adeniyi-Jones, Mateo Valero, Marc Casas, and Miquel Moretó. 2018. Stencil
Codes on a Vector Length Agnostic Architecture. In Proceedings of the 27th
International Conference on Parallel Architectures and Compilation Techniques
(PACT ’18). ACM, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.
1145/3243176.3243192

[4] Adrià Armejach, Helena Caminal, Juan M. Cebrian, Rubén Langarita, Rekai
González-Alberquilla, Chris Adeniyi-Jones, Mateo Valero, Marc Casas, andMiquel
Moretó. 2019. Using Arm’s scalable vector extension on stencil codes. The Journal
of Supercomputing (Apr 2019).

[5] M. Boettcher, B. M. Al-Hashimi, M. Eyole, G. Gabrielli, and A. Reid. 2014.
Advanced SIMD: Extending the reach of contemporary SIMD architectures.
In 2014 Design, Automation Test in Europe Conference Exhibition (DATE). 1–4.
https://doi.org/10.7873/DATE.2014.037

[6] Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gradient
Descent. In Proceedings of COMPSTAT’2010, Yves Lechevallier and Gilbert Saporta
(Eds.). Physica-Verlag HD, Heidelberg, 177–186.

[7] Berenger Bramas. 2017. A Novel Hybrid Quicksort Algorithm Vectorized using
AVX-512 on Intel Skylake. International Journal of Advanced Computer Science
and Applications 8, 10 (2017). https://doi.org/10.14569/ijacsa.2017.081044

[8] D. Callahan, J. Dongarra, and D. Levine. 1988. Vectorizing Compilers: A Test Suite
and Results. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing
(Supercomputing ’88). IEEE Computer Society Press, Washington, DC, USA, 98–
105.

[9] Helena Caminal, Diego Caballero, Juan M. Cebrián, Roger Ferrer, Marc Casas,
Miquel Moretó, Xavier Martorell, and Mateo Valero. 2018. Performance and
energy effects on task-based parallelized applications. The Journal of Supercom-
puting 74, 6 (2018), 2627–2637.

[10] C. Chu, K. Hamidouche, A. Venkatesh, A. A. Awan, and D. K. Panda. 2016. CUDA
Kernel Based Collective Reduction Operations on Large-scale GPU Clusters. In
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid). 726–735. https://doi.org/10.1109/CCGrid.2016.111

[11] M. G. F. Dosanjh, W. Schonbein, R. E. Grant, P. G. Bridges, S. M. Gazimirsaeed,
and A. Afsahi. 2019. Fuzzy Matching: Hardware Accelerated MPI Communication
Middleware. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). 210–220. https://doi.org/10.1109/CCGRID.2019.00035

[12] Roger Espasa, Mateo Valero, and James E Smith. 1998. Vector architectures:
past, present and future. In Proceedings of the 12th international conference on
Supercomputing. 425–432.

[13] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc
Maranget, Will Deacon, and Peter Sewell. 2016. Modelling the ARMv8 Architec-
ture, Operationally: Concurrency and ISA. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16).
ACM, New York, NY, USA, 608–621. https://doi.org/10.1145/2837614.2837615

[14] Message Passing Interface Forum. September,2012. MPI: A Message-Passing
Interface Standard. https://www.mpi-forum.org

[15] Michael Hofmann and Gudula Rünger. 2008. MPI Reduction Operations for
Sparse Floating-point Data. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, Alexey Lastovetsky, Tahar Kechadi, and Jack Dongarra
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 94–101.

[16] Dan Andrei Iliescu. 2018. Arm Scalable Vector Extension and ap-
plication to Machine Learning. Retrieved October, 2018 from
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-
scalable-vector-extensions-and-application-to-machine-learning

[17] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer Manuals. Re-
trieved November 11, 2019 from https://software.intel.com/en-us/articles/intel-
sdm

[18] Intel. 2019. 64-ia-32-architectures instruction set extensions reference manual.
https://software.intel.com/en-us/articles/intel-sdm

[19] Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 1: Basic Architecture. https://software.intel.com/en-us/download/intel-
64-and-ia-32-architectures-software-developers-manual-volume-1-basic-
\architecture

[20] Raehyun Kim, Jaeyoung Choi, and Myungho Lee. 2019. Optimizing Parallel
GEMM Routines Using Auto-Tuning with Intel AVX-512. In Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region
(HPC Asia 2019). Association for Computing Machinery, New York, NY, USA,

101–110. https://doi.org/10.1145/3293320.3293334
[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-

cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[22] David Levine, David Callahan, and Jack Dongarra. 1991. A comparative study
of automatic vectorizing compilers. Parallel Comput. 17, 10 (1991), 1223 – 1244.
https://doi.org/10.1016/S0167-8191(05)80035-3 Benchmarking of high perfor-
mance supercomputers.

[23] Zhenyu Li, James Davis, and Stephen Jarvis. 2017. An Efficient Task-based All-
Reduce for Machine Learning Applications. 1–8. https://doi.org/10.1145/3146347.
3146350

[24] Roktaek Lim, Yeongha Lee, Raehyun Kim, and Jaeyoung Choi. 2018. An im-
plementation of matrix–matrix multiplication on the Intel KNL processor with
AVX-512. Cluster Computing 21, 4 (Dec 2018), 1785–1795.

[25] Xi Luo, Wei Wu, George Bosilca, Thananon Patinyasakdikul, Linnan Wang,
and Jack Dongarra. 2018. ADAPT: An Event-based Adaptive Collective Com-
munication Framework. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’18). ACM, New
York, NY, USA, 118–130. https://doi.org/10.1145/3208040.3208054

[26] S. Maleki, Y. Gao, M. J. Garzar’n, T. Wong, and D. A. Padua. 2011. An Evaluation of
Vectorizing Compilers. In 2011 International Conference on Parallel Architectures
and Compilation Techniques. 372–382.

[27] Daniel S. McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus Püschel.
2011. Automatic SIMD Vectorization of Fast Fourier Transforms for the Larrabee
and AVX Instruction Sets. In Proceedings of the International Conference on Super-
computing (ICS’11). Association for Computing Machinery, New York, NY, USA,
265–274. https://doi.org/10.1145/1995896.1995938

[28] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou. 2013. Use of
SIMD Vector Operations to Accelerate Application Code Performance on Low-
Powered ARM and Intel Platforms. In 2013 IEEE International Symposium on
Parallel Distributed Processing, Workshops and Phd Forum. 1107–1116.

[29] Daniel Molka, Daniel Hackenberg, Robert Schöne, TimoMinartz, andWolfgang E.
Nagel. 2012. Flexible workload generation for HPC cluster efficiency benchmark-
ing. Computer Science - Research and Development 27, 4 (2012), 235–243.

[30] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I. Jordan. 2015.
SparkNet: Training Deep Networks in Spark. arXiv:stat.ML/1511.06051

[31] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth Optimal All-Reduce Algorithms
for Clusters of Workstations. J. Parallel Distrib. Comput. 69, 2 (Feb. 2009), 117–124.
https://doi.org/10.1016/j.jpdc.2008.09.002

[32] Thomas Röhl, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2016. Validation
of Hardware Events for Successful Performance Pattern Identification in High
Performance Computing. In Tools for High Performance Computing 2015, Andreas
Knüpfer, Tobias Hilbrich, Christoph Niethammer, José Gracia, Wolfgang E. Nagel,
and Michael M. Resch (Eds.). Springer International Publishing, Cham, 17–28.

[33] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[34] H. Shan, S. Williams, and C. W. Johnson. 2018. Improving MPI Reduction Per-
formance for Manycore Architectures with OpenMP and Data Compression. In
2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). 1–11.

[35] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R.
Agarwal, and Y. Liu. 2016. Knights Landing: Second-Generation Intel Xeon Phi
Product. IEEE Micro 36, 2 (Mar 2016), 34–46. https://doi.org/10.1109/MM.2016.25

[36] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173.

[37] Jesper Larsson Träff. 2010. Transparent Neutral Element Elimination in MPI
Reduction Operations. In Recent Advances in the Message Passing Interface, Rainer
Keller, Edgar Gabriel, Michael Resch, and Jack Dongarra (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 275–284.

[38] W. J. Watson. 1972. The TI ASC: a highly modular and flexible super computer
architecture. In AFIPS ’72 (Fall, part I).

[39] Wikipedia contributors. [n. d.]. Duff’s device —Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Duff%27s_device [Online; accessed 2-May-2020].

[40] Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca. 2019. Runtime
Level Failure Detection and Propagation in HPC Systems. In Proceedings of the
26th EuropeanMPI Users’ GroupMeeting (EuroMPI ’19). Association for Computing
Machinery, New York, NY, USA, Article 14, 11 pages. https://doi.org/10.1145/
3343211.3343225

[41] D. Zhong, P. Shamis, Q. Cao, G. Bosilca, S. Sumimoto, K. Miura, and J. Dongarra.
2020. Using Arm Scalable Vector Extension to Optimize OPEN MPI. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). 222–231.

10

https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://doi.org/10.1145/3243176.3243192
https://doi.org/10.1145/3243176.3243192
https://doi.org/10.7873/DATE.2014.037
https://doi.org/10.14569/ijacsa.2017.081044
https://doi.org/10.1109/CCGrid.2016.111
https://doi.org/10.1109/CCGRID.2019.00035
https://doi.org/10.1145/2837614.2837615
https://www.mpi-forum.org
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-\architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-\architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-\architecture
https://doi.org/10.1145/3293320.3293334
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1016/S0167-8191(05)80035-3
https://doi.org/10.1145/3146347.3146350
https://doi.org/10.1145/3146347.3146350
https://doi.org/10.1145/3208040.3208054
https://doi.org/10.1145/1995896.1995938
https://arxiv.org/abs/stat.ML/1511.06051
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1109/MM.2016.25
https://en.wikipedia.org/wiki/Duff%27s_device
https://doi.org/10.1145/3343211.3343225
https://doi.org/10.1145/3343211.3343225

	Abstract
	1 Introduction
	2 Related Work
	2.1 Long vector extension
	2.2 MPI reduction operation

	3 Design and implementation
	3.1 Intel Advanced Vector Extension
	3.2 Intrinsics
	3.3 Reduction operation in Open MPI

	4 Performance tool evaluation
	5 Experimental evaluation
	6 Deep Learning Application Evaluation
	7 Conclusion
	Acknowledgments
	References

