
Paths to OpenMP in the Kernel
Jiacheng Ma

Northwestern University
United States

Wenyi Wang
Northwestern University

United States

Aaron Nelson
Northwestern University

United States

Michael Cuevas
Northwestern University

United States

Brian Homerding
Northwestern University

Argonne National
Laboratory
United States

Conghao Liu
Illinois Institute of

Technology
United States

Zhen Huang
Northwestern University

United States

Simone Campanoni
Northwestern University

United States

Kyle Hale
Illinois Institute of

Technology
United States

Peter Dinda
Northwestern University

United States

Abstract
OpenMP implementations make increasing demands on the kernel.
We take the next step and consider bringing OpenMP into the
kernel. Our vision is that the entire OpenMP application, run-time
system, and a kernel framework is interwoven to become the kernel,
allowing the OpenMP implementation to take full advantage of
the hardware in a custom manner. We compare and contrast three
approaches to achieving this goal. The �rst, runtime in kernel (RTK),
ports the OpenMP runtime to the kernel, allowing any kernel code
to use OpenMP pragmas. The second, process in kernel (PIK) adds
a specialized process abstraction for running user-level OpenMP
code within the kernel. The third, custom compilation for kernel
(CCK), compiles OpenMP into a form that leverages the kernel
framework without any intermediaries. We describe the design and
implementation of these approaches, and evaluate them using NAS
and other benchmarks.

CCS Concepts
• Software and its engineering ! Operating systems, com-
pilers; Runtime environments; • Computing methodologies
! Parallel computing methodologies; • Blended systems;

Keywords
parallelism, OpenMP, operating systems

ACM Reference Format:
Jiacheng Ma, Wenyi Wang, Aaron Nelson, Michael Cuevas, Brian Homerd-
ing, Conghao Liu, Zhen Huang, Simone Campanoni, Kyle Hale, and Peter

This project was supported by the United States National Science Foundation via
grants 1763743, 1718252, 1763612, 1730689, 1908488, 2028851, and 2028958.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476183

Dinda. 2021. Paths to OpenMP in the Kernel. In The International Confer-
ence for High Performance Computing,Networking, Storage and Analysis (SC
’21), November 14–19, 2021, St. Louis,MO, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3458817.3476183

1 Introduction
OpenMP [2, 16, 62] is arguably the most widely-employed approach
for the linguistic expression and realization of shared memory
parallelism, in part because it extends existing sequential languages
like C, C++, and Fortran with parallel features. As a consequence,
it can be incrementally adopted. While OpenMP’s origins are in
compact expression of loop-level data parallelism on SMPs, it has
grown to include support for heterogeneous parallelism (including
memory and devices), and task parallelism (including �ne-grained
and recursive tasks).

AnOpenMP implementation is split between the compiler, which
understands its language directives (#pragma omp ...) in the con-
text of the sequential host language and lowers them to sequential
code, and a run-time system that the lowered code invokes to dy-
namically create and manage parallelism. Underneath both lies the
kernel, which implements primitives for memory, thread, task, and
synchronization management that the run-time system uses, and
the hardware itself, which the compiler, run-time system, and kernel
ultimately try to leverage in the most performant way possible.

In a typical implementation, the OpenMP compiler and run-time
system target the user-mode process model of a general-purpose
kernel. This means that neither the generated code nor the run-time
system have access to the full feature set of the hardware, which
is only visible in kernel mode. Additionally, both are limited to
the features and execution model of the user-level process abstrac-
tion the kernel exposes via system calls and other mechanisms.
In today’s implementations, the OpenMP application becomes a
multithreaded Linux process.

There is reason to believe that by removing these limitations,
performance and e�ciency gains are possible [28, 32, 49]. Con-
sider a parallel program that, instead of being a process, is itself
a special-purpose kernel. Such an implementation of the program
can directly leverage all hardware capabilities, including those that

https://doi.org/10.1145/3458817.3476183
https://doi.org/10.1145/3458817.3476183

match well to parallel language features but are typically unavail-
able in user mode [31]. Furthermore, the kernel abstractions used
by the program can be accelerated [29], or even specialized [25, 75].

While such a “parallel application is a kernel” approach has
demonstrated promise with other parallelism models, there is cur-
rently limited support of it for OpenMP. The goal of this paper is
to show how to change this—to bring OpenMP into the kernel.

The design space for achieving this goal is large, and we re-
port on three distinct points within it that represent particularly
interesting trade-o�s. The �rst of these, runtime in kernel (RTK)
involves no changes to the compiler. In RTK, the OpenMP runtime
and its immediate dependencies are ported to (or reimplemented
within) the kernel. The application is then compiled as normal and
linked directly with the kernel codebase, to create a custom kernel.
This represents the tightest kernel/application coupling possible
without changes to the compiler, but it requires considerable e�ort,
particularly if the application has other dependencies.

In process in kernel (PIK), the kernel codebase is modi�ed to
create a special process abstraction that behaves like the user-level
process abstraction, but, in fact, all code runs in kernel mode. In our
implementation, the usual user-level compilation and linking steps
are slightly modi�ed, and the unmodi�ed OpenMP run-time system
is simply linked in. This allows a normally user-level program
to be compiled and linked into a form that can be dynamically
loaded into a running kernel, somewhat similar to a Linux kernel
module. The environment it sees, however, emulates the user-level
process environment of Linux. This allows kernel mode features
to be leveraged incrementally. The PIK approach requires minimal
e�ort of the user and can seamlessly handle additional dependencies.
However, it is also the loosest coupling of the kernel and application.

The custom compilation for kernel (CCK) point of the design space
allows the modi�cation of the compiler itself. In our implementa-
tion, specialized LLVM analysis and compilation passes handle
OpenMP directives (and add automatic parallelization where pos-
sible), lowering them down to a form that uses a tiny task-based
run-time instead of the OpenMP run-time system. This run-time
system is then directly implemented within the kernel. The CCK
approach promises the tightest possible coupling of the OpenMP
application, the kernel, and the hardware.

Our contributions are as follows.

• We make a case for kernel-level OpenMP support.
• We describe the design and implementation of the runtime
in kernel (RTK) approach.

• We describe the design and implementation of the process in
kernel (PIK) approach.

• We describe the design and implementation of the custom
compilation for kernel (CCK) approach.

• We provide a performance evaluation of the approaches
using NAS and other benchmarks.

• We compare and contrast these approaches in detail.

While it is not our goal here, we also note that enabling OpenMP
within the kernel, speci�cally the RTK design point, also presents
the opportunity towrite traditional kernel-level code usingOpenMP.
This may become useful as general purpose kernels need to deal
with increasingly larger scale machines. Our code can be found via
http://interweaving.org.

2 Software, testbed, and benchmarks
Our work is built on the LLVM implementation of OpenMP, and the
Nautilus kernel framework. We compare with the same OpenMP
implementation on Linux using two well-known benchmark suites
on node hardware with up to 192 cores and 8 sockets.

2.1 Software
Clang/LLVM: LLVM [50] is a widely-used compilation framework
in academia and industry that enables sophisticated code analyses
and transformations. In this work, we use the framework in two
respects. First, we use the Clang/LLVM 9 implementation of the
OpenMP directives in C/C++. Clang/LLVM lowers OpenMP code
to the sequential LLVM intermediate representation (LLVM-IR),
within the “middle-end” of LLVM.1 For RTK and PIK our goal is
to use Clang/LLVM without modi�cation, meaning that identical
object code is created for a user-level and kernel-level program.

libomp: libomp is the OpenMP run-time system that the code
generated by Clang/LLVM invokes. libomp comprises about 75K
lines of C++ and C, and 2K lines of assembly (all measured by
sloccount). It targets the user-level process model of Linux and
has several dependencies beyond this. For RTK we port libomp
and its dependencies into the Nautilus kernel with minimum possi-
ble changes. For PIK we employ the unchanged user-level binary
libomp directly.

NOELLE: For the CCK approach an alternative compilation path,
implemented within the Clang/LLVM framework, is used both to
handle OpenMP directives and to do automatic parallelization from
sequential code. This builds on a powerful new analysis framework,
NOELLE [55], 46,750 lines of C++. The same lowered sequential
code is produced for the user-level and kernel-level target.

VIRGIL: The sequential code generated by CCK uses a custom,
task-based run-time system, named VIRGIL, instead of libomp.
Two versions of VIRGIL exist: a user-level version that uses C++ 17
abstractions to build on top of C++ threads (e.g. clone()) and C++
synchronization (including futex()) on Linux, and a kernel-level
version that directly uses the kernel’s internal task system, which
operates similarly to the SoftIRQ mechanism in the Linux kernel.

Nautilus kernel framework: Nautilus [29] is a publicly available
open-source OS kernel that currently runs directly on x64 NUMA
hardware, including Xeon Phi. It is independent of the Linux code-
base. Nautilus comprises over 331K lines of code as measured by
sloccount. Nautilus was designed with the goal of supporting
hybrid run-times (HRTs). An HRT is a mash-up of an extremely
lightweight OS kernel framework, such as Nautilus, and a paral-
lel run-time system [27, 28]. Nautilus can help a parallel run-time
ported to an HRT achieve very high performance by providing
streamlined kernel primitives such as synchronization and thread-
ing facilities. It provides the minimal set of features needed to
support a tailored parallel run-time environment, avoiding features
of general purpose kernels that inhibit scalability.

Nautilus has a range of features that help make the execution of
an HRT faster and more predictable. Identity-mapped paging with
the largest possible page size is used. All addresses are mapped at
boot, and there is no swapping or page movement of any kind. As

1Fortran OpenMP programs could also be supported using the Flang front-end to
LLVM. The middle-end transformations and the run-time system are the same.

2

a consequence, TLB misses are extremely rare, and, indeed, if the
TLB entries can cover the physical address space of the machine, do
not occur at all after startup. There are no page faults. All memory
management, including for NUMA, is explicit and allocations are
done with buddy system allocators that are selected based on the
target zone. For threads that are bound to speci�c CPUs, essential
thread (e.g., context, stack) and scheduler state is guaranteed to
always be in the most desirable zone. The core set of I/O drivers
developed for Nautilus have interrupt handler logic with deter-
ministic path lengths. Finally, interrupts are fully steerable, and
thus can largely be avoided on most hardware threads. Application
benchmark speedups from 20–40% over user-level execution on
Linux have been demonstrated, while benchmarks show that prim-
itives such as thread management and event signaling are orders
of magnitude faster [29, 30].

In this paper, Nautilus is used only as a stand-alone OS kernel
that runs directly on bare metal with no virtualization. No Linux is
used in any way when running Nautilus. While we don’t use it here
it is also possible to run Nautilus on top of commodity virtualization
platforms. Of note for security and deployment concerns, Nautilus
can run side-by-side with Linux in a multi-kernel con�guration
either using a hybrid virtual machine (HVM) [33, 34] or using the
Pisces co-kernel framework [64] for a multi-kernel setup on bare
metal. In a multi-kernel con�guration, Nautilus and Linux can be
compartmentalized (mutually protected) by HVM or Pisces, and
rebooting the Nautilus part of the con�guration can be done at
timescales similar to a process creation in Linux.

2.2 Testbed and benchmarks

Testing and performance measurement is done on PHI, a Colfax
Ninja Xeon Phi server, which is based on a Supermicro K1SPE
motherboard that includes a 1.3 GHz Intel Xeon Phi 7210 (64 cores,
256 hardware threads) mated to 16 GB of MCDRAM and 96 GB
of DRAM. We use this machine because it allows us to consider
relatively large scales on a machine where we also have the full
bare-metal access necessary for kernel testing.

PHI is used with hyperthreading o�, and with the �at memory
model. In this model, the MCDRAM is given a distinct NUMA zone
with high distance to every CPU. As a consequence, the DRAM is
preferred by any NUMA-aware OS. The DRAM consists of 6 16 GB
DIMMs and is con�gured as 6-way interleaved. Both Nautilus and
Linux are booted directly on this platform. In both cases, for the
problem sizes used in our evaluation, only the DRAM is used. The
Linux kernel involved is version 5.8.0. It is a tickless kernel driven
by the LAPIC one-shot timer, as is Nautilus. The Linux distribution
is CentOS 7 and it was con�gured according to Intel requirements
by ColFax on delivery. Huge pages are enabled, transparent huge
pages is set to madvise, and compaction is set to always.

Additional performance measurement is done on 8XEON, a Su-
perMicro 7089P-TR4T server with eight 2.1 GHz Intel Xeon Plat-
inum 8160s (192 cores, 384 hardware threads total) mated to 768 GB
of DRAM spread evenly across eight NUMA zones. Hyperthreading
is o�. Both Nautilus and Linux are booted directly on this platform.
The Linux kernel is 5.4.0 and is tickless, as is Nautilus. The distri-
bution is Ubuntu 20.04.2 LTS. Huge pages are enabled, transparent
huge pages is set to madvise, and compaction is set to madvise.

To evaluate ourwork, we use the EdinburghOpenMPMicrobench-
mark Suite [9–11] (EPCC) and the NAS 3.0 Application Benchmark
Suite [3, 38] as ported to C+OpenMP [61]. EPCC measures the
overhead of OpenMP directives. NAS is a well-known suite of
benchmarks geared towards aerospace applications.

3 Runtime in kernel (RTK)
The runtime in kernel (RTK) model adds the application code, run-
time system, and other dependencies directly into the kernel, mak-
ing building of these part of the kernel compilation process. Any
part of the kernel can then use OpenMP, not just the application.

3.1 Compilation
OpenMP provides the programmer with the ability to annotate
statements in the base language with directives (pragmas) that con-
trol how the statement is to be parallelized. In the Clang/LLVM
implementation of OpenMP, the compilation process produces ob-
ject code that invokes the libomp run-time system. The application
code may have other dependencies as well, for example on libc,
libstdc++, libm, and so on. Our compilation process assumes that
the necessary dependencies have been ported to the kernel. The
need to port arbitrary dependencies to the kernel is a key limitation
of the RTK approach. If an application has many such dependencies,
other approaches may be preferable.

In RTK, no source code changes relating to OpenMP are required.
However, the compilation and linking process needs to be adjusted
for incorporation into the kernel. For the most part, this requires
changes in compilation �ags. However, since main() is now the
kernel, an alternative means of starting the application needs to be
added, which we do by converting the application’s main() into a
Nautilus shell command.

The x64 ABI provides for several features that do not exist within
kernel code. As a consequence, the compilation process must be
adjusted by changing or adding compilation �ags. Two critical
elements are the memory model and red zone use. Because the appli-
cation is now a part of the kernel, the kernel’s memory model must
be speci�ed. Red zone is a bit more challenging to understand. The
red zone part of the x64 ABI allows the compiler to use a limited
amount of stack space without allocating it. This can make leaf
functions faster. Unlike user-level code, however, kernel code must
be correct in the presence of interrupts. For performance reasons,
Nautilus handles interrupts on the current thread’s stack. Conse-
quently, an interrupt would clobber such unallocated stack state.
Therefore, the application and its dependencies must be compiled
without red zone support.

As a practical matter, there are essentially two ways to incor-
porate these changes into the application and its build process: (1)
porting the application’s build process to the kernel’s build pro-
cess as a subdirectory/submodule of the kernel, or (2) separately
building the application, respecting the necessary compilation �ags,
into a static library that is linked into the kernel. In both cases, it
is the kernel’s link process that is ultimately used, and this targets
bootstrap in a physically addressed environment.

3.2 Runtime system
The Clang/LLVM OpenMP runtime system, libomp, must be linked
into the kernel in order for OpenMP-compiled code to work. The

3

Nautilus kernel

threads
perf.

monitor
NUMA

scheduler

barriers

synch. primitives

utils

original kernel componentsOpenMP support

custom pthread lib

linux compat. layer

custom linker toolchain

other parallel
runtimes

other
external libs OMP benchmarks

OpenMP (libomp)

Linux interface

OMP custom
compilationother target

platforms pthread interface

Figure 1: Integration of libomp runtime system into Nautilus.

problem is that libomp is not a standalone library, but rather a user-
level library with many dependencies on the target platform (most
commonly Linux and Windows). We explored two approaches to
this problem: (1) elimination of these dependencies through in-
depth porting of libomp directly to Nautilus internal interfaces,
and (2) implementation of the required dependencies of the Linux
target within Nautilus. Recall from §2 that libomp is a large, com-
plex codebase (77K lines of C/C++/assembly). Approach (1) requires
substantial e�ort, and more importantly, a deep understanding of
libomp. It also makes it di�cult to track changes to the mainline of
libomp. However, it can provide the maximum �exibility in adapt-
ing libomp to take advantage of being in the kernel. In contrast,
approach (2) has a lower e�ort, makes tracking of the mainline
much easier, and still leaves room for incrementally taking advan-
tage of the kernel context. It may seem surprising that (2) is lower
e�ort, but note that while libomp has many dependencies, it uses
these dependencies in very speci�c ways, and only these require
emulation. We describe approach (2) in this paper.

In our design, we retain libomp’s default autoconf/cmake-based
con�guration and compilation process for its Linux target, but
adjust the con�guration so that it produces a static library that is
suitable for incorporation into Nautilus. This means adding the
special compilation �ags of §3.1, selecting the appropriate compiler,
and choosing an appropriate featureset. Essentially, we provide a
wrapper script on top of the existing compilation process.

Figure 1 illustrates how libomp is then integrated into Nautilus.
libomp assumes it is targeting Linux (albeit the dependencies are
minor), and is using POSIX threads (pthreads) for its own implemen-
tation. Nautilus has been extended with a compatibility layer that
includes a pthreads interface, a Linux compatibility layer just su�-
cient for the needs of libomp, and support for hardware-enabled
thread-local storage (hwtls), which libomp (and the compiler via
__thread) assumes.

The Nautilus linking process and custom linker scripts have been
adjusted to add the libomp library, and other dependencies, as well
as to appropriately handle variables marked as being thread-local.
To avoid circular dependencies, the compatibility layer uses no
OpenMP features.

3.3 Pthreads in Nautilus
Unlike its other dependencies, libomp makes extensive and elabo-
rate use of the POSIX threads interface (pthreads). This interface
is absent in Nautilus because Nautilus’s thread, �ber, task, syn-
chronization, and interrupt models aim to grant a parallel runtime

hardware

embedded pthreads library

abstract
threading

platform-independent code

kernel abstraction layer
abstract

atomic ops
mutexes and
semaphores

threads

Nautilus

compiler
intrinsics

locking
mechanisms

(a) Port of embedded pthreads library to
Nautilus.

hardware

pthreads library in Nautilus

barrier

platform-independent interface

semaphores
condition
variables

threads

Nautilus

linux compat. synch.
primitives

mutex
thread

locks

(b) Customized embedded pthreads in Nau-
tilus.

Figure 2: Pthreads inNautilus: (a) Simple port of embedded pthreads
library; (b) customized embedded pthreads.

more subtle control of concurrency. Compared to the Nautilus
threads interface, pthreads is much more complex. The complexity
of pthreads comes from various attributes associated with primi-
tive objects and functionality signi�cantly diverges for higher-level
objects that build on them. We built a compatible pthread interface
that, as expected, bases the primitive objects of pthreads on the
primitives available in Nautilus. However, our implementation’s
design decisions are speci�cally made for the libomp use-cases. In
other words, our pthread implementation is aware of the OpenMP
runtime and geared to it. Within the kernel, a pthread thread is a
variant of a kernel thread.

Our implementation is based on the POSIX Threads for embed-
ded systems (PTE) library [39], which is itself based on pthreads-
win32 [40], a GPL-licensed pthreads library for Microsoft Windows.
PTE trades platform-dependent optimization for portability. To
port PTE to Nautilus, we needed to supply only a thin OS abstrac-
tion layer. Figure 2(a) illustrates this port. Although redundancies
are easy to spot, it is still reasonably e�cient and pushes most
performance issues down to the platform-dependent layer we sup-
ply. Later, we revisited the pthread implementation, focusing on
customizing it to the Nautilus environment. This included directly
leveraging some higher-level constructs such as condition variables,
barriers, and thread management in Nautilus. Figure 2(b) illustrates
the structure of the customized pthread interface.

3.4 Other dependencies and issues
Although libomp has dependencies on libc, etc., the important
cases basically boil down to access to environment variables, and
use of the Linux sysconf() call to get access to hardware/software
con�guration information. These are not performance critical, but
essential for correctness and to manipulate the application (for
example to choose the number of threads to use). We implemented
a general purpose environment variable mechanism for kernel code,
as well as a sysconf() that supports a limited number of keys.

libomp and the code generated by Clang/LLVM’s OpenMP im-
plementation makes extensive use of hardware support for thread-
local storage. On x64, hardware TLS is based on the use of the
%fs and %gs segment register overrides, where the corresponding
FSBASE and GSBASEMSRs point to the TLS block. In Nautilus, we
require the use of %gs to point to the per-CPU state in the kernel,
so we restrict the compiler to use %fs when it generates TLS code.
We added support for context-switching FSBASE as part of a thread
context switch, as well as support for arch_prctl() con�guration
of FSBASE. Linking and loading of the kernel was modi�ed so that

4

Linux

x.c y.c z.c
libomp.so

(dynamic)z.oy.ox.o

out.linux

ld

cc –fopenmp -c

Nautilus

x.c y.c z.c

z.ox.o

out.nautilus

cc -fopenmp -fPIC -c

ld + [custom link script, static link]

libomp.a

(static)y.o

Figure 3: PIK compilation/linking compared to Linux.

TLS data and BSS segments are supported and handled correctly.
Thread launch clones TLS data and BSS to complete the support.

During testing, we encountered issues with SSE (and higher)
�oating point state being corrupted. Because Nautilus integrates
kernel and application code, it cannot restrict the use of SSE regis-
ters like a general purpose kernel, and instead must manage them as
a part of kernel thread/�ber state. We found that Clang/LLVM was
aggressively using SSE registers to optimize interrupt handlers, for
which SSE state was not managed. To address this, we added a lazy
SSE save/restore model for interrupts, with the added feature that
it can point out interrupt code that is causing it to be invoked. We
then used this feature to give the kernel interrupt code it identi�ed
the no-SSE attribute.

4 Process in kernel (PIK)
The process in kernel (PIK) implementation allows for separate
compilation and linking of the application and kernel, much like
the Linux user-level model. However, the separately compiled ap-
plication executable is dynamically loaded and run as part of the
kernel. Unlike a kernel module, however, it is not linked to the
kernel, but rather runs within a specialized kernel-mode process
abstraction. PIK completely avoids adding application and run-time
dependencies to the kernel itself, instead providing only a system
call interface. This greatly simpli�es the porting of applications—
dependencies are handled exactly as they are at user-level—and
allows for incremental use of kernel-mode features. However, in
contrast to RTK, the barrier for using kernel-mode features is higher,
and OpenMP cannot be used elsewhere in the kernel.

4.1 Compilation
Figure 3 compares and contrasts the Linux user-level build process,
and the PIK build process. The PIK build process for an application
almost exactly re�ects the application’s original user-level build
process. The implementation supplies a script, nld, which wraps
the linker for the common case. The same C compiler can be used
for both Linux and Nautilus.

Only one additional compiler �ag is needed: position-independence
(-fPIE). Position independence is required becauseNautilus’s loader
is placing the executable into the physical address space, and the
ultimate location depends on the state of prior kernel memory al-
locations. Disabling red zone use is not necessary because, when
compiled for PIK, the kernel is con�gured to use a trampoline stack
on interrupt so as to avoid disturbing the application’s red zone
variables. On a syscall instruction, the syscall handler subtracts
from its stack pointer to avoid the redzone in a similar way.

After compilation, all objects, and dependencies (libraries) are
linked together using a custom linker script. Note that the entire,
unmodi�ed libomp run-time system is simply linked in. The linker
script preserves the position-independence of the entire linked
executable (“static PIE”). The compiler, C, and C++ runtime startup
code (e.g., crt0) is integrated carefully, and with an assumption
that the kernel will be providing a “pre-start” environment for it.
The linker script also attaches a custom-designed 64-bit variant
of a multiboot2 header at the very beginning of the output �le
and as the very �rst section. While multiboot2 headers are usually
used to simplify the loading of an ELF kernel by a boot loader, we
use one here to simplify the loading of an ELF executable by the
kernel. Because of the position independence, static linking, and
the multiboot2 header, the Nautilus loader can largely treat the
executable as a simple binary blob that can be placed anywhere in
physical memory that is convenient.

4.2 Process abstraction
PIK builds upon Nautilus’s kernel-level process abstraction. This
abstraction combines the notion of a kernel thread group (which
can be gang-scheduled) with optional support for an independent
address space (implemented using paging or other means [75]), and
optional support for a custom allocator that is layered on top of
the kernel-level memory management. The abstraction itself has
no concept of user-mode, however, nor system calls.

As might be expected, a process creation involves the creation
of an initial thread within the process. Otherwise, a newly created
kernel thread joins the process of its creator, if it exists. The initial
thread runs a wrapper function (the “pre-start” code) that completes
the setup of the process before invoking the user’s thread function.
This is con�gurable to support di�erent compatibility models. Other
threads similarly start in wrappers that complete their setup with
respect to their process before running the user’s thread function.

In our implementation of PIK, the initial thread’s function in-
vokes Nautilus’s loader with a �le name. The loader, leveraging the
multiboot2 information in the �le, allocates memory, copies the
�le content to it, initializes BSS/TBSS, and then jumps to the entry
point. This is quite similar to a Windows-style CreateProcess(),
but done entirely in kernel.

We added several features to Nautilus to facilitate such processes.
First, hardware TLS support and lazy �oating point save/restore
in the presence of interrupts was included, as described in §3.4.
We also eased the red zone restriction by using the hardware’s
interrupt stack table (IST) feature. We do not handle interrupts on
a separate stack, but rather have the initial interrupt handler copy
the interrupt frame to the thread stack at an o�set that avoids the
red zone, and then continue the interrupt on the thread stack.

4.3 Linux compatibility
Figure 4 illustrates the PIK run-time model and compares it with
that of Linux. The executable was compiled and linked assuming
a Linux-compatible process environment, which we emulate. To
achieve this, we provide a system call interface through which we
emulate a subset of the Linux syscall interface.

Since Nautilus has no concept of syscalls on its own, the Linux
compatible system call interface simply uses the same binary in-
terface as Linux (e.g., the syscall instruction or the int 0x80

5

Linux

user mode

process
abstraction

out.linux

kernel mode
syscall
handler

kernel mode
Nautilus

process abstraction

out.naut Linux-emulating
syscall handler

Figure 4: PIK run-time compared to Linux.

instruction). The vDSO is not currently supported, and the “pre-
start” code ensures that it is not detected. Unlike in Linux, a system
call in Nautilus happens in the same address space, at the same
privilege level, and using the same stack as the calling thread (red
zone is avoided for both mechanisms).

After implementing these interfaces, we began to implement
Linux-compatible system calls. It is important to note that our goal
here is not to emulate the entire, gigantic Linux process interface,
but just enough to be able to support typical OpenMP programs.
Syscall stubs were added for each Linux syscall type so we can see
all activity, and respond, by default, with an error.

The most important system calls (i.e. those used by the C runtime
and libomp) were then implemented iteratively until several test
programs were able to execute in an expected manner, consistent
with their behavior on Linux. We then continued to expand the
implementation until we were able to support all of the bench-
marks described in this paper. Other mechanisms processes can
use to interact with Linux, especially virtual �lesystems such as
/dev, /proc and /sys, are not implemented with the exception
of /proc/self, which is required by libomp. In principle, system
calls and accessible namespaces can be incrementally added to our
implementation as needed.

5 Custom compilation for kernel (CCK)
The OpenMP standard is constantly evolving as the needs of par-
allel programs and the underlying hardware evolve. This leads to
OpenMP runtimes (e.g. libomp) that also must constantly evolve.
The RTK (§3) and PIK (§4) approaches directly support libomp,
enabling OpenMP programs to be compiled with any libomp-using
compiler. The cost is that RTK requires maintaining an additional
large and evolving codebase (libomp is 77K lines of C/C++/assembly)
in the kernel. PIK avoids this, but requires maintaining the kernel-
level support needed to be compatible with libomp (currently about
2K lines of C and assembly).

The custom compilation for kernel (CCK) approach uses special-
ized LLVM analysis and compilation passes to lower all OpenMP
parallel structures to tasks. The compiler injects trampolines into
the code to dispatch independent tasks to a small task-based run-
time, VIRGIL, instead of to libomp. The implementation of VIRGIL
in Nautilus comprises only 550 lines of C and it builds on Nautilus’s
task system, a component that most other kernels also have (e.g.,
SoftIRQ in Linux). The user-level version of VIRGIL consists of 620
lines of C++. Not only is this much smaller than the alternatives, it
also does not have to evolve; it is the compiler that evolves.

CCK’s runtime is signi�cantly simpler than libomp (even if we

&XVWRP�

IURQW�HQG

,5��

PHWDGDWD

7UDPSROLQH�WR

NHUQHO�$3,

([WUD�FRGH�

IRU�WDVN

V\QFKURQL]DWLRQ

&XVWRP�

EDFN�HQG

,62

/LQNHU

.HUQHO�VRXUFH

2SHQ03�

VRXUFH�FRGH

&XVWRP�&RPSLODWLRQ�IRU�.HUQHO

2SWLPL]DWLRQV

7DVNV�FUHDWLRQ

7UDQVIRUP�FRGH

WR�EH�DPHQDEOH

IRU�WDVN�FUHDWLRQ

Figure 5: CCK compilation pipeline.

consider just the task components of libomp) for several reasons.
First, it only has to support tasks, rather than the panoply of parallel
forms of OpenMP (e.g., section, parallel for, ...). Second, it does not
need to support OpenMP attributes (e.g., reduction, nowait, ...).
Instead, the compiler uses attributes statically. Finally, the tasks
that the CCK runtime sees are independent from its perspective.
The compiler generates code such that all tasks that are handed to
the runtime are immediately ready.

5.1 Compilation pipeline and AutoMP
CCK compilation builds upon NOELLE [55], a novel compilation
framework that includes state-of-the-art code analyses and trans-
formations. We extended NOELLE’s memory analyses to leverage
OpenMP semantics, and its code transformations for task genera-
tion to implement the parallelism expressed in OpenMP directives.
OpenMP directives are translated into metadata that is attached
to the LLVM IR to explicitly express the absence of dependences
between code regions. The CCK transformations, named AutoMP,
use this metadata in addition to properties determined via code
analysis to automatically parallelize the program.

Figure 5 shows the compilation pipeline. Our front-end lowers
the source code to sequential LLVM IR combined with semantic
metadata derived from the OpenMP directives. Next, a sequence of
custom transformations leverage the semantic metadata to generate
tasks suitable for VIRGIL. Further metadata-informed optimizations
shave o� unnecessary overhead related to task creations and joins.
Next, synchronization code is generated together with code that
ties to the runtime. Finally, a custom back-end produces an object
�le that is compatible with the kernel. The object �le is then linked
as a kernel component to create a bootable kernel image.

5.2 OpenMP to metadata conversion
OpenMP pragmas in the source code specify what code to paral-
lelize, how to parallelize it, and assert that it is correct to parallelize
it. These pragmas carry rich semantic information into the com-
piler; for example, that the iterations of a loop are independent or
that a section of code is atomic and requires some ordering. Rather
than following Clang’s conventional OpenMP compilation pipeline,
our custom front-end instead embeds this semantic information
within the IR without isolating the code speci�ed within pragma.

We modi�ed Clang to simply annotate the Abstract Syntax Tree
(AST) of the program being compiled with the OpenMP semantics.
This is quite di�erent from Clang’s conventional processing, which

6

wraps OpenMP code regions in new functions (a process called out-
lining). Outlining partitions the code of a function across multiple
functions, which signi�cantly reduces the accuracy of many code
analyses in the LLVM middle-end (e.g., memory analysis, data-�ow
analysis). This accuracy loss is not a problem for a conventional
OpenMP implementation because it blindly implements the paral-
lelism speci�ed by the pragmas. We cannot. CCK needs to reshape
the parallelism speci�ed by the pragmas to reduce it to tasks. To do
so requires high accuracy code analyses and, therefore, outlining
code is not an e�ective option.

Using the annotated AST, for each compoundOpenMP statement,
CCK’s front-end generates unoptimized LLVM IR with the OpenMP
semantic information embedded as IR metadata, to wit, a sequential
version of the program permeated with OpenMP metadata.

5.3 Task generation
To generate tasks, CCK’s middle-end �rst deconstructs the paral-
lelism forms of the original program into code regions with annota-
tions (e.g., independence declaration between code regions enabled
by OpenMP pragmas). Then, it task-parallelizes the code.

The middle-end �rst computes the program dependence graph
(PDG) [20] using state-of-the-art memory analyses [1, 12, 76] that
we have enhanced to exploit the code-region annotations men-
tioned above. These code analysis extensions that exploit theOpenMP
semantic metadata is what enables CCK to go beyond the accu-
racy that a conventional dependence analysis could reach. This
extra accuracy allows CCK to �nd more available parallelism than
automatic parallelization techniques can.

The next step is to run a series of code transformations that make
the code more amenable for the creation of tasks, including function
inlining, loop distribution, and loop fusion. These transformations
generate code with single entry and exit points for each code region
that could become a task. This is followed by a parallelizer that
decides which of these code regions need to become tasks. The
selected code regions are then parallelized, generating tasks, using
techniques included in NOELLE (HELIX [13, 15] without the OS
support [14] and without thread speculation [57], DSWP [63], and
DOALL). Each selected code region becomes a function where
the region’s live-in variables become function parameters. The
region’s live-out variables are packed into an heterogeneous array
and passed as the �rst parameter to the generated function. These
functions are the tasks that the runtime executes.

CCK can often statically determine where in the code tasks will
become ready at run-time (e.g., at the beginning of a loop without
loop-carried dependences), in which case CCK simply adds a task
submission at the identi�ed code point. When readiness of a task
cannot be determined statically, the compiler generates the code to
check and submit tasks at run-time. In this way, task dependence
checking is bespoke to the application instead of being part of the
runtime. This signi�cantly simpli�es the support that CCK needs
from the runtime and the OS.

The last step in CCK’s middle-end invokes important optimiza-
tions for the parallel execution of applications, such as object priva-
tization and variable reductions. Standard LLVM optimizations are
also employed on each task, including loop unrolling and code vec-
torization. We then add extra code to manage task synchronization
as required by the parallelization techniques used.

Approach
Aspect RTK PIK CCK

E�ort
Runtime major none minor
Kernel minor major minor
Compiler none none major

Implementation Size (C LOC)
Runtime 1,600 0 550
Kernel 2,200 13,250 600
Compiler 0 0 6,550 (C++)

Bene�ts and Opportunities
Application development easier easiest easy
Leveraging kernel context easier di�cult easiest
Decoupled from OpenMP runtime no no yes
Applies to all code in kernel yes no no
Automatic parallelization no no yes

Codes Sizes re�ect new code or modi�cations.
Figure 6: Summary of design and software engineering tradeo�s.

5.4 Binary generation, linking, runtime
Each task is wrapped in a functionwith live-in and live-out variables
made explicit in its signature. We generate a landing task for each
set of tasks that are grouped together (e.g., all tasks corresponding
to iterations of a loop) to reduce their live-out variables. The landing
task is executed when all tasks of the group join (the runtime is
unaware of this join). Finally, our back-end generates a single object
�le that encodes the whole program compiled including the code
for the generated tasks. The object �le is generated with kernel-
compatible options, including avoiding exploiting the x64 red zone.
This enables the kernel to arbitrarily intertwine application code
and kernel code (e.g., interrupts) with little overhead. Tasks are
executed by either the user-level or kernel-level VIRGIL runtime,
which was described earlier.

6 Evaluation
It is important to understand that we are exploring the design space
of approaches to moving OpenMP into the kernel. We have de-
scribed the software engineering e�ort, bene�ts, and opportunities
of the particular points in that design space represented by RTK,
PIK, and CCK in their sections. Figure 6 summarizes this discussion.

We evaluated our implementations of RTK, PIK, and CCK for
performance, using the Edinburgh (EPCC) and NAS 3.0 benchmarks
on the machines described in §2.2. We ran our tests on the default
user-level Linux implementation as well. The same compiler and
identical compilation �ags a�ecting back-end code-generation were
used for Linux, RTK, PIK, and CCK, and are described in more detail
in the respective sections. CCK uses custom middle-end analysis
and transformations in the context of the compiler. We address the
following questions:

• How are OpenMP primitives a�ected by RTK and PIK?
• How do RTK, PIK, and CCK a�ect application performance?
• How do the performance gains (and losses) of RTK, PIK, and
CCK relate to their tradeo�s in the design space?

• Are these viable paths to bringing OpenMP into the kernel?
We show our evaluation �rst on PHI, and then repeat it for 8XEON.

6.1 Impact on OpenMP primitive performance
Figures 7 and 8 show the EPCC microbenchmark performance for
RTK and PIK, respectively, comparing them to Linux user-level
performance on the PHI machine at full scale. There are no mi-
crobenchmark numbers for CCK. Recall from §5 that CCK does not

7

(a) ARRAY
(b) SCHEDULE

(c) SYNCH

(d) TASK

Figure 7: RTK performance compared to Linux: EPCC microbench-
marks on 64 cores of PHI.

directly implement OpenMP directives. Consequently, there are no
OpenMP directives that EPCC can measure in CCK.

The numbers represent the overhead of each of the OpenMP
directives. Note that we have not yet used any kernel-level features
to enhance either RTK or PIK. Hence we are hoping for a rough
parity in performance, which is indeed what we see. RTK shows
slightly higher overhead than the Linux implementation, while PIK
shows slightly lower overhead. In PIK, precisely the same OpenMP
runtime, pthread library, and libc/libm are used as with the Linux
version. In contrast, RTK uses a port of the runtime, a pthread
compatibility layer, and also experiences kernel memory allocation
directly. PIK experiences considerably lower variation in overhead
than either RTK or Linux—lower jitter is one bene�t of bringing
code into the kernel, although it also depends on other factors.

6.2 Impact on application performance
To see the impact of RTK, PIK, and CCK on application performance,
we ran the NAS benchmarks with C class, with a few exceptions,
for each model. The exceptions, where we run B class versions,
are due to large static variables (gigabyte-size globals). In RTK
and CCK, because these variables are linked into the kernel boot
image and are thus loaded into physical memory at boot time, the
kernel boot image can end up being large enough that it overlaps
an MMIO region. PIK does not have this issue. Where possible, we
have modi�ed the benchmarks to use dynamic memory allocation
to create these variables when the benchmark is started (instead of
at boot time). This avoids the boot overlap problem, but it is not
always a fair change because statically allocated multidimensional
arrays can potentially be accessed faster. For benchmarks where

(a) ARRAY
(b) SCHEDULE

(c) SYNCH

(d) TASK

Figure 8: PIK performance compared to Linux: EPCC microbench-
marks on 64 cores of PHI.

this might be the case, we do not make this change, and instead use
B class. When changes are made, they are used in all four cases.

Figure 9 compares the performance of RTK compared to Linux on
PHI and shows the execution time of RTK benchmarks normalized
to Linux. At the smallest scale (1 CPU), RTK performs from 4.5%
(MG) to 90.5% (BT) better than the Linux user-level code. At the
largest scale (64 CPUs), RTK performance varies from slightly worse
(-1.2% in FT) to 36% (SP) faster than the Linux user-level code. The
average performance gain of RTK across scales and benchmarks is
on the order of 22% (geometric mean).

These results may seem surprising given that RTK exhibited
slightly higher overheads for the OpenMP primitives in §6.1. Note
that unlike the microbenchmarks, the NAS benchmarks do signif-
icant computation. This computation bene�ts from the friendlier
kernel environment described earlier. Of note, the Nautilus envi-
ronment is providing (a) no page faults, (b) extremely rare TLB
misses, (c) NUMA-cognizant memory allocations, (d) extremely
rare interrupts and otherwise greatly diminished OS noise, and
(e) precisely zero competitive threads/processes. When a thread
is executing outside of an OpenMP primitive, it does so for long
stretches of time, with no competition and with its partner threads
running simultaneously on the other CPUs. Gains of 20–40% over
user-level execution on Linux have been previously demonstrated
for an RTK-like implementation of the Legion run-time system [29],
which is in line with what we measure here.

Figure 10 compares the performance of PIK normalized to Linux
on PHI. We see that PIK performs generally similarly to RTK, with a
few exceptions. The average performance gain of PIK across scales

8

Figure 9: RTK performance relative to Linux as a function of CPUs used: NAS benchmarks on PHI; higher is better. Baseline (Linux OpenMP)
is horizontal red bar at 1.0. C is the single threaded Linux absolute performance.

Figure 10: PIK performance relative to Linux as a function of CPUs used: NAS benchmarks on PHI; higher is better. Baseline (Linux OpenMP)
is horizontal red bar at 1.0. C is the single threaded Linux absolute performance.

and benchmarks is on the order of 10% (geometric mean). PIK is also
a viable and performant path to including OpenMP in the kernel.

Understanding CCK performance is more complex since two
elements are at work, the AutoMP compilation process (versus the
OpenMP process) and whether Linux or Nautilus is being targeted.
Figure 11 shows the absolute performance for all three combina-
tions (the baseline of Linux+OpenMP, plus Linux+AutoMP, and
Nautilus+AutoMP.) Figure 12 then shows the relative performance
of both AutoMP versions compared to Linux+OpenMP.

The comparison between Linux+OpenMP and Linux+AutoMP
highlights the di�erence in parallelism exposed by CCK compared
to the other approaches. Recall from §5 that AutoMP translates the
parallelism expressed in OpenMP into declarations of independence
between code regions. This independence is then used to generate
independent tasks, which allows the runtime to be quite small,
simple, easier to maintain, and more stable over time than the
OpenMP runtime. However, the cost of AutoMP is the potential
performance lost due its normalization of the original OpenMP
parallelism, whatever its form, into independent tasks.

FT and EP show that the parallelism generated by AutoMP
reaches the same performance obtained by OpenMP—AutoMP’s

parallelism normalization did not lose any performance. Unfortu-
nately, LU, BT, SP, and IS show a performance loss. This is due
to AutoMP being currently unable to exploit OpenMP directives
related to object privatization. Consequently, some loops in these
benchmarks are left sequential because of the lack of thread-private
objects. IS, which we elide entirely, is an extreme case in which no
parallelism is extracted due to this limitation.

MG and CG show the bene�ts of having a compiler’s middle-end
being able understand the program’s parallelism and therefore be-
ing able to leverage parallelism-aware code analyses. Here, AutoMP
is able to produce more performance than OpenMP because the Au-
toMP chunks loop iterations di�erently. More speci�cally, it chunks
loop iterations depending on the estimated latency of an iteration
of the loop being parallelized (computed using a parallelism-aware
data-�ow analysis). In contrast, OpenMP’s compiler just blindly
follows the OpenMP directives. This leads to the OpenMP com-
piler choosing a coarse-grained chunking. This is a poor choice.
AutoMP’s choice of �ner-granularity chunking liberates more par-
allelism, resulting in the performance gains.

When targeting Nautilus (CCK), the compiler is identical. The
version of the lightweight VIRGIL runtime used here is simply a

9

Figure 11: CCK absolute performance on Linux and Nautilus compared to baseline of stock OpenMP on Linux as a function of CPUs: NAS
application benchmarks; lower is better.

Figure 12: CCK performance relative to Linux as a function of CPUs used: NAS benchmarks on PHI; higher is better. Baseline (Linux OpenMP)
is horizontal red bar at 1.0. C is the single threaded Linux absolute performance.

thin veneer over the kernel’s task framework. As the �gures show,
performance of Nautilus+AutoMP (CCK) is broadly similar to that
of Linux+AutoMP, with FT, LU, and BT being favorable, EP, SP, and
MG being unfavorable, and CG being a wash. CCK shows itself to
be a viable path to including OpenMP in the kernel.

6.3 Performance on 8XEON
We repeated all performance tests on the 8XEON, the modern 8
socket server described in §2.2. For 1-24 cores, the same codebase is
used as before. For 24+ cores, we have extended Nautilus to use �rst-
touch allocation at 2MB granularity instead of immediate allocation,
similar to Linux. The NAS benchmarks typically use large global
arrays. Immediate allocation results in such arrays being assigned
to a single NUMA zone, lowering performance when di�erent slices
are assigned to CPUs in di�erent zones.

Impact on OpenMP primitive performance: Figure 13 shows the
performance of the EPCC microbenchmarks on RTK and PIK, at the
largest scale (192 cores, 8 sockets). Except for scheduling, where
performance is comparable, RTK and PIK outperform Linux.

Impact on application performance: Figure 14 shows the perfor-
mance of RTK and PIK relative to Linux for all of the NAS bench-
marks. Figure 15 documents CCK and shows the performance of

Linux+AutoMP and Nautilus+AutoMP relative to Linux+OpenMP.
1–24 cores is a single socket, 48 cores is 2 sockets, 96 cores is 4
sockets, and 192 cores is 8 sockets. Similar to PHI, on 8XEON, RTK
and PIK show ⇠20% gain (geomeans) compared to Linux.

7 Discussion

Bringing user code into the kernel is not a trivial feat, but the
performance bene�ts can be signi�cant. We now discuss other
aspects of bringing OpenMP into the kernel.

Generalizability:While our prototypes are implemented in the
context of Nautilus, we expect that in many cases analogous im-
plementations are possible in other kernels, certainly in unikernels
and similar models. We think our experience with RTK and CCK
extrapolates to Linux as well. Here, we would port to or target the
Linux kernel module environment, similar to how early real-time
applications have worked in the past (§8). PIK may also be suitable,
especially as a PIK executable is already analogous to a kernel mod-
ule, but there are two issues. First, the footprint of a PIK executable
is very large compared to a typical kernel module because it pulls
in all necessary user-space libraries statically. Second, Linux might
not easily permit a fast kernel-to-kernel system call model.

10

(a) ARRAY (b) SCHEDULE

(c) SYNCH

(d) TASK

Figure 13: RTK and PIK performance compared to Linux: EPCCmi-
crobenchmarks on 192 cores of 8XEON.

Security: Running untrusted user code in a privileged environ-
ment has obvious drawbacks from a security perspective. The main
issue arises from the removal of hardware isolation boundaries,
such as those enforced by paging. While a detailed threat model is
outside the scope of this paper, we do point out two techniques that
can minimize damage done by untrusted code. The �rst involves
space partitioning the machine between two OSes, dubbed the
multi-kernel approach [22]. In this model, the specialized system
(Nautilus in our case) runs on a subset of hardware resources, either
using space-partitioned virtual machines [33], or space-partitioned
hardware, as is done with co-Kernels [64]. IHK/McKernel [24] is
an example of such a multi-kernel system that currently runs on
the world’s top supercomputer. Isolation can also be enforced by
the language and the compiler. There is a rich history of shifting
the isolation burden from the OS to the programming language,
for example using domain-speci�c languages for device drivers in
Exokernel [19] and enforcing protection with type-safe languages
in Singularity [37] and Mirage [53]. In HPC, such managed lan-
guages can come with unacceptable performance overheads, and
Unikernel approaches that assume a virtualization layer may also
be untenable. In this case, the compiler can perform heavy lifting
(as in CCK) to enforce isolation [75].

Deployment: The feasibility of deployment of OpenMP in the
kernel, in any form, depends on site-speci�c factors. As previously
described, multi-kernels have been deployed in HPC environments
(and unikernels have traction in data centers), suggesting a path.
Even using a single kernel, for a space-shared environment, a critical
issue is boot time. Boot times of a specialized kernel like Nautilus
in a multi-kernel environment are on the order of milliseconds.

There is no fundamental reason why the same boot times could not
be achieved in a single kernel environment, facilitated by better
�rmware such as Coreboot [56] and specialized subsystems [69].

Multi-node (MPI): Although multi-node execution is not our fo-
cus, we note that a “pure” in-kernel MPI implementation would
proceed along the lines of RTK or PIK. MPI implementations al-
ready have layered designs in which NIC-speci�c code lies below a
HAL. An in-kernel implementation or port would implement the
HAL directly on top of kernel drivers. Nautilus already includes
drivers for common Ethernet and Mellanox In�niband NICs. Al-
ternatively, in a multi-kernel model, the “control plane” aspects of
MPI and the drivers can be left in the Linux kernel, and only the
performance-critical “data plane” elements are in the specialized
kernel. Most of the multi-kernels mentioned earlier already provide
communication and storage in this split manner.

Programmer e�ort: The RTK, PIK, and CCK approaches present
di�erent levels of a challenge to the application developer. A key
bene�t of PIK is that the developer does not need to be aware of
the fact that their code is in the kernel. In contrast, while RTK
and CCK hide the di�erent OpenMP implementation details from
the developer, the developer does need to port other aspects of the
application to the kernel environment. However, RTK and CCK
present many more opportunities for optimization than PIK. A
compiler could conceivably split the di�erence by helping with
porting, although that is not our focus with CCK.

Implications:Asmachines scale and becomemore heterogeneous,
an increasing diversity of approaches to performance and e�ciency
is necessary. Scale also has a track record of making small perfor-
mance di�erences compound, as was observed with OS noise [21].
Fortunately, scale itself allows for di�erent approaches to co-exist—
the hardware partitioning and multi-kernel techniques described
above make increasing sense with increasing scale, for example.
This is the case even within a single node.

There is a rapid expansion of the need for parallelism beyond
traditional HPC circles, as well as the drive to exascale within
those circles. The architecture renaissance is well underway. There
is a need and an opportunity to rethink the hardware/software
stack of parallel computing, in particular the layering that has now
existed for decades, and was never motivated by parallel computing
in the �rst place. Machines have been and can be di�erent. Our
exploration of OpenMP in the kernel is in that vein.

8 Related work
Considerable e�ort has gone into improving the abstractions and
performance of parallel primitives user-level. Examples include
QThreads [79], MassiveThreads [58], Tiny Threads[17], Lithe [65],
Intel’s Thread Building Blocks [70], the Converse run-time under-
lying Charm++ [42]), MPC [67], the Realm event run-time system
underlying Legion [78], Light-Weight Contexts [51], and ARGOb-
ots [73]. We focus on kernel-level mechanisms.

While the high-performance computing community has been
reconsidering operating system design for tightly-coupled parallel
computing for decades now [5, 26, 43, 47], the strict separation be-
tween layers of the stack has remained largely stagnant, especially
at the user/kernel boundary.

Multi-kernels [4, 23, 24, 33, 64, 66, 81] attempt to strike a middle
ground between general-purpose system software and specialized

11

Figure 14: RTK and PIK performance relative to Linux as a function of CPUs used: NAS benchmarks on 8XEON; higher is better. Baseline
(Linux OpenMP) is horizontal red bar at 1.0. C is the single threaded Linux absolute performance.

Figure 15: CCK performance relative to Linux as a function of CPUs used: NAS benchmarks on 8XEON; higher is better. Baseline (Linux
OpenMP) is horizontal red bar at 1.0. C is the single threaded Linux absolute performance.

OSes by space-sharing OSes across a system, but leave opportunities
for co-design across layers on the table.

In the cloud landscape, Unikernels, aided by ubiquitous virtu-
alization, allow for high performance for a speci�c target set of
workloads [8, 45, 52, 60, 72, 80].

Some Unikernels are constructed from application code using a
high-level language [53], a natural progression from classic library
OSes [19]. This allows unnecessary kernel functionality to be elided
from the kernel image (as a library operating system, or libOS). As
more sophisticated systems languages like Rust come to promi-
nence, decade-old ideas on using language features to provide or
enhance kernel mechanisms like protection or isolation [6, 37, 68]
are resurfacing in the form of OSes and Unikernels like Theseus [7]
and RedLeaf [59]. However, the compiler uninvolved here; we argue
that there is signi�cant opportunity for bringing compiler technol-
ogy and co-design across layers to bear for e�cient parallelism.

Running user-level code within the Linux kernel has been most
commonly seen in early extensions to Linux such as RTLinux [82],
KURT [35], and RTAI [18] in which hard real-time application com-
ponents were ported as kernel modules, analogously to RTK. Kernel
Mode Linux is notable for providing a way of bringing general user
code into the kernel (as we do with Nautilus in PIK) and then
working to provide protection via type safety [54]. Software-based

protection for managed languages was implemented in Singular-
ity [36], and recent results show the promise of extending this idea
to unmanaged languages [75].

HermitCore is a notable related project where OpenMP is run in
an HPC-oriented, libOS kernel-context [48, 49]. In contrast, we pre-
sented three paths to running OpenMP code in the kernel, including
via compiler support.

Extending LLVM for HPC has spawned an entire workshop/BoF
series at the SC conference. CCK is in this vein. E�orts to integrate
parallelism into compilation include Tapir [71], OpenMPIR [74],
Vector O�oad [77], PGAS via OpenSHMEM [44], INSPIRE [41], and
HPVM [46]. None of these target kernel-level execution, however.

9 Conclusions
We demonstrated three di�erent, e�ective techniques in the design
space for bringing OpenMP into the kernel. The techniques allow
OpenMP programs to bene�t from direct interaction with the fully
privileged machine, unimpeded by a traditional general purpose
kernel. Our techniques have demonstrated performance gains rel-
ative to Linux for the NAS benchmarks that average about 22%
and can be much larger. The OpenMP gains are similar to those
previously observed for other run-times.

12

References

[1] Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Campanoni, and
David I. August. 2020. SCAF: a speculation-aware collaborative dependence anal-
ysis framework. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 638–654.
https://doi.org/10.1145/3385412.3386028

[2] E. Ayguade, N. Copty, A. Duran, J. Hoe�inger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. 2009. The Design of OpenMP Tasks. IEEE
Transactions on Parallel and Distributed Systems 20, 3 (2009), 404–418.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinksi, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. 1994. The NAS Parallel Benchmarks (NAS 1). Technical Report
RNR-94-007. NASA.

[4] Andrew Baumann, Paul Barham, Pierre Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the 22=3 ACM Symposium on Operating Systems Principles (SOSP
’09). 29–44.

[5] Pete Beckman. [n.d.]. Argo: An exascale operating system. http://www.mcs.anl.
gov/project/argo-exascale-operating-system.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. 1995. Extensibility,
Safety and Performance in the SPIN Operating System. In Proceedings of the 15C⌘
ACM Symposium on Operating Systems Principles (SOSP ’95). 267–283.

[7] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020. Theseus: an
Experiment in Operating System Structure and State Management. In Proceedings
of the 14C⌘ USENIX Symposium on Operating Systems Design and Implementation‘
(OSDI ’20). USENIX Association, 1–19. https://www.usenix.org/conference/
osdi20/presentation/boos

[8] Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E. Engelstad, and
Kyrre Begnum. 2015. IncludeOS: A Minimal, Resource E�cient Unikernel for
Cloud Services. In Proceedings of the 7C⌘ IEEE International Conference on Cloud
Computing Technology and Science (CloudCom ’15). 250–257. https://doi.org/10.
1109/CloudCom.2015.89

[9] J. M. Bull. 1999. Measuring Synchronisation and Scheduling Overheads in
OpenMP. In Proceedings of the First European Workshop on OpenMP.

[10] J. M. Bull and D. O’Neill. 2001. A Microbenchmark Suite for OpenMP 2.0.
SIGARCH Computer Architecture News 29, 5 (2001), 41–48.

[11] J. M. Bull, F. Reid, and N. McDonnell. 2012. A Microbenchmark Suite for OpenMP
Tasks. In Proceedings of the 8th International Conference on OpenMP in a Hetero-
geneous World (IWOMP 2012).

[12] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon
Wei, and David Brooks. 2014. HELIX-RC: An Architecture-compiler Co-design
for Automatic Parallelization of Irregular Programs (ISCA ’14). IEEE Press, Pis-
cataway, NJ, USA, 217–228. http://dl.acm.org/citation.cfm?id=2665671.2665705

[13] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-
Yeon Wei, and David Brooks. 2012. HELIX: Automatic Parallelization of Irregular
Programs for Chip Multiprocessing (CGO ’12). ACM, New York, NY, USA, 84–93.
https://doi.org/10.1145/2259016.2259028

[14] Simone Campanoni, Timothy Jones, Glenn Holloway, Gu. Y. Wei, and David
Brooks. 2012. The HELIX project: Overview and directions. In DAC Design
Automation Conference 2012. 277–282. https://doi.org/10.1145/2228360.2228412

[15] S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks. 2012. HELIX:
Making the Extraction of Thread-Level Parallelism Mainstream. IEEE Micro 32, 4
(July 2012), 8–18. https://doi.org/10.1109/MM.2012.50

[16] Barbara Chapman, Gabriel Jost, Ruud van der Pass, and David Kuck. 2007. Using
OpenMP: Portable Shared Memroy Parallel Programming. MIT Prerss.

[17] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. 2005. TiNy threads: a thread virtual
machine for the Cyclops64 cellular architecture. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[18] L. Dozio and P. Mantegazza. 2003. Real-time Distributed Control Systems Using
RTAI. In Proceedings of the Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing.

[19] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr. 1995. Exokernel:
An Operating System Architecture for Application-level Resource Management.
In Proceedings of the 15C⌘ ACM Symposium on Operating Systems Principles (SOSP
’95). 251–266.

[20] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[21] Kurt Ferreira, Patrick Bridges, and Ron Brightwell. 2008. Characterizing appli-
cation sensitivity to OS interference using kernel-level noise injection. In 2008
ACM/IEEE conference on Supercomputing (SC). 1–12.

[22] Balazs Gero�, Yutaka Ishikawa, Rolf Riesen, Robert W. Wisniewski, Yoonho
Park, and Bryan Rosenburg. 2016. A Multi-Kernel Survey for High-Performance

Computing. In Proceedings of the 6C⌘ International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS ’16).

[23] Balazs Gero�, Rolf Riesen, Masamichi Takagi, Taisuke Boku, Kengo Nakajima,
Yutaka Ishikawa, and Robert W. Wisniewski. 2018. Performance and Scalability
of Lightweight Multi-kernel Based Operating Systems. In Proceedings of the 32=3
IEEE International Parallel and Distributed Processing Symposium (IPDPS ’18).
116–125.

[24] Balazs Gero�, Masamichi Takagi, Atsushi Hori, Gou Nakamura, Tomoki Shira-
sawa, and Yutaka Ishikawa. 2016. On the Scalability, Performance Isolation and
Device Driver Transparency of the IHK/McKernel Hybrid Lightweight Kernel.
In Proceedings of the 30C⌘ IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’16). 1041–1050.

[25] Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda. 2020.
Compiler-based Timing for Extremely Fine-grain Preemptive Parallelism. In
Proceedings of the ACM/IEEE Conference on High Performance Networking and
Computing (SC 2020).

[26] Mark Giampapa, Thomas Gooding, Todd Inglett, and Robert W. Wisniewski. 2010.
Experiences with a Lightweight Supercomputer Kernel: Lessons Learned from
Blue Gene’s CNK. In Proceedings of Supercomputing (SC ’10).

[27] Kyle Hale. 2016. Hybrid Runtime Systems. Ph.D. Dissertation. Northwestern
University. Available as Technical Report NWU-EECS-16-12, Department of
Electrical Engineering and Computer Science, Northwestern University.

[28] Kyle Hale and Peter Dinda. 2015. A Case for Transforming Parallel Runtimes
into Operating System Kernels. In Proceedings of the 24th ACM Symposium on
High-performance Parallel and Distributed Computing (HPDC 2015).

[29] Kyle Hale and Peter Dinda. 2016. Enabling Hybrid Parallel Runtimes Through Ker-
nel and Virtualization Support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016).

[30] Kyle Hale and Peter Dinda. 2018. An Evaluation of Asynchronous Software Events
on Modern Hardware. In Proceedings of the 26th IEEE International Symposium
on the Modeling, Analysis, and Simulaton of Computer and Telecommunication
Systems (MASCOTS 2018).

[31] Kyle C. Hale and Peter Dinda. 2018. An Evaluation of Asynchronous Events
on Modern Hardware. In Proceedings of the 26C⌘ IEEE International Symposium
on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS ’18).

[32] Kyle C. Hale and Peter A. Dinda. 2016. Enabling Hybrid Parallel Runtimes
Through Kernel and Virtualization Support. In Virtual Execution Environments
(VEE).

[33] Kyle C. Hale and Peter A. Dinda. 2016. Enabling Hybrid Parallel Runtimes
Through Kernel and Virtualization Support. In Proceedings of the 12C⌘ ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’16). 161–175.

[34] Kyle C. Hale, Conor Hetland, and Peter A. Dinda. 2016. Automatic Hybridization
of Runtime Systems. In Proceedings of the 25C⌘ ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’16). 137–140.

[35] Sean House and Douglas Niehaus. 2000. KURT-Linux Support for Synchronous
Fine-Grain Distributed Computations. In Proceedings of the Sixth IEEE Real Time
Technology and Applications Symposium (RTAS 2000).

[36] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber.
2007. Sealing OS Processes to Improve Dependability and Safety. 341–354.

[37] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software
Stack. SIGOPS Operating Systems Review 41, 2 (April 2007), 37–49.

[38] H. Jin, M. Frumkin, and J. Yan. 1999. The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance (NAS 3). Technical Report NAS-99-011. NASA.

[39] Ross Johnson. 2008. POSIX Threads for Embedded Systems (PTE). http://pthreads-
emb.sourceforge.net/.

[40] Ross Johnson. 2012. Pthreads Win32: Open Source POSIX Threads for Win32.
https://sourceware.org/pthreads-win32/.

[41] H. Jordan, S. Pellegrini, P. Thoman, K. Ko�er, and T. Fahringer. 2013. INSPIRE:
The insieme parallel intermediate representation. In Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques.
7–17.

[42] Laxmikant V Kale, Josh Yelon, and Timothy Knau�. 1996. Threads for interopera-
ble parallel programming. In International Workshop on Languages and Compilers
for Parallel Computing (LCPC ’97). 534–552.

[43] Suzanne M. Kelly and Ron Brightwell. 2005. Software Architecture of the Light
Weight Kernel, Catamount. In Proceedings of the 2005 Cray User Group Meeting
(CUG’05).

[44] Dounia Khaldi, Pierre Jouvelot, François Irigoin, Corinne Ancourt, and Barbara
Chapman. 2015. LLVM Parallel Intermediate Representation: Design and Evalua-
tion Using OpenSHMEM Communications. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-HPC).

[45] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,
and Vlad Zolotarov. 2014. OSv—Optimizing the Operating System for Virtual
Machines. In Proceedings of the 2014 USENIX Annual Technical Conference (USENIX

13

https://doi.org/10.1145/3385412.3386028
http://www.mcs.anl.gov/project/argo-exascale-operating-system
http://www.mcs.anl.gov/project/argo-exascale-operating-system
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://doi.org/10.1109/CloudCom.2015.89
https://doi.org/10.1109/CloudCom.2015.89
http://dl.acm.org/citation.cfm?id=2665671.2665705
https://doi.org/10.1145/2259016.2259028
https://doi.org/10.1145/2228360.2228412
https://doi.org/10.1109/MM.2012.50

ATC ’14).
[46] Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Komuravelli,

Vikram Adve, and Sarita Adve. 2018. HPVM: Heterogeneous Parallel Virtual
Machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2018).

[47] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei
Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike Levenhagen, and Ron
Brightwell. 2010. Palacios and Kitten: New High Performance Operating Systems
for Scalable Virtualized and Native Supercomputing. In Proceedings of the 24th
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010).

[48] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019. Exploring Rust for
Unikernel Development (PLOS ’19). Association for Computing Machinery, New
York, NY, USA, 8–15. https://doi.org/10.1145/3365137.3365395

[49] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: A Unikernel
for Extreme Scale Computing. In Proceedings of the 6C⌘ International Workshop
on Runtime and Operating Systems for Supercomputers (ROSS’16).

[50] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.

[51] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstrac-
tion for Safety and Performance. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI 2016).

[52] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu: Just-In-Time Summoning of
Unikernels. In Proceedings of the 12C⌘ USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’15). 559–573.

[53] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: Library Operating Systems for the Cloud. In Proceedings of the 18C⌘
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13). 461–472.

[54] Toshiyuki Maeda and Akinori Yonezawa. 2003. Kernel Mode Linux: Toward an
Operating System Protected by a Type Theory. In Advances in Computing Science
- ASIAN 2003 Programming Languages and Distributed Computation, 8th Asian
Computing Science Conference, Mumbai, India, December 10-14, 2003, Proceedings
(Lecture Notes in Computer Science), Vijay A. Saraswat (Ed.), Vol. 2896. Springer,
3–17.

[55] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip Ghosh,
Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi, David I. August,
and Simone Campanoni. 2021. NOELLE O�ers Empowering LLVM Extensions.
arXiv:cs.PL/2102.05081

[56] R. Minnich, J. Hendricks, and D. Webster. 2000. The Linux BIOS. In Annual Linux
Showcase and Conference.

[57] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni. 2016.
Performance Implications of Transient Loop-carried Data Dependences in Au-
tomatically Parallelized Loops (CC 2016). ACM, New York, NY, USA, 23–33.
https://doi.org/10.1145/2892208.2892214

[58] Jun Nakashima and Kenjiro Taura. 2014. MassiveThreads: A Thread Library for
High Productivity Languages. Springer Berlin Heidelberg, Berlin, Heidelberg,
222–238.

[59] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li,
Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isolation and Communication
in a Safe Operating System. In Proceedings of the 14C⌘ USENIX Symposium on
Operating SystemsDesign and Implementation (OSDI ’20). USENIXAssociation, 21–
39. https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram

[60] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-
dran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15C⌘ ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE ’19). 59–73.

[61] Omni OpenMP Compiler Group, University of Versailles Saint Quentin en Yvlines.
2014. NAS Parallel Benchmarks 3.0—Uno�cial OpenMP C Version. https://github.
com/benchmark-subsetting/NPB3.0-omp-C.

[62] OpenMP Architecture Review Board. 2008. OpenMP Application Program Interface
3.0. Technical Report. OpenMP Architecture Review Board.

[63] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I August. 2005. Au-
tomatic thread extraction with decoupled software pipelining. In 38th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’05). IEEE, 12–
pp.

[64] JiannanOuyang, Brian Kocoloski, John R. Lange, and Kevin Pedretti. 2015. Achiev-
ing Performance Isolationwith Lightweight Co-Kernels. In Proceedings of the 24C⌘
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’15). 149–160.

[65] Heidi Pan, Benjamin Hindman, and Krste Asanović. 2010. Composing Parallel
Software E�ciently with Lithe. In Proceedings of the 31st ACM Conference on
Programming Language Design and Implementation (PLDI).

[66] Yoonho Park, Eric Van Hensbergen, Marius Hillenbrand, Todd Inglett, Bryan
Rosenburg, Kyung Dong Ryu, and Robert W. Wisniewski. 2012. FusedOS: Fusing
LWK Performance with FWK Functionality in a Heterogeneous Environment. In
Proceedings of the 24C⌘ IEEE International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD ’12). 211–218. https://doi.org/10.
1109/SBAC-PAD.2012.14

[67] Marc Pérache, Hervé Jourdren, and Raymond Namyst. 2008. MPC: A uni�ed
parallel runtime for clusters of NUMA machines. In Proceedings of the 2008
European Conference on Parallel Processing (EuroPar). 78–88.

[68] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C.
Hunt. 2011. Rethinking the Library OS from the Top Down. In Proceedings
of the 16C⌘ International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’11). 291–304.

[69] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper, Richard
Jones, Orran Krieger, Renato Mancuso, and Larry Woodman. 2019. Unikernels:
The Next Stage of Linux’s Dominance. In Proceedings of the 17C⌘ Workshop on
Hot Topics in Operating Systems (HotOS XVII). 7–13.

[70] James Reinders. 2007. Intel threading building blocks: out�tting C++ for multi-core
processor parallelism. O’Reilly.

[71] Tao Schardl, WilliamMoses, and Charles Lieserson. 2017. Tapir: Embedding Fork-
Join Parallelism into LLVM’s Intermediate Representation. In Proceedings of the
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP 2017).

[72] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo.
2016. EbbRT: A Framework for Building Per-Application Library Operating
Systems. In Proceedings of the 12C⌘ USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16). 671–688.

[73] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castelló, D.
Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé, S. Krishnamoorthy, J. Li�ander,
H. Lu, E. Meneses, M. Snir, Y. Sun, K. Taura, and P. Beckman. 2018. Argobots: A
Lightweight Low-Level Threading and Tasking Framework. IEEE Transactions
on Parallel and Distributed Systems 29, 3 (2018), 512–526.

[74] George Stelle, William S. Moses, Stephen L. Olivier, and Patrick McCormick. 2017.
OpenMPIR: Implementing OpenMP Tasks with Tapir. In Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC.

[75] Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda. 2020.
CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based
Address Translation. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 329–345.

[76] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-�ow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
265–266.

[77] Xinmin Tian, Hideki Saito, Ernesto Su, Jin Lin, Satish Guggilla, Diego Caballero,
Matt Masten, Andrew Savonichev, Michael Rice, Elena Demikhovsky, Ayal Zaks,
Gil Rapaport, Abhinav Gaba, Vasileios Porpodas, and Eric Garcia. 2017. LLVM
Compiler Implementation for Explicit Parallelization and SIMD Vectorization. In
Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure in HPC.

[78] Sean Treichler, Michael Bauer, and Alex Aiken. 2014. Realm: An Event-Based
Low-Level Runtime for Distributed Memory Architectures. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT
2014). 263–276.

[79] K. B. Wheeler, R. C. Murphy, and D. Thain. 2008. Qthreads: An API for program-
ming with millions of lightweight threads. In Proceedings of the 2nd Workshop on
Multithreaded Architectures and Applications (MTAAP 2008, colocated with IPDPS
2008).

[80] Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash. 2018. Uniker-
nels as Processes. In Proceedings of the 9C⌘ ACM Symposium on Cloud Computing
(SoCC ’18). 199–211.

[81] Robert W. Wisniewski, Todd Inglett, Pardo Keppel, Ravi Murty, and Rolf Riesen.
2014. mOS: An Architecture for Extreme-scale Operating Systems. In Proceed-
ings of the 4C⌘ International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS ’14).

[82] V. Yodaiken and M. Barabanov. [n.d.]. A Real-Time Linux. Presented at USENIX
97; online at http://rtlinux.cs.nmt.edu/rtlinx/u.pdf.

14

https://doi.org/10.1145/3365137.3365395
https://arxiv.org/abs/cs.PL/2102.05081
https://doi.org/10.1145/2892208.2892214
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://doi.org/10.1109/SBAC-PAD.2012.14
https://doi.org/10.1109/SBAC-PAD.2012.14

	Abstract
	1 Introduction
	2 Software, testbed, and benchmarks
	2.1 Software
	2.2 Testbed and benchmarks

	3 Runtime in kernel (RTK)
	3.1 Compilation
	3.2 Runtime system
	3.3 Pthreads in Nautilus
	3.4 Other dependencies and issues

	4 Process in kernel (PIK)
	4.1 Compilation
	4.2 Process abstraction
	4.3 Linux compatibility

	5 Custom compilation for kernel (CCK)
	5.1 Compilation pipeline and AutoMP
	5.2 OpenMP to metadata conversion
	5.3 Task generation
	5.4 Binary generation, linking, runtime

	6 Evaluation
	6.1 Impact on OpenMP primitive performance
	6.2 Impact on application performance
	6.3 Performance on 8XEON

	7 Discussion
	8 Related work
	9 Conclusions
	References

