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ABSTRACT

The performance and efficiency of distributed training of Deep Neu-
ral Networks (DNN) highly depend on the performance of gradient
averaging among participating processes, a step bound by com-
munication costs. There are two major approaches to reduce com-
munication overhead: overlap communications with computations
(lossless), or reduce communications (lossy). The lossless solution
works well for linear neural architectures, e.g. VGG, AlexNet, but
more recent networks such as ResNet and Inception limit the op-
portunity for such overlapping. Therefore, approaches that reduce
the amount of data (lossy) become more suitable. In this paper, we
present a novel, explainable lossy method that sparsifies gradients
in the frequency domain, in addition to a new range-based float
point representation to quantize and further compress gradients.
These dynamic techniques strike a balance between compression
ratio, accuracy, and computational overhead, and are optimized to
maximize performance in heterogeneous environments.

Unlike existing works that strive for a higher compression ratio,
we stress the robustness of our methods, and provide guidance to
recover accuracy from failures. To achieve this, we prove how the
FFT sparsification affects the convergence and accuracy, and show
that our method is guaranteed to converge using a diminishing 6 in
training. Reducing € can also be used to recover accuracy from the
failure. Compared to STOA lossy methods, e.g., QSGD, TernGrad,
and Top-k sparsification, our approach incurs less approximation
error, thereby better in both the wall-time and accuracy. On an 8
GPUs, InfiniBand interconnected cluster, our techniques effectively
accelerate AlexNet training up to 2.26x to the baseline of no com-
pression, and 1.31x to QSGD, 1.25x to Terngrad and 1.47x to Top-K
sparsification.
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1 INTRODUCTION

Parameter Server (PS) and allreduce-style communications are two
core parallelization strategies for distributed DNN training. In an
iteration, each worker produces a gradient, and both paralleliza-
tion strategies rely on the communication network to average the
gradients across all workers. The gradient size of current DNNs is
at the scale of 102 MB, and, even with the state-of-the-art networks
such as Infiniband, repeatedly transferring such a large volume
of messages over millions of iterations is prohibitively expensive.
Furthermore, the tremendous improvement in GPU computing and
memory speeds (e.g., the latest NVIDIA TESLA V100 GPU features
a peak performance of 14 TFlops on single-precision and memory
bandwidth of 900 GB/s with HBM2) further underscores communi-
cation as a bottleneck.

Recently, several methods have shown that training can be done
with a lossy gradient due to the iterative nature of Stochastic Gra-
dient Descent (SGD). It opens up new opportunities to alleviate the
communication overhead by aggressively compressing gradients.
One approach to compress the gradients is quantization. For ex-
ample, Terngrad [29] maps a gradient into [-1, 0, 1], and QSGD [4]
stochastically quantizes gradients onto a uniformly discretized set
larger than that of Terngrad. Such coarse approximation not only in-
curs large errors between the actual and quantized gradients as we
demonstrate in Figure 15 [QSGD, TernGrad], but also fails to exploit
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the bit efficiency in the quantization (Figure 7). Another approach
to gradient compression, sparsification, only keeps the top-k largest
gradients [2, 5, 14]. Similarly, Top-k loses a significant amount of
actual gradients around zeros to achieve a high compression ratio
(Figure 15, [Top-k]). In summary, existing lossy methods greatly
drop gradients, incur large approximation errors (Figure 15e), lead-
ing to the deterioration of the final accuracy (Table 2). To avoid
compromising the convergence speed, both quantization and spar-
sification must limit the compression ratio, leading to sub-optimal
improvement of the end-to-end training wall time.

In this paper, we propose a gradient compression framework
that takes advantages of both sparsi fication and quantization with
two novel components, FFT-based sparsification, and a range-based
quantization. FFT-based sparsification allows removing the redun-
dant information, while preserving the most relevant information
(Figure 15 [FFT]). As a result, FFT incurs fewer errors in approxi-
mating the actual gradients (Figure 15e), thereby better in accuracy
than QSGD, TernGrad, and Top-K (Table 2). We treat the gradient
as a 1D signal, and drop near-zero coefficients in the frequency do-
main, after an FFT. Deleting some frequency components after the
FFT introduces magnitude errors, but the signal maintains its dis-
tribution (Figure 5). As a result, the sparsification in the frequency
domain can achieve the same compression ratio as in the spatial
domain but preserving more relevant information.

To further improve the end-to-end training wall time, we in-
troduce a new range-based variable precision floating point repre-
sentation to quantize and compress the gradient frequencies after
sparsification. Most importantly, unlike the uniform quantization
used in existing approaches, the precision of representable floats in
our method can be adjusted to follow the distribution of the original
gradients (Figure 9). The novel range-based design allows us to fully
exploit the precision given limited bits so that the approximation
error can be further reduced. By combining sparsification and quan-
tization, our framework delivers a higher compression ratio than
the single method, resulting in shorter end-to-end training wall
time than QSGD, Terngrad, and Top-k.

Lastly, our compression framework is highly efficient and scal-
able. The primitive algorithms in our compression scheme, such
as FFT, top-k select, and precision conversions, are efficiently par-
allelizable and thus GPU-friendly. We resort to existing highly
optimized GPU libraries such as cuFFT, Thrust, and bucketSelect
[3], while we propose a simple yet efficient packing algorithm to
transform sparse gradients into a dense representation. Minimizing
the computational cost of the compression is crucial for high-speed
networks, such as Infiniband networks, as we analyzed in Figure 10.

Specifically, the contributions of this paper are as follows:

e anovel FFT-based, tunable gradient sparsification that retains
the original gradient distribution.

e anovel range-based variable precision floating-point that allo-
cates precision according to the gradient distribution.

e a analytic model to guide people when to enable compression
and how to set a compression ratio according to hardware spec-
ifications.

o the convergence proof of our methods, and its guidance in se-
lecting a compression ratio 0, to ensure the convergence, or
reduce 6 to recover the accuracy. To the best of our knowledge,
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Figure 1: Two parallelization schemes of distributed DNN
training:(a) Bulk Synchronous Parallel (BSP) strictly syn-
chronizes gradients with all-to-all group communications,
e.g. MPI collectives; (b) Parameter Server (PS) exchanges gra-
dients with point-to-point communications, e.g. push/pull.

this paper is the first one to discuss the relationship between
compression ratio and accuracy of neural networks.

e highly optimized system components for a compression frame-
work that achieves high throughput on GPUs and is beneficial
even on state-of-the-art Infiniband networks.

2 BACKGROUND AND MOTIVATION

In general, there are two strategies to parallelize DNN training:
Model Parallelism and Data Parallelism. Model Parallelism splits a
network into several parts, with each being assigned to a comput-
ing node [10]. It demands extensive intra-DNN communications
in addition to gradient exchanges. It largely restricts the training
performance, and thereby Model Parallelism is often applied in sce-
narios where the DNN cannot fit onto a computing node [10]. The
second approach, Data Parallelism [26], partitions the image batch,
and every computing node holds a replica of the network. In a
training iteration, a node computes a sub-gradient with a batch
partition. Then, nodes all-reduce sub-gradients to reconstruct the
global one. The only communications are for necessary gradient ex-
changes. Therefore, current Deep Learning (DL) frameworks such as
SuperNeurons [27], MXNet [8], Caffe [16], and TensorFlow [1] par-
allelize the training with Data Parallelism for the high-performance.

There are two common strategies to organize the communica-
tions with data parallelism: with a centralized Parameter Server (PS)
(Figure 1b), or with all-to-all group communications, e.g., allreduce
(Figure 1a). TensorFlow [1], MXNet [8], and PaddlePaddle imple-
ment distributed DNN training with a Parameter Server (PS) [19].
In this distributed framework, the parameter server centralizes the
parameter updates, while workers focus on computing gradients.
Each worker pushes newly computed gradients to the parameter
server, and the parameter server updates parameters before sending
the latest parameters back to workers. Though this client-server [7]
style design easily supports fault tolerance and elastic scalability,
the major downside is the network congestion on the server. Alter-
natively, allreduce-based Bulk Synchronous Parallel SGD can better
exploit the bandwidth of a high-speed, dense interconnects, such
as modern Infiniband networks. Instead of using a star topology,
allreduce pipelines the message exchanges at a fine granularity with



Session: Distributed Learning

comm

comm

| 'WMtﬂwﬂl'Wu‘W\,

1074

compt

latency in seconds
3

latency in seconds

0 2 1 6 0 20 10 60 80
ith layer ith layer

(a) AlexNet (b) ResNet32

Figure 2: layer-wise communications (all-reduce) v.s. com-
putations in an iteration of BSP SGD using 16 P100 (4
GPUs/node with 56Gbps FDR).

adjacent neighbors in a ring-based topology. Since the pipeline fully
utilizes the inbound and outbound link of every computing node, it
maximizes network bandwidth utilization and achieves appealing
scalability where the cost is largely independent of the number of
computing nodes.

There are trade-offs between the BSP and PS schemes, with
PS having better fault tolerance, and allreduce better exploits the
network bandwidth. However, as we argue below, in both cases, the
communication cost is high, and reducing it can yield substantial
gains in training latency.

2.1 Communication Challenges in Distributed
Training of DNNs

Communications for averaging sub-gradients is widely recognized
as a major bottleneck in scaling DNN training[10, 26, 30]. With
increasing data complexity and volume, and with emerging non-
linear neural architectures, two critical issues exacerbate the impact
of communications in the scalability and efficiency of distributed
DNN training with data parallelism: I) the increasing amounts of
data to be exchanged, and II) the decreasing opportunity to overlap
computation and communication.

Challenge I: Enormous amounts of communications during
training. DNNs are extremely effective at modeling complex non-
linearities thanks to the representation power of millions of pa-
rameters. The number of parameters dictates the size of the gradi-
ents. Specifically, the gradient sizes of AlexNet, VGG16, ResNet32,
and Inception-V4 are 250MB, 553MB, 102MB, and 170MB. Even
with the highly optimized allreduce implementation on a 56 Gbps
FDR network, communication overhead remains significant. For
example, the communication for AlexNet, VGG16, Inception-V4
and ResNet32 at regular single-GPU batch sizes! consumes 64.17%,
18.62%, 33.07% and 43.96% of an iteration time, respectively.
Challenge II: Decreasing opportunity to overlap computa-
tion and communication. One promising solution to alleviate
the communication overhead is hiding the communication for aver-
aging the gradient of the i*" layer by the computation of i—1¢" layer
in the backward pass. This lossless technique has proven to be effec-
tive on linear networks such as AlexNet and VGG16 [6, 23], as these
networks utilize large convolution kernels to process input data.
Figure 2a demonstrates the computation time of the convolution
layers is 10x larger than the communication time, easy for overlap-
ping. However, the overlapping technique is not always applicable

Ithe single GPU batch size for AlexNet is 64, and 16 for others.
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for two reasons. First, the degree of overlapping is largely de-
cided by the computation pattern of the neural network model. The
opportunity for computation and communication overlap is very
limited in recent neural architectures, such as Inception-V4 [25] and
ResNet [15]. The sparse fan-out connections in the Inception Unit
(Figure 1a in [27]) replace one large convolution (e.g. 11X11 convo-
lution kernel in AlexNet) with several small convolutions (e.g. 3x3
convolution kernels). Similarly, ResNet utilizes either 1x1 or 3x3
small convolution kernels. As a result, the layer-wise computational
cost of ResNet is similar to or smaller than communication (Fig-
ure 2b); hence, it is much harder to overlap these neural networks
than AlexNet. Second, the degree of overlapping is also impacted by
the bandwidth of networks. With slower networks, there are less
opportunity to overlap communications and computations. Specif-
ically, as seen in Figure 2a, the computation cost of convolution
layers of the AlexNet is 10X larger than the communication cost
with 56Gbps InfiniBand. However, when training AlexNet in a low
profile network such as 1Gbps Ethernet, it becomes impossible to
hide the communication cost as it is significantly larger than the
computation cost.

These two challenges - increasing data exchanged, and decreas-
ing opportunity to hide communication latency — make it attractive
to look for solutions that minimize the communication cost by de-
creasing the communication volume. Training a neural network
with imprecise gradient updates still works as parameters are it-
eratively refined [2]. Particularly, lossy gradient compression can
achieve higher compression rates and still allow the network to de-
liver target accuracy [4]. Given this, it is not surprising that several
gradient compression approaches have been proposed in the liter-
ature. They generally fall into two categories: quantization of the
gradients (e.g. [4, 9, 24, 29]), where these are represented with lower
precision numbers, and sparsification (e.g. [2, 5, 28]), where small
gradient are treated as zero and not transmitted. We discuss these
approaches in detail in Section 5. As we describe next, we propose a
novel gradient compression scheme that uses adaptive quantization
and tunable FFT-based gradient compression that, together, achieve
variable compression ratios that can maintain convergence quality,
and, critically, is cheap enough computationally to be beneficial.

3 METHODOLOGY

3.1 The Compression Framework

Figure 3 provides a step-by-step illustration of our compression
pipeline.

1 Linearize the gradients by re-arranging gradient tensors
into a 1-d vector for Fast Fourier Transform (FFT), which is
discussed in Section 3.1.1.

2 Truncate the gradient frequencies based on their magnitudes
to sift out the top-k low-energy frequency components,
which is discussed in Section 3.1.1.

3 Transform the frequencies’ representation from 32-bit float
to a new, range-based, N-bit float (N < 32) to further com-
press down the gradient frequency, which is discussed in
Section 3.2.1.

4 Pack sparse data into dense vector and transfer them out,
which is discussed in Section 3.1.1.
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Figure 5: FFT Top-k v.s. direct Top-k sparsificaiton: Top-k ag-
gressively loses gradients (err=0.0246), while FFT preserves
more relevant information (err=0.0209) at the same sparsifi-
cation ratio.

On the receiver side, a similar approach (but using the inverse op-
erations in the reverse order) is used to decompress the gradient
frequency vector into gradients. Detailed discussions of compres-
sion components and their motivations are as follows.

3.1.1  Removing redundant information with FFT based Top-K spar-
sification. Motivation: the gradient points to a descent direction in
the high dimensional space, thereby small perturbations on gradi-
ents can be viewed as introducing local deviations along the descent
direction. If such deviations are limited during the training, these
imprecise descent directions still iteratively lead to a local optimum
at the cost of additional iterations. This is the intuition for the gra-
dient sparsification. Besides, Figure 4 indicates high redundancy
in DNN gradients due to a lot of near-zero components, that may
have limited contributions in updating gradients. Recently, several
top-k based methods [2, 5, 14] have also shown the possibility to
train DNNs with only the top 10% largest gradients. However, the
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resulting gradients, as shown in Figure 5, significantly deviate from
the original, for entirely dropping the gradients below the thresh-
old. This has motivated us to sparsify gradients, instead, in the
frequency domain for preserving the trend of the original signal
even after removing the same amount of information. For a gra-

—i2nkn
dient vector of length N, each gradients is g; = Zfl\f:_ol Xpe N
—i2rwkn
after FFT. If we sparsify on xp, i.e. g; = ;Opk xne” N g still

preserves some of the original gradient information. Therefore,
FFT based top-k shows better results than top-k in Figure 5. More
validations are available in the experimental section.

Our approach: The detailed computation steps of our FFT spar-
sification are highlighted in Figure 3. Recent generations of NVIDIA
GPUs support mixed-precision; and computing with half-precision
increases the FFT throughput up to 2X. So, we convert 32-bit (full-
precision) gradients into 16-bit (half-precision) gradients to improve
the throughput before applying FFT, and the information loss from
the conversion is negligible due to the bounded gradients.

After FFT, the next step is to filter the low energy gradient in
the frequency domain. We introduce a new hyper-parameter, 9,
to regulate the sparsity of frequencies. Here, we only describe the
procedures, and the tuning of € is thoroughly discussed in Sec-
tion 3.5 and experiments. If 8 = 0.9, we keep the top 10% frequency
components in magnitude and drop the rest by resetting to zeros
(Figure 3). The selection is implemented with either sorting or Top-
k. Since Thrust? and cuFFT? provide highly optimized FFT and
sorting kernels for the GPU architecture, we adopted them in our
implementations.

3.2 Packing sparse data into a dense vector

Thresholding gradient frequencies in the last step yields a highly
irregular sparse vector, and we need to pack it into a dense vector
to reduce communications. The speed of packing a sparse vector
is critical to the practical performance gain. Here, we propose a
simple parallel packing algorithm:

1 Create a status vector and mark an element in status as 1 if
the corresponding scalar in sparse vector is non-zero (e.g.,
sparse = [a,0,b,0,c,0,0] and status = [1,0, 1,0, 1,0, 0]).

2https://developer.nvidia.com/thrust
Shttps://developer.nvidia.com/cufft
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2 Perform a parallel prefix-sum on status to generate a location
vector ([1, 1,2, 2, 3, 3, 3]).

3 if status[i] == 1, write sparse[i] to dense[location[i]], and
dense vector is the packed result.

This parallel algorithm has a 689 speedup over the single-threaded
algorithm on a TESLA V100 with a throughput of 34 GB/s.

We need to send the status vector and the compressed gradient
to perform the decompression. The status vector is a bitmap that
tracks the location of non-zero elements, and its length in bits is the
same as the gradient vector. Figure 6 shows the cost of the status
vector is non-negligible after the compression ratio exceeding 20.
Therefore, setting 6 < 0.05 is not desired.

3.2.1 Range based Quantization. Motivation: the range of single
precision IEEE-754 floating point is [—3.4 * 1038, +3.4 % 1038], while
the range of gradients and their frequencies are much smaller (e.g.
[-1, +1]). This motivates us to represent the bounded gradients with
fewer bits. The problem of using an N bits IEEE 754 format, as seen
in Figure 7, is the inconsistency between the range of gradients
[min, max] and the range of the IEEE representable numbers. Given
N bits for IEEE 754, there are N — 2 combinations of exponent-
mantissa. The representation range is either too large or too small
for gradients, regardless of which combinations to choose. Another
conventional way is to equally divide the max — min into 2V, ie.,
uniform quantization. Still, the actual gradient distribution is far
from the uniform, and thereby it is also inefficient, as shown in
Figure 7.

Our approach: we propose an offset-based N-bit floating point,
which intends to match the distribution of representable numbers
to the real gradients. Our representation is to use the N-bit binary
format of a positive number as base number pbase, and encode it
to 0...01. The rest positive numbers are encoded as 0...01 (pbase) +
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Configurations: m = 3; max = 2; min = -2; eps = 0.125
pbase = eps >> (23-3) = 001111100000

32-bit IEEE-754 to 8-bit offset-based

input = 0.256

Dec to IEEE-754 Bin

8-bit offset-based to 32-bit IEEE-754

input = 00001001
add pbase, and minus 1

l00111110100000110001001001101111 l l 001111101000
cut off the rightmost 20 bits ¢ fill the rightmost 20 bits with 0
l 001111101000 |001 11110100000000000000000000000
minus pbase, and add 1 |EEE-754 Bin to Dec
output = 00001001 output = 0.25

Figure 8: Illustration of range based quantizer: an example
conversion of between 32 bits IEEE 754 and 8 bits our repre-
sentation.

offset. The negative numbers also follow the same rule. Therefore,
the total 2N representable numbers consist of P positive numbers
and 2V — P negative numbers. To match the range of real gradients,
our quantization permits the manual setting of a representation
range, defined by min and max. We estimate min and max from the
first few iterations of gradients. Then, we tune m and eps to adjust
the precision of representable numbers, as shown in Figure 7. m rep-
resents the number of bits left for the mantissa, and eps represents
the minimal representable positive number whose corresponding
N-bit binary is pbase. The following further explains how m and
eps adjust the precision:

o m: let’s denote the difference between two consecutive num-
bers as dif f. For m bits mantissa, the exponent increases by
1 after 2™ number, and increasing dif f = dif f * 2. Since
dif f is exponentially growing, this creates a Gaussian like
representation range that matches to real gradients. If max,
min and eps are fixed, P is small for a small m, as it takes
fewer numbers to increase the exponent. Similarly, a large
m leads to a larger P. Therefore, m is very sensitive for pre-
cision.

o eps: with max, min and m, dif f is also fixed. If eps is small,
it takes more steps to reach max yielding a large P; and vice
versa.

Since m and eps determine P, we need to tune them to make
P close to 2N /2 for balancing the range of positive and negative
numbers. In practice, N, min, and max are empirically decided from
gradients, and the m € [1, N]. We iterate every m to tune for eps.
Given N, m, min, and max, we initialize eps as a reasonably small
number, e.g., 0.002, then de-compress the 1..1 (the minimal repre-
sentable negative number) back to FP32 with the selected eps, and
the resulting number is the current actual minimal negative num-
ber actual_min; if actual_min is smaller than min, we decrease eps,
and increase otherwise. Following this path, P converges to 2N /2,
a state with equal positive and negative numbers, and yielding the
optimal eps.

Alg. 1 summarizes the conversion from 32-bit IEEE 754 to our N-
bit offset based float, and N is set w.r.t the precision requirement for
the training. Figure 8 provides a step-by-step conversion between
IEEE 754 and our 8 bits representation.

Figure 9 shows the resulting number distributions of our ap-
proach when the range is set to [-0.5, 0.5], and [-5, 5]. This shows
our approach successfully adjusts representation ranges, while still
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Algorithm 1: Offset-based N-bit floating point

Input: init(min, max)
pbase_binary = eps » (23-m) ;
Input: 32bit_to_Nbit(32bit_float)
if 32bit_float > max then

L 32bit_float = max;
32bit_binary = 32bit_float » (23-m) ;
Nbit_binary = 32bit_binary - pbase_binary + 1 ;
Input: Nbit_to_32bit(Nbit_binary)
32bit_binary = Nbit_binary + pbase_binary - 1;
32bit_float = 32bit_binary « (23-m) ;
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Symbol | Explanation

Tm Maximum throughput of precision conversion including
float-to-half and range-based quantization

Tr Maximum throughput of FFT

Tp Maximum throughput of packing

Ts Maximum throughput of top-k selection
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k Overall compression ratio

S €
3 =3
830 830
3 3
g 20 520
3 3
g g
=10 =10
o [}
£ £
0 ~—~nnnmnmn I 0 ~nmamen T
-04 -02 00 02 04 -04 -02 00 02 04
gradient value gradient value
(a) (-0.5, 0.5) (b) (-5, 5)

Figure 9: Adjustable representation range: our quantization
successfully adjusts its distribution.

T»=600GB/s, T=71GB/s, T,=67GB/s Tm=600GB/s, T=71GB/s, Ts=30GB/s
i

50 'm 50 ' m=600
~ : InfiniBand Ts = 12GB/s ~ :InﬂmBand —— Tp=12GB/s
540 &1 Ts=30GBis  S40 & Tp =67GB/s
s g s &
c30 T c30 T
o vt g vt
® =
g20 T $20 Ei
g £l S =)

E1o E10 5
o : o :
0 0
20 40 20 40
Tcomm (Gbps) Tcomm (Gbps)
(a) Top-k selection (b) Packing

Figure 10: Minimal compression ratio k exhibits perfor-
mance benefits at different network bandwidths T.omm,
packing throughput T, and selection throughput T;. It is
easy to get performance improvement from a slow network,
while it requires faster compression primitives to be benefi-
cial on a fast network.

maintaining similar distribution to actual gradients. This is because
dif f increases 2x after 2™ numbers, leading to more numbers
around 0, and less to max or min. Unlike prior static approach, our
offset based float dynamically changes the representable range to
sustain the various precision requirements from different train-
ing tasks. Besides, the float quantizations are embarrassingly data-
parallel, so it is easy to achieve the high-performance.

3.3 Sensitivity Analysis

The compression cost shall not offset the compression benefit to
acquire practical performance gain. In this section, we analyze
the performance of compression primitives and their impact on
perceived network bandwidth. Table 1 defines all symbols used
in the analysis. It is noted that we use the same notation T, for
both float-to-half and range-based quantization as they are O(N)
algorithms and embarrassingly parallel. Given a message of size
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Table 1: Symbols of equations in Section 3.3.

M, the cost of compression is:

1 1 1
+— =+ =
Ts

ATt 1

2
costcomp = M(T_
m

The communication cost after compression is :

M 1
cost =—(= 2
comm Tcomm(k) ( )
So the communication cost saved by compression is:
M 1
saved_costcomm = 1--+ (3)
Tcomm k

To compensate for the cost of compression and decompression,
2c0stcomp < saved_costcomm must hold to acquire the practical
performance gain, that is

1

©
1- 2Tcomm(% + T_lf + % + Tls)
The performance of Tp;, depends on the hardware characteristics
(such as GPU DRAM bandwidth), and Ty depends on cuFFT. It is
therefore reasonable to consider them fixed for a particular GPU
hardware. T and T, depend on the libraries and algorithms applied.
By varying Ts and T, in Equation 4 we analyze the minimal com-
pression ratio k that will show benefits for a particular network
infrastructure. Figure 10 shows the relationship between k and
Teomm- If the network throughput is low, like Ethernet, a small k
could compensate for the cost of compression and decompression,
which means increasing k would significantly boost the perfor-
mance of communications. For example, Figure 10 shows that k = 2
is enough to compensate for the overhead of compression and
decompression on a 10Gbps Ethernet. One the other hand, if the
network throughput is high, like InfiniBand, a larger k would be nec-
essary; otherwise, the overall performance will be impacted by the
overhead of compression and decompression. More precisely, the
red line in Figure 10 indicates that the minimal compression ratio k
should be about 30 to exhibit any benefit on a 56Gbps InfiniBand.
Figure 10 also predicts that the performance of the compres-
sion primitives is crucial for high bandwidth networks. As seen in
Figure 10.a, if Ts is 12GB/s, for any Tcomp larger than 22Gbps no
compression ratio will be able to provide any tangible communica-
tion improvement.
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3.4 Convergence Analysis
In order to analyse the convergence of our proposed technique we
formulate the DNN training as:
1 N
min f(x) := 5 D fi). )
i=1

where f; is the loss of one data sample to a network. For non-convex
optimization, it is sufficient to prove the convergence by showing
IVF(x")||? < € as t — oo, where € is a small constant and ¢ is the
iteration. The condition indicates the function converges to the
neighborhood of a stationary point. Before stating the theorem, we

need to introduce the notion of Lipschitz continuity. f(x) is smooth
and non-convex, and V f are L-Lipschitz continuous. Namely,

IVfG) = VI < Lilx = yll.

For any x, y,

F@) < fO)+(Vf(x)y—x) + gllx— yli®.

ASSUMPTION 3.1. Suppose j is a uniform random sample from
{1, ..., N}, then we make the following bounded variance assumption:

E[[|Vfj(x) = VF)I*] < o, for anyx.

This is a standard assumption widely adopted in the SGD con-
vergence proof [21] [13]. It holds if the gradient is bounded.

ASSUMPTION 3.2. In the data-parallel training, the gradient of
each iteration is 0 = 1—1,2117 vi; p is the number of processes, and

v; is the gradient from the ith process. Let’s denote § € [0,1] to
control the percentage of information loss in the compression function
9; = T(vj, 0) that does quant(FFT-sparsification(v;)), s0 0 = Z‘f 7.
We assume there exists a a such that:

o =2l < aloll.

So, ¥ only loses a small amount of information with respect to
0, and the update from the sparsified gradient is within a bounded
error range of true gradient update. It is a necessary condition for
deriving the upper bound.

With our compression techniques, one SGD update becomes:

p

1 A ~
Xt =t —m(;;vi) =2 = nidr. ©)
Then, we have the following lemma for one step:
LEMMA 3.3. Assumen; < ﬁ,@? < %. Then
nt (12 t t+1 2,Mt0”
- EUIVFGOI] < BLf ()] - E[f ()] + (Lye +9t)%- ™

Please check the supplemental material for the proof of this
lemma. Summing over (7) for K iterations, we get:
9 2
oo mELIVF (] S4(f(X°)—f(xK))+Zﬁ_11(Lm+93)h’ﬁij’» (8)
Next, we present the convergence theorem.

THEOREM 3.4. If we choose a fixed learning rate, n; = n; a fixed
dropout ratio in the sparsification function, 6; = 0; and a fixed mini-
batch size, by = b; then the following holds:

0y_prK—1 p 2
minge < B[ VF(x) 2] < LOFOZ ) (1 4.62) 2807
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Proof: ming<;<x—1 E[[IVf(x)II?] < % S n/ElIVF(x)I?], as
IV £(x")||? = 0. By (8), we get the theorem. O

THEOREM 3.5. If we apply the diminishing stepsize, n;, satisfying
Doeolt =00, 207, r]? < co, our compression algorithm guarantees
convergence with a diminishing drop-out ratio, 0;, zf&f = Ln;.
Proof. If we randomly choose the output, x¢y, from {xo, L, xK-1 I

with probability —z— for x*, then we have:

t=0 Mt

_ 2 BV I

B[V f (xour)II] SE0 )
) f6) | B Lni+07)2n 0
< + . (10
T XS m bXis me 10)
Note that Zf: _01 n: — oo, while
Zfz_ol(Lryt + 9?)277;02 = Zfz_ol 4Lrﬁcrz < 00,
and we have E[||V f (xou:)||2] — 0. O

4 EVALUATION

Our experiments consist of two parts to assess the proposed tech-
niques. First, we validate the convergence theory and its assump-
tions with AlexNet on ImageNet and ResNet32 on CIFAR10, which
sufficiently cover typical workloads in traditional linear and re-
cent non-linear neural architectures, and also provide coverage
on two widely used datasets. Then, we show that the FFT-based
method demonstrates better convergence and faster compression
than other state-of-the-art compression methods such as QSGD [4],
TernGrad [29], Top-k sparsification [5, 20], as our techniques incur
fewer approximation errors, while still delivering a competitive
compression ratio for using both sparsification and quantization.

Parallelization scheme: we choose BSP for parallelization for
its simplicity in the theoretical analysis: BSP follows strict syn-
chronizations, allowing us to better observe the effects of gradient
compression toward the convergence by iterations.

Implementation: we implemented our approach, losses SGD(no
compression), QSGD, Top-K, and TernGrad in a C++ DL framework,
SuperNeurons [27]; We used the allgather collective from NVIDIA
NCCL2 to exchange compressed gradients since existing communi-
cation libraries lack the support for sparse all-reduce (Figure 1a).
Even though SGD usually uses allreduce instead of allgather as
it does not have compression; for a fair comparison, we applied
allgather for all algorithms to demonstrate the algorithmic benefit
of our FFT compression. Every GPU has a copy of global gradients
for updating parameters after all-gather local gradients. Parame-
ters need to be synchronized after multiple iterations to eliminate
the precision errors, and here we broadcast parameters every 10
iterations. It is noticed that we did not adopt communication and
computation overlapping strategy as it could be another optimiza-
tion method orthogonal to compression, and is not in the scope of
this paper.

Training setup: The single GPU batch is set to 128 and 64
for ResNet32 and AlexNet, respectively. The momentum for both
networks is set to 0.9. The learning rate for Resnet32is 0.01 at epochs
€ [0, 130], and 0.001 afterwards; the learning rate for AlexNet is 0.01
at epochs € [0, 30], 0.001 at epochs € [30, 60], and 0.0001 afterwards.
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Figure 11: the latency for all-gather AlexNet and ResNet32
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Figure 12: Empirical verification of Assumption 3.2.

Machine setup: we conducted experiments on the Comet clus-
ter hosted at San Diego Supercomputer Center. Comet has 36 GPU
nodes, and each node is equipped with 4 NVIDIA TESLA P100
GPUs and 56 Gbps FDR InfiniBand, Figure 11 shows the allgather
cost almost linearly increases with the number of GPUs. This is
because the total exchanged messages in allgather linearly increase
with #GPUs [12]. In our experiments, we used 8 GPUs in evaluating
the accuracy and performance when integrating our compression
methods in training, and up to 32 GPUs in evaluating the scalability
of the distributed training.

4.1 Validation of Theorems

Verification of assumptions: our convergence theorems rely on
Assumption 3.1 and Assumption 3.2. Assumption 3.1 automatically
holds due to the bounded gradients. Assumption 3.2 always hold

120

HPDC ’20, June 23-26, 2020, Stockholm, Sweden

0.6
>
Q
£0.4
=]
3
© / no sparsification
— 0.2 sparsify 50%
g' : —— sparsify 70%
—— sparsify 90%
—— sparsify 90% before 30, then 0%
0.0
0 20 40 60
epochs
(a) AlexNet

o
o

LA™,
no sparsification

sparsify 50%

sparsify 70%

sparsify 90%

sparsify 90% before 130, then 0%
sparsify 99% before 130, then 0%

100 150 200 250
epochs

top 1 accuracy
o
[e2)

o
~

(b) ResNet32

Figure 13: Empirical validation of Theorem 3.5.

if p = 1, but it can break in very rare cases for p > 1. For exam-
ple, @ does not exist if & = [0, 0], given two opposite gradients,
e.g. 01 = [-0.3,0.5] and 02 = [0.3,-0.5]. Though the scenario is
very unlikely, we empirically validate Assumption 3.2 on different
llo=21|
il

practically sustaining Assumption 3.2.

Validation of theorems: Theorem 3.4 states a large compres-
sion ratio, i.e. large 6, can jeopardize the convergence, and the-
orem 3.5 states that our FFT-based sparsified SGD is guaranteed
to converge with a diminishing compression ratio. The goal of
optimization is to find a local optimum, where the gradient ap-
proximates to zero, i.e, B[[|Vf(x!)||?] — 0, as K — 0. From the

AfEO)-fX)
K

training tasks by calculating o = . From Figure 12, a € [0, 1]

inequality in theorem 3.4,

E[IV£(x")||?] bounded by (Ly + 92)%. Lp

— 0as K — oo, leaving
2
Z'ITG is the error term
2
from SGD, and HZZ'ITU is the error term from the compression.
Compared to the SGD, using a large 0 in the gradient compression
slacks off the bound for E[||V f(x*)||?], causing the deterioration
on both the validation accuracy and training loss. As shown in
Figure 13, when 6 = 0.5 (i.e., sparsify 50%), the accuracy and loss
traces of AlexNet and ResNet32 behave exactly the same as SGD
(shown as no sparsification). When 6 = 0.9 (i.e., sparsify 90%), both

the training loss and validation accuracy significantly deviate from
2n026?

SGD, as a large 0 increases the error term loosening the
bound for E[||V f(x?)||?]. Therefore, 6 is critical to retain the same
performance as SGD, and it is tricky to select 6 in practice. We
present Theorem.3.5 to resolve this issue. The theorem compen-
sates for Theorem 3.4, indicating that a large 6 can still deliver
the same accuracy as SGD if we shrink the 6 during the training.
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Figure 14: Training wall time on a 8 GPUs cluster: FFT out-
performs TernGrad, QSGD and Top-k in both the speed and
test accuracy. FFT is faster for a high compression ratio by
combining sparsification and quantization, while the better
gradient quality of FFT explains the good accuracy, as we
will show in Figure 15.

Empirical results in Figure 13 validate Theorem 3.5. For example,
by setting 6 = 0.9 (drop 90%, red line), both AlexNet and ResNet32
fail to converge to the same case of SGD. However, it is able to
bring the accuracy back to the same result as the SGD in the same
epochs simply by diminishing 6 from 0.9 to 0 at the 30th epoch for
AlexNet, and at the 130th epoch for ResNet32. Therefore, we claim
both Theorem 3.4 and Theorem 3.5 are legitimate.

Implications of theorems: these two theorems explain the
relationship between the accuracy and compression ratio 6, and act
as a guide to help preserve the training network accuracy by tuning
the compression ratio during the training. Hence, in practice, to
ensure the convergence, we can shrink 6 along with the learning
rate 7 for the condition of 0? = Ln;. In order to recover the accuracy,
we can also reduce 6 as the case in Fig. 13 that a failure case (6 = 0.9)
recovers the accuracy after reducing 0 to 0 in the middle of training.

4.2 Algorithm Comparisons

Choice of Algorithms: Here we evaluate our FFT-based techniques
against 3 major gradient compression algorithms, Top-k sparsifica-
tion [2, 5, 20], and Terngrad [29] and QSGD [4]. The baseline method
is SGD using 32 bits float. Top-k sparsification thresholds the gradi-
ents w.r.t their magnitude, and the compression ratio is determined
by 1/(1-6), where 0 is the drop-out ratio. Please note that Top-k
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Method AlexNet Speedup ResNet32 Speedup
top1 acc w.r.t SGD top1 acc w.r.t SGD
SGD, FP32 56.52% 1 92.11% 1
FFT 56.61%, (+0.09%)  2.26  91.99%, (—0.12%) 1.33x
Top-K 55.07%, (—-1.45%) 153  90.31%, (-1.80%) 1.12x
QSGD 53.54%, (—2.98%) 173  88.66%, (—3.45%) 1.21x
TernGrad-noclip 52.86%, (—=3.66%) 1.81  86.90%, (—5.21%) 1.24x

Table 2: Summarization of Figure 14: the difference of test
accuracy and the speedup over lossless SGD.

variant e.g. DGC [20] utilizes heuristics like error accumulation and
momentum correction to boost performance. To fairly evaluate Top-
k sparsification against FFT based sparsification, we evaluated the
vanilla Top-k v.s. the vanilla FFT sparsification, and finding heuris-
tics to boost FFT sparsification is orthogonal to this study. Both
Terngrad and QSGD map gradients to a discrete set. Specifically,
Terngrad maps each gradient to the set of {—1, 0, 1} * max(|g|), and
thus 2 bits are sufficient to encode a gradient. Instead, QSGD uses
N bits to maps each gradient to a uniformly distributed discrete set
containing 2N bins. Please note TernGrad does not quantize the
last classification layer to keep good performance [29], while we
sparsify the entire gradients.

Algorithm Setup: Regarding Top-k and FFT based sparsifica-
tion, results from Figure 13 and [5] show a noticeable convergence
slowdown after § > 90%. To maintain a reasonable accuracy, we
choose 6 = 85% for both top-k and FFT based sparsification. We
use min = —1 and max = 1 as the boundaries, and 10 bits in ini-
tializing our N-bit quantizer. Therefore, the compression ratio for
Top-k is 1/(1-0) = 6.67x and FFT based is 21.3x with an additional
32/10 from quantizers. Terngrad uses 2 bits to encode a gradient,
while we use 8 bins (3 bits) for QSGD to encode a gradient. As a
result, the compression ratio of Terngrad is 16x and QSGD is 10.6x.
Please note we calculate the compression ratio w.r.t gradients as
gradient exchanges dominate communications in BSP. Following a
similar setup in Figure 13, each algorithm is set to run 180 epochs
on CIFAR10 and 70 epochs on ImageNet using 8 GPUs.

Figure 14 demonstrates that our framework outperforms QSGD,
Terngrad, and Top-k in both the final accuracy and the training wall
time on an 8 GPU cluster, and Table 2 summarizes the test accuracy
and speedup over the lossless SGD. Particularly, FFT consistently
reaches a similar accuracy to SGD with the highest speedup. To
further investigate the algorithmic and system advantages of the
FFT method, we investigate the gradient quality and the scalability
of iteration throughput.

4.2.1 The algorithmic advantages of FFT. We claim the algorith-
mic advantages of FFT for preserving the original gradient dis-
tribution and rendering fewer reconstruction errors than others.
We uniformly sampled the gradients of ResNet32 every 10 epochs
during the training. Figure 15 demonstrates the distribution of re-
constructed gradients w.r.t the gradients before the compression.
FFT is the only one that retains the original gradient distribution,
though 0 = 85% frequency has been removed. In contrast, Top-k
loses the peak for eliminating the near-zero elements at the same
0. Similarly, QSGD presents 7 clusters for using 8 bins to repre-
sent a gradient; and, in general, TernGrad shows 3 major clusters
around {0, -0.05, 0.05} for using a quantization set of {-1, 0, 1}. Please
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the iteration throughput, and calculate the speedup w.r.t 1
GPU.

note that Terngrad shows 11 bars; this is due to the aggregation of
sparsified gradients from each node. Aside from qualitatively in-
specting the gradient distribution, we also quantitatively examined
the empirical cumulative distribution of the reconstruction error in
Figure 15e. FFT demonstrates the lowest error within the range of
[107°,1072]. Therefore, FFT can reach better accuracy in the same
training iterations.

4.2.2 The system advantages of FFT. Our compression framework
fully exploits both the gradient sparsity and the redundancy in 32-
bit floating point by further quantizing the FFT sparsified gradient.
It enables FFT to deliver a much higher iteration throughput than
QSGD, TernGrad, and Top-K. Following the same setting in Fig-
ures 14, Figure 16 demonstrates the iteration throughput of training
AlexNet and ResNet32 from 2 to 32 GPUs. Please note that using
a very large 0 (e.g., 0.999) can get an impressive speedup, but it
also drastically hurts the final accuracy. Here we still use 6 = 85%.
The gradients of AlexNet (ImageNet) is around 250 MB, while the
gradients of ResNet32 (CIFAR-10) are only 6MB. Therefore, the
scalability of AlexNet is generally better than ResNet32. Better re-
sults are also observable if using a slow network, e.g., 100MB Gbps.
When GPUs < 4, the speedup is similar as communications are
intra-node through PCI-E. FFT still consistently demonstrates the
highest iteration throughput for a better compression ratio when
GPUs increase from 8 to 32.

5 RELATED WORK

We categorize the existing lossy gradient compression into two
groups: (1) quantization and (2) sparsification.
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Quantization: 1-bit SGD [24] is among the first to quantize gradi-
ents to alleviate the communication cost in the distributed training.
Specifically, it quantizes a 32-bit IEEE-754 float into a binary of
[0, 1] to achieve a compression ratio of 32X. Though their meth-
ods are purely heuristic, and their empirical validations demon-
strate a slight loss of accuracy, it shows the possibility to train a
network with highly lossy gradients. Subsequently, several quan-
tization methods have been proposed. Flexpoint [18] uses block
floating-point encoding based on current gradient/weight values.
HOGWILD! [9] quantizes both weights and gradients into 8-bit
integers by rounding off floats (i.e., low-precision training); but this
idea is largely restricted by the availability of low-precision instruc-
tion sets. TernGrad [29] quantizes a gradient as [-1, 0, 1]x|max(g)|,
while QSGD [4] stochastically quantizes gradients onto a uniformly
discretized set. Both approaches distribute the precision uniformly
across the representable range—ignoring both the distribution and
the range of the gradients. As we show, gradients follow a normal
distribution (Figure 4). In our range-based quantizer, we allocate
precision for the range and the distribution of the values to better
exploit the limited number of bits. Most importantly, QSGD and
TernGrad damage the original gradient distribution due to limited
representable values after the quantization (Figure 15). As a result,
TernGrad and QSGD incur an observable deterioration in the final
accuracy (Table 2).

Sparsification: Aji and Heafield [2] present the very first Top-k
gradient sparsification showing that the training can be done with
a small accuracy loss by setting the 99% smallest gradients to zeros.
Based on the Top-k thresholding, Han et al. [14] propose Deep
Compression, which uses heuristics like momentum correction and
error accumulation to resolve the accuracy loss in the vanilla Top-k.
Please note that these heuristics are orthogonal to our methods
and can also be applied to improve ours. Jin et al. [17] propose
DEEPSZ, which performs error-bounded lossy compression on
the pruned weight. It is a modification of the SZ lossy compres-
sion framework [11]. Cédric et al. [22] propose a communication
sparsification approach called SPARCML. Different from ours, the
SPARCML focuses on the implementation of MPI collective opera-
tions of sparse data. D. Alistarh et al. [5] analyze the convergence of
Top-k compression. With [5], we noticed a significant convergence
slowdown at a large sparsity. As we investigated, these Top-k meth-
ods also distort the gradient distribution at a large sparsity, yielding
higher approximation errors than the original gradients. At the
same sparsity (0), our FFT method is much better at preserving the
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original gradient distribution and shows less approximation error
and better results.

6 CONCLUSION

As indicated in Sec. 2, exchanging gradients is the major bottleneck
for the distributed DNN training. To alleviate this communica-
tion bottleneck, this paper proposes a lossy gradient compression
framework that uses an FFT-based gradient sparsification and a
range-based, variable-precision, floating-point representation. We
theoretically prove that our techniques preserve the convergence
and the final accuracy by adapting the sparsification ratio 6 during
the training, and empirically verify the assumptions and the theory.

At the same sparsification ratio (6), we show FFT preserves more
gradient information than other state-of-the-art lossy methodolo-
gies including Top-K sparsification, Terngrad, and QSGD. Besides,
our adaptive float quantization further improves the overall com-
pression ratio with negligible loss of gradient information (Fig. 15).
These advantages enable us to use a larger compression ratio in
retaining the same accuracy as the lossless SGD, than other lossy
methodologies to improve the scalability (Fig. 16) in the distributed
training.

Our lossy gradient compression framework demands a highly
efficient allreduce that supports communications of sparse data,
while current MPI implementations, such as Open MPI or MVA-
PICH, lack the support of sparse collectives. Though this work uses
all-gather to circumvent this issue, future research and develop-
ment of a bandwidth-efficient allreduce with the sparse support
are highly desired to facilitate the deployment of lossy gradient
compression techniques in practice.
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