
Externally Corrected CCSD with Renormalized Perturbative Triples
(R-ecCCSD(T)) and the Density Matrix Renormalization Group and
Selected Configuration Interaction External Sources
Seunghoon Lee,* Huanchen Zhai, Sandeep Sharma,* C. J. Umrigar,* and Garnet Kin-Lic Chan*

Cite This: J. Chem. Theory Comput. 2021, 17, 3414−3425 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We investigate the renormalized perturbative triples correction together
with the externally corrected coupled-cluster singles and doubles (ecCCSD) method. We
use the density matrix renormalization group (DMRG) and heat-bath CI (HCI) as
external sources for the ecCCSD equations. The accuracy is assessed for the potential
energy surfaces of H2O, N2, and F2. We find that the triples correction significantly
improves upon ecCCSD, and we do not see any instability of the renormalized triples with
respect to dissociation. We explore how to balance the cost of computing the external
source amplitudes against the accuracy of the subsequent CC calculation. In this context,
we find that very approximate wave functions (and their large amplitudes) serve as an
efficient and accurate external source. Finally, we characterize the domain of correlation
treatable using the ecCCSD and renormalized triples combination studied in this work via
a well-known wave function diagnostic.

1. INTRODUCTION

Electronic structure methods that can efficiently handle both
static and dynamic correlation remain an important area of
investigation. Because there is a wide spectrum of strongly
correlated problems, ranging from mildly “quasi”-degenerate
scenarios (e.g., in the electronic structure of diradicals1,2) to
extensively near-degenerate problems (e.g., in the electronic
structure of multicenter transition metal clusters3−5), a variety
of theoretical strategies have been proposed.
For problems with more than a few nearly degenerate

orbitals, it is common to employ methods that combine an
explicit multireference (MR) state with dynamic correlation
methods. The multireference state can range from an exact
complete active space (CAS) representation6−8 (for small
numbers of nearly degenerate orbitals), to a density matrix
renormalization group (DMRG)9−23 which can be used even
when there are many degenerate orbitals, and to selected
configuration interaction24−44 and Monte Carlo approxima-
tions45−50 for intermediate cases. On top of these, various
flavors of perturbation theory,51−63 configuration interac-
tion,64−67 and exponential approximations59,68−70 have been
explored for including dynamic correlation. However, the
combination of dynamic correlation with multireference
representations is not straightforward and usually leads to
added conceptual, implementation, and computational com-
plexity.
For problems with a few degenerate orbitals (say <6), an

alternative strategy has been investigated, which adds some
static correlation on top of an existing single-reference (SR)
method. This has been particularly popular in conjunction with

SR coupled cluster methods.71−76 Some examples include
variants of tailored coupled cluster77−82 and externally
corrected coupled cluster methods.83−86 The simple formula-
tion of SR coupled cluster methods compared to MR coupled
cluster methods makes such methods attractive. However, their
accuracy for problems with more than a few degenerate
orbitals remains to be examined.
In this work, we will investigate the externally corrected

coupled cluster method.83−86 This extracts static correlation
from a MR method by using the MR wave function as an
“external” source of higher order coupled cluster amplitudes.
For example, in the externally corrected coupled-cluster singles
and doubles (ecCCSD) approximation, the T3 and T4

amplitudes are extracted from the external source, and a new
set of T1 and T2 amplitudes is computed in their presence.
Should the T3 and T4 amplitudes be exact, then the T1 and T2

amplitudes and the energy will be exact. A different but similar
approximation is tailored CCSD,77−79 which has been of
renewed interest of late.80−82 Here, instead of higher order
cluster amplitudes, the large (active space) T1 and T2

amplitudes are fixed from an external source.
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The ecCCSD method has a long history, and external
sources, ranging from unrestricted Hartree−Fock87−90 to
CASSCF and CASCI91−95 and, most recently, full config-
uration interaction quantum Monte Carlo96 and selected
configuration interaction,97 have been used. One of the early
and more successful applications of ecCCSD is the reduced
multireference (RMR) CCSD method,98,99 which uses a
multireference configuration interaction method including
single and double excitations (MR-CISD) wave function as
the external source. RMR-CCSD(T), which incorporates some
of the residual dynamic correlation through perturbative
triples, has also been studied.100 Despite the promising
performance of RMR-CCSD(T) in several studies,101−109 it
suffers from two practical limitations. First, conventional MR-
CISD can only be applied for modest sizes of active spaces
(typically, up to about 16 orbitals as limited by the exact CAS
treatment). Second, the (T) correction, although not divergent
like its single-reference counterpart, still overcorrects the
dynamical correlation in the bond-stretched region.110

In this work, we make two modifications to ecCCSD to
overcome or ameliorate the above limitations. First, we utilize
variational DMRG and heat-bath configuration interaction
(HCI) wave functions as external sources for ecCCSD. (The
HCI method is a selected CI method. A detailed description of
the method and its semistochastic perturbatively corrected
extension, SHCI, can be found in ref 44.) This allows for two
qualitative improvements in the types of external source to be
investigated: large active space wave functions (i.e., with a large
number of near-degenerate orbitals) and external sources
which include a significant fraction of the dynamic correlation
effects already. With respect to the former, in polymetallic
cofactors, it has been possible to compute DMRG wave
functions in an active space with 40 transition metal d orbitals
and approximately 40 bridging ligand orbitals.5 With respect to
the latter, in calculations on molecules drawn from the G2 set,
almost 500 nondegenerate orbitals have been used in SHCI.111

The second modification we make is to explore the
renormalized perturbative triples correction. This has been
shown in the single reference setting to ameliorate the
overcorrection of standard perturbative triples,112 without
affecting the computational scaling.
The plan for the rest of the paper is as follows. We describe

the use of DMRG and HCI as external sources for ecCCSD in
Section 2.1. It is possible to create a near-exact method by
using a near-exact external source. Since near-exact external
sources can be computed by DMRG and HCI for the small
systems we employ as test cases in this paper, the critical
question is not simply the accuracy of the method, but whether
accurate energies can be obtained at a reduced computational
cost using intentionally far from exact sources. To this end, we
explore a variety of approximate external DMRG and HCI
sources as discussed in Section 2.2. The various triples
approximations for ecCCSD are discussed in Section 2.3.
Computational details are provided in Section 3. The accuracy
of the renormalized perturbative triples correction is assessed
for three potential energy surfaces (PESs) in Sections 4.1−4.4.
We characterize the range of quasi-degenerate correlations
captured in this work in Section 4.6. Finally we discuss the
limitations of this method in Section 4.7 and summarize our
findings in Section 5.

2. THEORY
In this work, we use a reference determinant |0⟩ with the same
occupancy as the Hartree−Fock (HF) determinant. We will
denote excited determinants by |mk⟩ where k is an integer
labeling the excitation level, e.g., |m1⟩ denotes the m-th singly
excited determinant. It is also useful to define a projection
operator onto the space of k-tuply excited determinants relative
to the reference; we denote this Qk = ∑m|mk⟩⟨mk|. The
external source is used to provide an important subset of the
triples and quadruples determinants; the projector onto this
subset is denoted Qk

ec, and its complement is Qk
c. Thus

Q Q Q k, 3, 4k k k
ec c= + = (1)

2.1. Externally Corrected CCSD with DMRG and HCI
Wave Functions. Configuration interaction wave functions
have the form

C(1 ) 0|Ψ⟩ = + | ⟩ (2)

whereas CC wave functions have the form

e 0T|Ψ⟩ = | ⟩ (3)

where C = ∑n=1
M Cn, T = ∑n=1

M Tn, and Cn and Tn are operators
that generate n-body excitations from the reference determi-
nant. In ecCCSD, the coupled cluster operator T is given by

T T T T T1 2 3
ec

4
ec= + + + (4)

where T3
ec and T4

ec respectively excite the ground-state
determinant into the space of triples and quadruples
determinants extracted from the external source (and which
define the projectors Q3

ec and Q4
ec). In this work, we extract Tk

ec,
k = 3, 4 from the DMRG or the HCI variational wave function.
For the DMRG wave function, the triply and quadruply excited
determinants mk that define Qk

ec, k = 3, 4 are chosen to be those
where the magnitude of the CI coefficient cmk

is above a
threshold, i.e.

c smk
ω> (5)

where s is an arbitrary scaling factor, and ω is the largest
discarded weight of the density matrix at the maximum bond
dimension in two-dot DMRG sweeps (carried out without
noise). An efficient algorithm to convert a matrix-product state
to CI coefficients above a given threshold is described in the
Appendix. For the HCI variational wave function, mk is
included in the projectors Qk

ec, k = 3, 4 using the HCI
algorithm with a threshold ϵ1,

42 i.e., it is included if

m H m ck m 1ϵ|⟨ | | ′⟩ | >′ (6)

for at least one determinant m′ which is already in the
variational space. The CI coefficients are converted into cluster
amplitudes using the relations

T C C C
C
33 3 1 2

1
3

= − +
(7)

T C C C
C

C C
C

2 44 4 1 3
2
2

1
2

2
1
4

= − − + −
(8)

which follow from eqs 2 and 3, except that if a CI coefficient is
zero, we set the corresponding cluster amplitude to zero. We
arrived at this prescription empirically, motivated by the idea
that in situations where CC works, the magnitude of the CI
coefficient in the exact wave function will be correlated with
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the magnitude of the corresponding T amplitude. (In a recent
paper,97 the same choice is made by arguing that there are
classes of CI wave functions for which the ecCC approach
provides no improvement to the CI energy. This can be seen as
follows: assume all C1 and C2 amplitudes are included in the CI
wave function. Then, ⟨mk|H(1 + C)|0⟩ = ECI⟨mk|(1 + C)|0⟩, for
k = 0, 1, 2, is satisfied by the CI solution for any choice of C3
and C4 in the CI wave function. If all T3 and T4 amplitudes
generated by eq 8 are used in the external source, then eT|0⟩ =
(1 + C)|0⟩, up to quadruply excited determinants, and ⟨mk|
HeT|0⟩ = ECI⟨mk|e

T|0⟩, for k = 0, 1, 2. Then, we can show that
such a wave function satisfies the CCSD solution condition,
⟨mk|e

−T HeT|0⟩ = 0 for k = 1, 2. This is because for k = 1, 2

m H m m m H

m m m H

m m m E E m

e e 0 e e 0

e e 0

e e 0 0 0

k
T T

m
k

T T

m k
k

T
k k

T

m
k

T T
k

; 0,1,2

CI CI

k

∑

∑

∑

⟨ | | ⟩ = ⟨ | | ′⟩⟨ ′| | ⟩

= ⟨ | | ′ ⟩⟨ ′ | | ⟩

= ⟨ | | ′⟩⟨ ′| | ⟩ = ⟨ | ⟩ =

−

′

−

′ ′∈{ }

−
′ ′

′

−

′

(9)

where the middle line follows because ⟨mk|e
−T|m′⟩ is nonzero

only if m′ is a determinant of lower or equal excitation to mk.
Thus, ecCC in this case offers no change in the energy.
However, while true, this does not itself justify omitting T3 and
T4 amplitudes where the corresponding C3 and C4 coefficients
are zero, as can be seen by constructing an example where the
C3 and C4 coefficients are zero in the exact solution.)
The T1 and T2 amplitudes are obtained by solving the

ecCCSD equations using fixed T3
ec and T4

ec

m H k0 e e 0 ; 1, 2k
T

N
T= ⟨ | | ⟩ =−

(10)

where HN is the Hamiltonian in normal-ordered form, and T is
defined in eq 4. With the relaxed T1 and T2, the ecCCSD
correlation energy of the ground state is obtained as

E H0 e e 0T
N

T
0
ecCCSDΔ = ⟨ | | ⟩−

(11)

2.2. Approximations in the External Source. While
DMRG and HCI can, in small molecules, be a source of nearly
exact T3 and T4 amplitudes even in the full orbital space, this
provides no computational advantage as such calculations are
more expensive than the subsequent coupled cluster
calculation. Consequently, it is important to find approximate
inexpensive sources that lead to acceptable errors in the final
coupled cluster calculation.
In this work, we consider six different types of approximate

external sources with different sizes of active spaces and
different values of parameters summarized in Table 1. Type-I
uses CASSCF-like external sources in minimal active spaces.
Since the minimal active space of F2, i.e., two electrons in two
orbitals (2e,2o), does not contain T3 and T4, we perform
minimal active space ecCC calculations for only H2O and N2
(with (4e,4o) and (6e,6o), respectively). These provide
amplitudes that are very close to the exact CASSCF
amplitudes. However, these amplitudes lack the relaxation
that comes from allowing excitations within a larger space of
orbitals, and of course, the amplitudes outside the minimal
active space are completely absent. Type-III uses CASCI-like
external sources (the orbitals are not optimized to save
computer time) in larger active spaces ((8e,18o), (10e,16o),
and (14e,16o) for H2O, N2, and F2, respectively).
In either case, one can potentially introduce bad external

amplitudes if the effect of relaxation on the amplitude upon
going to a larger space is large relative to the size of the

amplitude (e.g., changes its sign). Thus, we study also Type-II
and Type-IV external sources which are similar to Type-I and
Type-III external sources, respectively, except that they employ
an additional threshold to screen out all except the largest T3
and T4 amplitudes. The absolute values of the T3 and T4
elements at the most stretched geometry of each molecule are
sorted in a single large vector. The norm of the vector is
computed. Only the largest elements of the vector are retained
such that the resulting norm is more than 80% of the norm of
the full vector. Along the PESs of each molecule, we used the
same elements of T3 and T4 (but with the appropriate values
for each geometry) as the external sources, to maintain the
smoothness of the PESs.
As discussed in Section 4.4, the Type-III and Type-IV

sources improve upon the PESs obtained from the Type-I and
Type-II sources, but the DMRG calculations to obtain the
sources incur a higher computational cost than the subsequent
CC calculations. To reduce the cost, we have also tried Type-V
sources, which employ loosely converged DMRG wave
functions with small bond dimensions of M = 25, 50, and
100. Finally, Type-VI sources employ large thresholds ϵ1 =
0.01 and 0.003 to obtain loosely converged HCI wave
functions in the full orbital spaces. This combination has the
advantage that it can be considered a black box method
wherein a single parameter ϵ1 controls the trade-off between
accuracy and cost.

2.3. Perturbative Triples Corrections. Expressions for
the standard, renormalized, and completely renormalized
perturbative triples corrections can be written down in analogy
with their single reference definitions.112 We first define the
completely renormalized (CR)-ecCCSD(T) correction. We
use the state |ΨecCCSD(T)⟩ defined as

T T T Q T Q Z(1 ) 0ecCCSD(T)
1 2 3

ec
3
c

3
2

3
c

3|Ψ ⟩ = + + + + + | ⟩[ ]

(12)

T R V T0 ( ) 0N C3
2

0
(3)

2| ⟩ = | ⟩[ ]
(13)

Z R V T0 0N3 0
(3)

1| ⟩ = | ⟩ (14)

where VN is the two-body part of the Hamiltonian in normal-
ordered form, and R0

(3) denotes the three-body component of
the reduced resolvent operator in many-body perturbation
theory, given by differences of orbital energies in the
denominator.76 In addition, (VNT2)C denotes the connected

Table 1. Six Types of Approximate External Sourcesd

cut-off parameters

type method
active
space wave function cluster amplitude

I DMRG minimala M = 2000 100% with s = 0.1
HCI ϵ1 = 10−7, 10−15 100%

II DMRG minimala M = 2000 80% with s = 0.1
HCI ϵ1 = 10−7, 10−15 80%

III DMRG largerb M = 2000 100% with s = 0.1
IV DMRG largerb M = 2000 80% with s = 0.1
V DMRG largerb M = 25, 50, 100 80% for H2O and N2

100% for F2 with s = 0.01
VI HCI fullc ϵ1 = 0.01, 0.003 100%

a(4e, 4o) for H2O, (6e, 6o) for N2.
b(8e, 18o) for H2O, (10e, 16o)

for N2, (14e, 16o) for F2.
c(10e, 58o) for H2O (14e, 60o) for N2,

(14e, 58o) for F2.
dA detailed explanation is to be found in the main

text.
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part of VNT2. The resulting formula for the CR-ecCCSD(T)
energy correction is

Q He e 0

e 0

T
N

T

T0
CR ecCCSD(T)

ecCCSD(T)
3
c

ecCCSD(T)
δ =

⟨Ψ | | ⟩

⟨Ψ | | ⟩
‐

−

(15)

The energy corrections for renormalized R-ecCCSD(T) and
ecCCSD(T) can be obtained by taking the lowest-order
estimates of the correction and by assuming the denominator
to be one, i.e.

Q V T

e

( ) 0

0
N C
T0

R ecCCSD(T)
ecCCSD(T)

3
c

2
ecCCSD(T)

δ =
⟨Ψ | | ⟩

⟨Ψ | | ⟩
‐

(16)

Q V T( ) 0N C0
ecCCSD(T) ecCCSD(T)

3
c

2δ = ⟨Ψ | | ⟩ (17)

Unlike perturbative triples without external correction (as in
CCSD(T)), the approximate perturbative expression T3

[2] is
only evaluated for determinants omitted in the external source.
Thus, it is not expected to diverge as long as the external
source includes all degeneracies. Nonetheless, it can still
overestimate the triples correlation. The role of the
denominator in the “renormalized” triples approximations is
to rescale this correction, which is expected to reduce the
overestimation.

3. COMPUTATIONAL DETAILS
All CC calculations were performed using cc-pVTZ basis
sets.113 All excitations are permitted for H2O and N2, whereas
excitations from the HF 1s core are not considered for F2,
resulting in 58, 60, and 58 orbitals for the three systems,
respectively. We used spin-restricted orbitals in all the
calculations. Type-I and -II source calculations were done
using CASSCF natural orbitals, and Type-III and -IV source
calculations were done with HF orbitals.
The errors in the ecCC PESs were evaluated by comparing

against highly accurate PESs obtained from the semistochastic
HCI (SHCI) method with a sufficiently small value of ϵ1 (4 ×
10−5) to ensure good convergence of the total energy. The
SHCI total energy is obtained using a semistochastic method
to evaluate a second-order perturbation theory correction to
the variational HCI energy.
All CC calculations were carried out using a local version of

PySCF114 interfaced with StackBLOCK115−118 for DMRG and
Arrow44,119,120 for HCI. We used Dice119−121 to get accurate
SHCI PESs.

4. NUMERICAL RESULTS
4.1. PESs with Type-I External Sources. The dissocia-

tion PESs of H2O and N2, shown in Figure 1, were obtained by
the ecCC methods using the Type-I external sources in Table
1 (i.e., near exact wave functions in the minimal active spaces
and all amplitudes of T3 and T4). We show the PESs of ecCC
using DMRG external sources (colored solid lines) and the
PESs of CC (colored dotted lines) in Figure 1. These are
compared against accurate PESs represented as black lines
obtained by SHCI in the full space. All the ecCC energies
studied in this work, the accurate energies from SHCI, the
source energies, and an example of timing for ecCC
calculations are given in the Supporting Information. The
mean absolute errors (MAEs) and the nonparallelity errors
(NPEs) of the PESs are listed in Table 2.

The CCSD curves (blue dotted lines) have an unphysical
dip due to an inadequate treatment of static correlation. This
problem is completely eliminated within ecCCSD (blue solid
line). However, there are significant errors with respect to the
accurate (black) curve at large distances, giving an
(MAE,NPE) of (23.9, 65.8) mEH for H2O and (63.1, 146.8)
mEH for N2.
The (T) correction captures much of the missing dynamic

correlation, such that the green ecCCSD(T) curves reach an
accuracy of 1 mEH around the equilibrium geometry. However,
when the bond is stretched, the (T) correction overestimates
the dynamic correlation, leading to another unphysical dip in
the PESs. Although this overestimation can easily be reduced
by increasing the size of the active space for the small systems
treated here, this would be very expensive for large systems.
Alternatively, we can use the renormalized triples formula to
damp the (T) correction in eq 16. R-ecCCSD(T) (the solid
red curves) completely removes the unphysical dips in the
PESs. These attain an (MAE,NPE) = (3.8, 23.3) and (11.1,
47.1) mEH for H2O and N2, respectively.
As expected, the ecCC PESs with tightly converged HCI

external sources are almost identical to those with the DMRG
sources and are therefore not shown in Figure 1 but can be
found in the Supporting Information. However, for systems
where the molecule has a low-spin ground state, but the

Figure 1. PESs of H2O and N2 in the top and bottom panels,
respectively, obtained with the CC methods and the ecCC methods
using the Type-I external sources. The Type-I sources correspond to
near exact wave functions from the minimal active space and use all
the amplitudes of T3 and T4. The blue, green, and red solid lines are
the ecCCSD, ecCCSD(T), and R-ecCCSD(T) PESs, respectively.
These are to be compared with the PESs of CC represented as dotted
lines. The black lines are accurate PESs obtained by SHCI with a
sufficiently small value of ϵ1.
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dissociated fragments have high-spin ground states, the HCI
wave functions at stretched geometries can be spin-
contaminated when ϵ1 is not enough to be small, even when
time-reversal symmetry is employed to reduce the spin
contamination, and this can cause the energy to dip down.
Our DMRG calculations employ full spin symmetry and
therefore avoid this problem. Full spin symmetry could also be
employed in HCI, but that is not the case in this paper. From
Table S2 of the Supporting Information, we see that the R-
ecCCSD(T) energies with HCI sources are the same as those
with DMRG sources to better than 10−4−10−3 Hartree when
the expectation value of the square of spin operator (⟨S2⟩) with
the HCI wave function is less than 10−7−10−6 (the exact
ground states are singlets). Using ϵ1 of 10−7, ⟨S2⟩ < 10−7 is
achieved up to 3Re (2.9 Å) for H2O and up to 3.3 Bohr (1.7 Å)
for N2, and using ϵ1 of 10

−15, ⟨S2⟩ < 10−7 is achieved up to 5.8
Bohr (3.1 Å) for N2.
4.2. PESs with Type-II External Sources. The difference

between the Type-I and Type-II external sources is that the
former use all the amplitudes of T3 and T4, while the latter use
only a small number of the largest amplitudes, which
contribute about 80% of the total weight of T3 and T4 (see
Table 1 and Section 2.2). For the minimal active space of H2O,
i.e. (4e,4o), the external source contains only one nonzero T4
amplitude, and all elements of T3 are zero to within numerical
noise. Thus, the PESs of ecCC using 80% of the external
amplitudes (Type-II) are almost identical to those using 100%
of the external amplitudes (Type-I). On the other hand, for the
minimal active space of N2, i.e. (6e,6o), the external source
contains several large T3 and T4 amplitudes. At the stretched
geometry corresponding to a bond length of 4.23 Å, 80% of the
total T3 and T4 amplitude weight is recovered by the nine
largest elements of T4. Figure 2 shows that the Type-II external
sources, although using fewer amplitudes, improve the PESs of
ecCCSD and R-ecCCSD(T) relative to the Type-I sources.
The PES of R-ecCCSD(T) displays an (MAE,NPE) = (5.5,
13.8) mEH.
One concern with partial use of the amplitudes in the

minimal active space is that those amplitudes that are not taken
from the external source are calculated perturbatively and may
diverge because of zeros in the energy denominator. Using the
HF occupation of the CASSCF natural orbitals, the
recomputed orbital energies (diagonal parts of the Fock
matrix) retain a sizable gap between the occupied and

unoccupied orbitals. For example, for N2 at the largest bond
length studied (4.23 Å), the gap between the three occupied
orbitals and the three unoccupied orbitals, which become
degenerate in the infinite distance limit, is about 0.1 hartree.
Hence, we see from Figure 2 that Type-II sources overestimate
the ecCCSD(T) correlation only a little more than Type-I
sources do. Note that the R-ecCCSD(T) curve using Type-II
sources is considerably more accurate than the one using
Type-I sources.
Similar to what is seen with the Type-I source, the ecCC

PESs with Type-II HCI sources are almost identical to those
from DMRG sources when ⟨S2⟩ < 10−7 in the HCI source.
Using a truncation threshold of ϵ1 = 10−7 for H2O and 10−15

for N2 is sufficient to create an accurate Type-II HCI source
over the same range of geometries as discussed for the Type-I
source. (See Table S3 of the Supporting Information.)

4.3. PESs with Type-III and Type-IV External Sources.
For DMRG sources, we investigated PESs of R-ecCCSD(T)
using larger active spaces with all amplitudes (Type-III) and

Table 2. MAE and NPE (mEH) of H2O, N2, and F2 PESs in a Range of Geometries R ∈[0.68, 7.80] Å, R ∈ [0.79, 4.23] Å, and R
∈ [1.14, 5.00] Å, Respectivelyb

H2O N2 F2

method type active MAE NPE active MAE NPE active MAE NPE

DMRG/HCI I, II 4e,4o 215.5 59.8 6e,6o 274.3 32.1 2e,2o a a
DMRG III, IV 8e,18o 160.9 52.5 10e,16o 224.7 59.2 14e,16o 334.9 27.7
CCSD 15.9 30.4 32.5 102.5 34.8 58.0
ecCCSD I 4e,4o 23.9 65.8 6e,6o 63.1 146.8 2e,2o a a

II 24.0 65.8 57.6 114.4
III 8e,18o 17.6 49.9 10e,16o 48.4 112.9 14e,16o 25.3 41.7
IV 15.6 39.4 41.5 74.0 27.0 40.8

R-CCSD(T) 6.8 43.0 32.1 162.3 6.2 10.6
R-ecCCSD(T) I 4e,4o 3.8 23.3 6e,6o 11.1 47.1 2e,2o a a

II 3.9 23.1 5.5 13.8
III 8e,18o 2.9 18.0 10e,16o 12.2 44.2 14e,16o 0.9 1.6
IV 1.1 8.1 4.7 8.7 1.7 1.5

aNo T3 and T4 in the minimal active space of F2.
bThe second column shows the types of the external sources defined in Table 1.

Figure 2. PESs of N2 obtained by the ecCC methods using all the
external amplitudes (Type-I) and some of the largest external
amplitudes (Type-II) from the minimal active space (solid and dotted
lines, respectively). Other descriptions are the same as in Figure 1.
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80% of the amplitudes (Type-IV) to further reduce the errors.
We used active spaces of (8e,18o), (10e,16o), and (14e,16o)
for H2O, N2, and F2, respectively, and obtained near exact wave
functions in these spaces. The PESs of ecCC using the Type-
III and Type-IV external sources are shown as colored solid
and dotted lines, respectively, in Figure 3. The MAE and NPE
of the PESs are given in Table 2.
For H2O and N2, the resulting PESs of R-ecCCSD(T) with

all amplitudes (red solid lines in the top and middle panels)
achieve an (MAE,NPE) = (2.9,18.0) and (12.2,44.2) mEH,
respectively. These are minor improvements compared to the
results using the minimal active space external sources.

However, the PESs obtained using only 80% of the external
amplitudes (red dotted lines) are much closer to the black
accurate PES and reach an (MAE,NPE) = (1.1,8.1) and
(4.7,8.7) mEH. Similar to the minimal active space, 80% of the
amplitude weight in the larger active space corresponds to only
one element of T4 for H2O and the nine largest elements of T4
for N2. When we have a few large elements, the partial use of
the amplitudes has advantages in both accuracy and efficiency.
Although the same elements of T4 are used in Type-II and
Type-IV sources, the extra relaxation of their values coming
from the larger CAS space of Type-IV sources contributes to
their accuracy.
Unlike in H2O and N2, there are no particularly large

elements in the T3 and T4 amplitudes of F2. At the bond length
of 5.0 Å, one requires approximately the 400 largest elements
of T3 and T4 for their total weights to be 80% of the total T3
and T4 weights. The red solid and dotted lines in the bottom
panel of Figure 3 show the PESs of R-ecCCSD(T) using all
and 80% of the amplitudes, respectively. These two PESs are
very close to the accurate black curve and reach an
(MAE,NPE) = (0.9,1.6) and (1.7,1.5) mEH for 100% and
80% of the amplitudes, respectively. Although both are
accurate, the partial use of the external source in this case
slightly degrades the accuracy.

4.4. PESs with Type-V External Sources. In the previous
section, we showed that the use of larger active spaces
significantly improves the ecCC PESs. However, obtaining
tightly converged DMRG wave functions in large active spaces
requires more CPU time than the subsequent CC calculation.
(See Table S9 of the Supporting Information.) For example,
optimizing an external wave function with 16 orbitals requires
around a few minutes of CPU time for one DMRG sweep with
M = 2000. Although a few minutes is not prohibitively large, it
is large compared to the subsequent ecCC calculation which
only takes tens of seconds for the small molecules considered
here. In addition, the fact that in some cases using only the
large amplitudes led to better results in the last section suggests
that it is not a good use of computational time to tightly
converge the external source.
Hence, we consider loosely converged DMRG sources

(Type-V) in the larger active spaces. We obtained R-
ecCCSD(T) PESs using DMRG sources with bond
dimensions 25, 50, and 100. We used the truncation to 80%
amplitude weight for H2O and N2, while we used all the
external amplitudes for F2. Table 3 shows the corresponding
MAE and NPE in the same range of geometries in Table 2.
For all cases, when we reduced the bond dimension to M =

100, the MAE increased by 0.3−1.2 mEH, and the NPE
increased by 0.0−0.8 mEH, compared to using M = 2000.
However, for M = 100, one DMRG sweep with 16 orbitals
took only a few seconds of CPU time at the 4.23 Å bond
length of N2, giving a better computational balance between
the DMRG calculation and the subsequent ecCC calculations.
When we further reduced the bond dimension to M = 25, the
MAE increased by 2.5 and 0.9 mEH, and the NPE increased by
0.6 and 2.4 mEH for H2O and N2. In the case of F2, which does
not have a small number of large T3 and T4 elements, the MAE
and NPE increased more, by 3.2 and 5.2 mEH.
We have so far shown that the errors of R-ecCCSD(T) can

be reduced by increasing the size of active space and replacing
the small magnitude cluster amplitudes by those computed
from perturbation theory. Further, we find only a small
degradation in accuracy upon going from a DMRG bond

Figure 3. PESs of H2O, N2, and F2 in the top, middle, and bottom
panels, respectively, for the ecCC methods using the larger than
minimal active spaces and the near exact external sources. The solid
and dotted lines correspond to PESs obtained using all external
amplitudes of T3 and T4 (Type-III) and only the largest amplitudes of
T4 (Type-IV), respectively. The descriptions are otherwise the same
as those in Figure 2.
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dimension of 2000 to 100. However, achieving both accuracy
and efficiency requires tuning several parameters−the size of
the active space, the screening parameter for the amplitudes,
and the bond dimension in DMRG. We next consider a source
that can be used in a more black box manner.
4.5. PESs with Type-VI External Sources. Type-VI

sources use the full orbital space, avoiding the complications of
choosing an active space. To make such sources black box, we
choose to specify only a single parameter to control the
accuracy of the source. For example, for a DMRG wave
function, this could be just the bond dimension. Here, we use
HCI for the Type-VI source and control the accuracy with the
single HCI parameter, ϵ1, to select the large T3 and T4
amplitudes. It is normal practice to improve upon the
variational HCI energy using a semistochastic implementation
of second-order perturbation theory.44,119 We refer to the
resulting energies as SHCI total energies. Hence, an important
question is whether the R-ecCCSD(T) energies are more
accurate than the SHCI total energies. In Figure 4, we make
this comparison for two rather large values of ϵ1, namely, 0.01
and 0.003. Also shown in the figure are the essentially exact
energies obtained from SHCI using a small value of ϵ1 (4 ×
10−5) (black lines) and the energies of the sources (red lines)
so that the improvement coming from R-ecCCSD(T) and the
perturbative correction of SHCI can be seen. It is apparent that
both R-ecCCSD(T) and the perturbative correction of SHCI
capture much of the missing energy in the source, particularly
at short and medium bond lengths. At long bond lengths, the
R-ecCCSD(T) dips down because the source wave functions
are spin contaminated, which is why the energies in Figure 4
are plotted over a smaller range of geometries than in the other
figures. Since N2 is a singlet that dissociates into atoms that are
quartets, it has particularly large errors. The spin contami-
nation and the dip in the energy of N2 are considerably
reduced upon going from ϵ1 = 0.01 to ϵ1 = 0.003. A better
solution would be to impose S2 symmetry on the source wave
function. For H2O, the R-ecCCSD(T) PESs, for both values of
ϵ1, are more accurate than the corresponding SHCI energies.
For F2, the R-ecCCSD(T) PES for ϵ1 = 0.01 is more accurate
than the SHCI PES, but for ϵ1 = 0.003, they are both equally
good. From the limited number of calculations presented in
this paper, it appears that R-ecCCSD(T) is better than SHCI
for large ϵ1 but not for small ϵ1. Hence, it may be a useful
method for large systems where SHCI calculations with small
ϵ1 require large computer resources (mostly memory rather
than time).
Recently a similar study used a different selected CI method

(CIPSI) as the source and studied the performance of the
method on the H2O molecule using a smaller basis than the
one we used (cc-pVDZ instead of cc-pVTZ). Their ecCC
method differs from our R-ecCCSD(T) in detail but has in
common that it does not use T3 or T4 amplitudes from the
source if the corresponding C3 or C4 coefficients are zero and

that it adds in a perturbative triples correction for amplitudes
that are not set by the source. They too found that, for small
numbers of determinants in the source, their ec-CC-II3 method
outperforms the selected CI plus perturbation theory but that,
for large numbers of determinants, it underperforms, despite
the fact that they impose S2 symmetry on their CIPSI source
wave functions.

4.6. Error Analysis. In this section, we present the errors of
R-ecCCSD(T) for the systems in this work and analyze them
using the well-known CC error diagnostic D2, defined by the
matrix 2-norm of the T2 amplitudes.122 The magnitude of D2

can be used to distinguish between the SR and MR character
of the different geometries on the PESs. Organic molecules are
sometimes considered to have MR character when D2 is larger
than 0.18.122 Figure 5 shows the absolute errors on a log scale
versus the D2 diagnostic. Each symbol represents a geometry
on the PESs of one of the molecules, H2O, N2, and F2. Square
symbols denote R-CCSD(T), and circle symbols denote the
various externally corrected theories, using the Type-V and the
Type-VI external sources. For D2 ranging from 0 to 1.7, the
absolute errors of R-ecCCSD(T) (red circles) are less than
0.015 EH, and most of the errors are smaller than those of R-
CCSD(T) (black squares) and ecCCSD (blue circles). The
absolute errors of R-ecCCSD(T) are less than those of
ecCCSD(T) (green circles) in the MR region where D2 > 0.4,
while they are mostly greater than those of ecCCSD(T) in the
range 0.0 < D2 < 0.4. Overall, it is clear to see that R-
ecCCSD(T) offers the most balanced treatment of errors
across a wide range of SR and MR character. However, for very
weakly correlated systems, the original (T) correction is
slightly more accurate than the renormalized (T) correction.

4.7. Limitations. Although the work above shows that it is
possible to obtain quantitative accuracy across the full potential
energy surface, at a reasonable computational cost, using the
combination of external sources and the renormalized (T)
correction, SR ecCC approaches have a fundamental limitation
when the CI coefficient of the reference configuration (the HF
configuration in this work) in the external source is small. The
smallest reference coefficient value we encountered in this
work was 0.2 at the stretched (4.23 Å) geometry of N2, and it
is difficult to converge the ecCCSD energy, so we followed the
following procedure. We extracted initial amplitudes of T1 and
T2 from the external source and then iteratively converged the
ecCCSD energy using a damping parameter of 0.05 to update
the amplitudes. (We did not use the direct inversion in the
iterative subspace (DIIS) algorithm.) At this geometry, the
energy could be converged monotonically up to a threshold of
10−5 Hartrees, although the norm of the amplitudes could not
be converged, and we simply used amplitudes from the last
iteration in the set of monotonically decreasing energies.

Table 3. MAE and NPE (mEH) of H2O, N2, and F2 PESs in a Range of Geometries R ∈ [0.68, 7.80] Å, R ∈ [0.79, 4.23] Å, and
R ∈ [1.14, 5.00] Å, Respectively, for Type-V Sources Defined in Table 1

H2O N2 F2

M active MAE NPE active MAE NPE active MAE NPE

25 (8e,18o) 3.6 8.7 (10e,16o) 5.6 11.1 (14e,16o) 4.1 6.8
50 2.8 8.2 5.2 9.6 3.5 3.4
100 2.3 8.1 5.0 9.5 1.3 2.3
2000 1.1 8.1 4.7 8.7 0.9 1.6
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5. CONCLUSION
In this work, we explored the externally corrected coupled
cluster with a renormalized triples correction method (R-
ecCCSD(T)), using DMRG and HCI and external sources.
The critical question is how to best balance the accuracy and
cost of computing the external source with the cost of the
overall method. To this end, we considered multiple types of
external sources: “exact” external sources, where the DMRG

and HCI wave functions were tightly converged within small
active spaces, and “approximate” external sources, where they
were loosely converged within larger active spaces. We also
considered both “full” usage of the T3 and T4 amplitudes and
“partial” usage, wherein we retained only the largest elements.
For all systems considered here, we found that R-

ecCCSD(T) can significantly improve the potential energy
surface obtained from either the external source alone or CC
alone. For example, the unphysical dips in the PES obtained
from CC methods in the bond-stretched region are eliminated.
The use of approximate external sources, possibly with
truncation to only the large T3 and T4 amplitudes, appears
to be a practical way to balance the cost of the external
calculation and the coupled cluster calculation in small
molecules. Using the D2 diagnostic to characterize the different
points on the potential energy surfaces, we find that R-
ecCCSD(T) gives absolute errors of less than 15 mEH in the
range of D2 from 0.0 to 1.7. In fact, the errors of R-
ecCCSD(T) are less than those of ecCCSD and R-CCSD(T)
in almost all cases, except when D2 is very small, where the
renormalized (T) correction appears to be slightly less accurate
than the simple (T) correction.
There are several interesting questions remaining which lie

beyond what we have considered in this work. For example,
while R-ecCCSD(T) appears quite stable up to large values of
the D2 diagnostic, what is the largest amount of multireference
character which can be handled? Here, the difficulty in solving
the CC equations, and the divergence of the amplitudes
reflecting the problems of intermediate normalization, cannot
be ignored. In addition, in the realm of quasidegenerate
problems, we can ask whether other noniterative corrections
such as the “completely renormalized” triples and quadruples
corrections,112 corresponding to CR-ecCCSD(T) and CR-
ecCCSD(T,Q), would further improve on the present R-
ecCCSD(T) method. The spin contamination of external
sources, for example seen here in the HCI wave functions for
stretched geometries, increases errors of ecCC methods, but
this can be fixed by imposing S2 symmetry on the source, as
was done in the recent paper by Magoulas et al.97 Finally, the
current approximation, with its modest computational require-
ments on the external source, is applicable to the same scale of
systems that can be handled by single reference coupled cluster
methods. Thus, understanding the performance of this method

Figure 4. PESs of H2O, N2, and F2 in the top, middle, and bottom
panels, respectively, for the R-ecCCSD(T) method (blue) using the
full orbital space and large values (0.01 (solid) and 0.003 (dashed)) of
ϵ1 in HCI (Type-VI sources). Also shown are the source HCI
variational energies (red), the SHCI total energies (green), and the
essentially exact SHCI energy using ϵ1 = 4 × 10−5 (black).

Figure 5. Absolute errors of R-CCSD(T) and ecCC methods on a log
scale plotted against the D2 diagnostic. A detailed explanation can be
found in the main text.
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in larger correlated systems, particularly with approximate and
low-cost Type-VI sources, is of interest.

■ APPENDIX: A SWEEP ALGORITHM CONVERTING
MPS TO CI COEFFICIENTS WITH A THRESHOLD

In DMRG, the electronic wave function is represented by a
matrix-product state (MPS)

A A A n n n
n n

n n n
K

, , , ,
1 2

K K

K
K

1 1 1

1
1

1 2
2

1
∑ ∑|Ψ⟩ = ··· | ··· ⟩

α α
α α α α

··· ··· −

−
(A.1)

n vac, , ,{ } = { ↑ ↓ ↑ ↓ } (A.2)

where ni is the occupation of orbital i, |n1n2 ···nK⟩ is the
occupation-number representation of a determinant, and αi is
an auxiliary index. Here, ∑αi

Aαi−1αi

ni Aαiαi+1

ni+1 denotes a matrix
product, and it is assumed that the dimensions of all the
auxiliary indices are the same (the bond dimension M). The
wave function of the ground state can be optimized by the
efficient DMRG sweep algorithm.
In order to get Q3

ecT3 and Q4
ecT4 in eq 4, we extract

quadruple- and lower-order CI excitation amplitudes from the
MPS by a sweep algorithm. To avoid repeated or unnecessary
computation, we here describe how to obtain CI coefficients
whose values are larger than a threshold in eq 5, with a
concomitant reduction in computational cost and memory
usage from a naive approach.
We first start with the MPS in left canonical form. During a

sweep to compute the amplitude, at any given point (e.g., at
some site p) one has a set of partial coefficients cαp

(n1n2...np) =

∑α1...αp−1
Aα1

n1 ...Aαp−1αp

np . If ∑αp
|cαp

(n1n2...np)|
2 < thresh, then this

partial coefficient is dropped, as are all determinants involving
the occupancy string |n1n2...np⟩. This is because if the MPS is in
left canonical form, the above condition on the partial
coefficient guarantees that the coefficient of any determinant
generated by the MPS which contains |n1n2...np⟩ as a substring
is also less than the threshold in magnitude. In addition, since
the orbitals are associated with definite hole or particle
character, we also drop any coefficient associated with more
than four holes or four particles. Finally, in this process, we can
take advantage of the conserved quantum numbers to only
generate symmetry unique partial coefficients (e.g., if Sz = 0,
then the values of cαp+1

come in time-reversal pairs, and only
one needs to be considered). Thus, using the above algorithm
we can completely avoid generating any determinants with
coefficients below the threshold.
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(72) Čízěk, J. On the use of the cluster expansion and the technique
of diagrams in calculations of correlation effects in atoms and
molecules. Adv. Chem. Phys. 2007, 35−89.
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