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ABSTRACT: Polymers in the nanoscale vicinity of interfaces can exhibit large alterations in dynamics and glass formation 
behavior. These changes are accompanied by alterations  in  rheological  response, yet  the precise nature of gradients  in 
viscosity and whole‐chain relaxation near interfaces is an open question. Here we employ molecular dynamics simulations 
of a low molecular weight glass‐forming polymer between crystalline walls to probe this relationship. Results indicate that 
viscosity  and whole‐chain  relaxation  time  gradients  for  this  system  obey  the  same  qualitative  phenomenology  as  do 
segmental relaxation time gradients, indicating that they emanate from the same underlying physics. At a quantitative level, 
however, our simulation and theoretical results indicate that unlike in small molecules, polymer viscous and whole chain 
relaxation  interfacial  gradients  should  generally  be  expected  to  be weaker  than  underlying  segmental  relaxation  time 
gradients – a consequence in large part of the typically weaker bulk temperature dependence of low‐temperature viscosity 
and whole chain  relaxation  than  segmental dynamics  in many polymers. Shifts  in viscosity are  shown  to emerge  from 
underlying alterations in the polymer’s complex modulus near interfaces, with a high‐frequency glassy plateau emerging at 
higher temperature and surviving to  lower frequency near the walls. These results have  implications for the rheological 
response of diverse nanostructured polymers including thin films, filled rubber, ionomers, and semicrystalline polymers, 
and they highlight the need for a generalization of the Rouse model to account for dynamical gradients. 

Introduction 

Extensive evidence indicates that polymers in the nanoscale 
vicinity of interfaces can exhibit large changes in dynamics 
and glass formation behavior1–5. Examples include 
freestanding polymer films, supported polymer films6,7, 
semicrystalline polymers8,9, ionomers10–12, 
nanocomposites, and block copolymers13–17. Study of these 
effects has in most cases focused on intrinsically segmental 
phenomena such as segmental relaxation and the glass 
transition temperature Tg. Simulations and experiments 
point to large ሺup to 50 K or moreሻ shifts in Tg in material ൏ 
10 nm from an interface with large accompanying shifts in 
relaxation times18–20. 

Results over the last decade have led to a reasonably 
coherent picture of the phenomenology of segmental 
relaxation time gradients near interfaces1. The form of these 
gradients can be understood at two deeply-connected 
levels. The bulk relaxation time is recovered double-
exponentially with increasing distance z from the 
interface4,21–28: 
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where τ is the relaxation time, τbulk is the bulk relaxation 
time, AሺTሻ quantifies the temperature-dependent fractional 

reduction in the quantity lnሺτ/τbulkሻ immediately at the 
interfaces, and ξlnτ is the exponential decay range for 
recovery of bulk-like relaxation times. This functional form 
is underpinned by a more fundamental exponential 
variation of the activation barrier for relaxation, i.e.1,28,29 
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where γሺzሻ -1 is the fractional change in the local activation 
barrier ΔFሺz,Tሻ relative to its bulk value ΔFbulkሺTሻ at a 
distance z from the interface, γ0 is the fractional reduction 
at the interface, and ξF is the range for recovery of bulk-like 
activation barriers.  

Crucially, the range parameter ξF has been found to be 
temperature-invariant at sufficiently low temperatures – a 
reflection of the remarkable finding that the local activation 
barrier in thin films can be factored into distinct position-
dependent and temperature-dependent factors1,28,29: 
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This fact leads to a fractional power law relationship 
between local or confined dynamics at bulk dynamics at low 
temperatures1,28,29: 
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where τ* is a chemistry- and relaxation-function-dependent 
bulk relaxation timescale of onset of strong interfacial 
effects on dynamics, such that dynamics are nearly bulk-like 
at temperatures for which the bulk relaxation time is less 
than this value29,30.  

The theoretical understanding of this phenomenology has 
also advanced during this time. A recent perspective paper 
on the state of theoretical progress in this area1, coauthored 
by one of us, reviewed a number of theoretical efforts to 
understand these effects and concluded that the Elastically 
Cooperative Nonlinear Langevin Equation ሺECNLEሻ theory 
of supercooling liquid dynamics31,32 has been shown to 
predict essentially the full segmental-level phenomenology 
of near-interface gradients described above28. Within this 
theory, interfacial gradients in segmental dynamics are 
predicted to emerge from a combination of altered near-
interface segmental caging constraints and a longer-range 
alteration of a collective elastic activation barrier to 
relaxation. The decoupling relation above is predicted by 
ECNLE to emerge from the close connection between these 
two effects, such that the net truncation in activation barrier 
at any position ሺzሻ is nearly temperature-invariant.  

In addition to the ECNLE theory, several other theoretical 
proposals have also been found to be consistent with 
elements of the above phenomenology, including the 
fractional power law decoupling relation. For example, the 
cooperative free volume model of Lipson and coworkers 
has recently been shown to be consistent with the fractional 
power law decoupling relation33. Therefore, at present 
there is at least one near complete theoretical prediction of 
interfacial gradients in segmental relaxation time ሺthe 
ECNLE theoryሻ, with several other promising approaches 
that may ultimately prove to offer alternative theoretical 
descriptions of the scenario with further development.  

In any case, practically, as a consequence of the empirical 
success and theoretical rationality of equation ሺ4ሻ, it is 
possible to extract the local fractional alteration γሺzሻ-1 in 
the activation barrier from local and bulk relaxation time 
data. 

In parallel to the gradual development of this cohesive 
picture of interfacial gradients in segmental dynamics, 
there has been considerable interest in alterations in 
effective viscosity and rheological response of glass-
forming polymers near interfaces. At the very small length 
scales associated with these effects, it is not clear that 
viscosity is perfectly well-defined in the bulk sense34. 
Nevertheless, prior work has reported alterations in 
rheological response that can be readily described based on 
altered effective viscosities defined in the normal manner 
based on a ratio between shear stress and strain rate34–39.  

Indeed, multiple experimental studies have suggested that 
rheological response properties near interfaces exhibit 
alterations of a magnitude at least reasonably according 
with observed alterations in Tg and segmental dynamics. 
Dewetting experiments by Tsui and coworkers35 probed 
viscosity in thin films, reporting substantial reductions in 
viscosity with decreasing film thickness. Film x-ray photon 
correlation spectroscopy measurements have likewise 
reported suppressed viscosities in supported ሺfree-surface-
dominatedሻ films36. By using a film-step deformation 
method, Chai et al. reported more locally on near-free-

surface viscosities and demonstrated substantial 
reductions relative to bulk.37 Experiments probing the 
leveling of surface dimples38 or the embedding of particles 
into film surfaces40–42 have yielded similar findings. The 
most recent of work in this area has directly visualized 
nanoscale gradients in experimental polymer viscosity near 
a free surface39. These types of shifts also likely play a 
central role in the ‘bound rubber’ phenomenon wherein 
mechanical response is argued to be altered in the 
nanoscale vicinity of nanoparticulate additives in rubber43–
47.  

A series of studies by McKenna and coworkers has probed 
creep of freestanding films via a nanobubble inflation 
method48–51. These studies have reported a series of 
intriguing findings wherein the rubbery modulus of the 
polymer can be enhanced even when Tg is decreased. 
Moreover, the timescale of relaxation of the rubbery plateau 
in these films seems is found to vary quite differently in 
distinct polymers, in various cases appearing to be either 
longer- or shorter-lived in the bulk. These findings indicate 
the potential for nontrivial differences between alterations 
in Tg and alterations in chain relaxation in thin films. 
However, their interpretation is complicated by the fact that 
these polymers are highly entangled. It is thus possible that 
topological entanglements effects52,53 may play a role, even 
if they do not provide the full picture. An understanding of 
the underlying effect of the interfacial Tg gradient on 
rheological response in the absence of potential 
confounding entanglement effects will require study of 
rheological response in unentangled systems, which is 
likely not possible via bubble inflation at temperatures 
appreciably above Tg.  

Multiple simulation studies have reported results 
consistent with altered effective viscosity near interfaces in 
glass-forming polymers. Early simulation work by Varnik 
and Binder directly reported a gradient of enhanced 
viscosity in a bead-spring polymer under Poiseuille flow 
near an attractive substrate54. Results by Priezjev suggest 
that this basic phenomenon persists under Couette flow, 
with simulated polymers in this scenario exhibiting a 
growing near-wall region of reduced shear rate ሺand thus 
enhanced effective local viscosityሻ as density is increased 
towards vitrification55. The fact that qualitatively similar 
effects are seen in these two types of flow suggests that, at a 
minimum, trends in effective nanoscale viscosity are 
qualitatively transferrable between distinct flow types. 
Servantie and Müller likewise reported simulation evidence 
for a domain of altered viscosity in polymers near a wall, 
with this effect driving modified effective slip length34. 
Simulations of Lam and Tsui56 and by our group39 indicate 
that an inverse phenomenon occurs at free surfaces, where 
viscosity is locally reduced. 

A natural question is whether these alterations obey the 
same phenomenology as do segmental relaxation time 
alterations near interfaces. Given that gradients in 
rheological response are the direct determinant of many of 
the performance properties of interfacially rich polymers, 
the need to extend the understanding of segmental-scale 
gradients to this larger molecular scale is a major open 
challenge in the area. 



 

Indeed, despite the now fairly advanced understanding of 
the phenomenology of segmental relaxation time gradients, 
it remains unclear precisely how alterations in polymer 
viscosity and mechanical response shifts emerge from those 
gradients in more local dynamics. In small molecules, 
viscosity is directly connected to the glass transition, since 
each molecule effectively consists of a single ‘segment’ and 
the viscosity is therefore directly connected to the 
segmental alpha relaxation process. In polymers, on the 
other hand, the situation is more complicated. Viscosity is 
most directly connected in polymers to whole chain motion 
rather than segmental motion. The classical model 
connecting motion at these two scales in polymers is the 
Rouse theory, which is grounded in the assumption that 
segmental relaxation times are uniform across the entire 
system57. Near interfaces, this assumption is evidently 
violated, such that the Rouse description cannot be 
assumed to hold. 

Moreover, the connection between viscosity and segmental 
dynamics is imperfect even in the bulk state of glass-
forming polymers: polymer viscosity is commonly observed 
to exhibit a weaker temperature dependence than polymer 
segmental dynamics58.  There is considerable debate over 
the origins of this decoupling58–60. One body of literature 
suggests that it is grounded in the emergence of spatially 
heterogeneous dynamics on cooling58,61,62, while several 
other perspectives argue for an origin that is unrelated to 
dynamic heterogeneity.63–67 Regardless, however, of the full 
explanation for this decoupling phenomenon, recent work 
by our group extending the Rouse model to account for a 
distribution of segmental relaxation times indicates that, as 
a general matter, non-uniform segmental mobility should 
be expected to drive a breakdown of the standard Rouse 
scaling of dynamics61. If bulk dynamic heterogeneity can 
lead to breakdown in the Rouse model far from interfaces, 
one might expect this breakdown to occur in an even more 
extreme manner near interfaces. Moreover, there the 
situation is even more complicated: not only does the 
system possess a distribution of relaxation times, but this 
distribution is spatially organized due to the presence of a 
dynamical gradient upon approach to the interface.  

Given this situation, it is not at all clear whether gradients 
in polymer viscosity at interfaces should closely reflect 
gradients in segmental dynamics. Similarly, it is not clear 
whether gradients in other rheological response functions, 
such as the complex modulus, should directly follow 
segmental relaxation time gradients. No present 
generalization of the Rouse model accounts for strong, 
spatially correlated variations in segmental mobilities as 
are present in these systems. Given that chain motion 
reflects mobility over a larger scale than does segmental 
motion, one might anticipate some degree of attenuation of 
the mobility gradient as probed by viscous rather than 
segmental response. 

With these issues in mind, here we seek to answer the 
following questions with respect to rheological gradients 
near interfaces: 

1ሻ Do gradients in whole chain relaxation time and 
polymer viscosity obey the same qualitative 
phenomenology summarized above for segmental 
relaxation time gradients – exponential barrier 

gradients, double-exponential viscosity gradients, 
and fractional power law decoupling? 

2ሻ To what extent do gradients in chain relaxation time 
and viscosity quantitatively reflect underlying 
gradients in segmental relaxation? 

3ሻ How do these gradients reflect underlying gradients 
in the complex modulus of the polymer? 

Here we seek to answer these questions in the context of 
flexible, unentangled, short-chain polymers at a rigid 
substrate. To do so, we perform molecular simulations of a 
flexible bead spring polymer in a gap between two 
crystalline substrates. We focus on a case in which polymer-
wall interactions are slightly stronger than polymer-
polymer interactions, leading to a large near-wall Tg 
enhancement. At a very coarse qualitative level, this 
suggests that our system is more akin to polyሺmethyl 
methacrylateሻ on silica ሺwhere Tg is enhanced near the 
substrateሻ than polystyrene on silica ሺwhere near-substrate 
effects on Tg are relatively muted. We probe both 
equilibrium gradients in dynamics for both segments and 
whole chains, and gradients in local viscosity under Couette 
flow conditions.  

Methods 

Simulation methodology 

We perform equilibrium and nonequilibrium molecular 
dynamics simulations probing relaxation dynamics and 
rheological response in the vicinity of a polymer-substrate 
interface. Simulations employ an attractive variant of the 
standard bead-spring model of Kremer and Grest68, which 
has been extensively employed to study near-interface 
dynamics during glass formation19,39,69–79. Within this 
model, the non-bonded fluid monomer interaction is 
governed by the Lennard-Jones ሺLJሻ potential: 
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The LJ potential is truncated for r ൑ rc ൌ 2.5σ. ε ൌ 1 and σ ൌ 
1 set the characteristic energy and length scales, 
respectively, for nonbonded interactions. In addition to the 
LJ potential, any two covalently neighboring monomers in 
the chain interact through the Finitely Extensible Nonlinear 
Elastic ሺFENEሻ potential:  

U
 

U
 

Figure  1.  Simulation  snapshot  (rendered  in  VMD) 
illustrating  geometry  of  simulated  system,  with  polymer 
beads in green and wall beads in grey. 
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with the values for the parameters Kൌ30εσെ2, Roൌ1.3σ, ε ൌ 
1 and σ ൌ 0.8. We use these modified values of the 
parameters of the FENE model to prevent heterogeneous 
nucleation and crystallization under nanoconfinement by 
rigid crystalline walls80.  

A layer of polymer approximately 23 segmental diameters 
thick is sandwiched between two structured crystalline 
walls, modeled by two layers of beads of FCC lattice with 
density of 1.4. The 111 face of the lattice is exposed inward 
towards the polymer film. Periodic boundary conditions are 
employed in all directions. A simulation snapshot ሺrendered 
in VMD81ሻ illustrating the system geometry is shown in 
Figure 1. 

Equilibrium configurations of the simulated samples over a 
range of temperatures are obtained in an iterative manner 
by the Predictive Stepwise Quenching ሺPreSQሻ82 algorithm. 
In summary, we first anneal the samples at a high 
temperature, Tൌ1.5, which is much greater than the glass 
transition temperature. The system, equilibrated at this 
high temperature, is then quenched to 8 evenly spaced 
temperatures high enough that the expected relaxation 
time is less than 1 ps. Each of these configurations is then 
annealed for a period of 10 ps. Data are collected from 
subsequent runs, and a relaxation time τ for each 
temperature is determined in the manner described below. 
The determined equilibrium temperature vs τ data are then 
fit to the Vogel-Fulcher-Tammann ሺVFTሻ relation and 
extrapolated over a range of 0.5 to 1 order of magnitude 
further in relaxation time projecting 8 new evenly spaced 
temperatures over that relaxation time range. These 
temperatures are then isothermally annealed for at least 10 
times their end-to-end reorientational relaxation time. The 
process of rapid quenching and VFT fitting is iterated to 
obtain new equilibrated system configurations at the new 
subsequent lower temperatures until a target maximum 
whole chain relaxation time is reached. 

 Simulations are performed in LAMMPS83 at a constant 
pressure P ൌ 0, by employing the Nose-Hoover barostat as 
implemented in LAMMPS, with a damping parameter of 2 
τLJ. Temperature in quiescent simulations is controlled with 
the Nose-Hoover thermostat, also with a damping 
parameter of 2 τLJ. Temperatures during shear are 
controlled with the Berendsen thermostat after performing 
a brief additional equilibration in the Berendsen 
thermostat. 

Results are reported in dimensionless Lennard-Jones units. 
Roughly, one LJ unit of time τLJ corresponds to one 
picosecond in real units. There is no unique conversion of 
length units to real units, but a typical range is one LJ length 
unit σLJ to 0.5 to 2 nm13,71,84. Similarly, there is no general 
temperature scale conversion, but a conversion of 1 LJ 
temperature unit to 1000K yields a temperature scale 
comparable to typical room temperature glassy polymers 
such as polystyrene. With these figures in mind, a 
dimensionless velocity of 1 corresponds approximately to 
103 m/s. 

Quantification of dynamics 

Translational dynamics are quantified via the self-part of 
the intermediate scattering function, 
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where q is a wavevector corresponding to wavenumber q, 
rjሺtሻ is the position of particle j at time t൅s, sk is a start time 
of observation, N is the number of particles in the system, S 
is the number of observation windows averaged over, and 
the brackets denote an average over numerous 
wavevectors corresponding to wavenumber q. We compute 
Fsሺq,tሻ at q ൌ 7.07, comparable to the first peak in the 
structure factor. This calculation is performed at two levels: 
for single beads, and at the level of the center of mass of each 
entire chain. To do the latter, we first compute the center of 
mass of each chain and when then apply equation ሺ7ሻ at the 
level of this center of mass, consistent with recent work 
employing this method61. 

In analyzing this relaxation function, the 
KohlrauschെWilliamsെWatts stretched exponential ϐit is 
employed for data smoothing and interpolation, 
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where τKWW is a time constant, h is called the non-ergodicity 
parameter, and β is the stretching exponent. The segmental 
relaxation time τα is defined as the time at which Fsሺq,tሻ 
decays to 0.2, following a convention commonly employed 
in simulations61,72,79,85.  

Reorientational relaxation is quantified via the 
reorientational autocorrelation function C2ሺtሻ, given by 

𝐶ଶሺ𝑡ሻ ൌ 〈𝑃ଶሾ𝑒௜ሺ0ሻ. 𝑒௜ሺ𝑡ሻሿ〉 ,  ሺ9ሻ 

where P2 is the second Legendre polynomial and eiሺtሻ is the 
i’th unit vector under consideration at time t. We again 
compute this quantity at both a segmental and whole chain 
dynamics. For whole chain dynamics, we employ the end-
to-end vector of the chain. Since for single segments ሺnൌ1ሻ, 
there is no internal vector within this model, we employ the 
bond vector between adjacent bonded beads. Like 
translational relaxation time, the reorientational relaxation 
time is also defined when this relaxation function decays to 
0.2 after employing a stretched exponential fit for 
smoothing and interpolation.  

At each temperature, gradients in translational dynamics 
and reorientational dynamics are computed via the self-
part of the intermediate scattering function ሺat a 
wavenumber comparable to the first peak in the structure 
factorሻ and the second Legendre polynomial vector 
reorientation function, respectively. For segmental 
translational dynamics, the gradient is obtained by sorting 
beads ሺsegmentsሻ into bins of thickness 0.875 and 
computing Fsሺq,tሻ for particles within each bin. For whole 
chain translational dynamics, chain centers of mass are 
instead sorted into these bins. For reorientational 
dynamics, a bond or end to end vector is sorted into a bin 
based on the position of the midpoint of the vector. 



 

Quantification  of  spatially‐resolved  rheological 
response 

In addition to these quiescent analyses, the system is 
separately, at each temperature, subjected to shear to 
obtain a viscosity and complex modulus. 

 Viscosity is obtained via simulations in which we translate 
the upper wall at a fixed velocity of U and the lower wall at 
a fixed velocity of -U. We employ a standard value of U 
ൌ0.001 σLJ/τLJ. Below, we establish the range of conditions 
in which this value of U is in the linear regime, by varying U 
in a set of initial probe runs.  

Viscosity gradients are obtained in a manner paralleling 
recent nanorheology experiments and simulations39, via 
differentiation of the displacement gradient within a 
lubrication approximation after steady state is achieved. 
Specifically, the velocity uxሺzሻ within each bin is first 
determined by computing the incremental displacement of 
beads within that bin. Time intervals are chosen to generate 
2000 data points per simulation run. Incremental 
displacements are summed to calculate the total 
displacement as a function of time. The velocity in a given 
bin is then obtained from the slope of the fit to the 
displacement vs time curves beyond the point where the 
system reaches steady state ሺi.e. beyond the point at which 
the displacements become linear in timeሻ. The resulting 
velocity profile is then converted to a viscosity profile ηሺzሻ 
via the equation 

 𝜏௫௭ ൌ 𝜂ሺ𝑧ሻ
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where τxz is the shear stress and is computed for the film 
from LAMMPS, in a manner comparable to recent work39. 
The shear stress is averaged over the same period of time 
used to obtain the velocity gradient from local 
displacements ሺi.e. after displacement vs time curves are 
linear and the system has reached steady stateሻ.  

To extract the storage and the loss modulus, oscillatory 
motion is imposed on the polymer layer by imposing a 
sinusoidal displacement on the walls in the direction 
parallel to the film. The displacement Xሺtሻ of the upper wall 
is given in the equation 

𝑋௪ሺ𝑡ሻ ൌ 𝑋଴sin ሺ𝜔𝑡ሻ,  ሺ11ሻ 

where 𝑋଴ sets the amplitude and ω the frequency of the 
oscillatory wall displacement. The lower wall is displaced in 
opposite direction with equal amplitude and frequency. 
Generally 20 to 100 cycles are performed in order to obtain 
sufficient data while maintaining tractable relaxation times. 

In order to obtain a spatially resolved complex modulus 
from these runs, the shear stress is first extracted in a 
spatially-resolved layer-wise manner from LAMMPS for 
layers of thickness Δz. The time interval of reporting is 
chosen such that 50 data points per cycle of oscillation are 
generated, and the stress is averaged over the interval 
between points. The stress response 𝜎ሺ𝑡, 𝑧ሻ for each layer of 
the polymer is then fit to a sinusoidal function with stress 
amplitude, σ0, frequency, ω and a phase lag δσ.  

 𝜎ሺ𝑡, 𝑧ሻ ൌ 𝜎଴ሺ𝑧ሻ𝑠𝑖𝑛 ሺ𝜔𝑡 ൅ 𝛿ఙሺ𝑧ሻሻ ሺ12ሻ 

The mean displacement, Xሺz,tሻ is then obtained for layers 
ሺ‘bins’ሻ of fluid, with the bins used for displacement 
calculations shifted by Δz/2 such that the locations at which 

stress and displacement are computed are staggered. The 
local strain γሺt,zሻ is then computed as 

 𝛾ሺ𝑡, 𝑧ሻ ൌ
𝑑𝑋ሺ𝑧, 𝑡ሻ
𝑑𝑧

 .ሺ13ሻ 

Because these strain derivatives are centered between each 
pair of adjacent bins of particles for which displacement 
was computed, the computed strain values reflect a set of 
mean positions corresponding with the mean positions at 
which stress was computed. The magnitude of the strain 
wave, γ0 is extracted by fitting the strain data, calculated 
from displacement of each layer, to a sinusoidal wave 
function as.  

 𝛾ሺ𝑡, 𝑧ሻ ൌ 𝛾଴ሺ𝑧ሻsin ሺ𝜔𝑡ሺ𝑧ሻ൅𝛿ఊሺ𝑧ሻሻ. ሺ14ሻ 

The loss modulus, G’ and storage modulus, G” are then 
calculated using the equations 

 𝐺′ ൌ ሺ𝜎଴/𝛾଴ሻcos ሺδሻ ሺ15ሻ 

and   

 𝐺" ൌ ሺ𝜎଴/𝛾଴ሻsin ሺδሻ ,ሺ16ሻ 

where δ is the phase lag between streess and strain and 
computed by substracting δγ from δσ. As described further 
below, the viscoelastic linear regime of the system at a given 
frequency is identified by checking if the moduli are 
independent of strain-rate by using multiple strain 
amplitude at constant frequency. 

Results 

Linearity 

As shown by representative velocity vs position curves in 
Figure 2, steady state velocity profiles are nonlinear in 
position, as expected, indicating a spatial variation in shear 
rate and thus in viscosity. At higher temperatures, there is 
appreciable temperature-dependent slip at the walls, 
consistent with prior work34. The true system shear rate, if 
measured between the first layers of the fluid on each side 
of the gap, is therefore temperature dependent. In reporting 
data, we refer to given conditions based on a nominal mean 
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Figure  2. Velocity  vs position  profiles  for  representative 
temperatures of 0.810 (purple squares), 0.693 (blue circles), 
0.615 (green diamonds), 0.567 (orange triangles), and 0.496 
(open  squares).  These  temperatures  correspond  to  (bulk‐
like) mid‐film segmental reorientational relaxation times of 
14, 29, 60, 116 τLJ (corresponding roughly to ps in real units), 
respectively. 



 

shear rate define as twice the wall velocity over the distance 
between walls. However, the viscosity calculation above is 
insensitive to these issues within the linear regime, because 
it employs local rather than global strain rates. Wall slip 
effects thus generally do not impact local viscosity 
determinations provided that the response is in the linear 
regime. 

We thus begin by assessing the question of whether our 
results for viscosity reflect linear regime behavior. To do so, 
we report in Figure 3a the ratio of local viscosities at a 
nominal strain rate of 9x10-4 to those at a strain rate of 9x10-

5, corresponding to wall velocities 0.01 and 0.001. A ratio of 
1 in this figure indicates that viscosity is insensitive to shear 
rate, pointing to linear behavior in this range of shear rates. 
In Figure 3b, we plot the ratio of near-wall to midfilm 
viscosity at multiple shear rates. Here, agreement of 
multiple data sets ሺmultiple shear ratesሻ indicates linearity. 
As can be seen here, the midfilm viscosity remains 
approximately linear down to the lowest temperatures 
probed in the study, while the layer nearest the wall 
remains approximately linear down to a temperature of 
0.54 for shear rates less that 9x10-4 and a temperature of 
0.49 for shear rates less that 9x10-5. The loss of linearity at 
higher temperature near the surface than in the mid-film 
can be understood at a coarse level via the view that near-
substrate polymer is effectively shifted to a higher 
“rheological temperature”86 than the bulk-like polymer in 
the mid-film. We discuss further the origins of this behavior 
from the standpoint of complex modulus further below. For 
now, we note that in the ensuing analysis we employ 
viscosity data only at conditions where Figure 3 and the 
associated analysis indicate that the viscosity reflects linear 
behavior. 

Viscosity and relaxation time gradients 

We continue by assessing the form of these linear-regime 
viscosity gradients and of the underlying gradients in 
whole-chain relaxation. We initially ask whether they obey 
the double-exponential form for recovery of bulk-like 
behavior observed for segmental relaxation time gradients. 
To do so, we first select several representative 
temperatures and in Figure 4 depict a double-log plot of 
segmental and whole chain relaxation time gradients vs 
distance from the interface for relaxation times 
ሺtranslational and reorientational for segments and whole 
chainsሻ and viscosity gradients. As can be seen here, all of 
these gradients obey a double-exponential recovery of bulk-
like behavior with increasing distance from the interface, 
such that they obey equation ሺ1ሻ or its viscosity analogue. 
Evidently, segmental dynamics, whole chain dynamics, and 
viscous response in these low molecular weight chains 
exhibit qualitatively comparable behavior near a substrate. 

We note that in performing fits to equation ሺ1ሻ and 
generally in normalizing results by bulk throughout this 
study, we employ the approximation that τmid ≅ τbulk  and 
ηmid ≅ ηbulk. Equation ሺ1ሻ, together with prior evidence, 
indicates that this is a reasonable approximation in our 
system, where the midline is approximately 10σ from the 
interface. Prior work has reported that, near attractive 
supporting substrates, ξ in these equations is ~2 or 
less21,22,87. Below we report values of this range parameter 
that are consistent with this finding. With this range value, 

the residual deviation from bulk of τ and η at the midplane 
is 5% or less, even when the near-interface dynamics differ 
from bulk by a factor of 1000 ሺlarger than the largest effect 
we observe in this studyሻ. Deviations from bulk of this 
magnitude are within the noise of relaxation time 
determinations and will only matter if analyzing normalized 
properties in the high-z tail of this gradient – an issue we do 
not address here. 

Next, we ask whether alterations in the temperature 
dependence of whole-chain relaxation and viscosity near 
the interface qualitatively mirror the fractional power law 
rule ሺequation ሺ4ሻሻ seen in segmental dynamics. If so, this 
will enable extraction of γሺzሻ ሺthe position-dependent 
activation barrier modification factorሻ and thus enable a 
test of the underlying exponential variation in activation 
barriers. To test this, we plot in Figure 5 local values of each 
relaxation time and of viscosity vs their mid-film values.  

As can be seen in this figure, at low temperatures all five 
relaxation processes obey equation ሺ4ሻ near the substrate. 
The onset behavior of equation 4 is nonuniform across the 
5 relaxation functions, with viscosity exhibiting a more 
pronounced onset than the other four. In prior work, we 
explored this onset behavior for segmental translation and 
reorientation at a free surface across a matrix of bead-

Figure  3.  (a)  Ratio  of  viscosity  measured  at  wall 
velocities of  0.001  and  0.01  (corresponding  to nominal 
overall shear rates of  9 x 10‐4 and 9 x 10‐5, respectively, at 
distances  from  the  wall  noted  in  the  caption,  as  a 
function  of  temperature.  (b)  Near‐wall  viscosity 
measured  at  the  three  noted  wall  velocities, 
corresponding  to nominal overall  shear  rates of 9x10‐4,
3x10‐4  and  9x10‐5,  from  top  to  bottom,  plotted  versus 
temperature. 

(a) 

(b) 



 

spring polymers and found that the timescale of the onset 
can vary with chemistry and even with relaxation function 
at fixed chemistry30. Similarly, we found variation in the 
‘sharpness’ of the onset, with bulklike behavior recovered 
very abruptly at high temperature in some relaxation 
functions and more gradually in others. In the present case, 
it appears that the onset behavior is more pronounced ሺat 
perhaps at larger effective timescalesሻ in the viscous 
response relative to segmental and chain relaxation times, 
with a well-defined high-temperature regime in which 
effects are quite weak followed by onset of much stronger 
effects at lower temperature.   

Evidently, both the form of the gradient in lnሺτሻ or lnሺηሻ and 
the temperature dependence of these gradients obey a 
qualitatively common phenomenology across all of these 
relaxation functions. By employing fits of the data in Figure 
5 to equation ሺ4ሻ, we can now additionally ask whether the 
exponential recovery of bulk-like activation barriers that 
underlies equation ሺ1ሻ for segmental dynamics is also 
obeyed by chain relaxation and viscosity.  

As in our prior work29,30, we constrain our fit to equation ሺ4ሻ 
to low temperatures, only, in an effort to avoid 
contamination by data below or within this onset. The fit 
range associated with each quantity is shown in the 
rightmost column of Table 1. As shown in Figure 6a, the 
decay of γ-1 ሺi.e. the fractional enhancement in activation 
barrierሻ can indeed be described by an approximately 

exponential form ሺequation ሺ2ሻሻ with distance from the 
interface for all relaxation functions probed. 

Magnitude and range of relaxation time and viscosity 
gradients 

The above findings suggest that the phenomenology of 
gradients in whole-chain relaxation and viscosity 
qualitatively parallel that of segmental relaxation: all obey a 
double-exponential recovery of bulk relaxation times with 
increasing depth in the film, reflecting an underlying 
exponential gradient of the activation barrier, and obeying 
a fractional power law decoupling relation with the 
corresponding bulk dynamics as temperature is varied at 
low temperature.  To what extent are these gradients in 
whole chain relaxation and viscosity in quantitative 
agreement with the corresponding segmental gradients as 
well?  

In answering this question, we must consider two gradients 
for each relaxation function: the gradient in lnሺτሻ or lnሺηሻ, 
which obeys a double-exponential recovery of bulk with 
increasing distance from the interface, and the gradient in 
the activation barrier underlying each relaxation process, 
which obeys a single-exponential recovery of bulk with 
increasing distance from the interface. These two gradients 
are characterized by a total of four figures of merit. AሺTሻ and 
γ0 quantify the magnitude of surface alterations in 
lnሺτ/τbulkሻ ሺor lnሺη/ηbulkሻሻ and in ΔF/ΔFbulk, respectively. 
ξlnτሺTሻ and ξΔF report on the exponential decay range for 

Figure  4:  Normalized  viscosity  (black  hollow  circles)  and  relaxation  times  for  translational  segmental 
dynamics  (blue  diamonds),  translational  whole  chain  dynamics  (red  squares),  reorientational  segmental 
dynamics (purple circles), reorientational whole chain dynamics (green triangles) as functions of distance from 
interface at reduced LJ temperatures of (a) 0.73, (b) 0.65, (c) 0.58 and (d) 0.50. For context, these temperatures 
correspond  to  (bulk‐like)  mid‐film  segmental  reorientational  relaxation  times  of  22,  40,  102  and  530  τLJ
(corresponding roughly to ps in real units), respectively. 

0.0001

0.001

0.01

0.1

1

10

0 2 4 6 8 10

lo
g(
τ/
τ m

id
),
 lo

g(
η
/η

m
id
)

distance from interface (σ)

T=0.65

0.0001

0.001

0.01

0.1

1

10

0 2 4 6 8 10

lo
g(
τ/
τ m

id
),
 lo

g(
η
/η

m
id
)

distance from interface (σ)

T=0.58

0.0001

0.001

0.01

0.1

1

10

0 2 4 6 8 10
lo
g(
τ/
τ m

id
),
 lo

g(
η
/η

m
id
)

distance from interface (σ)

T=0.50

0.0001

0.001

0.01

0.1

1

10

0 2 4 6 8 10

lo
g(
τ/
τ m

id
),
 lo

g(
η
/η

m
id
)

distance from interface (σ)

T=0.73
(a)  (b) 

(c)  (d) 



 

recovery of bulklike lnሺτ/τbulkሻ ሺor lnሺη/ηbulkሻሻ and bulk 
activation barrier, respectively. Before examining the 
quantitative behavior of each of these gradients in our 
simulated system, it is useful to consider the manner in 
which we should expect them to interrelate.  

First, if we combine equations ሺ1ሻ and ሺ2ሻ with a 
generalized activation rate law,  

   0, exp ,T z F T z kT     ,ሺ17ሻ 

applied both locally and at a whole film level, we arrive at 
the finding that the fractional surface reduction AሺTሻ of the 
lnሺτ/τbulkሻ gradient must be related to the fractional 
reduction in activation barrier at the interface via the 
equation 

   0 bulkA T F T kT   ሺ18ሻ 

A parallel finding for free surface behavior was discussed in 
recent work1. This equation indicates that the fractional 
surface reduction AሺTሻ of lnሺτ/τbulkሻ and lnሺη/ηbulkሻ 
gradients should grow on cooling even when the magnitude 
γ0 of the underlying activation barrier gradient is 
temperature invariant ሺas the success of equationሺ4ሻ at low 
T indicatesሻ  – a consequence of a growing bulk activation 
barrier, relative to the thermal energy, on cooling.   

Notably, equation ሺ18ሻ can also be rewritten as  

   
0

0,

ln bulk

bulk

T
A T





 

   
 

,ሺ19ሻ 

where τ0,bulk is the prefactor in the bulk activation rate law. 
We thus generally expect larger magnitude gradients in 
lnሺτ/τbulkሻ or lnሺη/ηbulkሻ for relaxation functions that exhibit 
a stronger temperature dependence in bulk. 

Figure  5:  (a)  Segmental  translational  relaxation  time,  (b)  whole  chain  translational  relaxation  time,  (c)  segmental 
reorientational relaxation time, (d) whole chain reorientational relaxation time and (e) viscosity, all vs their corresponding 
values in the middle of the film, plotted for layers of thickness 0.875 at the indicated mean distances from the wall. Typical 
standard deviation in log(τ) or log(η), computed by averaging over the two halves of the film immediately at the substrate, 
are  0.01  (segmental  translation),  0.05  (whole  chain  translation),  0.01  (segmental  reorientation),  0.04  (whole  chain 
reorientation), and 0.05 (viscosity). 
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With this expected behavior in mind, we quantify the 
magnitude of alterations in lnሺτሻ and lnሺηሻ and their 
underlying activation barriers in the simulated system. As 
can be seen in Figure 7a, the fractional surface reduction 
AሺTሻ of lnሺτ/τbulkሻ and lnሺη/ηbulkሻ for all four of the 
relaxation times probed grow with cooling. As discussed 
above, this growth can be attributed to the development of 
the bulk relaxation time for each relaxation function on 
cooling, as per equations ሺ18ሻ and ሺ19ሻ. The absolute value 
of these interfacial alterations in relaxation time or viscosity 
varies among the relaxation functions. As seen in this figure, 
segmental translation is most strongly perturbed at the 
interface, with whole chain reorientation exhibiting the 
weakest. Gradients in viscosity, whole chain translational 
relaxation, and segmental reorientation exhibit 
intermediate surface amplitudes. 

This relaxation-function-to-function variation in AሺTሻ can 
be compared with the variation in the surface magnitude γ0 
of alterations in the activation barriers underlying these 
relaxation processes. As seen in Table 1, γ0 is smallest for 
whole-chain reorientation, consistent with the trend for 
AሺTሻ. The values of γ0 for the other three relaxation 
functions ሺexcluding viscosityሻ are not distinguishable 
within uncertainty. However, remarkably, γ0 for viscosity is 
by far the largest of any of the relaxation functions, which 
would seem to presage large interfacial modifications in 

lnሺηሻ; however, this is not consistent with the findings in 
Figure 7a, which indicate a relatively weak lnሺηሻ gradient.  

In essence, these findings indicate that alterations to the 
activation barrier for viscosity very near the substrate are 
relatively large on a fractional basis, and yet alterations to 
the actual viscosity itself are relatively weak. How can these 
findings be consistent? To understand this, we turn again to 
equation ሺ19ሻ, which indicates that the strength of 
temperature dependence of the bulk relaxation time for 
viscosity plays a critical role in mediating between the 
strength of barrier gradients and the strength of gradients 
in lnሺτሻ or lnሺηሻ. To assess if this factor can account for the 
apparent discrepancy between the strength of lnሺηሻ 
gradients and the underlying barrier gradients, we plot in 
Figure 8 the mid-film temperature dependences of viscosity 
and the five relaxation times considered here. As can be 
seen in this figure, viscosity indeed exhibits an anomalously 
low bulklike temperature dependence as compared to the 
other four relaxation times considered, predicting the lower 
ratio of AሺTሻ/γ0 observed above.  

This finding may have broad implications for the 
understanding of altered dynamics under 
nanoconfinement. Equations ሺ18ሻ and ሺ19ሻ indicate that, 
even given a comparable alteration in activation barriers, 
larger alterations should be expected in the dynamics of 
chemistries and relaxation function exhibiting a stronger 
bulk temperature dependence. However, this strength of 
temperature dependence is not the only factor controlling 
the strength of these interfacial gradients – the interfacial 
barrier reduction factor γ0 plays a separate role that does 
not necessarily involve a dependence on the strength of the 
temperature dependence of dynamics.  

This result may rationalize the findings that the strength of 
interfacial effects on Tg often20, but not always70,76,88, 
correlates with the fragility of glass formation – a measure 
of the strength of the temperature dependence of dynamics 
near Tg. However, the mechanism is quite different than has 
often been proposed in prior works, which have commonly 
attributed this correlation to a putatively larger correlation 

Figure 6: (a) Logarithm of fractional activation barrier 
enhancement and (b)  logarithm of onset timescale τ* or 
onset  viscosity  η*  as  functions  of  distance  from  the 
interface  for  translational  segmental  (blue  diamonds), 
translational whole  chain  (red  squares),  reorientational 
segmental (purple circles), and orientational whole chain 
(green  triangles)  relaxation  times  and  viscosity  (black 
open circles). 
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Table  1.  Surface  magnitude  γ0  and  exponential  decay 
range ξF of alterations in the activation barriers underlying 
viscosity  and  the  four  relaxation  times  considered  here: 
translational  segmental  relaxation  time,  translational 
whole‐chain  relaxation  time,  reorientational  segmental 
relaxation time, and reorientational whole‐chain relaxation 
time. The rightmost column provides the midfilm timescale 
range over which fits to equation (4) were performed. Fits 
to equation (2) are performed over the range z < 4 to avoid 
contamination  by  noisier  data  at  higher  z.  Uncertainty 
intervals are 95% confidence intervals on the parameters for 
the fit. 

Relaxation 
function 

γ0 - 1 ξΔF Fit range 

𝜂  2.50 േ 0.69 1.26 േ 0.36 ηmid ൐ 0.015 

𝜏ఈ,௧ 0.81 േ 0.28 2.66 േ 0.94 τα,t,mid ൐ 10 

𝜏௪௖,௧ 0.85 േ 0.21 2.23 േ 0.50 τwc,t,mid ൐ 100 

𝜏ఈ,௥ 1.04 േ 0.57 1.97 േ 0.85 τα,r,mid ൐ 100 

𝜏௪௖,௥  0.54േ0.12 3.29 േ 0.96 τwc,t,mid ൐ 1000 



 

length scale in more fragile glass-formers. Instead, we find 
that this result emerges at a more physically trivial level 
from a simple convolution of a relatively uniform activation 
barrier gradient with distinct bulk temperature 
dependences of dynamics. 

This finding also points to a likely molecular weight 
dependence of the strength of viscosity gradients as 
compared to segmental relaxation time gradients. In small 
molecules, molecular relaxation and viscosity are relatively 
well coupled. However, in polymers, this coupling can break 
down, with viscosity and whole-chain relaxation often 
reported to exhibit a weaker temperature dependence than 
segmental relaxation58,61,61,65,89–96. As indicated above, this 
weaker temperature dependence leads to a lower 
magnitude surface modification in viscosity relative to 

segmental relaxation time. Since the coupling between 
viscosity and segmental relaxation must be restored as the 
polymer chain molecular weight is reduced towards the 
small molecule limit, this implies that viscosity gradients 
should strengthen ሺrelative to segmental relaxation time 
gradientsሻ at low molecular weights. Because quite low 
molecular weights are needed to restore segmental-chain 
dynamical coupling92, we expect that this trend should only 
become evident in the oligomer limit. 

Further quantitative insight into the extent of the difference 
in strength in viscosity and segmental relaxation time 
gradients can be obtained by combining equation ሺ19ሻ with 
the experimental observation that, at low temperatures, the 
relationship between viscosity and segmental relaxation 
time is itself described by a fractional power law58,91, 
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where εα-η is a segment-viscosity decoupling exponent, a is 
a prefactor, and subscript α denotes the segmental process. 
Combination of this equation with equation ሺ19ሻ leads to 
the result that the difference between the segmental 
gradient magnitude AαሺTሻ and the viscosity gradient 
magnitude AሺTሻ at low temperature ሺwhere prefactor 
effects can be neglectedሻ is given by the equation 
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Here the first term reflects differences in gradient strength 
resulting from bulk decoupling between segmental 
dynamics and viscosity; the second term reflects differences 
resulting from differences in the underlying barrier 
gradient. The findings above suggest that, at least in these 
simulations, the first term plays a major role. Notably, εα-η or 
its equivalent for segment vs chain relaxation decoupling 
are available or can be readily obtained for a range of 

Figure 8. Logarithmic viscosity (black hollow circles) 
and  relaxation  times  for  translational  segmental 
dynamics  (blue  diamonds),  translational whole  chain 
dynamics  (red  squares),  reorientational  segmental 
dynamics  (purple circles),  reorientational whole chain
dynamics  (green  triangles),  plotted  vs  inverse 
temperature. Viscosities at the temperatures above the 
glass formation range are not reported due to excessive 
noise. 

‐6

‐5

‐4

‐3

‐2

‐1

0

‐1

0

1

2

3

4

5

0.5 1 1.5 2 2.5

lo
g(η

m
id )lo

g(
τ m

id
)

1/T

Figure  7:  (a)  Surface  magnitude,  (b)  range  and  (c) 
integrated  magnitude  of  interfacial  perturbations  to 
translational  segmental  relaxation  (blue  diamonds), 
translational  whole  chain  relaxation  (red  squares), 
reorientational segmental relaxation (purple circles), and 
reorientational whole  chain  relaxation  (green  triangles) 
viscosity (black open circles at wall velocity of 0.001 and 
closed circles at a higher wall velocity of 0.01.) 



 

polymer liquids ሺcommonly ranging from 0 to ~0.6ሻ58. 
Equation 20 suggests that this exponent is a predictor of the 
strength of viscosity gradients near interfaces, with higher 
values of εα-η presaging weaker interfacial viscosity 
gradients, given similar temperature-dependences of 
segmental dynamics. This finding may guide selection of 
glass-forming liquids with relatively uniform viscosity near 
interfaces. 

We next turn to the question of the gradient range. As 
shown by Figure 7b, the range of lnτ and lnη gradients is 
relatively insensitive to temperature as compared to their 
magnitude, consistent with reports focused purely on 
segmental dynamics25,26.   Particularly given this situation, 
combination of equations ሺ1ሻ and ሺ2ሻ suggests that ξΔF ≅ ξlnτ, 
with some differences between the two expected due to the 
weak spatial variation in of the prefactor τ0 in equation ሺ17ሻ 
ሺor equivalently of the constant τ* in equation ሺ4ሻሻ29, which 
is visible in Figure 6b. In general, uncertainties in ξΔF  in 
these data are fairly large due to the derivative nature of this 
quantity. Broadly, however, comparison of this length scale 
with ξlnτ between Table 1 and Figure 7b suggests that these 
length scales are generally comparable, consistent with the 
expectation above.  

Notably, both the relaxation time and activation barrier 
gradient range data are consistent in indicating that the 
range of the gradient in dynamics at a substrate is 
considerably less than that at a free surface. Both Table 1 
and Figure 7b are consistent with an interfacial gradient of 
exponential decay range around 2. By contrast, simulations 
at free surfaces have indicated that the decay range there is 
about twice as large25,26,29,30. This is consistent with prior 
work suggesting an asymmetry in the range of dynamical 
gradient at free surfaces vs buried substrates1. Recent 
experimental work has also observed this asymmetry 
between the range of the gradient at buried interfaces for 
which Tg is decreased ሺlonger rangeሻ vs increased ሺshorter 
rangedሻ97–99, suggesting that interfacial Tg enhancements 
may generally propagate further into a materials than Tg 
suppressions. 

These findings are also consistent with predictions of the 
ECNLE theory for thin film dynamics. The general range of 
segmental relaxation time gradients – around 2 σ – is in 
reasonable accord with ECNLE predictions of the range of 
segmental lnሺτሻ gradients near a structured substrate87. 
That theory also predicts the asymmetry between 
substrates and free surfaces, capturing the longer range 
observed at a free surface. Within the ECNLE theory, near-
interface changes in dynamics are fundamentally driven by 
changes in local segmental caging and in a long-ranged 
elastic activation barrier for relaxation. The present 
findings thus would appear to be potentially consistent with 
that scenario. 

Beyond this comparison to free surfaces, it is informative to 
compare the gradient range between distinct relaxation 
functions. Both ξlnτ ሺor ξlnηሻ and ξΔF data are consistent with 
the observation of longer ranged gradients for whole chain 
reorientational relaxation than for segmental relaxation. 
This is consistent with the intuition that whole chain 
relaxation gradients at an interface might be somewhat 
‘smeared out’ relative to segmental gradients due to intra-
chain averaging.  Gradients in the viscosity and in its 

underlying barrier are relatively short ranged, and more 
similar to that of segmental than whole chain dynamics, as 
per Table 1 and Figure 7b. This finding seems surprising, as 
viscosity is normally associated with whole chain motion. 
This unexplained observation emphasizes the need for an 
extension of the Rouse model to treat chain motion and 
viscous relaxation in a gradient of segmental mobilities. 

From a practical standpoint, the depth-variation in lnη is 
more important than the depth-variation of the underlying 
barrier ሺbecause it more directly controls rheological 

Figure 9: G’ (solid symbols) and G” (unfilled symbols) 
vs ω at the interface (purple) and midfilm (red) for (a) 
T=0.59,  (b)  T=0.54  and  (c)  T=0.49,  corresponding  to 
mid‐film segmental reorientational relaxation times of 
82, 172, and 530 τLJ, respectively. Dotted lines denote the 
Rouse regime. In part (c), the location of the interfacial 
Rouse regime is an estimate as only the high frequency 
shoulder of  the Rouse  regime  is within  the accessible 
frequency range. 

 



 

responseሻ, and we thus focus on the implications of this 
aspect of the results. To do so, we quantify the cumulative 
magnitude of alterations in τ or η ሺnot simply at the surface 
but integrated across the whole gradientሻ by calculating the 
numeric integral of lnሺτ/τmidሻ or lnሺη/ηmidሻ over the whole 
film. This quantity, shown in Figure 7c, can be interpreted 
as the total amount of ‘extra’ lnτ or lnη near the interface. 
This quantity also has the advantage of reduced sensitivity 
to noise due to its direct integral ሺand non-fitሻ nature. 
Consistent with exhibiting both a low range and magnitude 
of lnη gradients, the integrated magnitude of the near-
interface viscosity perturbation is the weakest of the 
functions probed here. These findings, together with those 
above, reinforce that alterations in polymer viscosity near 
interfaces should be expected to be relatively weaker than 
those in segmental dynamics, while still obeying a 
comparable qualitative phenomenology. 

Complex modulus 

Finally, in order to gain more insight into interfacial 
gradients in viscosity in particular, we probe gradients in 
complex modulus near the interface. The viscosity and the 
relaxation times are intimately connected to the complex 
modulus Gሺωሻ, since viscosity is the time integral of the 

relaxation modulus  
0
G t dt


  , and the complex modulus 

is the Fourier transform of the relaxation modulus – we thus 
expect that alterations in viscosity near the interface should 
be undergirded by alterations in complex modulus. 

To proceed, we first perform oscillatory shear simulations 
at multiple strain amplitudes at each frequency. We use 
these amplitude sweeps to identify the linear regime 
amplitude in each frequency range. The data conforming to 
linearity are presented in Figure 9; data in this figure thus 
include multiple strain amplitudes to maintain linearity 
across the 4-decade frequency range probed without losing 
signal strength ሺsimulated signal to noise ratios in 
simulated shear experiments can be unacceptably poor at 
excessively low amplitudes, so the best data are generally 
obtained at the highest possible amplitude that remains in 
the linear regimeሻ.  

In Figure 9, G’ and G” at interface are compared to their 
values in the midfilm as a function of frequency for three 
different reduced Lennard Jones temperatures: 0.59, 0.54 
and 0.49. Results clarify the mechanical origin of linear 
enhancement in viscosity at the interface. At the highest 
temperature probed, which is only modestly below the 
onset of non-Arrhenius segmental dynamics, G’ and G” 
exhibit a clear Rouse regime ሺslope ~ ½ሻ in both the near-
interface and mid-film dynamics. However, the Rouse 
regime is shifted ~1 decade to lower frequencies near the 
interface at this highest temperature. With decreasing 
temperature, the Rouse regimes in both domains shift to 
lower frequency as a result of a growing segmental 
relaxation time. However, the effect is evidently larger near 
the interface. At the lowest temperature of 0.49, the 
interfacial Rouse regime is shifted nearly out of the 
accessible frequency range. Based on the shoulder of the 

Figure  10: G’ and  (b) G” at mid‐film and  (c) G’ and  (d) G” at  interface as  function of ω  for equilibrium 
temperature, T=0.49 (blue diamond), T=0.54 (green triangle) and T=0.59 (red square). These temperatures 
correspond to mid‐film segmental reorientational relaxation times of 530, 172, and 82 τLJ, respectively. 



 

Rouse regime visible near the interface, it is clear at this 
temperature that there is at least a  ~2 decade difference in 
the interfacial and mid-film Rouse regimes observed at this 
temperature, and possibly more. This finding is consistent 
with and underlies the growing magnitude of the interfacial 
gradient in viscosity observed upon cooling in Figure 7. 

In addition to the evident shift in the Rouse regimes near 
the interface and upon cooling, Figure 9 points to a related 
feature of the mechanical response near the wall: a well-
established glassy plateau emerges in G’ sooner near the 
wall than in the bulk. This trend can be seen more easily in 
Figure 10a, where these data are regrouped to place 
multiple temperatures in the same figure. In the midfilm at 
high temperature, the data lack any signature of a glassy 
plateau in G’ሺωሻ. This is a reflection of the fact that, at T ൌ 
0.59, the segmental α relaxation is not yet well-separated 
from the picosecond β relaxation at shorter times. Upon 
cooling, a soft glassy plateau of reduced slope begins to 
emerge in the mid-film. These findings are paralleled by 
results for G” in Figure 10b: there is a lack of any minimum 
in G” at high temperature, with a hint of an emerging 
minimum at the lowest temperatures. 

This gradual emergence of a glassy plateau is greatly 
enhanced near the wall, as shown in Figure 10c and d. As 
can be seen here, by the lowest temperature probed the wall 
exhibits a well-established glassy plateau at high frequency 

in G’, with a commensurate minimum in G”. These findings 
indicate that the near-wall material is ‘glassier’ than the 
bulk, with slower alpha relaxation, a shift in the Rouse 
regime to lower frequency, and a better developed glassy 
plateau. 

Finally, we directly consider in Figure 11 gradients in G’ and 
G” through the film over a range of frequencies, at a fixed 
strain amplitude of 0.088. As can be seen here, both G’ and 
G” exhibit a strong enhancement near the interface at low 
frequency. With increasing frequency, however, this effect 
weakens, and even inverts: at the highest frequencies 
probed, G’ is reduced rather than enhanced at the interface. 
We emphasize that, unlike in Figure 9 and Figure 10, these 
data are at fixed amplitude and thus include nonlinear 
effects. The lowest frequency shown is in the linear 
response regime; at fixed amplitude, linearity is lost with 
increasing frequency, such that the effects observed at high 
frequency are nonlinear response effects. These findings 
hint at an interesting tentative conclusion: high nonlinear 
shear rates can potentially invert enhancement in viscosity 
and moduli normally observed near rigid attractive 
interfaces. This tentative finding may have implications for 
high-rate deformation of polymeric nanocomposites and 
evidently warrants additional attention. 

Conclusions 

These findings provide new insight into the relationship 
between interfacial gradients in segmental dynamics and 
interfacial gradients in chain motion and viscosity. First, 
they indicate that gradients in viscosity exhibit the same 
qualitative features that have been observed for segmental 
relaxation: near-interface chain relaxation and viscosity 
obey a fractional power law decoupling relation with bulk 
viscosity; the “decoupling exponent” or activation barrier 
truncation factor in this relation exhibits an exponential 
decay with increasing distance from the interface; the 
viscosity and chain relaxation times themselves 
consequently recovers its bulk value in a double-
exponential manner with distance from the interface. These 
results suggest that alterations in viscosity, chain 
relaxation, and segmental relaxation near rigid substrates 
all emanate from the same underlying mechanism.  

A recent perspective co-authored by one of us recently 
reviewed the state of theoretical understanding of 
segmental relaxation time gradients, concluding that the 
Elastically Cooperative Nonlinear Langevin Equation theory 
of glass formation presently predicts the largest portion of 
the phenomenology of these gradients. Within this theory, 
near interface alterations in dynamics are driven by a 
combination of altered caging constraints near an interface 
and alterations in collective far-field elastic contribution to 
the barrier to relaxation. Our findings for segmental 
dynamics near a substrate are in remarkable accord with 
the predictions of this theory28,87, including qualitative 
predictions of fractional power law decoupling and the 
spatial form of the gradient. Moreover, there appears to be 
a good degree of quantitative agreement between 
simulation and theory: our simulations report a near-
substrate gradient range in segmental lnሺτሻ in the vicinity 
of 2σ, in reasonable agreement with theory87. Moreover, as 
in the theory this range is reduced relative to prior reports 

Figure  11.  (a)  G’  and  (b)  G”  gradients  at  a 
representative  temperature  0.59  (corresponding  to  a 
segmental reorientational relaxation time of 82 τLJ. The 
symbols represent results for strain frequencies shown 
in  the  legend,  normalized  by  their  values  in  the 
midfilm. Results are at a fixed shear amplitude of 0.088.



 

of the range of gradients in this quantity at a free surface.  
The present results indicate that this same elasticity and 
caging based mechanism likely underpins alterations in 
near-interface viscosity at a qualitative level, although 
clearly further theoretical work is needed to quantitatively 
extend these predictions to chain-scale relaxation and 
viscous response. 

From a practical standpoint, these findings thus indicate 
that measurements of near-surface perturbation in viscous 
response can be interpreted as qualitatively to 
semiquantitatively reporting on shifts in Tg and segmental 
dynamics. However, we find that shifts in viscosity are 
quantitatively weaker than underlying shifts in segmental 
dynamics. This difference results at least in part from the 
difference in the bulk temperature dependence of viscosity 
vs segmental relaxation time – a connection resulting from 
the convolution of an underlying activation barrier gradient 
with the bulk temperature dependence of dynamics to yield 
the gradient in relaxation time. In many polymers, viscosity 
near Tg is observed to exhibit a weaker temperature 
dependence than segmental dynamics. Weak viscosity 
gradients – relative to segmental time gradients – should 
thus generally represent a unique feature of polymers 
resulting from this bulk level segment/chain decoupling.  

Moreover, these results provide a predictive rule regarding 
the extent of decoupling between viscosity and segmental 
relaxation time gradients. Specifically, the extent of bulk 
decoupling between segmental dynamics and viscosity can 
be quantified by a ‘decoupling exponent’ that is available for 
a number of polymers58 or can readily be obtained from 
viscosity and segmental relaxation time data. These findings 
suggest that higher values of this exponent will tend to 
correlate with weaker viscosity gradients relative to the 
segmental relaxation time gradient, given equal bulk 
relaxation time temperature dependences. This may 
provide a useful design rule for obtaining relative uniform 
viscosity near interfaces. This tendency may also be 
overlaid with effects emanating from variations in the onset 
timescale of interfacial alterations between distinct 
relaxation function, which may become more important as 
chain stiffness is increased30. At the same time, evidence 
also suggests that chain relaxation exhibits less polymer-to-
polymer variation in fragility of glass formation than does 
segmental relaxation58; this may suggest that polymer 
interfacial gradients in viscosity may be less sensitive to 
chemistry than are gradients in segmental dynamics. Most 
broadly, these results indicate that surface rheology 
measurements should not be interpreted as quantitatively 
reporting in a simple way on the precise magnitude of 
underlying Tg and segmental relaxation time gradients.  

These observations may be related to prior results pointing 
towards a correlation of the strength of alterations in Tg in 
thin films with a material’s bulk fragility of glass formation 
– a measure of the strength of the temperature dependence 
of dynamics near Tg.20 However, when comparing distinct 
chemistries, it is even likely that additional factors, such as 
chemical dependences of the underlying strength of the 
barrier gradients or of the onset of these effects30, may be 
involved, potentially explaining why this relationship  is 
nonuniversal76.  

We additionally probe interfacial alterations in complex 
modulus that underlie the surface viscosity gradient. 
Results indicate that near-surface material develops 
mechanical features of ‘glassiness’ ሺi.e. emergence of a well-
defined glassy modulusሻ sooner than does bulk-like 
material, supporting the intuitive notion that near-
substrate material is ‘glassier’ than bulk material. Results 
also tentatively suggest that high shear rates can suppress 
or even invert this interfacial gradient, with potential 
implications for high-rate deformation of interfacially-rich 
materials.  

Finally, we emphasize that our present findings are limited 
to low molecular weight polymers. The chains we simulate 
here have an end to end distance of order similar to the 
exponential decay range of the surface gradient in 
segmental relaxation times. It is entirely possible that 
longer-range connectivity effects change the picture in 
higher molecular weight chains. Similarly, our chains are 
unentangled, and entanglement effects in longer chains may 
again alter the picture – such a scenario is supported by the 
bubble inflation studies of McKenna and coworkers on film 
comprised of entangled polymers48–51. Our findings are also 
restricted to relaxation near substrates where Tg is 
enhanced; it is conceivable that the situation may 
qualitatively change near free surfaces or repulsive 
interfaces where Tg is suppressed.  

Overall, our findings indicate that the bulk-based intuition 
that viscosity quantitatively tracks whole chain relaxation 
in polymers is evidently incomplete near an interface. This 
is a natural consequence of the presence of an organized 
gradient in segmental mobility, which violates a basic 
assumption of the Rouse model. Fundamentally, these 
findings thus highlight the need for a new generalization of 
the Rouse theory accounting for gradients in segmental 
mobility. Such a generalization may be a logical next step of 
the recently developed Heterogeneous Rouse Model61. 
Practically, these findings emphasize that nanostructured 
materials exhibiting alterations in Tg should be expected to 
exhibit accompanying shifts in viscosity and dissipation 
behavior, albeit with a weaker magnitude. These effects can 
be expected to play an important role in classes of materials 
including polymer nanocomposites and filled elastomers. A 
generalization of the Rouse model accounting for these 
gradients, enabling quantitative prediction of shifts in 
viscosity in nanostructured materials based upon Tg 
measurements, could thus have substantial implications for 
the design of these materials. Such an extension could also 
provide a foundation for an understanding of the likely 
more complex near-interface effects that may arise as 
chain-entanglement effects begin to play a role at even 
higher molecular weights. 
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