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ABSTRACT: Ionically bonded organic metal halide hybrids have emerged as versatile
multicomponent material systems exhibiting unique and useful properties. The unlimited
combinations of organic cations and metal halides lead to the tremendous structural diversity
of this class of materials, which could unlock many undiscovered properties of both organic
cations and metal halides. Here we report the synthesis and characterization of a series
benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb,X; (X = Cl, Br), in
which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides
are found to exhibit enhanced photoluminescence and stability as compared to the pristine
BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and
theoretical calculations reveal that BZQ" cations are responsible for the emissions in these
hybrid materials. Changing the halide from CI to Br introduces heavy atom effects, resulting in
yellow room temperature phosphorescence (RTP) from BZQ" cations.

S olid-state organic chromophores have applications in
various fields, including photoswitches,' sensing,2 electro-
optical modulators,” and light emitting diodes (LEDs)." The
optical properties of organic chromophores, such as emission
color and photoluminescence quantum efficiency (PLQE), are
controlled by several factors, including their molecular
structures and supramolecular modes of assembly and
aggregation behaviors.”™” To date, numerous strategies have
been developed to effectively control the molecular inter-
actions of solid-state organic chromophores to achieve desired
optical properties, such as polymorphism®’ and cocrystalliza-
tion.'” However, the design of reliable approaches that employ
molecular interactions in regulating the properties of organic
chromophores, also known as crystal engineering, remains a
challenging task.” Room temperature phosphorescence (RTP)
is among various optical properties that can be realized
through effective crystal engineering."'~'* For instance, crystal
engineering could promote strong intermolecular interactions
in a well-packed structures, which restrict the molecular
motions and suppress the nonradiative decays from the triplet
state, hence achieving RTP.™

Organic metal halide hybrids consisting of organic cations
and metal halide anions have received significant attention due
to their structure diversity, unique photophysical properties,
and wide range of applications.”~"" Single crystals with
different dimensionalities at the molecular level have been
developed by carefully choosing the organic cations and metal
halides, as well as controlling the synthetic conditions.”"™** In
most of these hybrid materials developed to date, organic
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cations with wide-bandgap are used to template the assemblies
of metal halides without contributing directly to their

photophysical properties.” ™’ Recently, photoactive organic
cations have been used to develop organic metal halide hybrids
with emissions from both organic cations and metal halides, or

. L3841
solely from organic cations.

The cocrystallization of
organic cations with metal halides could enable the
manipulation of their photophysical properties by affecting
their packing modes and intermolecular interactions. For
instance, protonated enrofloxacin exhibited higher PLQE and
smaller Stokes shift when it was cocrystallized with SnCl*, as
compared with other metal halides (Pb,Cl>~ to Bi,Cl;*),
due to stronger inter- and intramolecular interactions.”’ In
addition, controlling the composition of metal halides could
also affect the properties of organic cations by introducing
heavy atom effects. For instance, the afterglow properties of
tetraphenyl phosphonium zinc halides (TPPZnX,) show
strong dependence on the halide composition and TPPZnBr,
exhibits stronger phosphorescence with shorter afterglow than
TPPZnCl,.
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Figure 1. (a) View of the single crystal structure of (BZQ)Pb,Br;. (b) View of face-sharing decahedra in (BZQ)Pb,Br;. (c) Ball-and-stick model of
an individual the face-sharing decahedra in (BZQ)Pb,Brs. (d) View of the single crystal structure of a conventional layered 2D A,PbBr, (A =
phenylethylammonium). (e) View of corner-sharing octahedra in A,PbBr,. (f) Ball-and-stick model of the corner-sharing octahedra in A,PbBr,
(Pb, red; Br, green; N, blue; C, gray; hydrogen atoms are omitted for clarity).
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Figure 2. (a) Images showing (BZQ)Cl, (BZQ)Pb,Cl;, (BZQ)Br, and (BZQ)Pb,Br; under ambient and UV light (365 nm). Steady state emission
spectra of (b) (BZQ)Cl and (BZQ)Pb,Cl; and (c) (BZQ)Pb,Br;. (d) CIE chromaticity coordinates of the emissions from (BZQ)CI (circle),
(BZQ)Pb,Cl; (square), and (BZQ)Pb,Br; (thombus). Emission decay curves of (e) (BZQ)Cl and (BZQ)Pb,Cl and (f) (BZQ)Pb,Br;.

Here we report two 2D organic metal halide hybrids
(BZQ)Pb,Xs; (X = Cl, Br) prepared by cocrystallizing
protonated BZQ' (C;NH,,") cations with lead halides
(PbX,). BZQ" cations were found to be responsible for the
emissions of these materials, while the inorganic layers
(Pb,Xs™) act as wide-bandgap scaffold for the organic cations,
affecting their assemblies and photophysical properties.
(BZQ)Pb,Cls is found to exhibit enhanced blue emission at
room temperature as compared to the organic salt (BZQ)C],
while (BZQ)Pb,Br; exhibits yellow RTP due to heavy atom
effects of Br. Furthermore, white emission from (BZQ)Pb,Cl
is achieved at 77 K due to simultaneous fluorescent and
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phosphorescent emissions from BZQ'. In addition to photo-
physical properties, these solid-state organic metal halide
hybrids exhibited significantly better thermal and environ-
mental stability than pure organic halide salts.
Benzoquinolinium metal halides (BZQ)Pb,X; (X = Cl, Br)
were synthesized by reacting benzo[h]quinoline with lead
halides (PbX,) in water in the presence of appropriate acids at
100 °C. Small yellowish plate crystals were obtained upon
cooling the reaction mixture. Details of the synthesis can be
found in the Supporting Information (Figure Sla). The crystal
structures of (BZQ)Pb,X; (X = Cl, Br) were determined using
single crystal X-ray diffraction (SCXRD). It is found that they
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Table 1. Summary of the Photophysical Properties of (BZQ)Cl, (BZQ)Pb,Cl;, (BZQ)Br, and (BZQ)Pb,Br; at Room

Temperature and 77 K

lifetime
emission, 4,,,, (nm) fluo (ns) phos (ms) Dy, (%) k, (s71) k, (s71)
(BzQ)Cl 450 (445, 512, 540)° 5.0 (8.8)° 1207 8 0.16 x 10° 1.8 x 108
(BZQ)Pb,Cly 470 (450, 480, 524, 572)° 6.3 (7.53)° 1507 18 0.29 x 10° 1.3 x 108
(BZQ)Br N/A (512)° N/A 5.0 x 107 N/A N/A N/A
(BZQ)Pb,Br; 550 (534, 582)° N/A 2.3 X 107 (5.3 x 107 2 0.9 X 10° 42 x 10°

“Measured at 77 K. The radiative and nonradiative decays were calculated using these equations: k, = ®/z, k,, = (1 — ®)/z.
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Figure 3. (a) Images showing the prompt and delayed emissions of (BZQ)Cl and (BZQ)Pb,Cl; at 77 K. Steady state emission spectra at 77 K of
(b) (BZQ)Cl and (BZQ)Pb,Cl; and (c) (BZQ)Br and (BZQ)Pb,Br;.

are isostructural and crystallize in the monoclinic space group
P2,/c (Table S1). As shown in Figure 1a and S1, the structures
are composed of 2D anionic sheets of [Pb,X;]™ separated and
balanced by arrays of BZQ" cations. This new 2D structure is
very different from the conventional corner-shared 2D metal
halide structure found in layered 2D perovskites with a general
formula of A,PbX,.**** In this unique 2D structure described
for the first time, Pb atoms are coordinated to eight halides to
form face-sharing decahedra, unlike the case of conventional
2D, where the Pb atoms coordinate to six halides to form
corner-sharing octahedra (Figure 1 and Figure S2). The Pb—X
bond lengths range from 2.712 to 3.273 A and 2.869 to 3.449
A for Pb—Cl and Pb—Br, respectively. The angles between
Pb—X-Pb in (BZQ)Pb,X; are not linear as in the case of
A,PbX, and are close to 90°. BZQ" cations form 2D arrays of
orthogonally packed BZQ' dimers, corresponding to two
parallel molecules with head-to-tail configuration. In this
hybrid structure, the rigid lead halide inorganic layers provide
a restricted and well-ordered environment for organic cations,
improving their optical properties and thermal stability. The
powder XRD patterns of (BZQ)Pb,X; agrees with the
simulated results obtained from the SCXRD analysis (Figure
$3), indicating high phase purity of the materials. The thermal
stability of these hybrid materials and their corresponding
organic salts were evaluated using thermogravimetric analysis
(TGA). TGA results show that (BZQ)Cl and (BZQ)Br salts
decompose completely between 114 and 203 °C and between
135 and 234 °C, respectively. In the case of (BZQ)Pb,X;, the
TGA traces show two weight loss peaks around 206 and 608
°C for (C;3NH,,)Pb,Cl; and at 262 and 572 °C for
(C13NH,,)Pb,Br;, respectively (Figure S4). The first weight
loss peaks correspond to the loss of BZQ" cations from the
structures and occur at higher temperatures as compared to
(BZQ)X salts. These results show that the thermal stability of
BZQ' cations is improved in (BZQ)Pb,X;. In addition,
(BZQ)Pb,X; single crystals were found to exhibit remarkable

8231

environmental stability, with little to no change of their
properties after storage in ambient conditions for a year, while
the crystals of organic salts decomposed within a few days
(Figures S5 and S6).

The photophysical properties of (BZQ)Pb,X; (X = Cl, Br)
single crystals and (BZQ)X organic salts are characterized with
results shown in Figure 2 and summarized in Table 1.
(BZQ)Pb,Cly and (BZQ)Cl exhibit broad featureless
emissions peaked at 450 and 470 nm, respectively. The
decay lifetimes of these emissions are in the nanosecond
regime. The similarity between the two emissions suggests that
BZQ" cations contribute to the emission of (BZQ)Pb,Cl;. By
changing the halide from CI to Br, the organic salt (BZQ)Br
becomes nonemissive, while (BZQ)Pb,Bry exhibits yellow
emission with a microsecond decay lifetime. The emission
spectrum of (BZQ)Pb,Br; is broad and shows vibrational
features. These results clearly suggest that the introduction of
heavy atom Br influences the emission and decay lifetime of
BZQ" cations by changing their emission character from
fluorescence to phosphorescence, as it promotes spin—orbit
coupling (SOC) and facilitates the intersystem crossing (ISC)
from singlet to triplet state of BZQ" cations. The small peaks at
461 and 495 nm in the emission spectrum of (BZQ)Pb,Br; are
likely related to the weak emission from the singlet state,
although the decay lifetime could not be recorded due to its
low intensity. The emission of BZQ' cations is mainly
attributed to (7, 7*) electronic transition similar to what has
been previously reported for other BZQ salts (e.g.,
benzoquinolinium trifluoroacetate and benzoquinolinium
trichloroacetate).” (BZQ)Pb,Brs exhibits emission mainly
from the triplet state *(z, 7*) with some contribution from the
singlet state '(z, 7*), while (BZQ)Pb,Cl; and (BZQ)CI
display emissions only from the singlet state '(z, 7*). The
Commission Internationale de L'Eclairage (CIE) chromaticity
coordinates of (BZQ)Cl, (BZQ)Pb,Cl;, and (BZQ)Pb,Br; are
(0.1603, 0.1440), (0.1675, 0.2632), and (0.3747, 0.4303),
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Figure 4. Electronic band structure of (a) (BZQ)Pb,Cls and (b) (BZQ)Pb,Br;. Density of states (DOS) of (c) (BZQ)Pb,Cl; and (d)
(BZQ)Pb,Br; calculated using the PBE functional. Note that the PBE band gap is underestimated.

respectively (Figure 2d). The PLQE of (BZQ)Pb,Cl; single
crystals was measured at 18%, more than double that of (BZQ)
ClI crystals (8%) and is attributed to decreased nonradiative
decays as well as increased radiative decays. The rigid 2D
Pb,Cl;™ layers scaffold BZQ" cations and assist in suppressing
the nonradiative relaxations of these molecules, resulting in a
higher PLQE. The PLQE of (BZQ)Pb,Br; RTP was measured
at 2%, while (BZQ)Br is not emissive at room temperature.
These results suggest that 2D Pb,Brs~ layers affect the optical
properties of BZQ" cations, not only by introducing heavy
atom effects but also by providing a rigid environment for
these cations. The effects of 2D Pb,Br;™ layers on the emission
of BZQ" cations are also displayed by the vibrational features
at room temperature, which suggests more restricted cation
movements.** The structure rigidity introduced by the
inorganic layers in these hybrid materials restricts the
movement of BZQ' cations and helps suppress the non-
radiative decays, leading to enhanced emission.

The photophysical properties of these materials were also
investigated at 77 K, with results showing in Figure 3 and
summarized in Table 1. (BZQ)CI exhibits blue emission with
greenish-yellow afterglow upon removing the excitation source,
while (BZQ)Pb,Cl; exhibits white emission with strong yellow
afterglow. The white emission of (BZQ)Pb,Cl at 77 K has
CIE coordinates of (0.2769, 0.3408), a color rendering index
(CRI) of 75, and a correlated color temperature (CCT) of
8399 K. The emission spectrum of (BZQ)CI shows a strong
peak at 445 nm with shoulders at 512 and 540 nm, while
(BZQ)Pb,Cl; displays two peaks with vibrational features and
similar intensities. The decay lifetimes of the emissions in
(BZQ)Cl and (BZQ)Pb,Cl; measured at 450 nm were 8.8 and
7.53 ns, respectively. The ns character of these decay lifetimes
suggests that the emissions at 450 nm correspond to
fluorescence from the singlet state. The decay lifetimes
monitored at 530 nm were longer and in milliseconds,
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indicating the phosphorescent character of these emissions.
The phosphorescent decay lifetimes of (BZQ)Cl (120 ms) and
(BZQ)Pb,Cl; (150 ms) are longer than the eye detection limit
(100 ms), which justifies the afterglow properties of these
materials.”” Simultaneous emissions from singlet and triplet
states in (BZQ)Pb,Cl; afford a white emission. It was
previously reported that benzo[h]quinoline molecules can
exhibit phosphorescence at rigid media and low temper-
atures.”® Here, the higher rigidity provided by 2D Pb,Cly~
layers leads to stronger phosphorescence of (BZQ)Pb,Cl; as
compared to (BZQ)CL In the case of (BZQ)Br and
(BZQ)Pb,Br;, strong yellow emissions with no afterglow
were recorded at 77 K, as a result of suspended nonradiative
decays. The decay lifetimes of (BZQ)Br and (BZQ)Pb,Br;
were recorded at 0.5 and 0.53 us, respectively (Figure S4).
These much shorter decay lifetimes as compared to those of
Cl-based materials are caused by the heavy atom effects of Br,
which promote SOC to afford efficient phosphorescence.
These results show that metal halides can affect the
photophysical properties of organic cations in multiple ways,
such as controlling their molecular packing and introducing
heavy atom effects.

Theoretical calculations were performed to further under-
stand the photophysical properties of these hybrid materials.
Figure 4 shows the electronic band structure and DOS of
(BZQ)Pb,X; (X = CJ, Br) calculated using the PBE functional.
The electronic bands derived from organic and inorganic
components have small dispersions, indicating relatively
localized electronic states; this is even true for the Pb—X
structure that forms 1D chains. The lack of the linear —Pb—X—
Pb—X— bonds (as are present in the perovskite structure)
blocks the long-range coupling among Pb-6p and halogen p
orbitals in (BZQ)Pb,X; (X = Cl, Br). The PBE band gaps of
(BZQ)Pb,Xs (X = Cl, Br) are 2.31 and 1.89 eV, respectively,
as shown in Figure 4. Since a PBE band gap is typically
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Figure 5. Molecular packing of the BZQ" cations in (a) (BZQ)Pb,Cl; and (b) (BZQ)CL (c) Emission mechanism in (BZQ)Pb,X;.

underestimated, we further used the hybrid PBEO calculations
to correct the band gaps of (BZQ)Pb,X; (X = Cl, Br) to 4.07
and 3.65 eV, respectively. The DOS plots in Figure 4 show
that, for both compounds, the conduction band is made up of
localized states from BZQ cations, while the valence band is a
mixing of orbitals from both inorganic and organic
components. The hybridization between Pb-6s and halogen-p
orbitals pushes their antibonding states to the top of the
valence band. The optical excitation is most efficient when
taking place locally within a BZQ" cation or a Pb,X;™ layer. A
close inspection of the DOS plots in Figure 4 shows that the
single-party energy gap of BZQ" is smaller than that of Pb, X~
in (BZQ)Pb,X; (X = Cl, Br). After the bandgap correction by
PBEO calculations, in (BZQ)Pb,Cl;, the single-party energy
gap of BZQ" is about 4.1 eV, much smaller than that of
Pb,Cl;~ (5.0 eV); the corresponding energy gaps for BZQ*
and Pb,Br;~ in (BZQ)Pb,Br; are about 4.0 and 4.4 eV,
respectively. These results suggest that the optical emission
should originate from the exciton recombination in BZQ'
cations, which correlate well with the experimental results. The
measured emission energy should be lower than the calculated
energy gap due to the strong exciton binding.

To better understand the effects of molecular packing on the
optical properties and thermal stability of the materials, single
crystal structures of the salts (BZQ)X were determined and
compared to those of (BZQ)Pb,X; (X = Cl, Br). (BZQ)Cl and
(BZQ)Br crystallize in a monoclinic system with the space
group P2,/c. Parts a and b of Figure 5 display the view of an
array of BZQ' cations in (BZQ)Pb,Cl; and (BZQ)CI,
respectively. In (BZQ)Pb,Cl;, the BZQ" cations form dimers
with head-to-tail configurations, which pack orthogonally to
form 2D arrays of cations confined by 2D Pb,Cl;™ layers from
both sides. However, in (BZQ)CL, BZQ" cations form layers of
linearly packed head-to-tail molecules. The intermolecular
distances between the centroids of phenyl and pyridine rings
range from 3.728 to 4.708 A in (BZQ)Pb,Cl; and from 3.633
to 4.657 A in (BZQ)Cl, suggesting little-to-no z—zx
interactions. C—H:-Cl and N—H---Cl distances are measured
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between 2.147 and 2.865 A in (BZQ)Cl and 2.343 and 2.773 A
in (BZQ)Pb,Cl;. Hirschfeld surface analysis was carried to
evaluate and quantify the molecular interactions in these
structures (Figure S8—S11). The 2D fingerprint plots to the
Hirschfeld surface show that H---Cl interactions are stronger in
(BZQ)PDb,Cl; (31.4%) compared with (BZQ)Cl (19.4%). The
molecular interactions in (BZQ)CI were dominated by H---H
interactions (62.3%), while H:--Cl interactions were the most
dominant interactions in (BZQ)Pb,Cl;, followed by C--H
interactions. A similar comparison was observed in the case of
(BZQ)Br and (BZQ)Pb,Br,. These analyses confirm that the
2D Pb,X;™ layers scaffold and provide a rigid environment to
BZQ cations arrays by strong hydrogen bonding, which leads
to improved thermal and environmental stability and superior
optical properties in (BZQ)Pb,X; as compared to (BZQ)X.

The proposed mechanism of the photophysical processes in
(BZQ)Pb,X; is shown in Figure Sc. (BZQ)Pb,X; crystals are
excited from a singlet ground state (S,) to a singlet excited
state (S;). In the case of (BZQ)Pb,Cls, fluorescence emission
with ns decay lifetime occurs from the radiative relaxation of
excited BZQ" molecules. The enhancement in BZQ"
fluorescence in (BZQ)Pb,Cly as compared to (BZQ)CI is
correlated with suppression in the nonradiative decays and an
increase in the structure’s rigidity. The presence of Br in
(BZQ)Pb,Br;, introduces heavy atom effects which promote
the ISC from the singlet to triplet state (T). The radiative
deactivation of T, leads to RTP with a microsecond lifetime
from BZQ* in (BZQ)Pb,Br..

In conclusion, organic metal halide hybrids with general
formula (BZQ)Pb,X; (X = Cl, Br) have been synthesized and
characterized. The anionic metal halides (Pb,X;”) form a
unique face-sharing 2D layered structure, which acts as a
scaffold for the assemblies of BZQ" cations and influences their
photophysical properties and environmental stability. A PLQE
of 18% is recorded for the fluorescence from BZQ" cations in
(BZQ)Pb,Cl;, more than double that of (BZQ)CL. Replacing
Cl with the heavy atom Br promotes intersystem crossing
effect, resulting in visible room temperature phosphorescence
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from BZQ" cations in (BZQ)Pb,Br;. This work paves a new
way for manipulating the properties of solid-state organic
chromophores via the formation of ionically bonded organic
metal halide hybrid systems.
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