2020 IEEE International Conference on Cluster Computing (CLUSTER)

Predicting MPI Collective Communication
Performance Using Machine Learning

Sascha Hunold*, Abhinav Bhatelef, George Bosilca¥, Peter Knees*

*Faculty of Informatics, TU Wien, Vienna, Austria
TDepartment of Computer Science, University of Maryland, College Park, MD, USA
{Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
E-mail: *hunold @par.tuwien.ac.at,]Lbhatele@cs.umd.edu, *peter.knees @tuwien.ac.at

Abstract—The Message Passing Interface (MPI) defines the
semantics of data communication operations, while the imple-
menting libraries provide several parameterized algorithms for
each operation. Each algorithm of an MPI collective operation
may work best on a particular system and may be dependent
on the specific communication problem. Internally, MPI libraries
employ heuristics to select the best algorithm for a given com-
munication problem when being called by an MPI application.
The majority of MPI libraries allow users to override the default
algorithm selection, enabling the tuning of this selection process.
The problem then becomes how to select the best possible
algorithm for a specific case automatically.

In this paper, we address the algorithm selection problem
for MPI collective communication operations. To solve this
problem, we propose an auto-tuning framework for collective
MPI operations based on machine-learning techniques. First, we
execute a set of benchmarks of an MPI library and its entire
set of collective algorithms. Second, for each algorithm, we fit
a performance model by applying regression learners. Last, we
use the regression models to predict the best possible (fastest)
algorithm for an unseen communication problem. We evaluate
our approach for different MPI libraries and several parallel
machines. The experimental results show that our approach
outperforms the standard algorithm selection heuristics, which
are hard-coded into the MPI libraries, by a significant margin.

Index Terms—Message Passing Interface, Performance Predic-
tion, Auto-tuning, Machine Learning, GAM, XGBoost, KNN

1. INTRODUCTION

Taking in account the ongoing trends, high performance
computing (HPC) applications are and will, for the foreseeable
future, be built on top of the Message Passing Interface (MPI).
MPI defines the syntax and semantics for various types of
communication operations between processes in a distributed
application. An important part of the MPI standard are the
so-called collective operations, i.e., communication applicable
between a group of processes. An example of a collective
operation is the broadcast operation (MPI_Bcast), where one
process sends a specific data item to all other participating
processes. There are several open-source libraries implementing
the latest MPI standard, such as Open MPI [1], MVAPICH [2],
and MPICH [3], as well as vendor provided libraries, usually
derived from one of the open-source libraries. It is well known
that there is no single best algorithm for a specific MPI
collective operation such as the broadcast. In fact, the number
of processes, the number of compute nodes, and the message

size are all decisive factors to select an efficient algorithm.
For example, for small message sizes, the number of point-to-
point communication steps (latencies) has to be minimized to
minimize the overall running time, whereas for large message
sizes, the throughput needs to be maximized [4].

Internally, all MPI libraries have a set of algorithms imple-
mented for a particular MPI collective operation [5]. When an
MPI collective is called, a heuristic of the library will select
the probably best possible algorithm. The selection process
decision is made by taking into account the message size and
the number of processes for which the collective was called,
the process placement and bindings, as well as characteristics
of the underlying architectures, such as processor features,
network infrastructure and topology. Yet, the decision of which
algorithm to choose strongly depends on the actual machine.
Therefore, several attempts have been made to automate the
process of selecting the best possible algorithm for a collective
operation [6], [7], [8]. The existing approaches have several
shortcomings, such as limited accuracy or long training time.
Hence, the decision logic of which algorithm to select is most
often hard-coded into the MPI libraries.

Previously, we had proposed a method to select algorithms
for MPI collectives using machine-learning techniques [9]. In
this paper, we build upon our previous work and propose a
novel method to solve the algorithm selection problem for
MPI collectives. Although the new approach has a similar
overall prediction scheme, the mechanics and the techniques
are completely different. In [9], we built our prediction
model on relative speed-up values, whereas now we directly
predict running times, which has tremendous advantages for an
improved model error. Our initial tests with Random Forest (RF)
models worked reasonably well in [9], but for a larger number
of datasets, it turned out that other regression learners produce
better predictions (e.g., XGBoost, KNN, or GAM). Another
significant difference is that we are now able to consider
algorithmic parameters in the prediction. For example, for
large messages, it is often advantageous to segment messages
in order to improve the throughput, and these segment sizes
are now incorporated into our models.

In summary, this paper makes the following contributions:

1) We show how to collect training data for MPI collectives in

a completely predictable manner. Having an upper bound

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00036

259

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

on the duration of the experiments is extremely important
when benchmarking MPI collectives on unknown systems,
to avoid spending the compute-hour budget on large
supercomputers.

We propose an algorithm selection approach for MPI
collective operations. Our selection method internally uses
a set of regression models. Since our approach should be
as robust and as practically applicable as possible, we show
that our general approach works with different supervised
learning techniques, such as XGBoost, KNN, and GAM.
It works out-of-the-box without a lengthy search for the
best hyper-parameters.

We evaluate our algorithm selection strategy by comparing
the performance of the predicted algorithm to the perfor-
mance of the default algorithm, which was selected by
the hard-coded decision logic. The experimental results,
which have been obtained on different parallel machines
and for different MPI libraries, show a strong evidence that
our approach outperforms the standard selection strategies
by a large extent.

2)

3)

The paper is structured as follows. We introduce the algo-
rithm selection problem for MPI collectives and our notation
in Section II. Then, we outline our approach to solve this
problem by fitting a series of regression models in Section III.
The experimental analysis is divided into two parts: the setup
is detailed in Section IV, and the discussion of the results
can be found in Section V. We summarize related works in
Section VI and discuss the main results in Section VIL

II. THE ALGORITHM SELECTION PROBLEM FOR MPI
COLLECTIVES

Let us start by introducing the main terminology used in this
paper. The main goal of this work is to find the best algorithm
for a specific instance, according to a set of optimization
criterion. Instances in the MPI context are communication
problems of the following type: What is the fastest algorithm
on machine M to perform an MPI_Bcast operation of m
Bytes over p processes? An instance I is characterized by the
actual collective call F', a message size m, and the number
of processes p. MPI libraries contain a set of algorithms Ag
for “solving instance” I for a collective operation F'. For
MPI_Bcast, MPI libraries typically provide implementations
of the binary-tree, the binomial-tree, or the chain algorithm.
Each of these algorithms for MPI_Bcast may have its own
set of parameters pq,...,px that influence its performance,
such as the segment size or the tree fanout.

Given an instance I of a collective communication problem,
our goal is to select the algorithm Ap; from the set Ap
that completes this communication operation with the shortest
execution time overall (which means that for rooted collective
it is not enough to simply delegate the heavy work of the
collective away from the root process), where j denotes one
of the algorithm implementations available for collective F/,
ie, 0 <j<|Ap| It is important that Ar ; may only be the
fastest algorithm when all its parameters p1, ..., px, have been
set correctly.

260

In the literature, these problems are known as the algorithm
selection [10] and the algorithm configuration problem [11].
In an algorithm configuration problem, the goal is to find a
well-performing allocation of an algorithm’s parameters, such
that some performance metric is optimized (e.g., minimizing
the running time). The algorithm configuration problem is also
commonly known as parameter tuning, and finding the best
block size of linear algebra routines on GPUs is one example of
this problem type. Note that the configuration problem focuses
on one specific algorithm only. In contrast, in an algorithm
selection problem, we want to pick the best algorithm from a
set of algorithms for a specific instance of the problem.

Now, let us take a closer look at tuning in the context
of MPI collectives. As mentioned before, all MPI libraries
already use some sort of decision logic to select the fastest
implementing algorithm and its parameters. The logic in
Open MPI, for example, is based on the work of Pjesivac-
Grbovic et al. [8], in which decision trees were built upon a
set of benchmark instances and these decision trees were later
translated into C code. In addition to the internal selection
process, most MPI libraries (e.g., Open MPI and Intel MPI)
allow a user to select the actual implementing algorithm for
an instance I and collective F' depending on the message size
and the number of processes. The problem is that selecting
the best algorithm is highly dependent on the machine and its
architectural characteristics (e.g., the network).

Basic Tuning Options: Since the best algorithm depends on
the architecture of machines and their software stack, libraries
provide tools to override the default decision logic. Intel MPI,
for example, offers tools to auto-tune the algorithm selection
decisions for MPI collectives. There are two main problems
with these approaches: First, these tuning runs effectively
perform an exhaustive search over all algorithms and message
sizes for a pre-selected number of processes, which is often
given as a tuple p = n x N, where n denotes the number of
compute nodes and N the number of processes per compute
node (often called ppn). This exhaustive search is an expensive
process, and its running time is also unpredictable, since the
tuning tools rely on benchmarking tools like the OSU Micro-
Benchmarks [12] or the Intel MPI Benchmarks [13]. These
benchmarking suites repeat the measurements for a pre-defined
number of times. This can become very costly in a tuning
run, as some algorithms, such as the linear alltoall, may take
a very long time to complete, especially with larger number
of processes.

Second, when using the tuning results (e.g., in Intel MPI),
only the best seen algorithm for all messages sizes and process
counts for which the benchmarking was conducted will be
returned. Hence, if the tuning run was made on 32 x 32
processes (32 compute nodes, 32 processes per compute node),
it will override the internal algorithm selection strategy for
this process count. But if we run the MPI program on 34 x 32
processes, the default decision logic will be used, as the
benchmarking has not been done for this process count. This
is also part the problem that we are trying to solve in this

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

paper. Our hypothesis is that if we know an efficient algorithm
for an collective communication problem with instance I;, the
same algorithm will most likely also be efficient for another
instance Iy, if I; and [} are relatively similar.

Problem Statement: In the present paper, we propose a
solution to the algorithm selection problem for MPI collective
operations, for cases, where the number of processes per node
N is the same on all compute nodes. This is the typical
default setting for most batch schedulers like SLURM. While
the approach detailed in this paper is generic and could be
applied to all collective communications, we focus on blocking
MPI collectives, such as MPI_Bcast, MPI_Alltoall,
MPI_Allreduce, which are currently the most frequently
used collectives according to the study by Chunduri et al. [14].
In particular, we do not consider collectives of the v- or w-type,
where the buffer sizes may vary between processes, as for
these collective most often only a few algorithms are available
(often one or two).

Figure 1 depicts the algorithm selection problem that we
consider. Our approach starts with obtaining a training dataset.
To that end, we benchmark the internal algorithms of MPI
blocking collectives for different messages sizes, numbers of
nodes, and numbers of processes per node. For each case and
algorithm, we obtain a performance value, i.e., measure the
running time of that algorithm. We use this labeled dataset, our
training dataset, to instantiate an algorithm selection strategy.
In this paper, we propose one such selection strategy, but there
are also other possible strategies (e.g., portfolio builders like
AutoFolio [15]). Once the model has been fitted, we apply
it to unseen (unknown) instances (e.g., a different number of
processes). The overall goal is that the running time of the
predicted algorithm (the algorithm identifiers) is as close as
possible to the best possible running time of any algorithm.

Our entire approach is an offline strategy, as the bench-
marking and the model building have to be done separately
before they can be applied. We can apply our model before
an MPI application is about to be executed. Once we know
how many compute nodes and processes per node have been
requested, we query the model for a set of message sizes (10—
15 message sizes is enough) and create a configuration file
for the different MPI collectives, which can be loaded when
starting the application. Hence, the prediction time for a specific
instance has not the highest priority. If predictions can be done
in the order of seconds, the approach will work seamlessly
with SLURM. However, when targeting online approaches, the
prediction time needs to be in the microsecond range, as the
overhead of MPI collectives would be too large otherwise.

III. APPROACH TO SOLVE MPI ALGORITHM SELECTION
PROBLEM

Before devising a strategy for selecting the best algorithm
and its parameters for a given MPI collective communication
problem, we summarize the essential requirements that such
an algorithm selection strategy for MPI collectives must fulfill.

261

Set of Problem Instances
(eg., Allgather,
n=16, ppn=8,m=1288)

Benchmarking
Task

Dataset of Performance
(e.g, Allgather,n=16,
ppn=8,m=128B,
algid=1,84ps)

Machine Learning |

Task
Algorithm ID
for MPI collective ¢

Algorithm Selection
Fig. 1: Overall framework to solve the algorithm selection
problem for MPI collectives.

(MPI collective c,
message size m,
number of nodes n,
processes per node ppn)

(using Regression
Models)

A. Essential Requirements

Practical Applicability of Training Data Selection: A stan-
dard procedure for obtaining a training dataset would be
randomization. In our context, it would mean that for a
given MPI collective, say MPI_Bcast, we would measure
the performance for a random set of input features, such
as message size, number of nodes, or processes per node.
This strategy might work for shared-memory systems, but
certainly not for supercomputers and compute clusters. On
such systems, a batch scheduler will assign our benchmarking
job to a subset of machines, whose size is specified as a job
parameter. Therefore, our training dataset will comprise the
most commonly used input features on a machine, e.g., we
train with 16 or 32 compute nodes, as these numbers are
commonly used. Moreover, once we have obtained a compute
node allocation from the scheduler, we will run as many training
runs as possible within a given time frame.

Predictable Training Time: Another requirement is a pre-
dictable training time. As mentioned before, literally all MPI
benchmark suites measure a collective for a certain number of
times (cf. [16]). Yet, the tuning expert wants to precisely define
how much time is spent on the training task. For that reason, we
need to employ a measurement scheme which allows for setting
a benchmarking timer. If the timer is up, the benchmarking
run will stop.

Avoid Bias in Training Data: In our previous work [9] on
the algorithm selection problem for MPI collectives, we used
regression models (random forests) to predict the relative
improvement of algorithm Ap; (j > 1) with respect to the
default strategy Aro. We found two disadvantages with this
approach: First, Ap g is not an actual algorithm but a strategy,
and thus, the actual algorithm behind A changes depending
on the feature vector. It may be that two selected algorithms for
Ap perform not equally well, e.g., one algorithm performs
very well for small messages sizes, but the selected one for large
messages sizes is not performing well. Thus, the ratio between
some algorithm A ;,j > 0 and the strategy (algorithm O or
AFr,) may behave irregularly, which complicates the learning
process. The second downside is that the ratios are in the range

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

seg. 1K seg. 4K seg. 16K seg. 64K seg. 128K
" 50-
g
= 40
= -
o
on
Z 30+
]
z 20-
(=9
Z10-
Q
2 o
w T T T T T T T T T T T T T
N L o X Jo N 0 AX S0 o 4o B Ao X
AN > Nl IR SBANEN
VIR v \Q'@\@@‘%&‘/@"’Q&’
LIS

Message size [Byte]

Fig. 2: Speed-up of various algorithmic configurations of alg. 2 (chain algorithm) with respect to alg. 1 (linear) of MPI_Bcast;
“seg.” denotes the segment size while “chains” denotes the number of chains; 32 x 32 processes, Open MPI 4.0.2, Hydra.

(0,00), where improvements are ratios with values < 1. This
introduces some bias into the learning processes, as several
methods try to split the space equally.

Another possible attempt for solving the problem would be
to directly predict the algorithm ID for a given feature vector.
Each feature in the training data could be labeled with the ID of
the best algorithm for that case. The problem is that—in many
cases in MPI—a small number of algorithms will perform best
on most instances. In these scenarios, the number of different
labels in the training datasets would be very heterogeneous,
and thus, the final prediction models would be biased towards
the heavily used algorithms.

Achieving Robustness and Applicability: A very important,
yet often overseen requirement is that our approach should
produce good results regardless of the actual machine learning
method used. The goal is that by applying a standard regression
method, we can get improvements out-of-the-box. In particular,
we do not set out to perform any hyper-parameter tuning. Of
course, for the final model on a given machine, tuning the hyper-
parameters of a specific method (e.g., XGBoost) can improve
the model’s accuracy. However, in this proof-of-concept, we
do not want to rely on hyper-parameter tuning, as the risk of
drawing wrong conclusions to due over-fitting the data would
be too high.

B. Algorithm Selection and Regression Approach

For a better comprehension of our final algorithm selection
strategy, Figure 3 shows an illustration of our method. The
basic idea of our approach is to create a regression model for
every algorithm Ap ;,j > 0 that is available for a collective
operation F. The goal is to obtain a regression model for each
algorithm, which predicts its running time, and then, we select
the algorithm that minimizes the running time for an unseen
feature vector.

A problem that still needs to be solved is the algorithm con-
figuration problem. As said above, some algorithmic variants
possess parameters that effect their performance, e.g., the seg-
ment size. In our approach, we combine the ID j of algorithm

262

Regression Model Runtime Predictions
- for Algorithm O
input |~ - > 0o
(MPI collective F, Regression Model — ALTI
message size m, "] for Algorithm I ATk
number of nodes n, X T
processes per node N) 1 ArgMin(Runtime)
— =4
Regression Model v
for Algorithm k
Algorithm ID
output

Fig. 3: General algorithm selection strategy for MPI collectives.
The running time of each algorithm (1...k) is predicted for a
given instance (F,m,n, N). The algorithm with the smallest
predicted runtime is selected.

Ap; and a certain allocation of its parameters py j,. .., Pk,
to form a unique algorithm identifier u;;, 1 <1 < g, where we
assume that the number of different parameter allocations is q.
For example, if we consider three segment sizes s;, Sa, and
sg for algorithm Ap ;, the combination of py ; € {s1, 52,53}
and j, i.e., (J,51), (4,52), and (4, s3), would be mapped to a
unique identifier u;;. By using this approach, we merge the
algorithm configuration and the algorithm selection problem.
The limitation is that we need to define the possible values of
the algorithms’ parameters beforehand. However, in practice,
this is rather straight-forward. For example, segmentation is
only useful for larger messages, and the segment sizes should
not be too small. A reasonable set of segment sizes (e.g., 1K,
4K, 16K, or 64K) is small enough to apply this approach. It is
important to consider and to model the different algorithmic
parameters. Figure 2 shows the importance of modeling these
parameters. Here, we plot the performance ratio of algorithm 2
with respect to algorithm 1 for MPI_Bcast. Algorithm 1 in
Open MPI is the basic linear algorithm, where the root process
sends a message to one process at a time and which has no
further parameters. Algorithm 2, the chain algorithm, has two
parameters: the segment size and the number of chains. The
figure shows that the right choice of these parameters has a
significant performance impact, especially for large message

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Hardware overview.

Machine Name n Max ppn Processor Interconnect MPI library
Hydra 36 32 Intel Xeon Gold 6130, 2.1 GHz Intel OmniPath Open MPI 4.0.2
Dual socket Dual-rail, dual-switch Intel MPI 2019
Jupiter 35 16 AMD Opteron 6134 Mellanox InfiniBand (QDR) Open MPI 4.0.2
SuperMUC-NG 6336 48 Intel Skylake Platinum 8174 Intel OmniPath Open MPI 4.0.2

sizes. For large (4 MB) messages, the speed-up of algorithm 2
is between 10 to 50, depending on the values of the parameters.

Next, all algorithms with their respective IDs u;; (all algo-
rithmic configurations) are benchmarked. For each algorithm,
we fit a regression model to predict the running time of a
problem instance. To apply our selection approach, we query
each regression model and predict the running time of each
algorithmic configuration wu;;, and the configuration that leads
to the shortest running time prediction is finally selected. That
means that the resulting algorithm ID not only encodes the
selected algorithm Ap ; but also the parameter configuration.

C. Regression Model for Running Times

We now explain how to fit a regression model to predict
the running time of MPI collectives. As stressed before, our
main motivation was to get a working tuning framework that
can be applied to any MPI library. Thus, we intentionally omit
a rigorous hyper-parameter tuning of the various regression
models.

Nonetheless, we tried out several methods from the toolbox
for supervised learning, such as Random Forests, Neural
Networks, or Linear Regressions. However, they all showed
several weaknesses, which is why we finally settled for three
other regression methods, which are: XGBoost, K-nearest
Neighbor, and generalized additive models (GAM). While
testing the prediction quality on our datasets, we noticed that
all three performed reasonably well and could all be used
inside a practical framework. For the sake of completeness,
we opted to show results with all three methods.

Before moving forward with the description of our approach,
we describe the selected regression methods. With the exception
of XGBoost, a more extended description of these regression
methods can be found in Hastie et al. [17].

XGBoost: The XGBoost library (eXtreme Gradient Boost-
ing) [18] uses an ensemble method that combines several
weaker classifiers to create a better classifier. The essential
method used in XGBoost is a gradient boosting decision
tree algorithm.

Generalized additive models (GAM): Several processes,
such as the MPI algorithm selection problem, are non-linear
and therefore linear regression models fail to provide the
necessary prediction accuracy. The GAM method [19] performs
a regression on each dependent variable using a scatterplot
smoother (e.g., a spline or kernel smoother). These individual
functions model possible nonlinearities in the response variable
and are then combined (added) into a prediction model.

263

K-nearest Neighbor (KNN): The KNN algorithm computes
distances between points (samples) in the training and test
datasets [20]. A common metric is the Euclidean distance. For
regression tasks, the KNN algorithm determines the %k closest
points to an unknown point in the feature space. To determine
the final output, the target values of all k closest neighbors are
combined (e.g., the mean value is computed).

IV. EXPERIMENTAL SETUP

The following section depicts the technical details of our
framework. Since we logically perform two different steps, 1)
the benchmarking to obtain the datasets, and 2) the building and
evaluation of the model, we refer to these steps in the following
as the benchmark step and the tuning step, respectively.

A. Machines

We perform experiments on three different parallel machines,
which are called Hydra, Jupiter, and SuperMUC-NG. An
overview of their basic properties is shown in Table 1. The
machines Hydra and Jupiter are smaller cluster installations at
the Vienna University of Technology. SuperMUC-NG is in the
top ten of the TOP500 list and is located at LRZ Munich. The
most obvious differences are the number of cores per compute
node and the interconnect. For example, Hydra has a dual-rail
Intel OmniPath while Jupiter has an older single-rail Infiniband
interconnect. While being of similar size, Hydra has about
twice as much bandwidth as Jupiter but also twice as many
cores. Additionally, the compute nodes vary significantly in the
number of cores per compute nodes (from 16 to 48), which
is helpful to examine how sensitive the algorithm selection
strategy is to the number of cores.

B. Software

In the benchmarking step, we rely on the ReproMPI bench-
mark [16]. There are two main features that sets it aside from
other MPI benchmarking suites. First, it allows for measuring
collectives for a predefined benchmarking time. Second, it
supports accurate clock synchronization schemes and measuring
collectives using a time-window process synchronization [21].

We examine two different MPI libraries: Open MPI and
Inte]l MPI. We use the same version of Open MPI (4.0.2) on
all three machines, to avoid drawing wrong conclusions, as
the library version would be an additional experimental factor.
Our techniques are also applicable to other MPI libraries like
MPICH and potentially also to MVAPICH, although MVAPICH
uses a slightly different concept for the algorithm selection,
where the algorithm for small, medium, or large messages can
be altered.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Overview of datasets.

Dataset ~ MPI routine MPI Version ~ Machine #algorithms #nodes #ppn #msg. sizes #samples
dl MPI_Bcast OpenMPI 4.0.2 Hydra 9 11 10 10 255200
d2 MPI_Allreduce OpenMPI 4.0.2 Hydra 7 11 10 10 39600
d3 MPI_Bcast OpenMPI 4.0.2 Jupiter 9 10 7 10 162400
d4 MPI_Allreduce OpenMPI 4.0.2 Jupiter 7 10 7 10 25200
ds MPI_Allreduce Intel MPI 2019 Hydra 16 11 10 10 70400
d6 MPI_Alltoall Intel MPI 2019 Hydra 5 11 10 8 17600
d7 MPI_Bcast Intel MPI 2019 Hydra 12 11 10 10 52800
d8 MPI_Bcast OpenMPI 4.0.2 SuperMUC-NG 9 5 5 8 23184

In the tuning step, we use the following R packages:
xgboost 1.0.0.2 for XGBoost, mcgv 1.8 for GAM, and
caret 6.0 for KNN. As emphasized, we do not perform

TABLE III: Training and test datasets by machine and number
of compute nodes (n).

. . Machine Full training Small training Test dataset (n)
an extensive tuning of the hyper-parameters. Therefore, we dataset (n) dataset (r2)
use the default K =5 for the KNN. We use scaled inputs for Hydra 1.8,16, 20,24, 32,36 4,16, 36 7.13.19.27.35
KNN, although we found that our regression models worked Jupiter 4,8,16,20,24,32 4,16,32 7,13,19,27
slightly better with unscaled inputs. However, that was mostly SuperMUC-NG 20, 32,48 20,32,48 27,35

coincidence, since the message size turned out to be the most
important factor in many cases, whose values also happened
to be of largest magnitude. Nonetheless, for the sake of a
general applicability, we scaled the inputs when using KNN.
Since a regression based on linear models, as expected, did
not work in XGBoost, we use the Tweedie regression (the
Gamma regression also worked well). We train the model with
XGBoost for 200 rounds. For the generalized additive models
of mcgv, we choose the Gamma family for positive, real-valued
data and the log link function. For more information on these
parameters, see Hastie et al. [17].

C. Datasets

In order to evaluate our approach, we measured the perfor-
mance (running time) of different MPI collective operations
for a large number of cases. These datasets are summa-
rized in Table II. Let us take a look at dataset d1 as
an example. This dataset only contains performance mea-
surements of MPI_Bcast on Hydra using Open MPI 4.0.2,
which implements 9 different algorithms to execute the
broadcast. We recorded measurements on various numbers
of compute nodes n, i.e., 4,7,8,13,16,19,24,27, 32,35,
and 36 (hence, #nodes=11). Similarly, we varied the num-
ber of processes per node, i.e., d1 contains values for
N € {1,4,8,10,16,17,20,24, 28,32} (#ppn=10). We used
the following message sizes (in Bytes) for the fixed-
sized buffer collectives (Allreduce, Bcast) on all machines:
1,16, 256,1024, 4096, 16 384, 65 536, 524 288, 1048 576, and
4194 304. Due to space limitations, we cannot provide the
full details of the other datasets. The last column “#samples’
contains the number of distinct measurements in the dataset.
Note that the number in this column is larger than the cross
product of #algid x #nodes x #ppn x #msize. The reason
is that we also take into account algorithmic parameters
such as the segment size or the fanout in the dataset. A
specific algorithm Ap ;,j > 0 is benchmarked on all process
configurations (#nnodes x #ppn), all message sizes, but also
for all combinations of realistic algorithmic parameters. For
example, we tested MPI_Bcast in d1, with the following

]

264

segment sizes in KB: 1,4, 16,64, and 128, if segmentation is
supported by an algorithm.

V. EXPERIMENTAL RESULTS

Before we examine the results for each machine separately,
we would like to comment on the overall evaluation strategy.
In a typical machine learning setting, the prediction error
of regression models would be analyzed by metrics like the
mean absolute error (MAE) or the root mean squared error
(RMSE). Moreover, we would need to perform some sort of
cross-validation. While generating our regression models, for
example with XGBoost, we have continuously monitored our
errors on the training and test datasets to avoid overfitting.
However, from an HPC perspective, the most important metric
is the eventual performance improvement of the method, i.e.,
we would like to answer whether the machine learning effort
improves the running time of our MPI collectives.

For that reason, we evaluate our approach in the following
way. We select a reasonable subset of compute nodes, which
will be used for the training of our regression models. The
idea is that we usually get an allocation of compute nodes
from the batch scheduler. When we have such an allocation,
we perform MPI benchmarking runs on all compute nodes.

Table III gives an overview of the training and test datasets
used in our analysis.! For example, on Hydra, we train our
regression models for MPI_Bcast with the seven different
numbers of compute nodes. Then, we apply our model on the
test dataset, which in this case only includes odd numbers of
compute nodes. Of course, we could have fully randomized
these datasets in this paper, which we had also tested in our
study. The results were very similar to the ones we present here.
Still, we believe that this choice of training and test datasets is
very realistic in practice. Usually, a scientist runs some MPI
benchmark on a few different, but commonly used numbers

Uhttps://github.com/hunsa/mpi-collective-prediction

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

Strategy . Exhaustive Search (Best) . Default . Prediction

nodes: 27 nodes: 27 nodes: 27
ppn: 1 ppn: 16 ppn: 32
2.0 3
41 75-
1.54
Lol 3 5.0-
o 24
LTI T ey 8 o R I
2l LT T T T T T T s o 1o Ty e e
=t
§ nodes: 35 nodes: 35 nodes: 35
3 ppn: 1 ppn: 16 ppn: 32
= 204
75-
g 154 44
Z 5.0-
1.04
MMMMMMMMMHMZ : |I5 L
ool ol Ill Ill Il Ill Ill I|| III L1 LI lIl alnunn l|| nllnmnn munnlnnlinuln
& b ‘b b b& \ b b b g’% b b '>< b b
\ N G$ & ¢%{§5\§yg A @' N G% gﬁ 6§&6§@ g§b RN §9 @ g& qy §§§&9'

message size [Byte]

Fig. 4: Comparison of the algorithm selection strategies for MPI_Bcast; Open MPI 4.0.2; Hydra.

KNN

GAM

XGBoost

4194304-900000000009+4000AAADOS ¢ HHAAAA
1048576 -0 0 ¢ AAAAAADD ¢ ¢AAAAAAG 0 0AAAAAAL
524288 -0 ¢ 0 AAGAAAGIGG0ALAAAAGIGOAAIAAAL
65536 -0 ADAAAAAAAADDDAAAAAAALADDDAAAAAL
16384 -0 AAAAAAAAAAAAAAAAAAAAAAAAAAAALAA

4096 -HAAAAAAAAAAAAAAAAAAAAAALAAALAAA

msize [Byte]

1024 -MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY
256 -MAAAAAAAAAAAAAAAAAAAAAAAALAAAAA
16-MAAAAAAAAAAAAAAAAAAAAAALAAAAAAA

1-HAAAAAAAAAAAAAAAAAAALAAAAAAAAAA

PRV VYRV VVVVVVVR Y VVVVVVVY
IXXXIRXIVVRYYVVVVVVVRIIVVVVVVVY
XXX ZXXIVVRIZIVVVVVRIIYVVVVVVVY
90000000AA0000A00AAAIIeDADAAAA
XXX XXTFVRIZXZINIVVVRIYVVVVVVY VN
XY VVVVVRYVVVVVVVRYVVVVVVVVY
BOADAAAAAADAAAAAAAAALADAAAAAAAA
BOOPAAAAAADODDAAAAAAGDAGAAAAAA

BOGOAAAAAAGDADAAAAAADSAAAAAAAA

BOOOAAAAAASDAAAAAAAAGSAAAAAAAA

Configuration

[VO60600000000¢04A0000A0000A0AAAA

EEYRYVVVVVRITIYVIVVVVRIXIIVVVVVY

eeAoAAAAAAseosheoAAdeossheoana i
0000000000000 00000A0000000000 : ;
AAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAL v 3
loAAAGAAAAGSAAAGAAAAAAAAAAAAAA g :
0GAAAGAAAAGSAAAGAAAAAAAAAAAAAL & 6
0 CAAAGAAAAGGAAAGAAAAAAAAAAAAAAL ; ;

BOAAADAAAADDAAADAAAAAAAAAAAAAL

BDAAADAAAADDAAADAAAAAAAAAAAAAL

Fig. 5: Overview of the predicted algorithm for various process configurations (#nodes x ppn) for MPI_Bcast with each of

the regression learners; Open MPI 4.0.2; Hydra.

of compute nodes, e.g., 8, 16, and 32, and these result should
then form the foundation of the model.

We note that we have measured the performance for the entire
dataset beforehand, i.e., we do not need to run benchmarks
on-the-fly. If our models predict a certain algorithm and its
configuration for an unseen feature vector, we already know the

actual running time of that algorithm with this configuration.

We also know the (empirically) best algorithm for this feature
vector, which will serve as a reference point. We would like
to beat the baseline, which is the default algorithm selected by
the decision logic. In Open MPI, the default strategy is called
algorithm 0, and in Intel MPI the decision logic is used if no
explicit algorithm is set by the user.

It is also important to discuss the training time. Since
we utilize ReproMPI, we configured it to benchmark each
individual configuration for a maximum of either 500 values or

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

265

0.5s on SuperMUC-NG and 1 s on Hydra and Jupiter, whatever
condition is satisfied quicker. For small message sizes, record-
ing 500 measurements usually takes much less than one second.
For example, on SuperMUC-NG, the training would require a
maximum of 23184 - 0.5, which amounts to roughly 3 hours.
However, in practice, the actual measurements on SuperMUC-
NG took only about 56 minutes on all compute nodes.

A. Prediction Results for Hydra

Finally, let us inspect the experimental results starting with
Hydra. Due to space limitations, we can only show a subset of
prediction results for Open MPI in Figure 4. Here, we compare
the MPI library performance for three cases: (1) the best
possible algorithm, found by an exhaustive search, (2) the
default algorithm, decided by the decision logic in Open MPI,
and (3) our predicted algorithm. All prediction results shown
here are obtained using GAM. Since we know the running

Strategy . Exhaustive Search (Best) . Default . Prediction

K

& \\bbub@ & 0 &
Q TESFESE S

nodes: 27 nodes: 27 nodes: 27
ppn: 1 ppn: 16 ppn: 32
1.5
15 104
1.0
1.04
o i 0.59
£ 05 03
g
E 0.04 0.04 0.04
g nodes: 35 nodes: 35 nodes: 35
=] ppn: 1 ppn: 16 ppn: 32
EREE
g
E 104 1.0 104
051 051 051
0.04 0.04 0.04
R 5" m“ q“ i ﬂ: © X 6b '» ‘° G ﬂ:b © o & '5“
RN \@ & Qw & q@ RN, \@ & 6& & q&v \w N \ev & 5@ &«@ qw
message size [Byte]
Fig. 6: Comparison of the algorithm selection strategies for MPI_Allreduce; Intel MPI 2019; Hydra.
Strategy . Exhaustive Search (Best) . Default . Prediction
nodes: 27 nodes: 27 nodes: 27
ppn: 1 ppn: 8 ppn: 16
1.5 34 5
4
1.0 II 24 34
o
=} 1
Z00] LA A oo o el o o
=
g nodes: 35 nodes: 35 nodes: 35
3 ppn: 1 ppn: 8 ppn: 16
= 4
g 1.5 N N
) II I I I I | I I I |
24
il | I
II“ I I I I “ “ "I II II il | INNman
] I ! I I I I i I I
n%,h 6“’b ’1, N
RS oF \&

u\

i

o & .0

F
&

&

b
&
N S RN

message size [Byte]

Fig. 7: Comparison of the algorithm selection strategies for MPI_Allreduce; Open MPI 4.0.2; Jupiter.

time for all three configurations, we normalize the running
time with respect to the best possible. Therefore, the exhaustive
search will have a normalized score of 1.0. We can observe
that our predicted algorithm is very close to the best possible
algorithm for most of the cases, and it clearly outperforms the
default Open MPI algorithm selection strategy.

We asked ourselves whether all broadcast algorithms imple-
mented in Open MPI were used by the predictor. Therefore,
we show, in Figure 5, the selected algorithm for each process
configuration (x axis) and each message size (y axis). The
graph also compares the decisions taken by the different re-
gression strategies (KNN, GAM, and XGBoost). The broadcast
algorithm 8 is missing in the figure, as it was found buggy in
this version of Open MPI. We can observe that all regression

approaches indeed lead to a very different selection strategy
and that all algorithms were used in the predictions. We note
that, for the sake of clarity, we only show the algorithm IDs
and omit their parameter settings such as segment size and
fanout (which are part of this model but now shown).

We also analyze the prediction potential for Intel MPI in
Figure 6. We notice that the default strategy of Intel MPI is
very efficient, as it already selects the best algorithm in many
cases. For MPT_Allreduce, there is no significant difference
between the default and the predicted strategy. Although this
looks like a weak point of our approach at first glance, it is in
fact very good. Without any detailed meta-knowledge of the
algorithms and their behavior, our approach is able to keep up
with the decision logic provided.

266

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

Strategy

Exhaustive Search (Best)

Default Prediction

e =
wn S
P

Normalzed runnning time

nodes: 27 nodes: 27 nodes: 27
ppn: 1 ppn: 24 ppn: 48
6
104
4
2 37
04 04
nodes: 35 nodes: 35 nodes: 35
ppn: 1 ppn: 24 ppn: 48
154
6
10
4
5
14 21
04 04
T T T T T v T i T v T T T i T i T T T i T T T i
N o ¢ D © o> ~o) N o ° D © o> o & N o) D 3] o> o &
N > y O o) D N w X) N w X)
SR R S LN LN A

message size [Byte]

Fig. 8: Comparison of the algorithm selection strategies for MPI_Bcast; Open MPI 4.0.2; SuperMUC-NG.

TABLE IV: Overall prediction quality, measured as the relative speed-up over the default selection strategy (the higher the better).

(a) Large training dataset

method dl d2 d3 d4 d5 d6 d7 d8

KNN 1.68 1.49 1.49 1.16 1.04 0.84 1.11 2.13
GAM 1.65 2.16 1.41 1.28 1.02 1.01 1.11 2.17
XGBoost 1.71 2.11 1.41 1.19 0.99 0.98 1.10 1.82

mean

1.37
1.48
1.41

B. Prediction Results for Jupiter

On Jupiter, the results for MPI_Allreduce are similar
to the MPI_Allreduce results on Hydra. We specifically
investigated MPI_Allreduce since it is the most commonly
used collective according to Chunduri et al. [14]. Again, the
default decision logic, this time of OpenMPI, is already
performing very well, as can be seen in Figure 7. Thus, there
is not much to gain for most message sizes. Nonetheless, there
is always a range of message sizes, around 16 kB, for which
our predicted algorithm performs significantly better.

C. Prediction Results for SuperMUC-NG

The prediction results shown in Figure 8 for the SuperMUC-
NG dataset are also promising. We can observe that our
approach selects better algorithms for MPI_Bcast in several
cases. Although we see these spikes for the largest message
size, we would say that the overall performance of the default
and our prediction strategy are equal.

D. Overall Evaluation

Last, we evaluate how good the prediction models are
depending on the size of the training data and the learning
strategy. To that end, we compute the speed-up of our predicted
algorithm with respect to the default strategy. Hence, a speed-
up value that is larger than one would mean that the predicted
algorithm is better. We are interested in obtaining an overall,
average speed-up that is as large as possible. We show the

267

(b) Small training dataset

method dl d2 d3 d4 d5 d6 d7 d8 mean
KNN 1.68 1.45 1.43 1.11 1.03 0.84 1.11 2.13 1.35
GAM 1.67 2.16 1.41 1.21 1.02 1.00 1.11 2.17 1.47
XGBoost 1.60 1.87 1.35 1.06 0.94 0.95 0.97 1.82 1.32

overall performance results in Table IV, where Table IVa
summarizes the mean speed-up of the predicted algorithms
for the large training dataset. For example, applying KNN,
our prediction leads to a 37% improvement of the running
time on average. We can observe that KNN, GAM, and
XGBoost lead to similar results on all datasets. Interestingly,
the improvements obtained for the small datasets are very
similar, which means that with a moderate training effort one
can already get about 30-45% improvement in running time
compared to the default strategy.

VI. RELATED WORK

Analyzing and optimizing MPI collectives has always been
an active field of study [4], [5], as collective operations play
an important role in many parallel, scientific applications.

An online approach to tuning MPI collectives is STAR-
MPI [22], which internally selects an appropriate algorithm
for a specific input instance. It works in two phases. In
the tuning phase, it benchmarks different algorithms for one
MPI function and records their run-times. Then, STAR-MPI
has enough statistical information that it can select a good
algorithm for subsequent calls of this MPI function. Chaarawi
et al. [6] developed the Open Tool for Parameter Optimization
(OTPO), which can be used to tune parameters of the Open MPI
library. OTPO effectively performs an exhaustive search over
a small number of parameters. Pellegrini et al. [23] tackled
the problem of finding good MPI library parameters, such

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

as the eager limit, with machine learning techniques. They
train different models (decision trees and artificial neural
networks) based on performance features of application runs,
such as the percentage of collective operations in a training
run. In contrast to this work, our approach works without a
previous profiling run, as all the features are already known
(message size, number of processes). Barigou and Gabriel [24]
showed how to tune algorithmic parameters of non-blocking
collectives automatically, where parameters such as fan-out
and segment size for MPI_Ibcast are optimized. Sikora et
al. [25] presented an auto-tuning approach for MPI applications
with the Periscope tool-chain. The tuning tool then either
performs an exhaustive search or uses a genetic algorithm
to find a good allocation of all parameters. Papadopoulou
et al. [26] proposed a method based on machine-learning
techniques to predict the point-to-point communication time
of HPC applications, where they used additional features, such
as the number of intra- or inter-node messages, to improve
the prediction performance. In contrast, our approach does not
rely on MPI profiling data of a run, whose execution time we
try to predict, as these data are only available post mortem.

Pjesivac-Grbovic et al. [27] conducted a very detailed
analysis of the applicability of different performance models
for MPI collectives. In this work, the authors assessed the
prediction accuracy of various performance models for different
algorithms of the following collectives: Barrier, Broadcast,
Reduce, and Alltoall. Each algorithm was modeled using
the Hockney, the LogGP, and the P-LogP model, and the
predicted performance values were compared to experimentally
determined values. A similar work was lately published by
Nuriyev and Lastovetsky [7].

Shudler et al. [28] have shown how to pinpoint performance
problems of MPI collectives using performance models. In
their approach, an empirically fitted performance model is
compared to a theoretical expectation of the running time for
a collective. If these models defer, a performance problem is
detected. We proposed an orthogonal approach [29], where we
systematically evaluated whether MPI collectives fulfill certain
performance guidelines. A possible performance guideline is
that an allreduce call should never be slower than chaining
reduce and broadcast. PGMPITuneLib checks these perfor-
mance guidelines empirically and records the cases where
the default MPI algorithm violates a guideline. In a later MPI
application run, PGMPITuneLib can now substitute the original
MPI collective with the guideline implementation.

The Artificial Intelligence community has tackled the prob-
lems of algorithm selection [10] and algorithm configura-
tion [11] over the last decades. A common question is how
to find a good solver/algorithm for an arbitrary instance of a
certain problem, e.g., Mixed Integer Programming or the Trav-
eling Salesman Problem. Several proposed solutions iteratively
learn and build an algorithmic portfolio for a set of training
instances, which then works well on unseen instances [30].

Other approaches to parameter tuning include tools like
OpenTuner [31], which offers a search strategy called “AUC
Bandit meta technique” (an ensemble technique) that works

268

better than other search techniques in isolation (e.g., hill-
climbing or evolutionary methods).

VII. CONCLUSIONS

In this work, we revisited the algorithm selection problem for
MPI collective operations. This problem consists in selecting
the best possible (the fastest) algorithm and its parameters for
a specific use case or scenario. A use case (or instance) is
composed of the actual collective call, e.g., MPI_Allreduce,
the message size, the number of compute nodes, and the
number of processes per compute node. We proposed a novel
algorithm selection strategy that builds a regression model
for each algorithm and configuration. A configuration defines
the setting of the various algorithmic parameters, such as the
segment size or the tree fanout.

As we set out to devise a general tuning framework for
MPI collectives using regression models, we evaluated our
approach with different learning strategies, e.g., KNN, GAM, or
XGBoost, in order to highlight the independence of our method
on a specific learner or its hyper-parameters. We examined
our prediction models for multiple MPI collectives on three
different parallel machines and two MPI libraries (Open MPI
and Intel MPI). Our experimental results support the claim
that our algorithm selection approach improves the overall
performance of Open MPI in all considered cases. For Intel MPI,
we found that the default strategy already selects the best
possible algorithm in most of the cases, which limited the tuning
potential for our method. Nonetheless, our predictor performs
equally well, which shows the robustness of our approach.

ACKNOWLEDGMENT

We acknowledge PRACE for awarding us access to
SuperMUC-NG at GCS@LRZ, Germany. This work was
supported by funding provided by the University of Maryland
College Park Foundation.

REFERENCES

[1] R. L. Graham, G. M. Shipman, B. Barrett, R. H. Castain, G. Bosilca, and
A. Lumsdaine, “Open MPI: A high-performance, heterogeneous MPL”
in CLUSTER. IEEE Computer Society, 2006.

D. K. Panda, K. Tomko, K. Schulz, and A. Majumdar, “The MVAPICH
Project: Evolution and Sustainability of an Open Source Production
Quality MPI Library for HPC,” in Proceedings of the First Workshop on
on Sustainable Software for Science: Practice and Experiences (WSSSPE),
2013.

W. Gropp, “MPICH2: A new start for MPI implementations,” in
Proceedings of the 9th EuroPVM/MPI, ser. Lecture Notes in Computer
Science, vol. 2474. Springer, 2002, p. 7.

E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn, “Collec-
tive communication: theory, practice, and experience,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749-1783,
2007.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49-66, 2005.

M. Chaarawi, J. M. Squyres, E. Gabriel, and S. Feki, “A tool for
optimizing runtime parameters of Open MPL” in Proceedings of the 15th
European PVM/MPI Users’ Group Meeting (EuroPVM/MPI), ser. LNCS,
vol. 5205, 2008, pp. 210-217.

E. Nuriyev and A. L. Lastovetsky, “Accurate runtime selection of optimal
MPI collective algorithms using analytical performance modelling,”
CoRR, vol. abs/2004.11062, 2020.

[2]

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

[8]

[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra,
“MPI collective algorithm selection and quadtree encoding,” Parallel
Computing, vol. 33, no. 9, pp. 613-623, 2007.

S. Hunold and A. Carpen-Amarie, “Algorithm selection of MPI collectives
using machine learning techniques,” in Proceedings of the IEEE/ACM
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS@SC), 2018.

P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary Computation,
vol. 27, no. 1, pp. 3-45, 2019, pMID: 30475672.

H. H. Hoos, “Automated algorithm configuration and parameter tuning,”
in Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, Eds.
Springer, 2012, pp. 37-71.

“OSU Micro-Benchmarks,”
state.edu/benchmarks/.

“Intel MPI Benchmarks.” [Online]. Available: https://github.com/intel/
mpi-benchmarks

S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Charac-
terization of MPI usage on a production supercomputer,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC). 1EEE / ACM, 2018, pp.
30:1-30:15.

M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub, “Autofolio: An
automatically configured algorithm selector,” J. Artif. Intell. Res., vol. 53,
pp. 745-778, 2015.

S. Hunold and A. Carpen-Amarie, “Reproducible MPI benchmarking
is still not as easy as you think,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 12, pp. 3617-3630, 2016.

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition, ser.
Springer Series in Statistics. Springer, 2009.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD). ACM, 2016, pp.
785-794.

T. Hastie and R. Tibshirani, Generalized additive models.
Library, 1990.

T. M. Mitchell, Machine Learning, ser. McGraw Hill series in computer
science. McGraw-Hill, 1997.

http://mvapich.cse.ohio-

Wiley Online

269

21

22

[23

[24

[25

[26

27

[28

[29

[30

31

]

I

I

]

S. Hunold and A. Carpen-Amarie, “Hierarchical clock synchronization in
MPI,” in Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER), 2018.

A. Faraj, X. Yuan, and D. K. Lowenthal, “STAR-MPI: self tuned
adaptive routines for MPI collective operations,” in Proceedings of the
International Conference on Supercomputing (ICS). ACM, 2006, pp.
199-208.

S. Pellegrini, J. Wang, T. Fahringer, and H. Moritsch, “Optimizing MPI
runtime parameter settings by using machine learning,” in EuroPVM/MPI,
ser. LNCS, vol. 5759. Springer, 2009, pp. 196-206.

Y. Barigou and E. Gabriel, “Maximizing communication-computation
overlap through automatic parallelization and run-time tuning of non-
blocking collective operations,” Int. J. Parallel Program., vol. 45, no. 6,
pp. 1390-1416, 2017.

A. Sikora, E. César, I. A. C. Urefia, and M. Gerndt, “Autotuning of
MPI applications using PTF,” in Proceedings of the ACM Workshop
on Software Engineering Methods for Parallel and High Performance
Applications. ACM, 2016, pp. 31-38.

N. Papadopoulou, G. I. Goumas, and N. Koziris, “Predictive commu-
nication modeling for HPC applications,” Cluster Computing, vol. 20,
no. 3, pp. 2725-2747, 2017.

J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127-143, 2007.

S. Shudler, Y. Berens, A. Calotoiu, T. Hoefler, A. Strube, and E. Wolf,
“Engineering algorithms for scalability through continuous validation of
performance expectations,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 8, pp. 1768-1785, 2019.

S. Hunold and A. Carpen-Amarie, “Autotuning MPI collectives using
performance guidelines,” in Proceedings of the International Conference
on High Performance Computing in Asia-Pacific Region (HPC Asia).
ACM, 2018, pp. 64-74.

F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm runtime
prediction: Methods & evaluation,” Artif. Intell., vol. 206, pp. 79-111,
2014.

J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-
M. O’Reilly, and S. Amarasinghe, “OpenTuner: An extensible framework
for program autotuning,” in PACT. ACM, 2014, pp. 303-316.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on November 29,2021 at 16:22:13 UTC from IEEE Xplore. Restrictions apply.

