2020 IEEE International Conference on Cluster Computing (CLUSTER)

HAN: a Hierarchical AutotuNed Collective
Communication Framework

Xi Luo', Wei Wu?*, George Bosilca!”, Yu Pei!, Qinglei Cao',
Thananon Patinyasakdikul®, Dong Zhong!, and Jack Dongarra'

'University of Tennessee, Knoxville, TN, USA
2Los Alamos National Laboratory, Los Alamos, NM, USA
3Cray, Bloomington, MN, USA

Abstract—High-performance computing (HPC) systems keep
growing in scale and heterogeneity to satisfy the increasing
computational need, and this brings new challenges to the design
of MPI libraries, especially with regard to collective operations.

To address these challenges, we present “HAN,” a new hierar-
chical autotuned collective communication framework in Open
MPI, which selects suitable homogeneous collective communi-
cation modules as submodules for each hardware level, uses
collective operations from the submodules as tasks, and organizes
these tasks to perform efficient hierarchical collective operations.
With a task-based design, HAN can easily swap out submodules,
while keeping tasks intact, to adapt to new hardware. This makes
HAN suitable for the current platform and provides a strong and
flexible support for future HPC systems.

To provide a fast and accurate autotuning mechanism, we
present a novel cost model based on benchmarking the tasks
instead of a whole collective operation. This method drastically
reduces tuning time, as the cost of tasks can be reused across
different message sizes, and is more accurate than existing cost
models. Our cost analysis suggests the autotuning component can
find the optimal configuration in most cases.

The evaluation of the HAN framework suggests our design
significantly improves the default Open MPI and achieves decent
speedups against state-of-the-art MPI implementations on tested
applications.

Index Terms—MPI, hierarchical collective operation, autotun-
ing, cost model

I. INTRODUCTION

The increasing computational need of the scientific comput-
ing community requires high-performance computing (HPC)
systems to continue to grow in scale and heterogeneity.
Compared to fast-growing computation power, the speed of
communications falls behind, causing the communications to
become bottlenecks in many applications.

Message Passing Interface (MPI) standard provides various
communication primitives to facilitate the development of
HPC applications, and it is the most widely used programming
paradigm in the HPC community. Collective operations, one
type of communication primitive defined in the MPI standard,
are used to exchange data among multiple processes. As
indicated in previous studies [1, 2], collective operations are a

*corresponding authors

critical component of most MPI applications, and their perfor-
mances are significant factors in determining the performance
and scalability of these applications. Hence, it is crucial for an
MPI library to provide highly efficient collective operations.

A. Hierarchical collective communication framework

HPC systems are becoming more heterogeneous, resulting
in increasingly complex hardware hierarchies. To utilize all
hardware capabilities at each level of the hierarchies, and
improve the performance of collective operations on these
systems, collective communication implementations need to
adapt and embrace the hierarchical approach. A hierarchical
collective operation is usually implemented as a combination
of multiple fine-grained collective operations, where each of
them handles the communication on one hierarchical level [3].
When implementing a well-performing hierarchical collective
communication framework, there are three crucial factors that
need to be considered.

First, on each level of the hierarchy, the algorithms of
the fine-grained collective operations need to fully exploit
the hardware capabilities. For example, traditional tree-based
algorithms are sub-optimal for intra-node collective operations
as they introduce extra memory copies. To minimize the
memory copies, some collective frameworks [4, 5] utilize the
shared memory space to exchange data across processes on the
same node. The same hardware-aware design goes for inter-
node level, as in [6], collective operations need to leverage the
full-duplex mode to maximize network bandwidth. Moreover,
if network switch level information is available, collective
operations can be further optimized [7, 8].

Second, an optimal design of hierarchical collective commu-
nication framework should maximize the communication over-
lap, especially for large messages. From a hardware perspec-
tive, data transfers on different levels are mostly independent
from each other since they mainly occupy different hardware
devices (or different DMA engines). However, from a software
implementation perspective, some problems, such as lacking
enough segmentation and sharing software resources, would
limit the communication overlap.

Last, facing the fast-changing hardware, a hierarchical col-
lective framework needs to be flexible enough to adapt to new
architectures, and network capabilities and topologies. In the

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00013

23

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

inter-node level, various interconnects have been introduced
with different network topologies, such as hypercube [9],
polymorphic-torus [10], fat-tree [11], and dragonfly [12]. In-
side a node, with adopting co-processors, how these computing
units are connected changes drastically as well.

In this paper, we present “HAN” (Hierarchical AutotuNed),
a flexible task-based hierarchical collective communication
framework in Open MPI, which addresses the three fac-
tors discussed before. First, it selects the proper collective
frameworks as submodules to utilize the hardware capabilities
of each level. Second, it adopts a pipelining technique to
overlap communications on different levels. Finally, due to its
modularized design it can easily switch out the submodules
to adapt to hardware updates. The detailed design of the
framework is explained in section III.

B. Autotuning of MPI collective operations

Autotuning is a well-known technique to automatically find
the best set of parameters to optimize a certain problem. In the
context of collective communications, autotuning optimizes
the configuration (algorithms, segment sizes, ...) of a collective
operation. There exist several approaches to perform autotun-
ing, but they can be categorized around two methods.

The first approach is screening all possible configurations
of a collective operation with benchmarks. An implementation
of this approach, such as MPITUNE, is to exhaustively search
every possible configuration, in order to identify the best, or
the most suitable combination of parameters. This approach
is extremely costly, but it has the potential to guarantee
the optimal configuration. This method could be usable at
small scale; however, its search space explodes as the size
of the system increases, and would therefore limit its usage
on modern large scale systems. To address this, efforts have
been made to reduce the search space with heuristics [13, 14].
However, with more heuristics, more assumptions are made,
increasing the opportunities for misprediction, which could
reduce the accuracy of the autotuning process.

The second approach is using cost models [1,14] to es-
timate the time of collective operations and select the best
configuration(s) based on these estimations. Instead of directly
measuring the cost of all collective operations, this method
only benchmarks a few network specifications, such as gap,
bandwidth, and latency, and uses the models to infer the cost
of the collective, drastically reducing the cost of autotuning.
However, as stated in [1, 14], cost models have their own set
of drawbacks, and, in many cases, are not accurate enough
to find the best configuration as they oversimplify modern
heterogeneous systems. Conventional models such as Hock-
ney [15], LogP [16], LogGP [17] and PLogP [18] assume
the cost of MPI point-to-point (P2P) operations between any
two processes remains constant. However, this assumption is
no longer valid on heterogeneous systems, where the cost of
P2P varies a lot based on the location of processes. SALaR [2]
extends LogGP with different gaps (Gs) for different networks
to model a hierarchical MPI_Allreduce, but its G is fixed in

24

each level. The fixed G limits this model to large messages,
one segment of which can saturate the network bandwidth.

Besides network heterogeneity, other factors, such as the
congestion on a switch and the shared resources of commu-
nications on different levels, are not considered in these cost
models. Previous study [19] suggests when one process com-
municates with many processes concurrently, the congestion
on that process could drastically affect overall communication
performance. Others [2, 20, 21] assume data transfers on differ-
ent levels, such as inter- and intra-node, are totally independent
when modeling hierarchical collective operations. However,
practical experiments (section III-A) shows different levels are
not entirely independent, and their communications can not be
perfectly overlapped because of the shared resources, such as
memory buses and DMA engines.

To achieve a fast and accurate autotuning, we propose
a drastically different approach, combining the benefits of
the previous two methods and using a task-based autotuning
component to handle the communications and their potential
overlap. Our approach utilizes a cost model; but instead of
relying on network specifications, our cost model is based on
empirical benchmarking of independent sub-communication
patterns (or tasks), thanks to the task-based design of HAN.
Compared to the first method, since we only benchmark
tasks instead of a whole collective operation, our method can
reduce the search space significantly, which is discussed in
section III-C. Compared to the second method, our model
improves the accuracy since it considers more factors, i.e.
different bandwidths of different levels, changing gap with
increasing message sizes, congestion on a process and overlap
rate of communications on different levels. All of these factors
can affect the performance of collective operations, but as they
are hard to model, they have been usually excluded from the
existing models; while in our autotuning approach, instead of
modeling them, we choose to directly measure their influence
on tasks to provide better estimations.

C. Contribution

The key contributions of this paper are:

« Task-based hierarchical collective operations. Our
HAN framework breaks a hierarchical collective operation into
a sequence of smaller collective communication patterns (or
tasks), with each task containing fine-grained collective op-
erations. These fine-grained collective operations are selected
from available submodules to utilize the hardware capabilities
of the intra- and inter-node level and overlap communications
on these levels.

« Task-based autotuning. We present a cost model based
on empirical results of tasks used in HAN, along with an cost
model based autotuning component. Unlike other autotuners,
such as MPITUNE of Intel MPI, our autotuning component
operates on tasks instead of a whole collective operation.
Because we can reuse the cost of tasks, our autotuning
component greatly reduces the tuning time, while providing
a similar level of accuracy.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

The rest of this paper is organized as follows: section II
relates this work to previous efforts; section III describes
the implementation of our framework with MPI_Bcast and
MP_Allreduce as examples and presents our autotuning
method; section IV evaluates the performance of our design;
and section V concludes.

II. RELATED WORK
A. Hierarchical Collective Operations

To take advantage of the communication differences at
different hardware levels, some previous studies manage to
minimize data transfers on the slow communication channels
by grouping processes based on their locations. MagPie [22]
optimizes collective operations for wide area systems, where
processes are group by clusters. In contrast, MPICH2 [23]
groups processes by nodes to limit the number of inter-
node communication. Later, the groups are further divided
to explore more levels of hardware hierarchies [24]. MVA-
PICH2 [7,8] adds another hierarchy level with the network
switch information.

Others focus on strategies to select leaders of the groups
at each level of the hierarchy. Parsons et al. [25] select
leaders dynamically to overcome imbalanced process arrival
times, and Bayatpour et al. [20] create multiple leaders to
better explore the parallelism in networks for MPI_Allreduce.
These methods provide better performance compared to the
isotropic approaches [26], which assume equal cost for any
pair of processes; but since they are not able to overlap
communications on different levels, their performance for big
messages would be sub-optimal.

Other approaches overlap the communication on two levels,
intra-node and inter-node. HierKNEM [5] tries to make intra-
node communication asynchronous by offloading intra-node
communication with KNEM [27]. SALaR [2] implements an
inter-node allreduce with non-blocking one-sided communi-
cation to make its inter-node communication asynchronous.
ADAPT [28] allows asynchronous progressing on both levels
by adopting an event-driven design and utilizing non-blocking
P2P operations on both levels. In HAN, our task-based design
allows asynchronous communication on any level.

Cheetah [26] uses a Directed Acyclic Graph (DAG) to
describe hierarchical collective operations, which is similar
to our task-based design. However, our framework provides
two advantages as compared to it. First, our framework has
a pipelining mechanism that can overlap communications on
different levels; second, Cheetah lacks an autotuning compo-
nent. Without an autotuning component, its best performance
cannot always be achieved on a given machine.

B. Autotuning of Collective Operations

In [13], Vadhiyar et al. notice collective operations may not
give good performance in all situations. Hence, they perform
an exhaustive search to find the best arguments for every
case and use these arguments to automatically tune collective
operations. It also provides some heuristic ideas and gradient
descent methods to limit the search space. These heuristics are

25

complementary with our approach and they can be combined
to further reduce the testing time, as discussed in section III-C.
Tuned [29], the current default collective selection mechanism
in Open MPI, built its decision functions long ago, on hard-
ware with completely different parameters than most today’s
HPC machines (a cluster of AMD64 processors using Gigabit
Ethernet and Myricom interconnect). Since HPC systems have
changed drastically, this default decision is not optimized for
current platforms.

With the increasing scale of HPC systems, the search space
of exhaustive approaches grows exponentially, rendering this
approach unrealistic and resulting in a shift toward an increase
use of cost models to guide autotuning. In [1], PjeSivac-
Grbovi¢ et al. use multiple models to estimate the cost of
MPI_Bcast. However, as the authors point out in the paper,
the cost models are not accurate enough to optimally tune
collective operations. SALaR [2] improves the LogGP model
with different gaps for different levels. However, even though
this model is more accurate than previous cost models for
hierarchical collective operations, it fails to find the best
configuration directly in most cases. In SALaR, the authors
only use the cost model to provide a starting point of its
online tuning. Eller et al. [21] further improve the accuracy
of a postal model of MPI_Allreduce by considering network
congestion, network distance, communication and computation
overlap, and process mappings. However, its assumption of the
perfect overlap of communications on different levels and only
supporting one algorithm make it less suitable for autotuning.

Online tuning is another approach to pinpoint the best
configuration by timing collective operations and changing
the configuration (or the decision function) dynamically while
the MPI application is running. With this approach, STAR-
MPI [30] selects algorithms dynamically, and SALAR [2]
refines its segment size online. The time to converge to the best
selection is uncertain, and the cost of timing and maintaining
the decision matrix online inevitably brings overhead. Both
downsides can hurt the performance of collective operations,
which limits the usage of this approach to general cases, and
that is why we choose offline tuning in the HAN framework.

III. DESIGN

As mentioned before, our goal in HAN is not to provide
different implementations of MPI collective communication
algorithms, but to build upon the existing collective com-
munication infrastructure, reuse these existing algorithms as
submodules, and combine them to perform efficient and hi-
erarchical collective operations. HAN groups processes based
on their physical locations in the hardware hierarchies, e.g.
node, NUMA-node or even socket level, and hence divides
collective operations into multiple levels. While such infor-
mation is generally available from the MPI runtime (PMIx,
Hydra), the only portable MPI 3.1 function to expose archi-
tectural information (MPI_Comm_split_type) allows splitting
processes intra- and inter-nodes. Therefore, we limit HAN to
the topology information obtained through this portable API,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

and we only use two levels (intra- and inter-node) in the rest
of the paper.

The design contains three parts. The first part is finding
suitable submodules for each level. As discussed in the in-
troduction, overlapping communications on different levels
is an important factor to the performance of hierarchical
collective operations. To attain good overlap of inter- and intra-
node communications, HAN relies on non-blocking collective
operations for inter-node communication, as from a practical
standpoint there are no good intra-node non-blocking collec-
tive algorithms in Open MPI. Hence, HAN utilizes the only
two modules that support non-blocking collective operations in
Open MPI: (1) Libnbc [31], a default legacy module, and (2)
ADAPT [28], a new module with an event-driven design. As
for intra-node collective operations, Open MPI provides two
modules, SM and SOLO. SM is a module utilizing shared
memory buffers to exchange data between processes; and
SOLO is an experimental module that relies on MPI one-sided
communication. Both modules take advantage of the shared
memory space; however, due to the differences in algorithms
and implementations, SM has better performance for small
messages while SOLO performs significantly better as the
communication size increases.

The second part of the design is the use of a task-based
approach to organize and overlap communications on different
levels. Our framework utilizes a pipelining technique [27, 28]
by dividing a message into smaller segments and sending
them in order, to increase the overlap between network com-
munications. In HAN, segments are transferred via tasks. To
perform a hierarchical collective operation, each task contains
one or more finer-grained collective operations from different
submodules. With the task-based design, the underlying sub-
modules used for collective operations are interchangeable,
allowing our framework to adopt submodules for new archi-
tectures easily.

The last part of our design is to provide an autotuning
component using a novel cost model. Some submodules, such
as ADAPT, offer multiple algorithms to each collective opera-
tion. For example, MPI_Ibcast in ADAPT contains various
algorithms, such as chain, binary tree, and binomial tree.
For each algorithm, the underlying configurations, such as
segment size, can also affect the performance of the collective
operations. Therefore, we need an autotuning component to
pinpoint the optimal configuration. We take advantage of
the task-based design of HAN to create a new cost model
based on the empirical costs of tasks. Costs of tasks are
obtained by benchmarking submodules. Since submodules are
tightly coupled in our framework, testing the performance
of an individual submodule is not sufficient to represent the
overall performance. To accurately estimate the performance,
we benchmark the submodules when they are working together
and use these results in our cost model to estimate the cost of
a collective operation and perform autotuning.

In the following sections, we wuse MPI_Bcast and
MPI_Allreduce as examples to present the design of MPI
one-to-all and all-to-all collective operations in HAN. Similar

26

Iteratizﬁgment 0 1 u-1
0 (ib) Task: ib(0)
1 (sb | ib) Task: sbib(1)
2 sb ib
sb ib
u (sb)+ Task: sb(u-1)
(a) node leader processes
Iteratizsgment 0 1 u-1
0
1 (sb) Task: sb(0)
2 sb
sb
u sb

(b) other processes

Fig. 1: Design of MPI_Bcast

designs can be extended to other collective operations, such
as MPI_Reduce, MPI_Gather, and MPI_Allgather, as long as
the collective operations can be divided into a serial of tasks.

A. MPI_Bcast

1) Implementation: MPI_Bcast is a widely used one-to-all,
or rooted, collective operation, which propagates data from
the root to all other processes within an MPI communicator.
Figure 1 shows the implementation of MPI_Bcast in HAN.
Starting from the root, each segment firstly goes through an
inter-node broadcast (ib) to reach node leaders; then, each node
leader issues an intra-node broadcast (sb, s stands for shared
memory) to distribute the segment to the other local processes.
Since b and sb mainly occupy different hardware paths, these
two broadcasts have the potential to overlap. To maximize this
overlap, we define three types of tasks:

o Task b(i) means an inter-node broadcast of segment 4.

o Task sbib(i) includes an intra-node broadcast of segment
7 — 1 received in the previous iteration and an inter-node
broadcast of segment 3.

o Task sb(i) means an intra-node broadcast of segment i.

Assuming there are u segments in total. With the task-based
design, to perform a hierarchical MPI_Bcast, node leaders
execute ¢b(0), sbib(1), ... sbib(u — 1) and sb(u — 1), and the
other processes execute sb(0), ... sb(u — 1), as in figure 1.
2) The Cost Model: To find the optimal configuration of
MPI_Bcast in our framework, it is crucial to have an accurate
cost model. We consider the cost of a collective operation to
be the longest time among all the processes, since the cost of a
collective operation on each process may be different depends
on implementations. This definition has been used by multiple
cost models [1,32], and it is the maximum value reported by
Intel MPI Benchmark (IMB) [33] and OSU Benchmark [34].

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

a. Libnbc/SOLO, 64KB segment

0.14

Time (ms)

0.0-
0 1 2 3 4 5

Node leaders
b. ADAPT(binary)/SOLO, 64KB segment

% 0.1
E
[
F oo
0 1 2 3 4 5
Node leaders
c. ADAPT(chain)/SOLO, 64KB segment
% 0.1
E
[
£
F oo
0 1 2 3 4 5
Node leaders
. ib(0) sb(0) B concurrent ib(0), sb(0) EE sbib(1)

Fig. 2: Cost of tasks ib, sb and sbib (0 is the root)

We compute the cost of MPI_Bcast by aggregating the cost
of tasks in each iteration in figure 1, so the time spent in node
leader processes is:

mlax(Ti(ib(O)) + T;(sbib(1)) + ... + T;(sbib(u — 1))+
T;(sb(u — 1))), 0

and the time spent in the other processes is:
max(7T;(ib(0)) + T;(sb(0)) + ... + Ti(sb(u — 1)), (2)
K2

where u is the total number of segments, and 7;(¢) means the
duration or cost of task ¢ on the process . Usually, the cost
of sbib(x) is larger than sb(x) since it has an extra b to do;
therefore, comparing equation 1 and 2, we use the time spent
in node leader processes (equation 1) as the cost of MPI_Bcast.

Since ib(0) is the first task, we assume each process issues
it simultaneously. Hence, its cost can easily be measured by a
simple benchmark using a loop around a timed task. The blue
bars in figure 2 show the benchmark results of ¢b(0) on each
node leader with rank O as the root process, when transferring
64KB segments on 6 nodes with different configurations.
These results suggest that different submodules and algorithms
behave differently and every node leader finishes ib(0) at a
different time.

The last task sb(u—1) only contains an intra-node broadcast,
which is independent of the processes on the other nodes.
Since the segment size is the same among all segments, we
use 7;(sb(0)) to represent T;(sb(u — 1)). The cost of sb(0)
can be measured the same as :b(0), and its result is shown as
the orange bars in figure 2.

T;(sbib(1)) + ... + T;(sbib(u — 1)) contributes to the major
cost of MPI_Bcast when w is big enough. To get an accurate
estimation of this part, two essential factors need to be
considered.

The first factor is the overlap of b and sb. b mainly operates
on the interconnect between nodes, while sb communicates

27

over the memory bus, which means these two broadcasts can
be overlapped to some degree. Thus, T;(sbib(x)) should be
less than T; (ib(x))+T;(sb(x)). Prior studies [2,21] assume the
overlap of communications on different levels is perfect, which
suggests T;(sbib(x)) = max(T(ib(x)), T(sb(x))). However,
it is not always true. The overlap may not be perfect because:
(1) ib needs to push the data back to memory which competes
with sb for the memory bus; (2) in single-threaded MPI, b and
sb share the same CPU resource to progress, which affects the
performance of both when they are running simultaneously.
The blue, orange and green bars in figure 2 shows the cost
of task ib(0), sb(0) and concurrent sb(0) and :b(0) (issue
an ¢b with an sb simultaneously and wait for them to com-
plete), respectively. It proves that no matter what algorithm
is used to perform collective operations, the overlap between
tb and sb is significant, but usually not perfect. Thus, neither
T;(ib(x)) + Ti(sb(z)) nor max(T;(ib(x), T;(sb(z))) can be
used to accurately represent T;(sbib(z)).

The second factor is the starting time of sbib on each node
leader process. The costs of ib(0) in figure 2 show node
leader processes finish ¢b(0) at different time steps, resulting in
different starting time of the following sbib. Hence, using the
same benchmark as for ib(0) to estimate sbib would not deliver
accurate results. To accurately measure sbib(1), we need to
delay the participation of each process by the duration of the
ib(0) step to simulate the different starting time of sbib(1),
and the results of the new benchmark is shown as the red
bars in figure 2. The performance differences between the red
bars and the green bars prove the importance of considering
previous tasks since the only difference between these two is
whether there is an ib(0) before timing sbib. Therefore, to get
the accurate cost of sbib(1), task ib(0) needs to be executed
before timing, and to get the accurate cost of sbib(2), task
ib(0) and sbib(1) need to be performed. In this way, to get
the cost of sbib(i) where 1 < ¢ < u — 1, all previous tasks
from ¢b(0), sbib(1) to sbib(i — 1) need to be executed, which
is highly expensive and contains a lot of redundant tasks.

To reduce the redundant tasks, we start to look at the
performance trend of the sbib tasks. Figure 3 shows the cost
of sbib(i) where 1 < ¢ < 8 with different algorithms and
submodules on a node leader (node leader 2). All sub-figures
show a similar trend that after the first few tasks, the cost of
sbib is stabilized. It is because when executing the first few
sbibs, the pipeline of sbib is not fully constructed, leading to
some delays. Once the pipeline is fully constructed, the cost of
sbib becomes stable. Thus, instead of benchmarking all sbibs,
we use the stabilized cost (sbib(s)) times u — 1 to estimate
the time of T;(sbib(1)) + ... + Ti(sbib(u — 1)). Therefore,
equation 1 can turn into:

max(T3(ib(0)) + (u — 1)Ts(sbib(s)) + Ti(sb(u — 1)) ()

3) Model Validation: Figure 4 shows the comparison of the
estimated time calculated from the cost model and the actual
time of doing a 4MB MPI_Bcast with different combinations
of submodules, algorithms, and segment sizes. In some cases,
such as when segment size is 16KB in figure 4.e and figure 4.f,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

a. Libnbc/SOLO, 16KB segment

- 100
2
(1)
£
© 0

sbib(1) sbib(2) sbib(3) sbib(4) sbib(5) sbib(6) sbib(7) sbib(8)

Tasks
b. ADAPT(binary)/SOLO, 16KB segment

B
~50
[}
£ l
- 0

sbib(1) sbib(2) sbib(3) sbib(4) sbib(5) sbib(6) sbib(7) sbib(8)

Tasks
c. ADAPT(chain)/SOLO, 16KB segment

B
=50
[
- 0

sbib(1) sbib(2) sbib(3) sbib(4) sbib(5) sbib(6) sbib(7) sbib(8)

Tasks

Fig. 3: Cost of tasks on one node leader

because of the inaccurate estimation of the stabilized cost
of sbib(s), the prediction is not that accurate. However, as
seen in the figure, the cost model is accurate in most cases.
Moreover, the trends of the estimated and actual time still
match well, which are helpful to find the optimal configuration
of MPI_Bcast. Comparing the cost of MPI_Bcast across all the
configurations, we can see that the optimal configurations of
either estimated or actual cost (the lowest red bar and blue
bar) are the same, which is to use 128KB segment with the
binary algorithm in the ADAPT submodule for the inter-node
communication and the SOLO submodule for the intra-node
communication. The result suggests that the cost model can be
used for the autotuning of collective communications, which
is further discussed in section III-C.

B. MPI _Allreduce

1) Implementation: In this section, as an example of all-to-
all collective operations, we describe HAN’s implementation
of MPI_Allreduce. As indicated in figure 5, a hierarchical
MPI_Allreduce requires four steps to transfer one segment:
intra-node reduction (sr), inter-node reduction (ir), inter-
node broadcast (ib) and intra-node broadcast (sb) (assum-
ing a commutative operation). The implementation of our
MPI_Bcast has explored the overlap of collective operations
on different levels (i.e. ¢b with sb); in the implementation
of MPI_Allreduce, collective operations overlap even within
the same level. For example, ir and :b could overlap if their
communications occupy opposite directions of the same inter-
node network. Figure 6 compares the performance of ib, ir and
concurrent b with ¢r of different submodules and algorithms,
and strongly indicates a high degree of overlap. To maximize
the opportunity of such overlap, when it is possible to specify
the algorithm, we select the same algorithm with the same
root to perform ¢r and ¢b. It is worth mentioning that previous
studies [2,20] use inter-node allreduce to transfer segments
across nodes. We choose to break the inter-node allreduce into

28

TABLE I: Inputs of autotuning

Symbol Description
n Number of Nodes
p Number of Processes per Node
m Message Size
t Collective Operation Type (Bcast, Reduce, ...)

two explicit operations, the reduce ir and the broadcast ib, to

further increase the pipeline and improve the performance for

large messages. Considering both kinds of overlaps, we define
the following tasks in our MPI_Allreduce:

o Tasks sr(i) and sb(i) represent an sr and sb of segment i,
respectively.

e Task irsr(i) includes an ¢r and sr of segment ¢ — 1 and 7,
respectively.

o Task ibirsr(i) contains an b, ir and sr of segment i — 2,
1 — 1 and 4, respectively.

o Task sbibirsr(i) is consisted of an sb, ib, ir and sr of
segment ¢ — 3, ¢ — 2, ¢ — 1 and ¢, respectively.

o Task sbibir(i) includes an sb, ¢b and ir of segment i — 2,
1 — 1 and i, respectively.

o Task sbib(i) contains an sb and ib of segment ¢ — 1 and 7,
respectively.

o Task sbsr(i) is only executed in the processes which are
not node leaders. It receives reduced segment ¢ — 3 from its
leader process via an sb, and then reduces segment 7 to its
leader process with an sr.

2) The Cost Model: Similar to MPI_Bcast, we use the
maximum time on node leaders to represent the cost of
MPI_Allreduce and estimate sbibirsr(3) + sbibirsr(4) +
... + sbibirsr(u — 1) with the stabilized cost of sbibirsr
(T (sbibirsr(s))). In this way, the cost of MPI_Allreduce is:

mzax(Ti(sr(O)) + T;(irsr(1)) + T; (ibirsr(2))+

(u — 3) = T;(sbibirsr(s)) + T;(sbibir(u — 1))+
T;(sbib(u — 1)) + T;(sb(u — 1))).

Then we use a similar benchmark as in section III-A2 to
measure the cost of different tasks.

3) Model Validation: Figure 7 compares the time of
MPI_Allreduce estimated by the cost model against the mea-
sured time. As an example, the cost model predicts that
the optimal configuration for an MPI_Allreduce with a 4MB
message is to use a IMB segment with a binary algorithm from
the ADAPT submodule and the SOLO submodule for inter-
and intra-node communications, respectively. This prediction
matches the best measured experimentally.

“4)

C. Automatic Tuning

Autotuing is critical to ensure performance for collective
operations. Generally, there are two steps in autotuning:

1) Find the optimal configuration for some inputs to gener-
ate a lookup table. As shown in table I, the input of autotuning
contains four entries: number of nodes n, number of processes
per node p, message size m, and the collective operation type
t. The output entries of the lookup table are shown in table II.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

a. Libnbc/SM, 4MB message c. ADAPT(binary)/SM, 4MB message e. ADAPT(chain)/SM, 4MB message

N
o
&
=)

N
o

Time (ms)
N
o

Time (ms)
N B
o o

Time (ms)

o
o
o

8K 16K 32K 64K 128K 256K 512K 1M 2M 8K 16K 32K 64K 128K 256K 512K 1M 2M 8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes) Segment Size (bytes) Segment Size (bytes)

b. Libnbc/SOLO, 4MB message d. ADAPT(binary)/SOLO, 4MB message f. ADAPT(chain)/SOLO, 4MB message

S
o
B
o

N
o

Time (ms)
N
o

Time (ms)
N B
o o

Time (ms)

o
=)

8K 16K 32K 64K 128K 256K 512K 1M 2M 8K 16K 32K 64K 128K 256K 512K 1M 2M 8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes) Segment Size (bytes) Segment Size (bytes)
BN Estimated ~EEE Actual

Fig. 4: MPI_Bcast on 64 nodes (12 processes/node) with the combinations of different submodules

a. Libnbc, 64KB segment

200
w
egment | o | 3 | 2 | 3 u-1 2
Iteration qE) 100
0 (s1) Task: sr(0) [
1 [ir sr] Task: irsr(1) 0 0 1 2 3 4 5
Node leaders
2 (ib | ir | sr) Task: ibirsr(2) - b. ADAPT(binary), 64KB segment
3 (sb | ib | ir | sr) Task: sbibirsr(3) =
4 sb ib ir sr 2 100
[
5 sb ib ir sr E 50
[
6 (sb | ib | ir)| Task: sbibir(u-1) 0 v T : T " T
[sb | ib)| Task: sbib(u-1) Node leaders
u+2 [sb] — Task: sb(u-1) c. ADAPT(chain), 64KB segment
r&)\ 150
=}
(a) node leader processes P
g 50
egment . =
Iteration 0 ! 2 3 u-1 0 0 T 3 I . T
0 (sr) Task : sr(0) Node eaders
1 [sr] Task : sr(1) . ib(0) ir(0) I concurrent ib(0), ir(0)
2 -
() Task:: sr(2) Fig. 6: The overlap between ib and ir (0 is the root)
3 (sb sr) Task : sbsr(3)
4 sb sr
5 sb sr .
. 5] Task - sb(u3 They are all parameters tuned by our autotuning framework.
S ask : sb(u-
() Task bE 2; Usually, m is continuous, but it is impractical to test every
S| ask : sb(u-. . . .
message size; thus, most approaches use discrete message sizes
u+2 (sb) | Task: sb(u-1) & PP g

such as 4B, 8B, 16B, 32B, ..., to sample the continuous value

(b) other processes and form a search space. The same sampling method can be

— . applied to other entries such as n and p.

Fig. 5: Design of MPL_Allreduce 2) Use the lookup table from the previous step to generate
decisions for any inputs (n, p, m and t). As message sizes
in the lookup table are not continuous, if the input message
size falls between two message sizes in the lookup table, the
TABLE II: Autotuned parameters (output of autotuning) for autotuning component needs to find the optimal configuration

MPI_Bcast and MPI_Allreduce in HAN for it.
Symbol Description Some studies focus on the second step, where many methods
— such as quadtree encoding [35], decision trees [36] have been
fs Segment Size in the HAN module

imod submodule used for inter-node studied to improve its accuracy and/or the code complexity.
smod submodule used for intra-node However, the first step, which takes a significant amount of
ibalg Inter-node Beast Algorithm if supported time and is the foundation to ensure the accuracy of the second

iralg Inter-node Reduce Algorithm if supported . .
ibs Inter-node Beast Segment Size if supported step, has not been well studied. In this paper, we focus on
irs Inter-node Reduce Segment Size if supported reducing the cost of the first step. We use offline autotuning,

which only needs to be performed once when installing the
MPI to a new machine. It first benchmarks all the tasks within

29

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

a. Libnbc/SM, 4MB message

c. ADAPT(binary)/SM, 4MB message

e. ADAPT(chain)/SM, 4MB message

75
50
25

Time (ms)
w
o
Time (ms)

8K 16K 32K 64K 128K 256K 512K 1M
Segment Size (bytes)

b. Libnbc/SOLO, 4MB message

2M

100

75
50
25

Time (ms)
w
o
Time (ms)

8K 16K 32K 64K 128K 256K 512K 1M

Segment Size (bytes)

2M 8K

o 75
E
> 50
£
F 25
0
8K 16K 32K 64K 128K 256K 512K 1M 2M 8K 16K 32K 64K 128K 256K 512K 1M 2M
Segment Size (bytes) Segment Size (bytes)
d. ADAPT(binary)/SOLO, 4MB message 100 f. ADAPT(chain)/SOLO, 4MB message
w 75
E
> 50
£
F 25
0

16K 32K 64K 128K 256K 512K 1M
Segment Size (bytes)

BN Estimated

2M 8K 16K 32K 64K 128K 256K 512K

Segment Size (bytes)

M 2™

. Actual

Fig. 7: MPI_Allreduce on 64 nodes with the combinations of different submodules

0
Exhaustive search Heuristics Cost Model Cost Model+Heuristics

Fig. 8 Time of total searches of MPI_Bcast

MPI_Allreduce on 64 nodes

user-defined range; then, it uses the cost model to estimate
the cost of collective operations and stores the estimated best
configuration for each input to a lookup table in a file.

A straightforward implementation of the first step is to
perform an exhaustive search for each input in table I, which
tests every possible configuration of a collective operation and
then find the fastest one. Take MPI_Bcast for an example.
Assuming the sizes of the search spaces of messages, segment
sizes, nodes, processes per node are, M, S, N and P, respec-
tively, and the number of available algorithms is A (including
submodules x algorithms per submodule). Exhaustive search
tests all possible combinations of S and A for each input in
M, N and P. Therefore, the size of the whole search space
is M xS x N x P x A. The orange bar in figure 8 show the
extremely expensive cost of this exhaustive search, on a small
setup (64 nodes, 12 cores per node). It is worth mentioning that
even though the exhaustive search is expensive, it guarantees
to always find the optimal configuration since its search space
would cover all possible configurations. In the context of this
study we did the exhaustive search once, and use its results to
evaluate the prediction accuracy of our approach.

Thanks to the task-based design of HAN, instead of
benchmarking a whole collective operation, we only need to
benchmark tasks. As tasks operate on segments, the search
spaces needed for one type of task are S, N, P and A.
Suppose there are T types of tasks (3 for MPI_Bcast and 8
for MPI_Allreduce); therefore, the size of the whole search
space of our approach becomes 7' x S x N x P x A. For
different message sizes, the cost of tasks is reused; hence,
compared to the previous approach, HAN can reduce M, one
of the largest search spaces, to a constant 7. Besides the
smaller search space, the cost of performing each search is
also much shorter since tasks are just a part of a whole MPI

and

30

a. MPI_Bcast, 8KB-128KB message

0.75
m
§, 0.50
[
£ 025
0.00
8K 16K 32K 64K 128K
Message Size (Bytes)
b. MPI_Bcast, 256KB-4MB message
15
m
é 10
()
E s
=
ol
256K 512K p 2M 4am
Message Size (Bytes)
c. MPI_Allreduce, 8KB-128KB message
w3
£
~2
<D
£
=
0
8K 16K 32K 64K 128K
Message Size (Bytes)
d. MPI_Allreduce, 256KB-4MB message
» 60
£
~ 40
()
g 20
[
ol
256K 512K p 2M 4am
Message Size (Bytes)
B Exhaustive Search (Median) I Exhaustive Search+Heuristics

Bl Exhaustive Search (Average)
mm Exhaustive Search (Best)

Hmm Cost Model
B Cost Model+Heuristics

Fig. 9: MPI_Bcast and MPI_Allreduce on 64 nodes (12
processes/node) with different tuning methods

collective operation. Moreover, the cost of tasks can be reused
for different types of collective operations, e.g. sb is in both
MPI_Bcast and MPI_Allreduce. With the three improvements,
the cost of autotuning is drastically reduced. Figure 8 shows
the cost of autotuning with different approaches. As seen
in the figure, our autotuning component reduces the tuning
time by 77% as compared to the exhaustive search. Even
though with much fewer searches, our model can still estimate
the optimal configuration accurately. The purple, brown, and
orange bars in figure 9 show the median, average, and best
time-to-completion of MPI_Bcast and MPI_Allreduce of all
possible configurations, using exhaustive search. As seen in
the figure, both the median and the average time are much
higher than the best one, which indicates the importance of

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

finding the optimal configuration. The red bars in figure 9 show
the performance of MPI_Bcast and MPI_Allreduce obtained
by our autotuning method, which is exactly the same as the
best results (red bars) of exhaustive search in most cases,
indicating that our approach produces a similar accuracy as
the exhaustive search.

Previous studies [1, 13] suggest that heuristics is an effective
way to reduce the search space. In HAN, we assume a prior
understanding of the collective submodules and the algorithms
available and it can be used to create heuristic strategies. For
instance, we only use the SOLO submodule when the segment
size is larger than 512KB since experimental results suggest
SM has better performance than SOLO for small messages.
Besides limiting the selections of submodules, we can also
limit the algorithm selections heuristically. For example, we
know that the chain algorithm in ADAPT can only perform
well when there are enough segments to kick-start the pipelin-
ing, we can therefore prevent the chain algorithm from being
tested when there are less than a certain number of segments
depending on the number of processes involved. Due to the
moderate novelty of these heuristics and the space constraint,
we will not discuss more the details of the heuristic methods
available in HAN, but we will use it to show the resulting
reduction in the gathering of the performance for the search.
The blue bars in figure 8 show the searching time of the
heuristics method, and highlight a drastic reduction, down to
26.8% of the original exhaustive search cost. As mentioned in
section II-B, heuristics can be beneficial outside the exhaustive
search, and they can be combined with our cost model on the
benchmarking of tasks, to further reduce the search space.
The cost of the combined approach is shown as the green
bars in figure 8, and takes only 4.3% time of the exhaustive
search. However, by using the heuristic approaches, we are
making assumptions to narrow down the search space, which
might result in lower accuracy. The blue and the green bars
in figure 9 show the results of applying the same heuristics
to the exhaustive search and our approach, respectively, and
indicate that adding heuristics produce less accurate results
compared to the original approach. To balance the searching
cost and accuracy, HAN provides an option for users to enable
or disable the heuristics based on the available resources and
other requirements.

In conclusion, a careful configuration of our task-based
autotuning component can significantly reduce the time of
searching the optimal configuration, while still maintain high
accuracy.

IV. PERFORMANCE EVALUATION

In this section, we evaluate HAN on two supercomputers:
Shaheen II and Stampede2, and compare it with other state-
of-the-art MPI libraries using benchmarks and applications.

Shaheen II is a Cray XC40 system equipped with dual-
socket Intel Haswell 16 cores CPUs running at 2.3GHz and
128GB DDR4 RAM, using Cray Aries with a Dragonfly
topology as interconnect. On Stampede2, we use the Intel
Skylake compute nodes; each node has 48 cores with two

31

Small message

1.54
m
£1.0
g
£ 0.5
0.0—* " ; r .
0 32K 64K 96K 128K
Message size (bytes)
Large message
—~ 750+
(%)
Ecpold
5 200
S
= 250 .//‘
0 =
128K 32M 64M 96M 128M
Message size (bytes)
—e— Cray OMPI_Default ~ =—e— OMPI_HAN

Fig. 10: MPI_Bcast on Shaheen II, 4096 processes

sockets, and 192GB DDR4 RAM. The nodes are connected
via the Intel Omni-Path network.

HAN is based on Open MPI 4.0.0. Hence for fair com-
parisons, we compare with the default Open MPI 4.0.0 on
both machines. This default Open MPI is tuned with the
conventional methods [29], and HAN is autotuned with our
cost model. Additionally, we compare HAN with the system
built-in Cray MPI 7.7.0 on Shaheen II, and Intel MPI 18.0.2
and MVAPICH2 2.3.1 on Stampede2 with default tuning.

A. Benchmark

We use IMB [33] to compare HAN against other MPI im-
plementations, on a full range of message sizes. We divide this
range in 2 parts: small messages up to 128K, representing the
message size range for most scientific applications [37], and
large messages up top 128MB, representing the usual message
sizes in machine learning and data analytics applications.

1) MPI Bcast: Figure 10 presents the cost of MPI_Bcast
with 4096 processes on Shaheen II. Even though default Open
MPI is expected to be tuned, HAN significantly outperforms
it: up to 4.72x and 7.35x speed up on small and large
messages, respectively, thanks to our task-based hierarchical
implementation and cost model.

However, HAN is slightly slower than Cray MPI on small
messages. To better understand the performance gap, we mea-
sure the P2P performances of both Open MPI and Cray MPI
using Netpipe [38]. In most MPI implementations, collective
operations rely on the underlying P2P operations to transfer
data between processes; therefore, their performance directly
impacts the performance of collective operations. As seen in
figure 11, when the message size is between 512B and 2MB,
Open MPI achieves less bandwidth comparing to Cray MPI
especially for messages in the range from 16KB to 512KB,
which could explain the performance differences for the small
message in figure 10. As message sizes increase, both Open
MPI and Cray MPI reach the same peak P2P performance;
and in these cases, HAN outperforms Cray MPI up to 2.32x
thanks to the communication overlap of different levels.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

—e— Cray
1 —e— OMPI

(=)}
o

N
o

Bandwidth (Gbps)
B
o

o

8 32 108 512 2K 8K 32K 128K512K 2M 8M
Message size (bytes)

Fig. 11: P2P performance on Shaheen II

Small message

0.4
% 0.3
£
@ 0.2 /
/
F 0.1
o
0.0
0 32K 64K 96K 128K
Message size (bytes)
Large message
400
m
£
[
g 200
£ — ——
0- T T T T
128K 32M 64M 96M 128M
Message size (bytes)
—e— Intel —e— MVAPICH2 OMPI_Default =—e— OMPI_HAN

Fig. 12: MPI_Bcast on Stampede2, 1536 processes

Figure 12 exhibits the performance of MPI_Bcast with 1536
processes on Stampede2. On this machine, HAN outperforms
every other tested MPI on both small and large messages.
It achieves up to 1.15X, 2.28X, 5.35X speedup on small
messages, and up to 1.39X, 3.83X, 1.73X speedup on large
messages against Intel MPI, MVAPICH2 and default Open
MPI, respectively.

2) MPI _Allreduce: Figure 13 and figure 14 present the cost
of MPI_Allreduce with 4096 processes on Shaheen II and

Small message

- 30
£
o 201
£
i 10
0l ? . ; -
0 32K 64K 96K 128K
Message size (bytes)
Large message
—~ 400
%]
£
& 200
£
ol—* - . - -
128K 32M 64M 96M 128M
Message size (bytes)
—e— Cray OMPI_Default ~ =—e— OMPI_HAN

Fig. 13: MPI_Allreduce on Shaheen II, 4096 processes

32

Small message

—~ 31
(%)
£,
[
£ —
0L est—t————
0 32K 64K 96K 128K
Message size (bytes)
Large message
4004
m
E
o 200+
£
[=
018 : ; ; ‘
128K 32M 64M 96M 128M
Message size (bytes)
—e— Intel —e— MVAPICH2 OMPI_Default ~ —e=— OMPI_HAN

Fig. 14: MPI_Allreduce on Stampede2, 1536 processes

1536 processes on Stampede2, respectively. Compared with
the default Open MPI, HAN shows significant improvements
in all cases. Compared with other state-of-the-art MPIs, HAN
exhibits some improvements with larger size messages:

e On Shaheen II, HAN shows better performance than Cray
MPT after the message size is larger than 2MB and eventu-
ally achieves up to 1.12X speedup.

e On Stampede2, HAN is the fastest when message size is
between 4MB and 64MB. Afterward, it delivers an similar
performance as MVAPICH2, both significantly outperform-
ing the others.

Besides the P2P performance discussed in the previous
section, the cost of the reduction operations also impacts the
performance of MPI_Allreduce. Among the four submodules
currently used in HAN, only SOLO and ADAPT take advan-
tage of the AVX instructions [39] to boost the performance
of reduction operations. However, the designs of these two
submodules [28] lead to high overhead on small messages.
Hence, our autotuning component selects Libnbc and SM
to perform MPI_Allreduce on small messages; unfortunately,
neither of them supports AVX instruction, leading to lower
performance compared to other MPIs. Preliminary studies
have indicated that once the default Open MPI reduction
operation are updated to support AVX, the HAN performance
will benefit across all message sizes, overcoming the gap with
the other implementations.

B. Application

We also evaluate HAN with two applications on Stampede?2,
each one focusing on a different type of collective operations.

1) ASP [40]: 1t solves the all-pairs-shortest-path problem
with a parallel implementation of the Floyd-Warshall algo-
rithm. Processes take turns to act as the root, and broadcast a
row of the weight matrix to others, followed by computations,
which causes MPI_Bcast to be the most time-consuming part
of ASP. Table III presents the time of the first 1536 iterations
in ASP on 1536 processes when the matrix size is 1M. We

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

TABLE III: ASP, 1536 processes on Stampede2, 1M Matrix

Intel MVAPICH2 Default OMPI HAN
Comm (s) 1044 24.12 38.52 8.99
Total (s) 2078 34.81 47.11 19.37
70001 mmmm Intel
o OMPI_Default
2°°° mmm OMPI_HAN
@ 4000
g
3000
£
— 2000
1000

384

768
Number of processes

1536

Fig. 15: Horovod on Stampede2

choose the first 1536 iterations to minimize the testing time but
still cover all the possible cases by making sure each process
acts as the root process once. HAN reduces the communication
ratio from 50.24% (Intel MPI), 69.29% (MVAPICH?2), 81.77%
(default Open MPI) to 46.41%, and hence, achieves 1.08x,
1.8x and 2.43x overall speedup against Intel MPI, MVAPICH2
and default Open MPI, respectively.

2) Horovod [41]: Tt is a distributed training framework
that uses MPI_Allreduce to average gradients. We use
tf_cnn_benchmarks [42] with synthetic datasets to train
AlexNet on Stampede2. Due to a configuration problem, we
could only run Intel MPI 17.0.3, default Open MPI 4.0.0 and
our framework. Figure 15 shows increasing gains for HAN
as the number of processes increases, becoming 24.30% and
9.05% faster than default Open MPI and Intel MPI on 1536
processes, respectively.

V. CONCLUSION AND FUTURE WORK

As a critical piece of the software infrastructure, MPI
implementations need to adapt to the fast-changing HPC
systems to reach users’ efficiency expectations. In this paper,
we present “HAN,” a new hierarchical autotuned collective
communication framework in Open MPI. The main contribu-
tions of this paper are twofold. First, the task-based design of
HAN, which divides hierarchical collective communications
into a set of tasks. With the task-based design, HAN can
select suitable submodules on each level to utilize hardware
capabilities, provide more opportunities to overlap communi-
cations, and minimize the effort to adapt to new hardware.
Second, this design allows for a task-based autotuning com-
ponent, supported by a novel cost model that is based on
benchmarking the tasks. Our cost analysis indicates that our
autotuning component significantly saves tuning time while
maintaining high accuracy. Our experiments on two large scale
HPC systems demonstrate HAN outperforms other state-of-
the-art MPI implementations in most cases in both benchmarks
and applications, providing a portable framework of highly
efficient collective communication operations. In the future,

33

we plan to further improve the submodules to boost the
upper bound of the HAN framework and explore approaches
based on an increased number of hardware levels. We also
plan to add a new submodule to support intra-node GPU
collective operations and combine it with the existing inter-
node submodules to adapt HAN to GPU-based machines.

VI. ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, and National Science Foun-
dation under award EVLOVE #1664142. Experiments on the
Shaheen II were supported by the Supercomputing Laboratory
at KAUST, and experiments on the Stampede2 were supported
by the Texas Advance Computing Center.

REFERENCES

[1] J. PjeSivac-Grbovié¢, T. Angskun, G. Bosilca, G. Fagg, E. Gabriel,
and J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127-143, 2007.

M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, P. Kousha, and
D. K. Panda, “Salar: Scalable and adaptive designs for large message
reduction collectives,” 2018 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 12-23, 2018.

J. L. Triaff and A. Rougier, “Mpi collectives and datatypes for
hierarchical all-to-all communication,” in Proceedings of the 2Ist
European MPI Users’ Group Meeting, ser. EuroMPI/ASIA 14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
27-32. [Online]. Available: https://doi.org/10.1145/2642769.2642770
V. Tipparaju, J. Nieplocha, and D. Panda, “Fast Collective Operations
Using Shared and Remote Memory Access Protocols on Clusters,” ser.
IPDPS ’03, 2003.

T. Ma, G. Bosilca, A. Bouteiller, and J. Dongarra, “HierKNEM: An
Adaptive Framework for Kernel-Assisted and Topology-Aware Col-
lective Communications on Many-core Clusters,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, May
2012.

P. Sanders, J. Speck, and J. L. Triff, “Two-tree Algorithms for Full
Bandwidth Broadcast, Reduction and Scan,” Parallel Comput., vol. 35,
no. 12, pp. 581-594, Dec. 2009.

K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, “Designing
topology-aware collective communication algorithms for large scale
InfiniBand clusters: Case studies with Scatter and Gather,” in 2010 IEEE
International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), April 2010, pp. 1-8.

H. Subramoni, S. Potluri, K. Kandalla, B. Barth, J. Vienne, J. Keasler,
K. Tomko, K. Schulz, A. Moody, and D. K. Panda, “Design of a
Scalable InfiniBand Topology Service to Enable Network-topology-
aware Placement of Processes,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012.

D. Agrawal and L. Bhuyan, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Transactions on Computers,
vol. 33, no. 04, pp. 323-333, apr 1984.

H. Li and M. Maresca, “Polymorphic-torus network,” IEEE Transactions
on Computers, vol. 38, no. 9, pp. 1345-1351, Sep. 1989.

C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, Oct
1985.

J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture, June 2008, pp. 77-88.

S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically tuned col-
lective communications,” in SC "00: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, Nov 2000, pp. 3-3.

A. Faraj and X. Yuan, “Automatic generation and tuning of mpi
collective communication routines,” in Proceedings of the 19th Annual
International Conference on Supercomputing, ser. ICS 05, 2005.

[2]

[3]

[7]

[8

[10]

[11]

[12]

[13]

[14]

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

(37]

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:21:02 UTC from IEEE Xplore. Restrictions apply.

R. W. Hockney, “The communication challenge for mpp: Intel paragon
and meiko cs-2,” Parallel Comput., vol. 20, no. 3, Mar. 1994.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: Towards a realistic model
of parallel computation,” in Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 1993.
A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman, “Loggp:
Incorporating long messages into the logp model — one step closer
towards a realistic model for parallel computation,” Tech. Rep., 1995.
T. Kielmann, H. Bal, and K. Verstoep, “Fast measurement of logp
parameters for message passing platforms,” in Parallel and Distributed
Processing. Springer Berlin Heidelberg, 2000, pp. 1176-1183.

'W. Gropp, L. N. Olson, and P. Samfass, “Modeling mpi communication
performance on smp nodes: Is it time to retire the ping pong test,” ser.
EuroMPI 2016, 2016.

M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. Panda,
“Scalable reduction collectives with data partitioning-based multi-leader
design,” ser. SC "17, 2017, pp. 64:1-64:11.

P. Eller, T. Hoefler, and W. Gropp, “Using performance models to
understand scalable krylov solver performance at scale for structured
grid problems,” ser. ICS 19, 2019.

T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R. Bhoedjang, “MagPIe:
MPTI’s Collective Communication Operations for Clustered Wide Area
Systems,” ser. PPoPP "99, 1999.

H. Zhu, D. Goodell, W. Gropp, and R. Thakur, Hierarchical Collectives
in MPICH2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
325-326.

N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and
J. Bresnahan, “Exploiting hierarchy in parallel computer networks to
optimize collective operation performance,” in IPDPS 2000, 2000, pp.
377-384.

B. Parsons and V. Pai, “Exploiting process imbalance to improve mpi
collective operations in hierarchical systems,” in Proceedings of the 29th
ACM on International Conference on Supercomputing, ser. ICS 15,
2015.

R. Graham, M. G. Venkata, J. Ladd, P. Shamis, I. Rabinovitz, V. Filipov,
and G. Shainer, “Cheetah: A Framework for Scalable Hierarchical Col-
lective Operations,” in 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, May 2011, pp. 73-83.

B. Goglin and S. Moreaud, “KNEM: a Generic and Scalable Kernel-
Assisted Intra-node MPI Communication Framework,” Journal of Par-
allel and Distributed Computing, vol. 73, no. 2, pp. 176-188, Feb. 2013.
X. Luo, W. Wu, G. Bosilca, T. Patinyasakdikul, L. Wang, and J. Don-
garra, “Adapt: An event-based adaptive collective communication frame-
work,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC *18, 2018.
G. Fagg, J. Pjesivac-grbovic, G. Bosilca, J. Dongarra, and E. Jeannot,
“Flexible collective communication tuning architecture applied to open
mpi,” in In 2006 Euro PVM/MPI, 2006.

A. Faraj, X. Yuan, and D. Lowenthal, “Star-mpi: Self tuned adaptive
routines for mpi collective operations,” in Proceedings of the 20th
Annual International Conference on Supercomputing, ser. ICS °06, 2006.
T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and Per-
formance Analysis of Non-Blocking Collective Operations for MPL” in
Proceedings of the 2007 International Conference on High Performance
Computing, Networking, Storage and Analysis, SCO7, Nov. 2007.

E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: Theory, practice, and experience: Research articles,”
Concurr. Comput. : Pract. Exper., vol. 19, no. 13, pp. 1749-1783, Sep.
2007.

Intel MPI Benchmarks User Guide,
https://software.intel.com/en-us/imb-user-guide.
OSU Micro-Benchmarks, Mar 2019,
state.edu/benchmarks/.

J. Pjesivac-Grbovié, G. Bosilca, G. Fagg, T. Angskun, and J. Dongarra,
“Mpi collective algorithm selection and quadtree encoding,” Parallel
Comput., vol. 33, no. 9, Sep. 2007.

J. Pjesivac-Grbovié, G. Bosilca, G. Fagg, T. Angskun, and J. Dongarra,
“Decision trees and mpi collective algorithm selection problem,” in
Euro-Par 2007 Parallel Processing. Springer, 2007, pp. 107-117.

S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Char-
acterization of mpi usage on a production supercomputer,” in SCI8:
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2018, pp. 386—400.

Sep 2018,

http://mvapich.cse.ohio-

34

[38]

[39]

[40]

[41]

[42]

Q. Snell, A. Mikler, and J. Gustafson, “Netpipe: A network protocol
independent performance evaluator,” in in IASTED International Con-
ference on Intelligent Information Management and Systems, 1996.

N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel avx:
New frontiers in performance improvements and energy efficiency,” Intel
white paper, vol. 19, no. 20, 2008.

A. Plaat, H. Bal, and R. Hofman, “Sensitivity of parallel applications to
large differences in bandwidth and latency in two-layer interconnects,”
Future Gener. Comput. Syst., vol. 17, no. 6, Apr. 2001.

A. Sergeev and M. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” 2018.
TensorFlow benchmarks,
https://github.com/tensorflow/benchmarks.

Apr 2019,

