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Advanced building climate control systems have the potential to significantly reduce green-
house gas emissions and energy costs, but more research is needed to bring these systems to
market. A key component of building control research is testing algorithms through simula-
tion. Many high-fidelity simulation testbeds exist, but they tend to be complex and opaque to
users. Simpler, more transparent testbeds also exist, but they tend to neglect important non-
linearities and disturbances encountered in practice. In this paper, we develop a simulation
testbed that is computationally efficient, transparent and high fidelity. We validate the
testbed empirically, then demonstrate its use through the examples of system identification,
online state and parameter estimation, and model predictive control (MPC). The testbed is
intended to enable rapid, reliable analysis of building control algorithms, thereby acceler-
ating progress toward reducing greenhouse gas emissions at scale. We call the resulting
testbed and supporting functions the b1dg toolbox, which is free, open source, and avail-
able online. [DOI: 10.1115/1.4048895]
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1 Introduction

The benefits of advanced heating and cooling controls are well
established [1-4], but not much research has been done into the
costs of developing and deploying them. A cost-benefit analysis
available in the literature concludes that, at present, the required
initial investment appears to outweigh the operating cost savings
[4]. To realize the potential emission reductions of advanced
heating and cooling controls at scale, their cost—benefit ratio will
likely need to be improved. This could be accomplished, for
example, by streamlining the process of building modeling or
improving the performance of estimation and control algorithms.

Many methods have been proposed for these purposes. Since
2010, for example, researchers have tested artificial neural networks
[5,6], subspace system identification [7], prediction error methods
for system identification [7,8], online state or parameter estimation
with linear, extended, and unscented Kalman filters [9-13], and
model predictive control (MPC) in its certainty-equivalent [14—
18], robust [19,20], and stochastic [21-24] forms.

It is not clear how different combinations of these methods
balance performance against ease of implementation. Answering
this question in general is difficult; buildings have a wide variety
of geometries, construction types, mechanical systems, weather
conditions, and control objectives. Therefore, building control algo-
rithms are typically evaluated and compared through case studies.

Experimental case studies in occupied buildings and varying
weather conditions, such as Refs. [1-4,14,16], allow the strongest con-
clusions to be drawn. They generally include the nonlinearities, distur-
bances, and other complications encountered in practice. Experiments
have drawbacks, however. They tend to be costly and time consuming.
Experimentally comparing algorithms requires either side-by-side
testbeds or replicating weather conditions and occupant behavior.
Some questions, such as sensitivity to construction parameters like
thermal mass, or robustness to rare disturbances like extreme
weather events, are difficult to investigate experimentally. For these
reasons, most case studies are done in simulation testbeds.

We believe that two desirable attributes of a simulation testbed
are simplicity and fidelity. Simple testbeds reduce modeling effort,
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make it easy to vary parameters, and enable fast simulation and
clear interpretation of results. The majority of the case studies men-
tioned earlier considered either one or two thermal zones.

Testbed fidelity is also important. Real buildings have nonlinear
dynamics caused, for example, by longwave radiation and by convec-
tion with temperature-dependent film coefficients. They also have sig-
nificant disturbances from weather and occupant behavior. Solar
forcing, in particular, is a strong effect that is nontrivial to accurately
model or predict. Simulation testbeds that neglect nonlinearities or
oversimplify disturbances could bias case studies in unknown ways.

Existing simulation testbeds tend to be either simple or high
fidelity, but not both. Simple testbeds, such as the low-order
resistor-capacitor networks often used for MPC, usually neglect
nonlinearities or simplify solar forcing. High-fidelity testbeds,
such as ENERGYPLUS [25] and TrNsys [26], usually require signifi-
cant effort to learn the software, model a building, vary its param-
eters, apply randomly generated disturbances, simulate a control
algorithm, or interpret results.

Developing a simple, high-fidelity simulation testbed is the main
purpose and contribution of this article. To maximize simplicity, we
restrict our attention to a family of single-zone buildings indexed by
a small number of parameters. Varying these parameters generates
buildings of varying size, thermal mass, insulation, draftiness, and
susceptibility to solar forcing. To maximize fidelity, we model
and simulate this family of buildings using the assumptions and
methods that underpin state-of-the-art tools such as ENERGYPLUS
and TrNsys. In particular, we include nonlinear thermal radiation
exchange between surfaces, nonlinear convection with temperature-
dependent film coefficients, wall temperatures governed by partial
differential equations, and solar radiation treated via spherical
geometry and optical physics.

We call the resulting testbed and supporting functions the b1dg
toolbox (or simply b1dg). It is implemented in MATLAB, a common
environment for control design and analysis, with no links to exter-
nal software. At its core, b1dg represents a building as a discrete-
time system with nonlinear, time-varying dynamics. The building’s
thermal behavior is determined by the difference equations

Xie+1 Zﬁ(xk, U, Wk), k= 0, 1, 2, e
Here, k indexes discrete time, x; is the building state (a high-
dimensional vector of temperatures of the indoor air and
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components of the building envelope), u, is the control input (either
a heat flow, or a supply air temperature and mass flow), and wy is the
disturbance (the outdoor air temperature, solar irradiance, and inter-
nal heat flows from bodies, lights, and equipment). The main purpose
of bldg is to provide the dynamics functions f;. This allows users
to decide u; by any method (e.g., by MPC using a low-order,
linear, time-invariant model that approximates the f;) and then simu-
late its effect in a high-order, nonlinear, time-varying testbed.

This article is organized as follows. We review related work in
Sec. 2. In Sec. 3, we discuss the mathematical model underlying
the testbed. We describe the numerical solution scheme in Sec. 4
and the required input data in Sec. 5. We empirically validate
some aspects of the testbed in Sec. 6. Algorithm testing examples,
including system identification, online state and parameter estima-
tion, and MPC, are presented in Sec. 7. We conclude in Sec. 8.

2 Related Work

The bldg toolbox is not a general-purpose building simulator.
Although it has a similar mathematical structure to tools such as
ENerGYPLUS and TRNsys, it does not compete with them. These
tools can simulate wide varieties of building geometries, construc-
tion types, and mechanical systems. They were designed for diverse
purposes: comparing the energy efficiency of architectural designs,
predicting the energy savings of building retrofits, sizing heating
and cooling equipment, evaluating solar photovoltaic and solar
thermal systems, and many more. This design philosophy, while
undoubtedly powerful, necessitates a level of complexity that
renders these tools opaque to most users. By contrast, b1dg was
designed for the narrow purpose of simple, high-fidelity building
control testing. Its scope is one family of single-zone buildings
indexed by a small number of parameters. Its intended audience is
building control researchers. Its focus is on accessibility to this
community.

Two other MATLAB toolboxes have been recently developed for
the building control community. These are the Building Resis-
tance-Capacitance Modeling (BRCM) [27] and OpenxBuwp [28]
toolboxes. Both are built on the Building Controls Virtual testbed
[29] and MLE+ [30], which enable communication between
MATLAB and ENerGYPLus. Unlike b1ldg, which was designed for
control festing, BRCM and OpenBuiLD were designed primarily
for control synthesis. BRCM and OpENBuiLD map ENERGYPLUS
building models into state space models and facilitate their use in
MPC of real buildings. BRCM has been used in MPC of an occu-
pied office building for 7 months [4] and for numerous simulation
studies [31-33]. OpeNBuiLD has been used to simulate demand
response [34] and ancillary service provision [35] from commercial
buildings and to investigate the influence of controller model order
on MPC performance [36].

Unlike BRCM, OpeNBuUILD allows controls decided in MATLAB to
be simulated in ENErGYPLUS. Therefore, OPENBUILD can be a very
high-fidelity, general testbed. In principle, OPENBUILD can simulate
as complex a building envelope as ENERGYPLUS can model. OPEN-
BuiLp also benefits from the extensive vetting of ENERGYPLUS over
the last two decades. Although we have validated core aspects of
bldg empirically (see Sec. 6) and verified others against
BESTEST [37] and ASHRAE Standard 140P [38] test cases,
these steps are nowhere near as comprehensive as ENERGYPLUS’
validation.

The main feature that distinguishes b1dg from OpENBUILD is that
bldg is implemented entirely in MATLAB with no connection to
ENerGYPLUS. This may make bldg somewhat easier for control
researchers to use; bldg models can be created, modified, and
simulated from the MaTLAB command line in a few lines of code.
It also has the advantage of transparency. The inner workings of
bldg can be understood with this article and a familiarity with
MartLaB differential equation solvers. By contrast, OPENBUILD’S
connection to ENERGYPLUS introduces the complexities described
in its engineering reference [39] and input—output reference [40]
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and each document contains thoudands of pages. Finally, bldg
has some computational advantages. It requires no middleware or
cosimulation. Its governing equations are solved by vectorized
MATLAB methods that exploit the structure and sparsity. This facili-
tates fast simulations over long time spans. For example, simulating
a default building for 1 year with 15-min time-steps takes about 6 s
on a 1.2 GHz Intel Core M processor.

In summary, BRCM and OpenBulb are powerful tools for
synthesizing control-oriented building models. The b1dg toolbox
complements them by enabling algorithm evaluation in a transpar-
ent, native MATLAB testbed. While OpENBUILD is another excellent
testbed option, b1dg has some advantages that may be appealing
for research such as sensitivity analysis and Monte Carlo simula-
tion. The tools could be used in series, with bldg facilitating
rapid prototyping and comparison of algorithms, and BRCM or
OpeNBuUILD could be used to investigate scalability to large multi-
zone buildings.

3 Mathematical Model

3.1 Geometry and Heat Transfer Mechanisms. The build-
ings simulated by b1dg are a family of single-zone rooms. They
have one single-pane window and walls of uniform composition.
The building family is indexed by the dimensions of the room
and the material properties of the window and walls. Figure 1 illus-
trates an example building and its environment.

The building is coupled to the sky and ground by longwave radi-
ation and to the outdoor air by convection and infiltration through
gaps in the building envelope. The walls and window receive
beam and diffuse sunlight depending on the cloud cover and time
of day. The walls and window exchange heat with each other
through radiation and with the indoor air through convection.
Heat is generated internally by occupants’ bodies, lights, heating
and cooling systems, and other equipment.
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Fig. 1 Geometry of the environment (left) and a cross section of

an example building (right). Heat is transferred through convec-
tion, radiation, conduction, infiltration, and the transmission,
absorption, and reflection of visible light. The internal heat flow
Q, is from bodies, mechanical systems, lights, and other
equipment.
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3.2 Assumptions. A standard set of assumptions underlies the
modeling techniques used by state-of-the-art building simulators.
[25] Under these assumptions, all material properties are spatially
uniform and independent of temperature. The air in each thermal
zone is well mixed and radiatively nonparticipating. Conduction
through surfaces is one dimensional. Each surface is modeled as
isothermal and, with respect to longwave radiation, as opaque,
diffuse, and gray. Optical properties are assumed to vary between
the shortwave and longwave bands of the electromagnetic spec-
trum, but they are independent of wavelength within each band.
We make all of the aforementioned assumptions in the remainder
of this article. In addition, we assume that the outdoor air is dry,
still, and isothermal with the sky and ground. Furthermore, we
assume that heat transfer is dominated by flows in the direction
normal to the window surface, so that it can be treated as one
dimensional.

3.3 Notation. We denote temgerature by T (°K), heat flow
by QO (W), heat flux by ¢ (W/m”), convection coefficients by
h (W/m 2.°K), and solar irradiance by I (W/m?). The subscripts
g, a, and oo denote window glass, indoor air, and the outdoor envi-
ronment, respectively, far from the building; quantities absent these
subscripts refer to the wall opposite the window. The subscripts —
and + indicate left and right boundaries given the orientation
depicted in Fig. 1. Initial temperatures have the superscript 0. We
denote the beam component of solar irradiance by the superscript
b and the diffuse component by d; the subscripts /# and L indicate
incidence on a horizontal surface and a surface normal to the sun.
For example, h,_ is the convection coefficient at the left glass
surface, TS is the initial air temperature, and Ifz is the beam irradi-
ance on the right wall surface. For internal heat sources, the sub-
scripts p, ¢, [, and e indicate people, control systems, lights, and
other equipment, respectively.

3.4 Governing Equations. Under the assumptions in Sec. 3.2,
the temperature distribution 7(x, ¢) in the wall opposite the window
satisfies the heat equation with initial and boundary conditions:

or 8T or oT
T =a—=, T =T —k—| =q_, —k—
Pl (x, 0) (x)—k q-» k

ox |_ Ox |, =+

()]

where a (m?/s) and k (W/m - °K) are the wall’s thermal diffusivit 2y
and conductivity. The left and right surface fluxes ¢_ and g, (W/m®)
are discussed in Secs. 3.5 and 3.6. Heat fluxes and flows to the right
are taken to be positive.

As demonstrated in Ref. [41], the window temperature dynamics
can be accurately modeled by

CoTy =AGe- — 4gr), To(0) =Ty )

where C, (J/I°K) is the thermal capacitance of the window and
A (m® is the window surface area. The fluxes qe— and qgy
(W/m?.°K) at the left and right window surfaces, respectively,
are discussed in Secs. 3.5 and 3.6.

Under the well-mixed assumption, the indoor air temperature
satisfies

CaTa =A((1a— - qa+) + Q4 Ta(0)= Tz(z) 3)

where C, (J/°K) is the thermal capacitance of the air and any mate-
rial that’s isothermal with it. The fluxes ¢,_ and g, at the left and
right air boundaries, respectively, are discussed in Sec. 3.6. The
internal heat flow is expressed as follows:

Qu =1eCo(Teo = Ta) + 0 + Cpr + 801+ .0, )

where m, (kg/s) is the mass flowrate of outdoor air entering the
space by infiltration, ¢, (J/kg - °K) is the specific heat of air at cons-
tant pressure, and {. Qc, &, Op, & O, and {, Q. (W) are the
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convective heat flows from control systems, people, lighting, and
other equipment, respectively. Each £, is between zero and one;
the remaining fraction 1 — ¢, of Q, radiates to the wall and the
window. The internal heat sources are discussed in Sec. 5.1.

3.5 Outdoor Heat Fluxes. The flux at the outdoor surface of
the wall is expressed as follows:

s = he(Ts = Too) + 06(Ty = T) — a1 + 1) ®)

where 6=75.67 x 1078 W/m? °K *is the Stefan—Boltzmann constant,
¢ is the wall’s longwave emissivity, a; is its shortwave absorptivity,
14 (W/m?) is the (isotropic) diffuse solar irradiance, and If’r (W/m?)
is the beam component of the solar irradiance incident on the wall.
The longwave term in Eq. (5) follows from the fact that the radiative
transfer factor between a small, convex, gray object (in this case, the
wall’s outer surface) and the much larger, isothermal environment
that contains it is simply the small object’s emissivity; see
Sec. 10.4 of Ref. [42] for details.

The flux at the outdoor surface of the window is expressed as
follows:

Go- = hy(Too = T) + 06y (Tey — T ©
+ g (017 + a1

where &, is the longwave emissivity of the glass and Ig’ (W/m?) i 19
the beam component of the incident sunlight. The diffuse sunlight /¢
is assumed to be isotropic, so it equally irradiates the wall and the
window. Following Sec. 1.5 of Ref. [43], the absorptivity of
beam sunlight a,(6,) and the absorptivity of diffuse sunlight a,
are derived from the beam angle of 1n01dence 0, and the index of
refraction n,, attenuation coefficient y, (m™ b, and thickness I, of
the window glass. The derivation uses Snell’s law, the Fresnel equa-
tion, and Beer’s law.

The convection coefficients h, and h,_ (W/m? °K) depend
nontrivially on the difference between the indoor wall surface tem-
perature (or window, respectively) and the outdoor air temperature
T. The ENERGYPLUS engineering reference [39] catalogs 37 differ-
ent empirical formulas for convection coefficients at surfaces of
various orientations. For simplicity, we use the ASHRAE model
for natural convection along a vertical surface,

h=1.31|AT|"3

Here, AT is the temperature difference between the surface and the
surrounding air. The dependence of & on AT makes this model of
convection nonlinear in the temperatures of the indoor air and the
wall and window surfaces.

3.6 Indoor Heat Fluxes. The flux at the indoor surface of the
wall is expressed as follows:

G- = qus q:hon qlong (7)
where
Gar =h-(T, —T-)

is the convective flux from the indoor air to the wall. Similarly, the
indoor window surface flux is

ot = qa— + 4" + Gt (®)
where
Ga— = hg+(Tg -T,)

is the convective flux from the window to the indoor air. For the
indoor surface film coefficients, we use a model for a vertical
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surface near a heating/cooling source [44],

h=1.98|AT|%3

The shortwave radiation fluxes ¢ and qZ,T“

sources: beam and diffuse sunlight transmitted through the
window and artificial light from indoors. They can be computed
by ray tracing; under the diffusivity and isotropy assumptions in
Sec. 3.2, the results can be obtained in a closed form by summing
geometric series.

The longwave radiation fluxes ¢'*"¢ and qif’f ¢ involve two effects:
gray body radiation exchange between the window wall surfaces,
and the radiative components of indoor heat flows from bodies,
control systems, lights, and other equipment. The longwave
fluxes from both effects can be computed using the radiosity
method [45]. For a generic enclosure with n surfaces, this involves
computing the n? view factors between the surfaces and then
numerically solving a system of n linear equations. For our
simple case with two dominant indoor surfaces and view factors
close to one, the fluxes can be computed in a closed form.

short

involve three

4 Numerical Solution

Simulating the building requires solving the governing equations
(1), (2), and (3). The complexity of the boundary conditions and dis-
turbances makes analytical solution intractable, so we use a finite
difference approach called the numerical method of lines. [46—48]
The method of lines involves approximating spatial derivatives
with algebraic expressions, reducing the PDE (1) to a system of
ODEs that can be combined with Egs. (2) and (3) and then fed to
an ODE solver. This is accomplished through the central function
in the b1dg toolbox, bsim.

4.1 Space Discretization. We define the space coordinate x,
such that x=0 at the left-hand side of the wall and x=1[ at the
right. To discretize space, we introduce N nodes on [0, /], uniformly
spaced by Ax=1[/(N—1) and indexed by i € {1, ..., N} such that
x; = (i — 1)Ax. We approximate each temperature 7(x;, t) by a func-
tion T(¢), chosen such that Ti(t) —» T(x;, t) as N — oo.

The central difference approximation to the spatial derivative in
the heat equation, evaluated at x;, is given as follows:

T(xi—1, )—2T(x;, 1) + T(xp41, 1)

0
P T(x;, )= a( (Ax)z

Dropping the truncation error term and replacing the true tempera-
tures by their approximations gives

) + O((AY)?)

Ti=r(Tie1—2T; + Tix1) ©)

where we have suppressed the time arguments and defined r=
al(Ax)?.

Evaluating Eq. (9) ateach i € {1, ..., N} defines N ODE:s in the
N+2 temperatures Ty, ..., Tn.i. Since xo=—Ax and xy. =1+
Ax, however, Ty and Ty, represent temperatures outside of the
wall. They can be eliminated using the boundary conditions

or
el
ox

orT
=q_, —k— =q
0,1 Ox Lt "

To preserve the (O((Ax)?) truncation error of the method, we
replace the spatial derivatives by their central difference approxima-
tions,

oT

T(x, 1) = Txo, 1) 2
il I 2 A i LR A
ax |o, 2Ax +O0(a
or|  TCnyr, 1) — Txy-1, 1) 2
ox |, B 2Ax +O(ax
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Dropping the truncation errors and replacing true by approximate
temperatures, we have

2Ax
To=T1>+ <T>q_

Substituting these expressions into the approximate heat equation at
x1 and xy gives

. 2a
T, =2r(-T) + T — | g-
1=2r(-T1+T2) + (kAx)q

: (10)
Ty=2rTy_1 — Ty) — (szC>Q+

4.2 Initial Value Problem. Equations (10), along with Eq. (9)
evaluated ateach i € {2, ..., N—1}, defines a system of N ODEs in
Ti, ..., Ty. These ODEs involve the internal surface flux ¢g_, which
couples the system to Eqgs. (2) and (3) for 7, and T,. The full
problem is therefore

T, [ 2r(=Ty + T») + 2aq_/kAx 7|
T, F(T\=2T5 + T3)
Ty | = r(Ty— = 2Ty-1 + Ty) (an
Ty 2r(Ty-1 — Ty) — 20q+ /kAx
Tg A(gg- — qg+)/Cy
L To | L (AGu- = qur) + Qa)/Ca

with the corresponding initial condition. The fluxes g_, g, g,—, qq+.
ga—, and g, defined in Secs. 3.5 and 3.6, are polynomials of degree
up to four in the temperatures, so system (11) is nonlinear. The solar
fluxes depend on the sun’s position in the sky, so the system is also
time varying.

Depending on the physical parameters, control scheme, and
choice of N, system (11) may be stiff. An implicit solver should
therefore be used [46]. In Ref. [49], Crowley compared 15 numer-
ical methods for a similar problem and recommended combining
the trapezoidal rule and the second-order backward difference
formula, as implemented in the MATLAB solver ode23tb. This
scheme has second-order accuracy in both time and space. It is
also possible to simulate perfect control, where the indoor tempera-
ture is maintained exactly at the setpoint. In this case, the last ODE
reduces to the algebraic equation A(g,_—q..)+Q,=0, and
problem (11) becomes a system of differential-algebraic equations
that can be solved, e.g., by MATLAB’s odel5s solver.

Solving system (11) numerically requires specifying the initial
temperatures in the wall, window, and air. Reasonable initial condi-
tions can be produced by preconditioning the building as follows.
For a simulation starting at time #,, the building state can be initial-
ized isothermal with the environment some time earlier, for
example, 1 or 2 weeks, then integrated forward to 7, under the
appropriate weather conditions and internal heat sources.

S Input Data

Simulating the building requires specifying the model parame-
ters, an initial state, the solar time span, and values of the input
signals in Table 1 at every time-step. The input signals can be
divided into internal heat sources (Sec. 5.1) and weather
(Sec. 5.2). We discuss the model parameters in Sec. 5.3.

5.1 Internal Heat Sources. The internal sources are the heat
flows Q., Q,, O, and Q, from control systems, people, lighting,
and other equipment. Building simulators typically require
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Table 1 The input signals to the building model include the
internal heat flows and weather

Signal Symbol Unit
Control heat flow 0. w
Heat flow from people 0o, w
Heat flow from lighting 0, w
Heat flow from equipment 0. w
Outdoor air temperature Te °K
Total horizontal irradiance I, W/m?
Beam normal irradiance L W/m?

user-specified schedules for occupancy, lighting, and equipment,
from which Q,, Q;, and Q, are determined.

In general, the control heat flow Q. may depend on the control
objectives, the building state, and predictions of weather and inter-
nal heat sources over the control horizon. We assume that Q. is
either provided by the user or computed internally to perfectly
regulate T, at a specified setpoint. In the latter case, 7, =0, and
Egs. (3) and (4) give the heating load of the building:

1
0= Z;_c (A(Qa+ = qa-) — (e Co(Teo — To) + Cpr + 601+ geQe))

(12)

Perfect regulation gives useful estimates of peak heating and
cooling loads.

5.2 Weather. We take as basic weather inputs only quantities
that are easily measured: the outdoor air temperature 7, the total
solar irradiance 7;, on a horizontal surface (measured with a pyran-
ometer), and the beam solar irradiance /% on a surface normal to the
sun (measured with a pyrheliometer). These data are also available
in typical meteorological year files for various locations [50]. As
discussed in Sec. 1.6 of Ref. [51], the beam angles of incidence
on the wall and window, @ and 6,, can be computed from the
day, time, latitude, longitude, and building orientation. Similarly,
the diffuse irradiance /¢ and the beam components Ifi and Ié’_ can

be inferred from [, and Iﬁ.

5.3 Parameters. The building is defined by the 21 parameters
in Table 2; all other parameters are derived from them. Six of these

Table 2 The input parameters to the building model include the
building geometry and material properties

Parameter Units
Wall thickness, [ m
Glass thickness, I, m
Room width, I, m
Wall surface area, A m?
Wall azimuth angle, y rad
Latitude, ¢ rad
Wall thermal diffusivity, o m%/s
Wall thermal conductivity, k W/m -°K

Wall longwave emissivity, & -
Wall shortwave absorptivity, a; —
Glass thermal capacitance, C, J/I°’K
Glass longwave emissivity, &, —
Glass index of refraction, n, -
Glass attenuation coefficient, u, m
Room thermal capacitance, C,
Infiltration mass flowrate, iy,
Control convective fraction, (. -
People convective fraction, ¢, -
Lighting convective fraction, {; -
Equipment convective fraction, {, —
Lighting efficiency, n —

Journal of Engineering for Sustainable Buildings and Cities

parameters define the orientation and dimensions of the building.
Nine are material properties: four for the walls, four for the
window glass, and one for the room. The remaining six parameters
are associated with the internal heat sources.

6 Empirical Validation

In this section, we empirically validate the model and simulator
through a series of frequency response experiments. In each experi-
ment, known input signals are sent to (1) a scaled laboratory testbed
and (2) bldg with parameters reflecting the laboratory testbed’s
geometry and material properties. Temperature responses within
the testbed are measured and compared to the corresponding simula-
tor outputs. The experiments validate the numerical solution scheme
and the conduction, convection, and longwave radiation models.

The empirical testbed is an enclosure with five plywood surfaces
and one clear acrylic window. The side, top, and bottom surfaces
are insulated with rigid polystyrene and radiation shielded with low-
emissivity aluminum foil. This directs heat transfer primarily
through the window and the wall opposite. Joints are tightly
sealed, and the ambient airflow into the box is negligible.

The bldg parameters are determined as follows. The lengths /,
ly, and [, and area A are measured directly. The material properties
a, k, €, &, and C, are drawn from engineering tables. Nominally, the
indoor air’s thermal capacitance C, is the product of its volume,
density, and specific heat at constant pressure. As discussed in the
section titled Zone Sensible Heat Capacity Multiplier of the ENERGY-
PLus engineering reference [39], it is a common practice to increase
C, over this nominal value to account for unmodeled thermal mass
that is nearly isothermal with the air. In keeping with this practice,
we increase C, by an order of magnitude.

Controlled heat flows are supplied to the box through two resis-
tive heating elements, each thermally glued to an aluminum heat
sink. Temperatures are measured by 15 thermistors accurate to
+0.1 °C. Twelve thermistors are arranged in two lines normal to
the window surface, with one line of six at one-quarter of the
wall height and another at three quarters. Each line measures the
inner and outer window surface temperature, the indoor air tempera-
ture, the inner and outer wall surface temperature, and the tempera-
ture at the midpoint of the wall. The remaining three thermistors
measure the ambient temperature outside the box at different loca-
tions. Control and measurement signals are exchanged between the

Predicted and measured temperatures

0 2 4 6 8 10 12 14
Time (hours)

Fig. 2 The temperatures (top plot) and control heat flow
(bottom) in an experiment with oscillation period of 3.5 h.
Thick, fuzzy lines are measurements. Thin lines are predictions.
Nine similar experiments were conducted to build the frequency
response plots in Fig. 3.
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Fig. 3 Predicted (dashed) and measured (solid) frequency responses. The temperature amplitudes (top row) and phase shifts
(bottom row) agree closely with measurements over the 31 days of total experiment time.

testbed and a laboratory computer running MATLAB and a National
Instruments sensor toolbox.

Figure 2 shows the inputs and outputs of one experiment. Each
experiment involves a 6-h warm-up phase: the heating system is
turned on to half capacity and the box temperatures settle into a
steady state. After the warm-up phase, the internal heat flow is
varied sinusoidally between zero and full capacity for ten oscilla-
tions. Ten such experiments are conducted. Oscillation periods
vary from 17 min (a 9-h experiment, including the 6 warm-up
hours and ten oscillations) to 27 h (an 11-day experiment). The
total experiment runtime, including ten oscillations at each of the
ten frequencies, is about 31 days.

Figure 3 summarizes the results of the ten frequency response
experiments. The top row of plots shows the amplitudes of the tem-
perature waveforms, in units of decibels, caused by control heat
flow sinusoids of varying frequencies. The bottom row of plots
shows the phase shift between the temperature and heat flow wave-
forms. Each error bar shows one standard deviation from the mean
of ten oscillations at each frequency in the experimental data. The
model accurately predicts the full temperature waveforms (both
amplitudes and phases) caused by oscillating heat flows at most fre-
quencies. This empirical validation supports both the mathematical
model and the numerical solution scheme.

7 Examples

In this section, we demonstrate the use of the bldg toolbox
through the examples of system identification (Sec. 7.1), online
state and parameter estimation (Sec. 7.2), and model predictive
control (Sec. 7.3). Along the way, we highlight several open
research questions that b1dg could help investigate. Further exam-
ples are provided in the b1dg documentation [52].

The context of the examples in this section is the building
described in Sec. 3 during winter in New York. A building model
with default parameter values can be created by instantiating an
object of class b1dg:b = bldg;

Under the default parameter values, the building is thermally
massive and highly susceptible to solar forcing. The user can
modify the building by adjusting parameters in the b1dg object
b. For example, the thermal mass can be decreased by increasing
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the wall diffusivity a (b.a) or thickness / (b.1l). The solar
forcing can be weakened by decreasing the wall shortwave absorp-
tivity a, (b . as) or by changing the window orientation through the
azimuth angle y (b.gam).

The following code imports and interpolates a year of hourly
weather data from a TMY3 file for New York, generates plausible
internal gains for a home, and defines a 24-h simulation time
span with step Af= 15 min, starting at midnight (= 0) on February
7 (day number n,;=38). (The b1dg toolbox uses SI units through-
out, so time is given in seconds.) The last line packs the distur-
bances into the matrix form accepted by the building simulation
function bsim.
dt = 15*%60;[b,weather] = importWeather(b, NYC_TMY3.csv’,dt);
gains = generateGains(b,weather.tw);nd = 38; t0 = 0; tf = 24*3600;
t = getTiming(weather.tw,nd,t0,tf);W = getDisturbances(weather,
gains,t);

Figure 4 shows the input signals generated by this code.

Simulating the building requires an initial state, which can be dif-
ficult to produce a priori. One is easily generated, however, usingx0
= precondition(b,t,weather,gains,N,Ts);

As discussed in Sec. 4.2, the precondition function starts the
building isothermal with the outdoor air 2 weeks before #,. It then
integrates the building forward with the indoor air temperature per-
fectly regulated at setpoint 7. The building can then be simulated by
X,Qc] = bsim(b,t,W,x0);

With N =50 wall nodes, this 24-h simulation takes about a tenth
of a second to run on a 2 GHz Intel Core 2 Duo processor. Figure 5
shows the output.

7.1 System Identification. In this example, we consider the
problem of learning a low-order, linear model of the building
dynamics from measurements of the indoor air temperature and
weather signals. We specify the first-order ARX structure

T =B TE + B,08 + B TS, + Bulf + wh (13)
where the w’; are independently, identically N(0, 62) distributed.
This model is naive since it neglects the internal gains and the
dynamics of the building envelope and since the true solar
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Fig. 4 Input signals from weather (top) and internal heat

sources (bottom). The outdoor air temperature (T,,), total solar
irradiance on a horizontal surface (I,), and beam solar irradiance
on a surface normal to the sun (I‘i) show that the simulation day
is cold and partly cloudy. The internal heat sources model a
home on a weekday, with decreased heat flows from people
(Qp), lights (Q)), and equipment (Q.) overnight and during work
hours.

forcing is time varying and cannot be determined from I, alone.
Nevertheless, the model is sufficiently accurate to give fair control-
ler performance; see Sec. 7.3.

To fit the model, we simulate the (nonlinear, time varying, high
dimensional) dynamics in bsim for the last 3 weeks of January
under a sequence of pseudorandom binary control inputs. We
assume perfect knowledge of Q. T, and I,, but corrupt T,
with zero-mean, white, Gaussian noise with standard deviation
o, =1/6 °C. The model parameters f and o,, are estimated using
linear regression.

Figure 6 shows the one-step prediction errors during the three
training weeks and in two subsequent test weeks under thermostatic
control with deadband [18 °C, 22 °C]. The maximum absolute error
of about 1.5 °C is large. A higher order ARX, ARMAX, or RC
network model could achieve better predictions at the cost of intro-
ducing more states and parameters. This accuracy/complexity trade-
off was explored for a family of RC networks in Ref. [8]. The
authors found that a second-order RC network with five parameters

ol — T —T, — T, —T, —1x ]

Temperature (C)

0 6 12 18 24
Hour

Fig. 5 Temperatures of the air (T.), glass (T), left and right wall
surfaces (T_ and T.), and outdoor environment (T,). The bottom
plot shows the heat flow required to perfectly regulate T, at set-
point Ts =20 C under the input signals in Fig. 4.
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Fig. 6 One-step prediction errors in the training and test data
with the static model in Sec. 7.1. The model fit is poor: The
errors are autocorrelated and, in the test set, predictions are
biased by —0.31 °C.

is able to capture the essential building behavior (confirming a result
from the 1980s; see Refs. [53,54]). Less is known about accuracy/
complexity trade-offs for buildings with thermally massive con-
struction or strong solar forcing. These questions could be explored
in bsim by varying physical parameters such as the wall diffusivity
a (b.a) and shortwave absorptivity a, (b.as) and studying the
model fit.

Another interesting topic is the relationship between gray- and
black-box models. The parameters in model (13), for example,
can be interpreted in terms of the first-order RC network

. To — T,
Ceit Ty = R—a + Oc + Aesily
eff

where Cegp, Regr, and A.g are the effective thermal capacitance,
thermal resistance, and solar absorption area. Forward Euler discre-
tization gives

Tk+| — (1 _ At
4 Retr Cef

AtAcse

It
Cert "

At At
"+ — 0 + T +
) @ Cetr ¢ ReCefi

This is consistent with the ARX model (13) only if f; +p3=1.In
this case, the “cost of grayness” could be defined as the prediction
accuracy lost by imposing the constraint f;+p;=1 on the
least-squares fitting problem, along with any resulting controller per-
formance reduction. While several authors have argued that the RC
network structure has benefits—e.g., it can provide initial guesses
to estimation algorithms and sanity checks on their output—to our
knowledge, the cost of grayness has not been well studied.

7.2 Online Estimation. Building dynamics are naturally time
varying: Solar forcing depends on the season and time of day, infil-
tration rates change as occupants open and close windows and
doors, temperature control equipment differs in heating and
cooling seasons, and material properties change as materials age.
We therefore expect model parameters to change over several
time scales. The framework of online estimation allows parameters
to be continuously calibrated to measurements, enabling adaptive
control. Online estimation of building model parameters has been
studied in Refs. [9-13].

In this example, we consider the problem of adapting a subset of
the parameters of the ARX model identified in Sec. 7.1. The goal is
to reduce the prediction bias apparent in Fig. 6. We simultaneously
estimate the indoor air temperature and model parameters using an
unscented Kalman filter [55]. We allow the parameters £, and S,
initialized with the fit from Sec. 7.1, to vary under the random
walk model ﬁf.‘“ =,Bf.‘ +w}§l. This gives the augmented system
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model

= O, ub) + Wk
(14)
yk =fo + Vk

where x = (Tw ﬁl, ﬂS)s u= (Qm Toos Ih)s w= (Waa W/il ) Wﬂ;),fl(x’ M) =
Xo X1+ Po uy + X3 Uy + B4 uz, and fi(x, u) =x; for i =2, 3. We model
the disturbance w as zero-mean, white, and Gaussian. The RC
network analogy developed in Sec. 7.1 suggests that the parameters
f1 and 5 should (roughly) sum to one, so we specify a strong neg-
ative correlation between wy, and wg,.

Figure 7 shows histograms of the one-step prediction errors in the
test data with and without parameter adaptation. Adaptation nearly
eliminates the prediction bias. The unscented Kalman filter accom-
plishes this by decreasing f; and increasing 5 over the course of
about 12 h, as shown in Fig. 8. The parameters stabilize after the
initial adjustment. This is expected since the underlying physical
model remains nearly constant over the estimation period. It is
less clear how the filter would respond to a large, sudden change
in the underlying system, e.g., a window being opened or a mechan-
ical component failing. These questions, which lie in the domain of
fault detection, could be explored in bsim by perturbing the mass
flowrate of infiltration air, . (b.mdot), or the fraction of the
control heat that convects to the indoor air, . (b. zc).
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Fig. 7 Histograms of the one-step prediction errors without
parameter adaptation (top) and with it (bottom). The online esti-
mation algorithm discussed in Sec. 7.2 nearly eliminates the pre-
diction bias. This is accomplished by adjusting the model
parameters 8, and B, as shown in Fig. 8.
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Fig. 8 Unscented Kalman filter parameter estimates and 95%
confidence intervals during the two test weeks. The filter
remains stable after initially adjusting 1 and g to reduce predic-
tion bias.
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7.3 Model Predictive Control. This example involves effi-
ciently heating a building. We consider the stochastic optimal
control problem

M
minimize E At Z Qﬁ
k=0

subject to  T¥*' = (nonlinear bsim dynamics)
y= Tf +k (1
T§+1 > min
Qe =W00 ..y €10, 07
where the constraints should hold for each k=0, ..., M almost
surely. The optimization variable 1is the control policy

@, ..., uM), where u*: R*"' 5> R maps observations into con-
trols. The expectation is taken with respect to the joint distribution
of the disturbance and noise sequences and the initial state.

Problem (15) is analytically intractable due to the nonlinear
dynamics, imperfect state information, and optimization over
infinite-dimensional objects (the functions *). While it is not diffi-
cult to generate good approximate solutions—a well-tuned thermo-
stat works—we apply two variants of MPC to problem (15) to
illustrate the research value of the b1dg toolbox. The first MPC
variant uses the ARX model from Sec. 7.1 with no parameter adap-
tation. At each time-step, we estimate the temperature using the
linear Kalman filter and then solve a truncated, certainty-equivalent
version of problem (15) with horizon H=6 h. Each MPC subpro-
blem is a deterministic linear program that generates a planned
control trajectory, of which the first control is implemented. We
then allow the system to evolve according to the nonlinear, time-
varying dynamics in bsim and repeat the process.

The second MPC variant is identical, except that state and param-
eter estimates are simultaneously updated at each time-step using
the unscented Kalman filter from Sec. 7.2. Simulating the building
under MPC for one day with 15-min time-steps takes about 42 s,
with linear programs solved by Gurobi on a 2 GHz Intel Core 2
Duo processor. About 93% of that time is spent in optimization,
6% in bsim, and 1% in the unscented Kalman filter.

Figure 9 shows the indoor air temperatures and control heat flows
under both MPC variants. The simulation takes place on February 7

22

Adaptive MPC
Setpoint

9/20 A l AAA./‘/\/\F\AAI\I\A.\ A’\AAAI\ A
\VV WAL Vv,

19F 1 1
Nonadaptive MPC

S Perfect
0 ‘ regulation
0 6 12 18 24
Hour
Fig. 9 Indoor air temperature T, (top) and control heat flow Q.

(bottom) under MPC, with and without parameter adaptation.
Both controllers attempt to regulate T, just above the minimum
permissible temperature of 20 °C, giving heat flows that resemble
the “perfect regulation” case computed by bsim. Both MPC var-
iants frequently underheat due to model error. Parameter adapta-
tion mitigates, but does not eliminate constraint violation.
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under the exogenous input signals shown in Fig. 4. Both MPC var-
iants attempt to regulate T, at the minimum feasible temperature of
T™in = 20 °C. This generates control trajectories that resemble noisy
versions of the “perfect regulation” case discussed in Sec. 5. Due to
model error, both MPC variants frequently allow 7, to drop below
T™in . Adaptive MPC performs somewhat better due to its reduced
prediction bias, achieving a time-averaged constraint violation of
0.11 °C, compared to 0.48 °C for the nonadaptive case.

The constraint violations are an artefact of model mismatch
between the controller and the underlying bsim dynamics. They
could be reduced by using a more accurate, higher-order model,
by specifying a safety margin (e.g., by replacing the constraint 7% >
T™1 with T¥ > 7™ + § for some positive §) or by moving the MPC
optimization to a robust or stochastic framework. While several
studies have applied robust or stochastic MPC to buildings [19-
24], it is not clear how these approaches, which add significant con-
ceptual and computational complexity, compare to using a more
accurate model or specifying safety margins.

8 Conclusion

In this article, we developed a computationally efficient, transpar-
ent, and high-fidelity testbed for building climate control algo-
rithms. After reviewing the related work, we developed a
nonlinear building model and a numerical solution scheme. The
model has a small number of governing equations, parameters,
and input signals. The numerical solution scheme uses built-in
MartLaB differential equation solvers that are familiar to many
control engineers. We hope that these properties make the bldg
toolbox accessible and transparent to building control researchers.

The bldg toolbox is also sufficiently high fidelity to be useful
for prototyping, analyzing, and comparing building estimation
and control algorithms. We supported this claim through empirical
validation and the examples of system identification, online state
and parameter estimation, and model predictive control. We high-
lighted several open research questions that the bldg toolbox
could help investigate.

The scope of the b1 dg toolbox is intentionally narrow. It can simu-
late one family of single-zone buildings indexed by a small number of
parameters. This simplicity has conceptual and computational advan-
tages as evidenced by the large number of high-quality studies done in
one- or two-zone testbeds. However, b1dg’s narrow scope prevents
its use for some important research, such as investigating scalability
to large multizone buildings. For such research, we recommend the
BRCM [27] and OpenBuiLD [28] toolboxes.

The b1dg toolbox is free, open source, and available online [52].
It is intended to eliminate the need to model a building or leave the
MATLAB environment before simulating an estimation or control
algorithm in a high-fidelity testbed. We hope that this facilitates
rapid, reliable research into advanced building controls, accelerat-
ing progress toward realizing their environmental and economic
benefits at scale.
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