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We demonstrate the power of 2D tensor networks for obtaining large deviation functions of dynamical
observables in a classical nonequilibrium setting. Using these methods, we analyze the previously
unstudied dynamical phase behavior of the fully 2D asymmetric simple exclusion process with biases in
both the x and y directions. We identify a dynamical phase transition, from a jammed to a flowing phase,
and characterize the phases and the transition, with an estimate of the critical point and exponents.
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Introduction.—Large deviation theory (LDT) has
emerged as a powerful framework for studying the fluc-
tuations of macroscopic dynamical observables in classical
nonequilibrium systems [1-5]. Reminiscent of equilibrium
statistical mechanics, where ensembles of configurations
are organized by their macroscopic properties, such as
temperature or energy, LDT prescribes the grouping of
trajectories into ensembles based on their dynamical or
static macroscopic properties, such as current or density.
This approach allows for the definition of dynamical
partition functions, derivatives of which are the mathemati-
cal analogs to entropy and free energy, called large
deviation functions (LDFs), which encode the statistics
of dynamical observable fluctuations. As in equilibrium
systems, these are critical for identifying and characterizing
phase transitions, particularly those which occur in the
space of trajectories, called dynamical phase transitions
(DPTs) [5].

The success of LDT has been accompanied by the
development of numerical methods for computing LDFs,
with significant emphasis and progress centered in sophis-
ticated sampling techniques [4,6—12]. Alternatively, the
matrix product ansatz, a powerful analytical representation
of nonequilibrium steady states [13—15], foreshadowed the
recent success of numerical tensor network (TN) algo-
rithms. In particular, calculations using matrix product
states (MPSs), the 1D TN that underpins the density matrix
renormalization group algorithm [16], provide a noiseless
alternative to sampling methods. As demonstrated in the
recent applications to DPTs in kinetically constrained and
driven diffusive models [17-21], the MPS provides a
remarkably compact representation of nonequilibrium
steady states.

While the TN approach is promising, the use of the MPS,
which only efficiently encodes correlations in one dimen-
sion, limits the study of higher-dimensional problems [22],
Consequently, LDF computations beyond one dimension
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have relied on Monte Carlo methods [23-26]. In this Letter,
we demonstrate how an inherently 2D TN, the projected
entangled pair state (PEPS) [27-30], serves as an efficient
ansatz to determine LDFs in 2D nonequilibrium lattice
problems.

We use this approach to obtain new insights into the fully
2D asymmetric simple exclusion process (ASEP). In one
dimension, the ASEP has become a paradigmatic model of
nonequilibrium behavior frequently employed to under-
stand important physical systems and phenomena including
surface growth [31,32], molecular motors [33-35], and
traffic flow [36]. The 2D ASEP is of similarly wide interest,
but it has remained poorly characterized [37-42], espe-
cially with regard to its dynamical phase behavior, which is
unknown except in the periodic, weakly asymmetric limit
[23]. We show that 2D TNs now allow us to shed light on
the general 2D ASEP by computing detailed observables
along a line in the dynamical phase diagram. In so doing,
we find and characterize a hitherto unobserved DPT
between jammed and flowing phases.

Large deviation theory and projected entangled pair
states.—We begin with a short overview of relevant theory
and methods associated with LDT, TNs, and PEPSs. More
comprehensive treatments of all three topics are provided in
recent reviews and methodological papers [5,28,30].

A Markovian nonequilibrium system’s time evolution is
governed by a master equation, 0,|P,) = W|P,), where
vector |P,) represents the configurational probabilities at
time ¢ and the generator, VY, dictates the transition rates
between configurations. At steady state, the time-averaged
current vector, J = J/t, obeys a large deviation principle,
P(J)~ e U, as does its moment generating function,
Z(A) = (e M) ~ e indicating that the probability of
observing all but the most likely current decays exponen-
tially with averaging time. The rate function ¢(J) defines
the probability of a given current, and w(A) is the scaled
cumulant generating function (SCGF), whose derivatives at
A =0 give the cumulants of the current.
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Performing a tilting of the generator, W — WW,
effectively weights trajectories according to their currents
by scaling all forward (backward) hopping terms by e~*
(€*), making W@ non-Markovian and non-Hermitian. A
central finding in LDT dictates that the largest eigenvalue
of the tilted generator is the SCGF, i.e,
WWH | PP =y (A)|PH). Furthermore, the corresponding
left and right eigenvectors detail trajectory characteristics
associated with particular fluctuations. For example, the
time-averaged local density associated with a fluctuation is
pi = (PW|n;|PP)/(PW| PP, where n; is the particle
number operator acting on site i and (P®| and |PW)
are the left and right eigenvectors.

The PEPS TN ansatz is a intuitive representation of the
approximate eigenstates of the tilted generator and a
diagrammatic representation of this ansatz is shown in
the right panel of Fig. 1, where a tensor is allocated for each
lattice site. Diagrammatically, each tensor is represented as
a ball with tensor indices corresponding to lines connected
to the ball. The vertical indices, called the physical bonds,
correspond to the local state space of the system and are of
size d, which is the local state dimension (for hard core
particles d = 2, corresponding to an empty or occupied
site). Additionally, nearest-neighbor tensors are connected
by indices, called auxiliary bonds, of size D, enabling
information transfer between sites. This results in a lattice
of rank 5 bulk tensors 7° [jk’l]m of size (d, D, D, D, D). The
size of the auxiliary bonds, called the bond dimension,
controls the accuracy of the ansatz by truncating the
considered Hilbert space, and for sufficiently large D the
ansatz is exact. While D must grow exponentially with the
size of the lattice to accurately represent arbitrary states, in
practice, many states are accurately captured by a PEPS
with finite D even as the lattice grows. By contracting over
all auxiliary bonds, the eigenstate of the tilted generator is
recovered; thus the mapping in Fig. 1 roughly illustrates
how the set of all configurational probabilities are stored as
a PEPS.

The development of appropriate PEPS optimization
methods for quantum many body problems is an active
area of research [43-46]. In this Letter, we simply adapt
many of the most successful standard techniques to the
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FIG. 1. A stack of possible configurations of the 2D ASEP (left
panel), representing all possible configuration probabilities, is
stored as a 2D PEPS, whose TN diagram is shown on the right.
Contracting all auxiliary bonds gives the probability of all
possible lattice configurations.

nonequilibrium master equation setting. Using the time-
evolving block decimation approach [28,47], we integrate
the tilted master equation forward in time, giving

|Pf'l)> = e’ |PE)'1)>. We apply the time evolution operator
to the initial PEPS via its Suzuki-Trotter decomposition
into local gates, e » (eatwgil' )t/&, and iterate this
application until convergence to the steady state. The bond
dimension between two sites grows after the application of
the gate; thus an alternating least squares approach is used
to compress the tensors back to dimension D [30]. The
alternating least squares algorithm uses information from
all the other tensors which are contracted into an approxi-
mate environment using the single-layer boundary method
[48] and tensor reduction [49,50]. The accuracy of the
environment is then determined by an additional parameter,
> which corresponds to the bond dimension of a boundary
MPS. Like D, y must also be increased to converge to the
exact stationary state. In practice, because the environment
computation is expensive, we can first determine an
approximate stationary state via the ‘“simple update”
algorithm where no environment is used [51]; then D
and y are increased in subsequent time evolution steps
using the full environment information (“full update”
algorithm [47]), while 67 is also decreased to reduce the
Suzuki-Trotter error.

Model: 2D ASEP.—The 2D ASEP, Fig. 1 (left panel),
takes place on a square N x N lattice, where each site may
be occupied by a particle or empty. Particles stochastically
hop into vacant nearest-neighbor lattice sites in the right
(up) and left (down) directions at rates p, (py) and g, (q,),
respectively. At the {left, bottom, right, top} boundaries,
particles are inserted at rates {a,, @,, ,, 6, } and removed at
rates {y,.7y. By, By }. Additionally, as detailed in the pre-
vious section, we utilize a current bias in both directions,

A = (A4, 4y), to probe the trajectory phase space. The tilted
hop
ij
ri j(e’lﬂfa[a; —nv;) and similarly defined insertion and
removal operators, where r; ; is the hopping rate from site

generator is built from hopping operators o

itojanda,, a:f, n;, and v; are annihilation, creation, particle
number, and vacancy operators, respectively. Because
hopping occurs only between nearest-neighbor sites, the
full tilted generator, YW, then decomposes naturally into
nearest-neighbor gates. At 4;; =0, V (i, /), the system
undergoes its typical dynamics; otherwise the biasing
allows for probing of rare trajectories.

Results.—We first probed for the existence of a DPT in
the 2D ASEP by performing mean field (MF) computations
of the SCGF on an 8 x 8 lattice in two subsets of the phase
space, with results shown in Fig. 2. In Fig. 2(a), we show,
from top to bottom, the per site SCGF, total current, and
current  susceptibility at p,,=1-¢q,, =1 with
.y = Pry = Vry = 0y, = 1/2, and current biases sweep-
ing over A,,4, € [-2.5,2.5]. In the bottom left of these
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FIG. 2. A mapping of the mean field dynamical phase diagram of the 2D ASEP with (a) showing the SCGF (top panel), current
(middle panel), and current susceptibility (bottom panel) as a function of bias at one point in the physical phase space, while (b) and (c),
respectively, show plots of the current susceptibility as a function of bias for a bulk biased and a boundary biased 2D ASEP.
(@) pyy = 1 — g, = 1 with boundary terms at 1/2 and current biases 4, 4, € [-2.5, 2.5]; we can see the transition between the jammed
(dark) and flowing (bright) phases. (b) Bulk rates are fixed at p,, = 1 —¢,, = 0.9 while we sweep over a subset of boundary rates
(ayy = Pry =1 =7,y =1 =35,,). (c) All boundary terms are set to 1/2 and we sweep over bulk hopping rates (p ,g,,). Each subplot

in (b) and (c) sweeps over current biases 1,,4, € [-2.5,2.5].

plots, we see a low-current regime materialize, where the
SCGF and current flattens, bounded by a small peak in the
susceptibility (the thin bright line between the purple and
orange regions).

To further explore where this low-current phase mate-
rializes, Figs. 2(b) and 2(c) contain subplots at various
points in the rate parameter space, each showing the per site
current susceptibility as a function of 4, , € [-2.5,2.5].
Figure 2(b) explores boundary effects, sweeping boundary
terms with a, , = f,, = 1 —y,, = 1 — §,, and maintain-
ing asymmetric interior rates p,, = 1—¢q,, = 0.9, while
Fig. 2(c) probes the effect of bulk hopping rates, sweeping
interior hopping rates while holding boundary terms
at ax,y = ﬂx,y = },x,y = 5)C,y = 1/2‘

Phase transitions can be marked by a peak in the current
susceptibility, as seen in Fig. 2(a). In Fig. 2(c), this becomes

visible at sufficiently high biases (~p, > 0.8), again
accompanied by a region of distinctly low current. This
aligns with the known behavior of the 1D ASEP, where a
DPT is observed except when p, = ¢, = 1/2, which
corresponds to the symmetric simple exclusion process.
Furthermore, intuition from the 1D ASEP would further
predict a DPT to appear for low biases in the thermody-
namic limit. For the boundary biased results, Fig. 2(b), we
observe the boundary rates to have little effect, except at
extreme values, where the location of the DPT becomes
distorted due to no insertion or removal at a boundary.
Selecting a line within the phase space covered in
Fig. 2(c) at p,y=1-¢4,,=09 1,=-1/2 with
A, € [-1/2,1/2], we carried out PEPS calculations on N x
N lattices with N € {6, 10, 20, 30,50} to probe the DPT’s
finite-size behavior. Here, we used D € [2, 8] and y = 80
while systematically reducing 67 € [10~!,107%]. Figure 3
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PEPS calculation results analyzing the phase transition along a line in the dynamical phase space of the 2D ASEP. From left to

right, we show the per site SCGF y/(4,. 4,)/N?, horizontal current J, /N2, and horizontal current susceptibility y,/N* at A, = —1/2 with
A, € [-1/2,1]. Each line corresponds to a system size N € [6, 10, 20, 30, 50].
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displays key results from these calculations in support of
the existence of a DPT.

There, the left plot shows the SCGF for the 4, sweep,
with the flattening of the curve for large systems on the left
side of the plot indicating a low-current region. The
horizontal current J, and current susceptibility y,, shown
in the center and right plots, are computed via central
difference numerical differentiation with respect to A,;
while they can also be computed via contractions with
the left and right PEPS eigenstates of YW, for the largest
systems this can be numerically challenging and requires
well-converged left and right states.

In all plots, we see two distinct regions, indicative of a
DPT. Moving from right to left, we see the emergence of a
low-current phase at ~4, = 1/4, where both J, and J, (not
shown) are small. The transition becomes sharper as the
size of the lattice increases, as seen by the increasingly
large peaks in current susceptibility, substantiating the
existence of a second-order DPT between the jammed
and flowing phases. Furthermore, the most likely configu-
rations in the flowing phase are those where particles are
evenly distributed throughout the lattice, while in the low-
current phase, those most likely are entirely filled, jamming
flow in the bulk.

To gauge the accuracy of these results, Fig. 4 displays the
convergence of the SCGF for calculations with N = 20.
Here, the SCGF is computed from the right and left

. 0.06 -
o +$L 0.0343 -
@] R N7 b 5
| 0.054 + K !
I 0.0342 -
5 0.04 A T T T T T 1
g 0.03 ] T T T T T T T
— —0.070 1 —0.080 1
0
S +F
II%g —0.0754 oosa] *EE+
6 T T T T T T T
= —0.080
+ *+ * + * 7
2 3 & & & o S o
S 2 4 9 9 @ om =

FIG. 4. The convergence of PEPS calculations, showing the
SCGF, computed as the left and right eigenvalues of the tilted
generator, y; and yg, for a 20 lattice as a function of the bond
dimension D (shaded) and the boundary bond dimension y
[labeled as (D, y)]. The top (bottom) plot corresponds to results
in the jammed (flowing) phase at 1 = —0.5 (4 = 0.5). Insets:
magnified results illustrating the extent of convergence.

eigenstates, y and y;, in the jammed (top) and flowing
(bottom) phases with 4 = —0.5 and 1 = 0.5, respectively.
Shaded regions correspond to D, starting with mean field
results on the left and increasing to the right, where within
each shaded region, the accuracy is improved by increasing
- Each computation was performed independently, doing
the full update procedure from a random initial state,
decreasing the time step sizes from otr=0.5 to
0t =0.01. In addition to the convergence with bond
dimension, the difference between the estimate of the
eigenvalue from the left and right eigenvectors serves as
an additional check on accuracy.

We find that with very modest computational resources
(D =3, y = 100), the SCGF easily converges to approx-
imately three significant digits, significantly greater than
MF results. It is also clear that, unlike in quantum systems,
where the variational principle prevents the ground state
energy from going below the exact ground state energy, our
computed SCGF can go above and below the exact value.
Also notable is that calculations in the jammed regime
converge to more accurate results at a low bond dimension
than those in the flowing region. Without an initial set of
sufficiently large time steps, we found that calculations in
the jammed phase tend to converge to local minima.

Last, we can perform a finite-size scaling analysis of the
observed transition to extract the critical exponents in the
thermodynamic limit. Because the system sizes studied are
limited to a linear dimension of N < 50, the results retain
some finite-size error, though we expect that future work
performing PEPS calculations on larger lattices, possible
because PEPS calculation costs grow linearly with system
size, or adapting infinite PEPS algorithms [30] could
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FIG. 5. Scaling plot of the transition between the flowing and
jammed phases, showing the collapse of the per site horizontal
current as a function of the reduced horizontal bias, A}.
Inset: finite-size extrapolation estimating the critical point
limy_ 4. = 0.30, with 4.(N) by fitting a quadratic function
to the three largest points in the susceptibility peaks for each N
in Fig. 3.
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further refine these estimates. The scaling relation for the
per site horizontal current is j (4%, N) = Nef(ALN€),
where d and ¢ are critical exponents, f is the scaling
function, and 4} is analogous to a reduced temperature, i.e.,
A= (A=2.)/A.. The inset of Fig. 5 shows a linear
extrapolation of the location of the susceptibility peaks
in Fig. 3 to determine the critical point to be
limy_ o 4. = 0.30. The critical parameters are then com-
puted via numerical data collapse [52], giving d = —1.9 +
0.1 and ¢ = 0.84 £ 0.1, with Fig. 5 showing the resulting
scaling plot, which displays good data collapse.

Conclusions.—We have provided the first insights into
the dynamical phase behavior of the fully 2D ASEP, finding
evidence for a dynamical phase transition between a
flowing and a jammed phase, as detected by a sharp
change in the current in the horizontal and vertical
directions. We have also demonstrated how 2D tensor
networks, in particular the PEPS ansatz, can be used to
compute large deviation functions in classical nonequili-
brium systems, characterize nonequilibrium phases, and
obtain critical exponents. This is a natural extension of the
success of 1D tensor network methods in this field and
provides significant promise for the future use of TNs in
coordination with LDT. Because numerical methods based
on PEPS are relatively young, continued progress is likely,
and we expect such higher-dimensional TNs to become
standard tools in the study of nonequilibrium classical
statistical mechanics.
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