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Numerical continuum tensor networks in two dimensions
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We describe the use of tensor networks to numerically determine wave functions of interacting two-
dimensional fermionic models in the continuum limit. We use two different tensor network states: one based
on the numerical continuum limit of fermionic projected entangled pair states obtained via a tensor network for-
mulation of multigrid and another based on the combination of the fermionic projected entangled pair state with
layers of isometric coarse-graining transformations. We first benchmark our approach on the two-dimensional
free Fermi gas then proceed to study the two-dimensional interacting Fermi gas with an attractive interaction in
the unitary limit, using tensor networks on grids with up to 1000 sites.
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I. INTRODUCTION

Understanding the collective behavior of quantum many-
body systems is a central theme in physics. While it is often
discussed using lattice models, there are systems where a
continuum description is essential. One such case is found
in superfluids [1], where recent progress in precise experi-
ments on ultracold atomic Fermi gases has opened up new
opportunities to probe key aspects of the phases [2]. On the
theoretical side, this requires solving a continuum fermionic
quantum many-body problem. For example, various quantum
Monte Carlo (QMC) methods have been applied to study
the cross-over from Bardeen-Cooper-Schrieffer superfluid-
ity to Bose-Einstein condensation in two-dimensional Fermi
gases [3–6]. However, the applicability of (unbiased) quantum
Monte Carlo is restricted to special parameter regimes due to
the fermion sign problem [7]. Thus devising numerical meth-
ods that can address general continuum quantum many-body
physics remains an important objective.

Tensor network states (TNS) are classes of variational
states that have become widely used in quantum lattice
models. They are complementary to QMC methods as TNS
algorithms are typically formulated without incurring a sign
problem. In 1D, matrix product states (MPS) now provide
almost exact numerical results via the DMRG algorithm [8].
In 2D, reaching a similar level of success has been harder, but
much progress has been made using projected entangled pair
states (PEPS) [9], which generalize MPS to higher dimensions
in a natural fashion. PEPS calculations now provide accurate
results for a broad range of quantum lattice problems [10–14]
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and there have been many developments to extend the range
of the techniques, for example to long-range Hamiltoni-
ans [15–17], thermal states [18], and real-time dynamics [19].
Also, much work has been devoted to improving the numeri-
cal efficiency and stability of PEPS computations [20–24].

Formulating tensor network states and the associated algo-
rithms in the continuum remains a challenge. In 1D, so-called
continuous MPS [25] provides an analytical ansatz in the
continuum and have been applied to several problems, in-
cluding 1D interacting bosons/fermions and quantum field
theories [26–29]. Alternatively, the continuum description can
be reached by taking the numerical limit of a set of tensor
network states formulated on lattices with a discretization
parameter ε, for ε → 0. This kind of numerical continuum
MPS calculation has also been demonstrated in conjunction
with a variety of optimization algorithms [30–32].

In two dimensions, despite several proposals [25,33,34],
the appropriate analytical form of the continuum PEPS ansatz
remains unclear. In this work, we carry out continuum tensor
network calculations in 2D by taking the numerical limit of
a lattice discretization parameter. We explore two types of
ansatz to approach the continuum. The first uses the numer-
ical continuum limit of the lattice fermionic PEPS. Here, to
connect the lattice PEPS at different scales when taking this
limit and to ensure an efficient optimization on finer scales
we use a multigrid like algorithm (a generalization of the
MPS multigrid algorithm) [31,35]. The second is based on a
combination of fermionic PEPS with a tree of isometries that
successively coarse grains the continuum into discrete lattices.
Using these 2D numerical continuum tensor network states,
we demonstrate how we can study fermionic physics in the
continuum limit, applying the ansatz both to the challenging
(for tensor networks) case of the free Fermi gas, as well as the
attractive interacting Fermi gas in the unitary limit that can
be realized in ultracold atom experiments. In the first case, we
can benchmark against exact results, while in the second we
can perform direct comparisons of the tensor network results
to recent QMC calculations at half-filling (where there is no
sign problem) in the continuum and thermodynamic limits.
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The remainder of the paper is organized as follows. We first
introduce the fermionic continuum Hamiltonian of interest in
Sec. II and describe how to discretize it in a manner consistent
with open boundary conditions in Sec. III. The two types
of fermionic tensor network states are discussed in Sec. IV
along with the optimization algorithms used for them. We then
present our numerical benchmarks for the free and interacting
Fermi gases in Sec. V. We summarize our work in Sec. VI and
discuss future research directions.

II. INTERACTING FERMI GAS

For concreteness, it is useful to define a particular con-
tinuum model. In this work, we will consider the free and
interacting Fermi gases in two dimensions. The Hamiltonian
is given by

H =
∑

σ=↑,↓

∫
dr ψ†

σ (r)

(
− 1

2
∇2 − μ

)
ψσ (r)

+ g
∫∫

drdr′ψ†
↑(r)ψ↑(r)δ(r − r′)ψ†

↓(r′)ψ↓(r′), (1)

where ψ†
σ (r) and ψσ (r) are fermionic field operators, cre-

ating and annihilating a fermion with spin σ at position r,
respectively. The fermionic field operators satisfy the anti-
commutation relation {ψ†

σ (r), ψσ ′ (r′)} = δ(r − r′)δσσ ′ . The
coupling parameters μ and g denote the chemical potential
(which controls the number of particles) and strength of in-
teraction in the system. We assume the system is confined
in a L × L square box (0 < rx, ry < L), so that the potential
outside the box is V (r) = ∞. When g = 0, we have a free
fermion gas confined to the box.

III. HAMILTONIAN LATTICE DISCRETIZATION

Because we define the continuum properties as a numerical
limit, we need to first discretize the continuum Hamiltonian
H. To do so, we replace the continuum space L × L box
by a lattice containing (N + 1) × (N + 1) grid points with
lattice spacing ε = L

N . Due to the Dirichlet (open) boundary
conditions, the wave function is zero on the boundary of the
grid. Thus the nontrivial part of the quantum state is defined
on (N − 1) × (N − 1) grid points (we refer to these as the “ac-
tive points”). The lattice discretization is shown in Figs. 1(a)
and 1(b).

The kinetic energy operator can be represented using a
finite difference stencil on the grid. Using second- and fourth-
order finite difference approximations, the Laplacian operator∫

dr ψ†
σ (r)∇2ψσ (r) is replaced respectively by

second order → 1

ε2

∑
〈i j〉,σ

c†
iσ c jσ − 4

ε2

∑
iσ

c†
iσ ciσ + O(ε2),

fourth order → 16

12ε2

∑
〈i j〉,σ

c†
iσ c jσ − 1

12ε2

∑
〈〈〈i j〉〉〉,σ

c†
iσ c jσ

− 60

12ε2

∑
iσ

c†
iσ ciσ + O(ε4), (2)

(a) (b)

FIG. 1. (a) A two-dimensional square L × L box containing
spinful fermions. The fermions are confined to the box by an infinite
potential at the walls of the box. (b) Lattice discretization of the
L × L box into 8 × 8 grid points. Using Dirichlet boundary condi-
tions, the wave function is zero at the gray points (boundary points).
The active points where the wave function takes nontrivial values are
defined on the 6 × 6 lattice, with a lattice spacing of ε = L

7 . The grid
points with blue and orange colors require special treatment in the
fourth-order finite difference approximation, in order to provide an
accurate discretization.

where c and c† are fermionic lattice operators and the symbols
〈i j〉 and 〈〈〈i j〉〉〉 denote nearest-neighbor and third-nearest-
neighbor pairs.

Because the wave function is not smooth at the edge of
the box, some care must be taken in applying the stencils to
ensure that boundary errors of lower order in ε than implied by
the stencil formula do not appear. In the second-order approx-
imation, the second derivative takes the form ∼−4ψ0+ψ1+ψ−1

ε2

where the indices on ψ denote the x coordinate. Taking the
index −1 to refer to the left boundary, we see that representing
the wave function on only the interior N − 1 active points,
while using the spacing ε = 1/(N + 1) (rather than the naive
spacing of ε = 1/N) is consistent with choosing the boundary
condition ψ−1 = 0 (and similarly for the right boundary).
Using this definition of ε = 1/(N + 1), we obtain the full
second-order lattice discretized Hamiltonian as

H(2)
ε = − 1

2ε2

∑
〈i j〉,σ

c†
iσ c jσ + H.c. + 2

ε2

∑
iσ

c†
iσ ciσ

+ ḡ
∑

i

c†
i↑ci↑c†

i↓ci↓ − μ
∑

iσ

c†
iσ ciσ + O(ε2),

where ḡ is a regularized δ function interaction parame-
ter, whose regularization procedure is described in detail in
Secs. V B and Appendix.

For the fourth-order approximation, the second derivative
takes the form ∼−30ψ0+16ψ1+16ψ−1−ψ−2−ψ2

12ε2 . Again, taking in-
dex −1 to refer to the left boundary, we see that the value of
ψ−2 is left unspecified. To maintain the accuracy of the finite
difference expression, we should choose ψ−2 to smoothly
continue the wave function past the boundary. In our case, we
choose ψ−2 = −ψ0 (i.e., the wave function is antisymmetric
around the boundary). This means that at the boundary, the
second-derivative should be replaced by ∂2ψ

∂x2 ≡ 29ψ0+16ψ1+ψ2

12ε2 .
Continuing this argument, the coefficient 60

12ε2 in Eq. (2) is
replaced with different values depending on the nature of the
boundary points: at the red, blue, and green points shown in
Fig. 1(b), the coefficients become 58

12ε2 , 59
12ε2 , and 60

12ε2 . The
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FIG. 2. Log-log plots of relative error of the ground-state energy
of two fermions in a 1 × 1 box as a function of lattice spacing
ε. (a) Using the lattice spacing of ε = 1/(N + 1) (consistent with
Dirichlet boundary conditions) leads to the correct second-order
convergence with ε using the second-order discretization formula.
(b) Assuming an antisymmetric continuation of the wave function
past the boundary (antisym) in the fourth-order discretization for-
mula provides much better accuracy compared to assuming the
wavefunction vanishes outside of the boundaries (normal).

final form of the fourth-order discretized lattice Hamiltonian
thus becomes

H(4)
ε = − 16

24ε2

∑
〈i j〉,σ

c†
iσ c jσ + 1

24ε2

∑
〈〈〈i j〉〉〉,σ

c†
iσ c jσ + H.c.

+ 60

24ε2

∑
σ,i∈red

c†
iσ ciσ + 59

24ε2

∑
σ,i∈blue

c†
iσ ciσ

+ 58

24ε2

∑
σ,i∈orange

c†
iσ ciσ

+ ḡ
∑

i

c†
i↑ci↑c†

i↓ci↓ − μ
∑

iσ

c†
iσ ciσ + O(ε4),

with ε = 1/(N + 1) and where the colors red, blue and orange
correspond to the colored grid points in Fig. 1(b).

To illustrate the importance of the correct representation of
the Laplacian for Dirichlet boundary conditions, in Fig. 2, we
show the relative error in the ground-state energy of two free
fermions in the box, using different treatments of the Lapla-
cian, as a function of ε. In Fig. 2(a), we compare the lattice
spacing ε = 1/(N + 1) that is consistent with the boundary
conditions to the naive spacing ε = 1/N for the Hamiltonian
H(2), showing that the quadratic convergence in ε is achieved
only for the former spacing. In Fig. 2(b), we show the effect
of using an antisymmetric continuation of the wavefunction
in H(4) compared to simply setting the value of the wave
function outside of the box to zero; much faster convergence
is obtained using the antisymmetric continuation.

IV. CONTINUUM FERMIONIC TENSOR
NETWORK ANSATZ

We explore two different fermionic tensor networks to
approach the continuum limit ground state |�〉, depicted in
Figs. 3(a) and 3(b). One [Fig. 3(a)] is a standard fermionic
PEPS (fPEPS) defined by a set of local tensors connected
by virtual bonds corresponding to the geometry of the lattice

(a) (b)

FIG. 3. (a) The continuum limit wave function |�〉 is approx-
imated by a sequence of fPEPS of with bond dimension D on
successively finer lattices. The fPEPS on different lattices are related
via a multigrid algorithm. This procedure is denoted fPEPS-fine.
(b) The same continuum wave function |�〉 can also be represented
by a single fPEPS on a coarse lattice connected to layers of isometric
tensors (here two layers are shown). We refer to this as fPEPS-tree.

discretization. The associated bond dimension of the virtual
bonds is denoted by D and controls the accuracy of the fPEPS
ansatz. To enforce fermion statistics (i) all fPEPS local ten-
sors are set to be symmetric under the action of Z2 or U(1)
symmetry groups, and (ii) each line crossing in the network
is replaced by a fermionic swap gate. Such an fPEPS cap-
tures fermionic states obeying an entanglement area law. As
the lattice spacing goes to zero, the fPEPS then provides a
numerical representation of the continuum limit. The primary
numerical challenge is ensuring that the fPEPS tensors on
the finest scales are properly optimized. This can be done by
taking the numerical limit, i.e., connecting fPEPS representa-
tions at different discretizations, using a multigrid algorithm
discussed further below. We refer to this numerical continuum
representation by fPEPS as fPEPS-fine.

The second consists of several layers of isometric tensors,
with a fPEPS placed at the top, see Fig. 3(b). We denote
this ansatz an fPEPS-tree. The isometric tensors are chosen
to map four fermion sites onto one effective fermion site
with bond dimension χo. The isometries describe a coarse-
graining transformation, where the parameter χo controls the
accuracy of the transformation. The amount of entanglement
in the ansatz is controlled by the bond dimension of the top-
most fPEPS, i.e., D, which encodes quantum entanglement
between effective fermions on the coarsest level. The flex-
ibility of the ansatz is thus controlled by both {χo, D}. We
expect this representation to work well in the dilute regime,
where the effective area occupied by each fermion represents
a coarse-grained length scale and the isometries connect the
finest (continuum) scale to that length scale; in general, we
expect χo, D ≈ eρ , where ρ is the particle density. Although
it is formally desirable, during coarse-graining, to decouple
entanglement at each length scale [as is the basis of fermionic
multiscale entanglement renormalization (fMERA)] [36,37]
the computational cost to work with fMERA is much higher
than that of the fPEPS-tree. Thus, in fPEPS-tree, we account
for the short-range entanglement entirely within the topmost
fPEPS tensors.

A. Tensor optimization and contraction techniques

We now briefly summarize some of the techniques used
to optimize and contract the different types of tensors
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appearing in the two ansatzes above. The fPEPS tensors are
optimized towards a representation of the ground state us-
ing imaginary-time evolution, using the “full-update” method
to perform bond truncations [38–40]. The full-update builds
the environment from the entire wave function around each
bond before truncation. We use the single-layer boundary
contraction method [41] to contract the fPEPS efficiently. The
accuracy of the contraction is controlled by the boundary bond
dimension χb. Using these techniques, the computational cost
of optimizing the fPEPS tensors is O(χ3

b D4). Assuming a
boundary bond dimension χb ∝ D2, this gives a computa-
tional cost of O(D10).

The isometric tensors in the fPEPS-tree are optimized
using techniques similar to those used for the fMERA as
described in Ref. [37]. These are based on linearizing the re-
spective cost functions with respect to the isometric tensors. In
the fPEPS-tree, contracting a single layer of isometric tensors
costs O(χ9

o ). One advantage of the fPEPS-tree is that after a
single isometric layer contraction, the fourth-order discretized
Hamiltonian (H(4)

ε ) is renormalized into a nearest-neighbor
Hamiltonian, which then retains its nearest neighbor form
through subsequent isometric layers. This simplifies the opti-
mization of the topmost fPEPS layer, which can be performed
using standard nearest-neighbor imaginary-time evolution.

To improve efficiency, we exploit Z2 and U(1) symme-
try in all tensors. We adopt the techniques developed in
Refs. [42,43] to implement U(1) symmetry, choosing relevant
symmetric sectors during the optimization. We use a simple-
update strategy (based on a direct SVD decomposition) to
obtain an initial guess for the symmetry sectors, and those
are then further dynamically updated during the full-update
optimization by using a similar strategy.

B. Multigrid fPEPS-fine optimization

Although the fPEPS-fine wave function on the finest lattice
is a straightforward representation of the (near)-continuum
wave function, direct optimization of such an fPEPS leads
to numerical difficulties, such as slow convergence and being
stuck in local minima. This is analogous to what is seen in
MPS simulations on very fine lattices [31] and also what
is seen in solutions of partial differential equations on fine
grids. Consequently, it is necessary to construct the fPEPS
on finer lattices from those on coarser lattices, which can be
seen as taking the continuum limit on the fPEPS tensors in an
algorithmic sense. This we achieve using a multigrid-inspired
algorithm.

The main idea in the multigrid approach is to interleave
optimization and interpolation steps for the fPEPS tensors that
are determined on lattices with different discretizations. In our
version of the multigrid algorithm (i) we first approximate the
ground state on the coarsest level by using a N × N fPEPS
ansatz where N ∈ {2, 3}, (ii) we attach a layer of isometric
tensors to the N × N fPEPS to create an fPEPS-tree with a
single layer of isometries for the 2N × 2N lattice, and we
subsequently perform energy optimization of the isometries
and fPEPS tensors, (iii) we use a splitting map to map the
fPEPS-tree to a 2N × 2N fPEPS, then we relax the energy
again on this finer lattice, (iv) we repeat steps (ii) and (iii)
until the desired discretization level is reached, yielding the

FIG. 4. Diagrammatic representation of the multigrid algorithm.
A splitting transformation is used to transform tensors from the
coarser lattices to finer lattices. (a) A 4 × 4 PEPS is obtained by
using a splitting transformation for the coarser lattice. (b) By adding
isometric tensors to the 4 × 4 PEPS a good initial guess is provided
for the tensors of the finer lattice, i.e., 8 × 8. The procedure can be
repeated to reach the desired fine lattice scale.

final fPEPS-fine wave function. A schematic of the multigrid
algorithm is depicted in Fig. 4. Note that the above is only
one realization of a multigrid algorithm and many alternative
choices can be made.

Two steps need to be further specified, namely, (i) initial-
izing the isometric tensors, and (ii) constructing the splitting
map. We initialize the isometric tensors by diagonalizing the
local Hamiltonian, defined on the 2 × 2 finer lattice, and
picking the χo lowest-energy eigenvectors. This provides an
approximate initial guess for the isometric tensors. The key
steps in the splitting map are shown in Fig. 5. We first add a
resolution of the identity U †U = I onto the virtual bonds of
the fPEPS, where U is an isometric matrix with dimension
D2 × D. Such an isometric tensor U (shown in red) splits
one virtual bond into two virtual bonds, without changing the
overall tensor network state. Then, one approximately solves
the equation:

(3)

The parameter controlling the accuracy of this transformation
is the bond dimension of the virtual bonds connecting the
tensors, denoted χr ; as χr → ∞ the transformation becomes
exact. The tensors U can in principle be considered to be
variational parameters in order to best satisfy the above equa-
tion. However, in this paper, we fix the form of U ; some of
the diagonal elements are set to 1, and the rest are set to
0, i.e., Ui j,m = δi×D+ j,m. This appears sufficient to obtain our
desired accuracy (see Sec. V). To solve Eq. (3), we carry out
sequential SVD to obtain guesses for four resulting tensors,
and then direct optimize the fidelity using alternating least
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(a)

(b)

(c)

(d)

FIG. 5. Steps to construct the splitting map. (a) Bonds with the
same color are grouped together and an SVD is performed to split the
tensor into two tensors. The truncation bond dimension is denoted χr .
[(b) and (c)] A resolution of the identity U †U = I is added to split a
virtual bond to two virtual bonds. The green tensors denote U . After
permutation, grouping bonds with the same color together, an SVD
is performed. This procedure results in the final desired form. (d) We
perform a direct optimization to further improve the accuracy of this
transformation using the alternating least squares method.

squares to improve the accuracy of the splitting. In Fig. 5, we
provide the details of this procedure.

To summarize, the accuracy of calculations with fPEPS-
fine using the multigrid algorithm is controlled by four
parameters: the initial bond dimension D; the boundary bond
dimension χb controlling the accuracy of the environment
contractions; and the accuracy of the splitting map controlled
by parameters χo and χr , denoting the bond dimension of the
isometries and the bond dimension of the resulting fPEPS on
the finer lattice. In practice, we can reasonably set parameters
χb ∼ D2 and χr ∼ D, thus the essential controlling parameters
are only D, χo. As an example of the bond dimensions used in
this paper, for the 16 × 16 lattice fPEPS-fine simulation we
used (D, χb) = (9, 200) and (D, χb) = (12, 250) for Z2 and
U(1) symmetries, respectively.

V. RESULTS

A. Free Fermi gas benchmarks

We first assess the accuracy of the wave functions and algo-
rithms discussed above using the free Fermi gas (g = 0) as a
benchmark system. This system is exactly solvable by reduc-
tion to single-particle quantities but is a challenging problem
for tensor networks in the continuum and thermodynamic
limit as the ground state violates the entanglement area law
by logarithmic terms, i.e., ∼ρ

1
2 A lnA, where ρ is the particle

density and A is the boundary length [44,45]. Consequently,
to obtain accurate results, large bond dimensions in all steps
of the algorithms are required and approximation errors are

TABLE I. Ground-state energy of the free Fermi gas for different
particle densities in the continuum limit. Data with the symbol 
 are
for spin- 1

2 fermions, and data with no such symbol are for spinless
fermions. Data is better converged (and extrapolations are more
accurate) at low density.

ρ fPEPS-tree,H(4)
ε fPEPS-fine,H(2)

ε Exact

0.17 10.95 10.99 10.966
0.28 27.34 27.5 27.42
0.39 49.6 50.3 50.17
0.55
 50.8 54.0 54.8

magnified. In the calculations below, we shall use a fixed box
side length of L = 6.

We first compute numerical continuum results using the
fPEPS-tree ansatz using the fourth-order spinless Hamiltonian
discretization. Here we use an fPEPS-tree with two layers
of isometries. In Fig. 6(a), we show the relative error of
the ground-state energy �E as a function of particle density
ρ. As expected, the relative error increases sharply when
we increase the particle density using fixed bond dimen-
sions (D, χo) = (8, 16). However, the inset shows that going
to a finer lattice does not affect the accuracy significantly
(the error increases only slightly in the continuum limit). In
Fig. 6(b), we plot the ground-state energy E versus the lattice
spacing ε, where we use the fourth-order polynomial func-
tion E (ε) = Eε→∞ + bε−4 to extract the numerical continuum
limit of the ground-state energy. Note that due to the use
of coarse-graining, we no longer observe a simple fourth-
order discretization error. For each data point for a specific
lattice spacing ε, we also perform a bond dimension extrapola-
tion (χo → ∞). A second-order polynomial function E (χo) =
Eχo→∞ + aχ−1

o + bχ−2
o is used to estimate the extrapolated

results, as shown in the inset in Fig. 6(b). Because the energy
is a function of the bond dimensions (D, χo, χb), to obtain a
good extrapolated estimation, we need to make sure the results
are converged with respect to the bond dimensions (D, χb).
Thus at each χo, we use as large (D, χb) as possible (up to
(12, 250)). The extrapolated results are shown in Table I. We
find accuracies of roughly 1% or better are obtained with
these bond dimensions for the lowest three densities where
ρ < 0.4.

We next explore the behavior of the fPEPS-fine ansatz in
the continuum free fermion problem. As the multigrid opti-
mization involves several steps, we first illustrate the accuracy
and errors associated with the individual steps. We start with
the accuracy of the splitting map between coarser and finer
lattices. This incurs an error which can be measured as � =
Eb−E f

E f
, where Eb and E f are the energies per lattice site before

and after the splitting map, respectively.
As χr increases we expect this error to go to zero, and for

a practical method, it is important that a moderate χr ∼ D is
sufficient for good accuracy. In Fig. 7, we plot � versus the in-
ternal bond dimension χr . We see that the relative error drops
when increasing χr so that when χr ∼ D it is ∼10−2–10−3.
One might expect that if we proceed to finer lattice spacings
ε, (i.e., where the fine lattice has more sites), the relative
error might increase due to the accumulation of individual
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FIG. 6. (a) The relative error of the free Fermi gas ground-state energy vs particle density using fPEPS-tree. The inset shows how the
relative error behaves as a function of bond dimension χo and the lattice spacing ε (error measured to exact results at that lattice spacing).
(b) The ground-state energy vs lattice spacing ε for ρ = 0.39. The inset shows the ground-state energy extrapolated as a function of bond
dimension 1/χo with fixed bond dimension D = 12. The green solid line shows the exact continuum energy.

tensor splitting errors. This is in fact seen in Fig. 7, although
the relative error increases quite slowly with ε. We also find
that the accuracy of the splitting map does not depend on the
particle density, as the relative error remains the same in the
left and right panels.

We further illustrate the numerical behavior of the multi-
grid algorithm in Fig. 8(a). As discussed above, applying
isometries to the fPEPS to obtain a single-layer fPEPS-tree
provides the initial guess for the splitting map (fPEPS-fine)
with subsequent optimization being carried out after the split-
ting map is performed. We see that the ground-state energy
jumps due to the infidelity of the splitting map, however,
further optimization of the fPEPS on the finer level rapidly
improves the energy. To show the importance of the multigrid
algorithm, in Fig. 8(b), we compare the fPEPS energies initial-
ized by a simple-update method [46] and the ones initialized
from coarser lattices by the multigrid algorithm. We observe
that the fPEPS energies obtained by the multigrid algorithm
are much more accurate.

FIG. 7. Relative error of the splitting map vs the bond dimension
χr (a) for ρ = 0.17 and (b) for ρ = 0.27. The bond dimensions
(D, χo) are set to (8,12).

Using the above multigrid calculation with fPEPS-fine
with up to four layers (a fine lattice of 16 × 16 sites) and
the second-order Hamiltonian discretization, we can estimate
the energy of the fPEPS-fine ansatz in the numerical contin-
uum limit. We use a linear extrapolation in 1

D (using a few
largest values) to estimate the large-D limit for each lattice
spacing [47]. A polynomial function E (ε) = Eε→∞ + bε−2 +
cε−4 is used to estimate the numerical continuum limit for
fPEPS-tree. The estimated energies are shown in Table I. We
see that in the very dilute regime, the fPEPS-tree is slightly
more accurate than the multigrid algorithm, likely because it

FIG. 8. Behavior of the ground-state energy during the different
steps of the multigrid algorithm. (a) The purple triangles denote the
energies of the fPEPS ansatz after attaching isometries for ρ = 0.39
and ε = 0.67. It provides an initial guess for the fPEPS ansatz on the
finer lattice. The jump in the energies appears due to the approximate
solution of the splitting equation Eq. (3) with χr = 8. We observe
that the fPEPS energies finally reach the exact result (blue solid
line). (b) A comparison between the fPEPS energies optimized on
the 16 × 16 fine lattice, initialized by a simple update guess (labeled
“SU guess”) and by the multigrid (MG) algorithm for ρ = 0.39 and
ε = 0.35. It is observed that the multigrid algorithm provides a much
better initial guess, hence better accuracy.

023057-6



NUMERICAL CONTINUUM TENSOR NETWORKS IN TWO … PHYSICAL REVIEW RESEARCH 3, 023057 (2021)

FIG. 9. Ground-state energy of the interacting 2D Fermi gas obtained using the fPEPS-fine ansatz. (a), (b) The TN and QMC results for
η = {1.0, −0.5} vs lattice size 1/N , respectively. The dashed lines show the inverse polynomial fitting function. (c) Ground state energy as a
function of the dimensionless coupling parameter η. Note that the QMC data uses periodic boundary conditions while the TN data uses open
boundary conditions, thus they only agree in the thermodynamic limit.

uses the fourth-order Hamiltonian discretization. However, in
the nondilute regime, the multigrid algorithm performs sig-
nificantly better. Indeed for densities ρ < 0.4, the fPEPS-fine
results are accurate to better than 0.4%.

B. Interacting Fermi gas

We next present calculations using the fPEPS-fine ansatz
for the spin-balanced interacting (g < 0) Fermi gas. We focus
on the spin-balanced regime because at this point auxiliary
field quantum Monte Carlo has no sign problem, and thus pro-
vides a reliable comparison; however, away from this point,
sign problems manifest, for which the methods developed
here remain suitable.

Rather than using the interaction g appearing in the con-
tinuum Hamiltonian, the interaction strength is commonly
parametrized using the dimensionless coupling parameter η =
1
2 ln(2e f /eb), where e f is the noninteracting Fermi energy
and eb is the two-particle binding energy. We will be in-
terested in the simultaneous continuum and thermodynamic
limit, which is obtained in the simultaneous limit of infinite
particle number and lattice size Ne, N → ∞. For each finite
lattice size N , an effective interaction ḡ can be specified to
be consistent with a given η, which defines the numerical
fPEPS-fine lattice Hamiltonian. The procedure to determine
ḡ is given in Appendix B, and follows that in Ref. [6]. The
physics of the system is governed by η and in the limits
η � 0, η � 0, the system is in the Bose-Einstein condensate
(BEC) and Bardeen-Cooper-Schrieffer (BCS) phases, respec-
tively. Recent QMC studies have suggested that the BCS-BEC
crossover occurs near η ∼ 1.

We present fPEPS-fine results for the ground-state energy
(for various N and Ne) in units of the noninteracting Fermi en-
ergy E = 〈H〉

Nee f /2 . E = limNe,N→∞ E is the desired continuum
and thermodynamic limit result. We compare to results from
auxiliary field QMC (AFQMC) which is exact up to statis-
tical error (for given Ne, N). The AFQMC data is computed
using periodic boundary conditions whereas the fPEPS-fine

energies are computed for open boundary conditions, thus the
results for a given Ne will not exactly agree. However, in the
thermodynamic limit they should approach the same value. In
Figs. 9(a) and 9(b), the ground-state TN results as a function
of Ne, N are compared against the AFQMC data (shown as
lines, extrapolated to the thermodynamic limit for each Ne).
To extrapolate the TN data to the thermodynamic limit, we use
the second-order polynomial function E = EN→∞ + bN−1 +
cN−2. For the point η = −0.5 [Fig. 9(b)], the thermodynamic
and continuum limits are rapidly approached as seen in both
the TN and AFQMC data; however, this is more challenging
for the crossover point η = 1.0 [Fig. 9(b)] where there are
sizable finite-size effects in both the TN and AFQMC results.
However, by using up to Ne = 40 particles and lattices with
up to 32 × 32 sites, the continuum TN data and AFQMC
extrapolations provide consistent estimates.

We further show the extrapolated continuum and thermo-
dynamic limit fPEPS-fine and AFQMC ground-state energies
across a range of renormalized coupling parameters, in
Fig. 9(c). We find good agreement between the fPEPS-fine
and AFQMC energies, with the largest errors around the
transition point η ∼ 1.0, which again comes mainly from the
uncertainty in the Ne, N → ∞ extrapolations required in both
methods.

VI. CONCLUSIONS

We have described the numerical continuum limit of two-
dimensional tensor network states based on two variants of
projected entangled pair states, as well as the numerical algo-
rithms used to work with them. Using continuum grids with
up to approximately 1000 sites, our initial calculations show
promising results for two fermionic continuum systems in
two dimensions: the free Fermi gas in a finite box, as well
as the interacting unitary Fermi gas of much interest in cold
atom experiments. In the latter case, our results compare well
to auxiliary field quantum Monte Carlo calculations that are
feasible at the spin-balanced point. However, the strength of
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the continuum tensor network approach is that it is not limited
to special points in the phase diagram. This opens up the use
of tensor networks to address unresolved questions in spin-
polarized Fermi gases [48–50], as well as in other problem
areas, such as the realistic description of electronic structure
with tensor networks, and the numerical study of field the-
ories in two-dimensions and higher. Our methods can also
be straightforwardly generalized to the case of the infinite-
volume limit for models with periodic symmetry using infinite
tensor network algorithms.
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APPENDIX: DISCRETIZATION OF THE UNITARY
FERMI GAS

In the continuum limit, given an attractive interaction (g <

0) two particles will have a bound ground-state under the

continuum Hamiltonian in Eq. (1). We can therefore use the
binding energy εb as a measure of the strength of this in-
teraction. In the thermodynamic limit, the other parameter
required to specify the state is the density ρ. This is reflected
in the Fermi energy ε f = k2

f /2 via k f = √
2πρ. Thus we can

characterize the physics of the system via the dimensionless
ratio ε f /εb, or equivalently η = 1

2 ln(2ε f /εb).
In a discretized version of the problem, we can imagine a

box of side length Nε, then ρ = Ne/N2ε2 = n/ε2 and ε f =
πNe/N2ε2 = e f /ε

2. We can also write εb = eb/ε
2, where eb

is the binding energy of the lattice Hamiltonian (e.g., in the
second-order discretization)

H (2) = −1

2

(∑
〈i j〉

c†
iσ c jσ + H.c. − 4

∑
i

c†
iσ ciσ

)

+ εg
∑

i

μic
†
i↑ci↑c†

i↓ci↓ − μ
∑

i

c†
iσ ciσ .

Note that a given ratio ε f /εb fixes the same ratio e f /eb, thus
the lattice spacing ε drops out except via the effective coupling
ḡ = εg. However, since the functional relationship between g
and εb is not known a priori, we can simply adjust ḡ to obtain
the desired eb by solving for the two-particle binding energy
on a lattice of side length N . Thus the discretization parameter
does not appear explicitly.
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