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Abstract

Domestic hot water (DHW) heating accounts for up to 30% of average household energy use.
Compared to gas fired water heaters, electric water heaters (EWH) can be powered by renewable
generation resources, thus making it a potential renewable heating option. Furthermore, with the
growing need for energy storage, incorporation of renewable resources, and initiatives worldwide,
the electrification of DHW heating is expected to continue the rapid growth. However, many
commercial EWH products with monitoring and alerting functionalities lack the intelligence to
optimize and perform predictive control with data; on the other hand, research studies with refined
models and simulations come short in incorporating real-time data and providing robust optimal
controls under uncertainties in real-world settings. This paper presents a EWH Smart Scheduling
and Control System using data-driven disturbance forecasts in a robust Model Predictive Control
(MPC) to accomplish various demand side management objectives. Testing with a real-world EWH
dataset and a two-state EWH model, prediction uncertainty is quantified an included in robust
MPC simulations are conducted on a central EWH supplying DHW for a multi-unit apartment
building. Results show that the proposed system is capable of anticipating DHW demand with an
uncertainty interval covering up to 97% of the actual demand during the test days and reducing
electricity cost up to 33.2% as well as maintaining a desired DHW temperature without affecting
user comfort. Further, the flexibility of the system to alter load profiles under different Demand
Response (DR) programs are demonstrated. Reductions in both power and gross consumption can
be accomplished. The proposed system can create an implementable solution of forecasting DHW
usage and optimizing controls as a part of a robust and reliable building energy management and
control system in real-world settings.

Nomenclature

At Control time interval s

M,  Hot water demand m?/s

Qdemand Heat loss due to demand of hot water W

Qgen Heat generation from power input W

Qloss Heat loss from water to ambient environment W

i Rated efficiency of water heater
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A Surface area of water heater m?

Cor  Off peak electricity price $/kWh

Con  On peak electricity price $/kWh

p Isobaric specific heat of water kJ/(kgK)

P Rated power consumption of water heater W

Pe  Penalty during Demand Response period $/W
Pe;  Unit penalty for violation in magnitude of temperature $/°C
Pey  Unit penalty for violation in duration of time $/s
Peyi, Comfort violation penalty $

R Thermal resistance of the water tank (m?K)/W
S State of water heater, binaryon/off)

T, Ambient temperature °C'

T.; Hot water temperature at ¢th time step °C

Tini  Initial hot water temperature °C'

Tin  Supply domestic cold water temperature °C'

Tiow Lower limit of hot water temperature °C'

Ty,  Upper limit of hot water temperature °C

Tyio Temperature magnitude violation °C

tvio  Time duration of violation s

1. Introduction

According to the 2015 Resident Energy Consumption Survey (RECS) [1], Domestic Hot Water
(DHW) provision consumes about 17.9 GJ of primary energy in the U.S., making it the second
largest end-use category in home energy use after space heating. The 2015 RECS also estimated
that around 16% of the average U.S. household’s energy expenditure is for water heating. Apart
from energy consumption, DHW usage accounts for a sizable part of total water usage in residential
and commercial buildings. For example, an average person in North America uses around 64 liters
of hot water per day with typically higher usage during winters and lower usage during summers

[2].

Ranked by fuel types, natural gas, electricity (either through resistance heaters or heat pumps),
propane, and fuel oil are the main sources of energy for providing DHW [1]. With various initiatives
worldwide to decarbonize energy systems, the electrification of DHW heating is expected to continue
the rapid growth. In terms of energy management, a major advantage of electric water heaters
(EWHs) over fossil fuel-based options is that EWHs can be effectively integrated into the overall
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building Demand Side Management (DSM), which has been shown to provide benefits such as peak
load reduction (peak shaving), lower electricity costs, and integration of intermittent renewable
energy resources. These DSMs can also incorporate or include flexible pricing structures and on-
site generation with additional capabilities to predict conditions and store energy. Thermal energy
stored in water storage tanks can decouple the demand for electricity and thermal power. There
are already more than 50 million electric water heaters (EWHs) in the U.S., comprising about 50%
of all water heaters in the country, which can provide a potential storage capacity of approximately
50 GWh [3]. With the built-in energy storage capability, EWHs have the potential to provide
services such as maximizing self-consumption of on-site renewable electricity generation, peak load
reduction (peak shaving), lowering electricity costs under dynamic or flexible pricing structures,
and integrating intermittent renewable energy resources into the power systems. DHW provision
systems are commonly designed so that more than enough hot water is always available to avert
comfort violations and the corresponding penalties that may be incurred. Thus, these systems may
experience significant energy loss without an accurate prediction of DHW usage. Moreover, a reliable
prediction of the DHW consumption profile over a control horizon is of paramount importance to
obtaining the optimal performance. So far, most of the existing DSM studies concerning EWHs have
been carried out based on artificially generated profiles with extensive statistical information [4-6].
The three yearly DHW demand profiles described by Jordan et al. [7] have been commonly used
in these studies. Nevertheless, when it comes to different buildings in real-life settings, the demand
behavior may vary significantly from one building to another and individual building behaviors
may not necessarily converge to the desired distribution. Thus, a data-driven approach with data
gathered on-site would be more reliable for predictions and further optimal control based on the
predictions.

When it comes to predicting DHW consumption, different factors need to be taken into consider-
ation. Region, culture, household size, and personal preferences are important contributing factors
in the hot water usage profile of a household [8], affecting peaks during morning and evening, dura-
tion of use, and average consumption. As mentioned earlier, the average DHW usage was estimated
at about 64 liters per person per day (LPD) for a U.S. household [2], while it was reported to be
around 43 LPD and 33 LPD for Finish and Swedish households, respectively [9, 10]. Forecasting
DHW can be targeted toward different sizes of households personal information may be required
and data acquisition can be very privacy intrusive especially for individual users. The problem also
becomes more of a human behavioral prediction problem [11]. While predicting the DHW consump-
tion of a multi-family dwelling can be essentially treated as a time series forecasting problem [12].
The approaches that deal with single and multi-family usage can be very different and approaches
developed can not be applied to or unable to generate satisfying results for both problems in general.

Different approaches can be found in the literature for predicting DHW consumption including
an analytical bottom-up approach [8], a feature specified bottom-up approach [13], and a statistical
approach with Autoregressive-Moving-Average (ARMA) [14, 15]. With the development of machine
learning algorithms, data-driven techniques for forecasting DHW consumption are becoming more
and more popular. Artificial Neural Network (ANN) [16], Recurrent Neural Network (RNN) [17],
and Reinforcement Learning [18] among others have been implemented for DHW consumption
predictions and demonstrated promising performance. Gelanzanskas and Gamage [19] compared
various DHW usage forecasting models and concluded that seasonal decomposition of the time-series
is of the utmost importance for obtaining accurate predictions.

In an EWH system scheduling problem, the main sources of uncertainty are associated with
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hot water consumption prediction, ambient temperature, and cold water supply temperature over
the planning horizon. It is worth noting that all the reviewed prediction approaches have their
corresponding uncertainty levels, which need to be considered when formulating an optimization
problem. Hong et al. [20] formulated an optimization problem to obtain the optimal temperature
scheduling for an air-conditioning system which could be inspirational for other energy systems. As
there existed uncertainty in the price and temperature predictions, they utilized fuzzy parameters
for formulating the optimization problem. Thanks to the advances in robust optimization and opti-
mization under uncertainty, different theories and methodologies can be used to take uncertainties
into account in an optimization problem including probability theory [21], evidence theory, possi-
bility theory, Bayes theory, and imprecise probabilities [22]. The most appropriate methodology for
a given application should be selected considering data availability, uncertainty level, and problem
complexity. Even though statistical models [23] or machine learning techniques [24] have proven
their capabilities to model or quantify uncertainties, they have been rarely used water heating
systems to develop stochastic or robust formulations for predictive control problems.

DOMESTIC HOT WATER (DHW)
FORECASTING 7

WATER SENSING

Measurement }4—

A

Historical Data

Forecasting

Schedule }—b‘ Control Setting I

EWH Model l—

ELECTRIC WATER HEATER (EWH) OPTIMIZATION

OFF

Figure 1: System design of the Electric Water Heater Smart Scheduling and Control System which consists of the
Water Sensing that measures and stores data using Internet of Things (IoT) hardware and smart sensors, the DHW
Forecasting that generates forecasting of hot water usage with machine learning algorithms from historical data, and
the EWH Optimization that produces optimal schedules and controls for the EWH.

In an attempt to bridge the above-mentioned gap, this paper introduces a data-driven, predictive
control scheme for optimizing the performance of an EWH system with the uncertainties taken
into account. Unlike previous studies, real-life historical data has been used to formulate the
robust optimization problem. The designed system, illustrated in Figure 1, consists of three main
components named Water Sensing, DHW Forecasting, and EWH Optimization. The data obtained
from the water metering is used to generate a forecast of the next day’s DHW consumption profile.
Combined with an EWH model, Model Predictive Control (MPC) simulations are performed to
provide optimal control signals. Uncertainties in the DHW demand prediction are considered by
specifying upper and lower bounds to ensure a robust control that brings financial savings for
the consumer while maintaining thermal comfort. The performance of the system has also been
investigated when participating in a demand response (DR) program. With all these features,
the proposed system, referred to as Electric Water Heater Smart Scheduling and Control, has the
potential to be integrated into real-world energy management systems to achieve the benefits of
more intelligent control of electric water heating. While this paper focuses on the software and
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algorithm side of the whole designed system, the designed IoT smart water meter which has the
capability to measure water usage noninvasively is beyond the scope of this paper.

The rest of the paper is organized as follows. Section 2 outlines the methods and techniques
employed for the proposed system. Section 3 presents and discusses the results obtained from the
MPC simulations. Finally, Section 4 concludes the paper and provides recommendations for future
work.

2. Methodology

The optimization problem formulated serves to achieve two main functions. First, it enables
an optimized expected schedule for the next day EWH operation. It allows building operators and
users to visualize the following day’s operation and identify potential problems that might happen
during some of the critical hours. Second, it is constantly resolved during the day to adjust and
output the optimal control decisions. This allows the understanding of the current status of the
system and future decisions based on what happened. It also allows the EWH to respond to various
Demand Response programs or other emergency calls while still keeping the operation schedule
close to optimal by minimizing cost and maintaining user comfort.

2.1. Control Model and Variables

With data and controls recorded and implemented every 5 minutes, the 24 hours of the planning
horizon can be visualized in Figure 2. The system will solve for the optimized schedule of EWH
over the whole remaining planning horizon with the initial conditions that are updated at each time
step. Further, the nearest time step will take the action from the optimal schedule generated. The
states of the EWH are calculated with an efficient EWH model in combination with data-driven
predictions that will both be discussed in the following paragraphs.

00:00 00:05 00:10 00:15 00:20 00:25 23:50 23:55 00:00

Initial Conditions (States)

®
*—0 Pl anmning H or iz on
Control Block (Actions)

Figure 2: Planning horizon visualization with a day divided into 288 five minute intervals where flag represents the
initial conditions.

2.2. Electric Water Heater Model

For the purpose of this paper, a fully mixed single-node EWH model is chosen since it is
most computationally efficient and provides a reasonable confidence in making control decisions
for EWHs. A Single-Node EWH model still is precise when the EWH is turned on for heating while
precision drops when EWH is discharging water [25, 26]. Many existing works of control EWH sys-
tems using a Single-Node model [27, 28] showed promising results. Admittedly, DHW use in terms
of water flow might be affected by the differences in DHW temperature: a higher DHW setpoint
might lead to reduced flow and volume usage with more cold water mixed. A better way of quan-
tifying DHW use could be in terms of energy(enthalpy). Nevertheless, due to the limitation that
the dataset does not gather DHW temperature data, volume usage is used for the prediction and
modeling of EWH heat balances. The heat loss from the water mass to the ambient environment
(W) can be modeled as:

Qloss = A<1/R)(Th - Ta) (1)
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where A is the surface area of the water heater, R is the thermal resistance of the tank insulation,
T}, is the hot water temperature inside the tank, 7T, is the ambient temperature. In addition, the
heat loss due to the demand for hot water can be modeled as:

Qdemand = chp(Th - Tvm) * 1000 (2)

Where M, is the average hot water demand rate during the time interval, ¢, is the isobaric specific
heat capacity of water in ; and T}, is the supply domestic cold water temperature. Lastly, the heat
supplied from the EWH can be modeled as:

CQgen - PﬁS (3>

where P is the power consumption, 7 is the efficiency of the electricity-to-heat transformation, S
is the binary variable representing the on/off state of the water heater. The heat balance equation
then can be derived as follows:

dTy

MCP%

= _Qloss - Qdemand + Qgen (4)
where M, is the total mass of water stored in the water heater. An approximate solution can be
obtained by taking the discrete average behavior over the 5 minute time interval of each control
block to formulate a mixed integer linear programming problem. The governing equation for heat
balance thus becomes:

(Th,z’—H - Th,z‘) * M CP/A t = —A(l/R)(Th’Z — Ta)—

. )
Mw,icp(Th,i — T;n) *x 1000 + P??SZ ( )

The parameters used specifically in solving the governing equation are shown in Table 1. The
specific parameters of the EWH can be set by referring to manufacturer documents or determining
experimentally through data collection. In real-world settings, a data driven EWH would be desired
since it would precisely fit each EWH in different conditions. The EWH used in this paper is a 950
liter PVI Durawatt [29] commercial scale electric water heater. It is an EWH widely used in many
multi-unit apartments with shared DHW supply. Electricity prices C,, and Cyg are referenced from
ConEd [30]. Further, the upper and lower limits of the DHW temperatures are set to avoid extreme
high temperatures that could shorten the lifespan of components, preventing Legionnaires’ disease,
and complying local laws [31, 32].

2.3. Objectives and Settings

The objectives for many energy systems can vary from minimizing energy consumption, peak
demand, or cost to maximizing user comfort or stability or a mix of both. For a EWH smart
scheduling and control system addressed in this paper shown in Figure 1, it is important to have
capabilities to adjust accordingly based on different types DSM. To show the capability of the
system, two examples from Price-Based Program (PBP) and Incentive-Based Program (IBP) are
chosen. From PBP, a Time of Use (ToU) tariff is chosen to be the objective for the problem to
minimize the cost. Depending on the specific program chosen, ToU tariffs and demand charge may
be considered. Thus, for a system modeled in this problem which only switches on and off with
a constant power input, it is more reasonable to focus on the kWh cost. The chosen program for
this paper is based on Consolidated Edison (ConEd) [30] PSC10-Class No.1 Rate II tariff shown in
Figure 3.
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Table 1: Parameters chosen in the optimization problem

Symbol Meaning Value
A surface area,m?’ 6
R thermal resistance, (m*K)/W 1
Cp isobaric specific heat of water, k.J/(kgK) | 4.18
P nominal power of EWH, W 50000
n efficiency of the EWH 0.95
M mass of water in EWH, kg 946
Tin input cold water temp, C' 17
T ambient temperature, C' 17

Con on peak price (summer months), $/kWh | 0.345
Con on peak price (other months), $/kWh | 0.125
Comr off peak price, $/kWh 0.0132
Tup upper limit of DHW temp, C 72
Tiow lower limit of DHW temp, C' 49
Tini initial temperature of DHW, C' 52
At control time interval, s 300

Regarding IBP, these programs normally require a coordinated reduction in energy use for all
energy systems at demand side. While EWH alone plays a part of the overall electricity consumption
for buildings, this smart scheduling and control system can be optimized and controlled to contribute
to the overall reduction for the whole building. A high penalty can be added to the objective function
during the DR period to motivate the EWH to be planned off and use its storage capacity to shift
its load in advance. Once the DR call is received, normally with a minimal notice period of 1 to
2 hours, the MPC can take in that information and modify the objective for the following EWH
operation schedule.

The target multi-unit building chosen has about 130 residents in 60 units. The building has
two PVI Durawatt electric water heaters with specifications described in Table 1. One EWH is
the main one running with the other one as a backup. The EWH is also located in the basement
with a stable room temperature. To generate the DHW use profile, we aggregate the data from 77
individual EWHs given in [33]. This aggregated profile gives an example DHW usage behavior for
a large population of residents that can be used to mimic a multi-family apartment building

2.4. Hot Water Demand Forecasting

The dataset used for this paper is reported in Refs. [33, 34]. The data is gathered from 77 electric
water heaters over 120 days in South Africa. The days recorded are divided into four seasons with
30 days for each season in the months of February, March, July, and September. Since South Africa
is in the Southern Hemisphere, the coolest months are July and August while the warmest months
are around January and February. The average temperature does not show a large variation over a
typical year with lows around 45°F to highs around 61°F. Data include both water use, ambient
temperature, and power for each electric water heater at a frequency of 1 minute. This dataset
is chosen because it gathers data for a large number of EWHs over an extended period of time,
providing opportunities to compare both individual and aggregate behaviors. The dataset does
provide multiple measurements for potential feature correlation analysis to understand how other
factors might affect DHW usage, but the limited features provided motivate the forecasting to be
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Figure 3: Consolidated Edison (ConEd) SC10-Class NO.1 Rate IT Time of Use (ToU) tariff which is used to quantify
electricity cost in this study.

a pure time series forecasting.

PROPHET (23] is employed for this DWH usage prediction problem. PROPHET is an open
source software developed by Facebook that deals with common time series problems. Similar to
ideas discussed by Gelanzanskas [19], PROPHET treats time series forecasting as a curve-fitting
problem with the summation of multiple levels of curves:

y(t) = 9(t) + s(t) + h(t) + & (6)

Where the overall trend ¢(t) is combined with seasonalities s(t) from yearly, weekly, and daily levels
in addition to the holiday effects h(t) as well as noises ¢; extra conditional seasonality and regressor
specified. Specifically, the model trend can be either a saturation growth model:

_ C(t)
I = T k= m) 9
or a piecewise linear model:
g(t) = (k +a(t)"0)t + (m + a(t)") (8)

depending on the training data with C(¢) being the time varying carrying capacity, k being the
growth rate, and m being an offset parameter. To determine the change points in the trend, the
rate of change is estimated with Maximum Likelihood Estimation (MLE) with a prior defined as a
Laplace distribution. With a default value of 0.05, increasing the diversity parameter of the Laplace
distribution can make the trend more flexible. Seasonalities are fitted using Fourier Series for the
period effects with a stack of sine curves and a number of parameters that need to be estimated
depending on the order of Fourier Series chosen:

al 2mnt 2mnt
s(t) = Z a, cos( Iz )+ by sin(T) 9)
n=1
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Where n is the order of Fourier Series chosen and a, and b, are the parameters that need to be
estimated. In this case, P = 365.25 is the interval length defined in Fourier Series for the yearly
trend, and P = 7 is the interval length for the weekly trend. Holiday effects h(t) are predefined
with a list of U.S. holidays but can also be additionally specified. PROPHET also captures and
predicts the uncertainty in both the overall trend, seasonalities, and additional observation noises.
For uncertainty in the overall trend, it is assumed that the future change would replicate a similar
rate as previously detected. By default, PROPHET samples 1000 points and sets an uncertainty
interval of 80%. While for the uncertainty in seasonality, a generative model with full Bayesian
Sampling using Monte Carlo Markov Chain technique can be defined to generate the uncertainty
interval. This technique can be suitable for this problem to predict the aggregate behavior of 77
EWHs to mimic a multi-family dwelling.

2.5. Optimization and Robust MPC' Formulation

First to generate the optimal schedule through the planning horizon, an integer program assum-
ing deterministic prediction can be formulated as below:

N
min ZC’i x P xS
i=1

¢ O Con if during on-peak hours
S. P =
Cog if during off-peak hours

(10)
71low <= Th,i <= Tup
(Thﬂ' — Th,z‘—l) * M * Cp/A t= —A(l/R)(Thﬂ'_l — Ta)—

Mw,icp(Th,ifl — T’m) * 1000 + PnSz
Th,O = Tini

Where the objective is to minimize electricity cost based on sample ToU tariff while making sure
the temperature of the hot water is maintained between the limits and the heat balance of the hot
water heater is satisfied. This basic formulation assumes a deterministic expected DHW demand
in the future. Solving this optimization allows the visualization and understanding of the expected
EWH behavior and electricity cost for the upcoming day.

To account for uncertainties from DHW forecasting, at each future time step, a range of the
probable DHW consumption rates is calculated by PROPHET. The effects of a higher than predicted
DHW consumption would lead to a greater value of heat loss, causing a lower than expected
value of the DHW temperature inside the tank. On the other hand, a lower than expected DHW
consumption would cause a higher than expected DHW temperature. Thus, when producing control
outputs during the MPC simulations, it is important to make sure that the system is robust through
these possible variations of future DHW consumption values at the upcoming time step. Based on
this relationship, the uncertain DHW consumption can be modelled by modifying the temperature
constraints in the optimization as follows,
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N
ZC’i*P*SZ-
i=1

st O — {C’OH if during on-peak hours

Cog if during off-peak hours
Thi — (Mygupi1 — M) % ¢p % (Thio1 — Tin) % A1) /(M % ¢p) >= Tiow (11)
Thi + (Myir — Myrowi1)) * ¢ * (Thios — Tin) % A1) /(M % ¢,) <= Ty
(Thi — Thi1) * M * ¢y /At = —A(1/R)(Th,; — 1) —
My icp(Thio1 — Tin) * 1000 4+ PS;
Tho = Tini

)

As time propagates during the simulation, the initial temperature T},; is updated from the EWH
model while in real-life application, a temperature sensor is assumed to provide reliable feedback
on the updated temperature.

Distribution Load Relief Program (DLRP) is an example of an emergence demand response pro-
gram by ConEd. The program has a 2 hour notification period. An example of this program which
notifies at 5pm for demand reduction during 7pm to 8pm is visualized in Figure 4. The objective
function for the optimization is modified to add a penalty, acting like the potential incentive, for
turning on the EWH during the DR period. Doing so would demotivate the EWH from turning
on during this period of time and thus reduces both the average power and overall electricity con-
sumption without jeopardizing thermal comfort. As a result, the robust optimization formulation
is modified as follows,

N
min Zci*P*SH- Z Pe; % P % S;
=1 JEDR period
st O = {Con if during on-peak hours
Cog if during off-peak hours
Thi — (Myupio1 — My i) % ¢y % (Thio1 — Tin) * A1) /(M % ) >= Tiow (12)

Ti + (Mot — Myiowio1)) # ¢ # (Thgot — Tin) % A ) /(M % ¢) <= Top
(Th; — Thi1) * M xcp /At = —A(1/R)(Thi—1 — Ta)—

My icp(Thio1 — Tin) % 1000 + PnsS;

Tho = Tin

In addition to the capability to optimize control schedules for the ToU tariff structure and

10
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respond to DR programs, the system can also incorporate other price structures and energy sources
such as critical peak pricing and onsite solar generation. For example, dynamic pricing requires the
predictions of the electricity prices that can be accomplished with the similar methodology using
PROPHET and adding another uncertainty variable into the robust MPC formulations.

2.6. Performance Evaluation

To evaluate the performance of the control strategies, we quantify and compare two of the
most important factors for a demand-side user: electricity cost and user comfort. The cost can
be calculated by the actual schedule of EWH through the simulations and compared to a baseline
situations. In this paper, the baseline is constructed based on a thermostatic control, namely a
simple and widely used rule-based temperature control method which maintains the temperature
within the upper and lower limits. Evaluating the performance of the system with regard to thermal
comfort needs further analysis. In some states in the US such as New York, it is required for
residential buildings to provide DHW with a minimum temperature of 120°F always. Building
management companies could be subject to significant fines and penalties starting from $250 per
day [32]. Nevertheless, the rules normally get relaxed as a minor deficiency in temperature for a
short period of time is typically tolerable. Thus, to evaluate the performance, a 95% fulfillment
limit is set. If DHW temperature is maintained above 120°F for over 95% of the time during the
day, the following minor penalty would be applied based on the average temperature violation and
the duration of violation with unit penalties of Pe; and Pes:

Pevio = P61 *m—i-Pez*tvio (13)

where T, is the temperature of violation and t, is the duration of violation. If the fulfillment
time drops below 95%, it would be considered a major violation which is not tolerable and would
incur the large penalties.

For DR program in New York State specifically, there exists a large variety of criteria designed
and enforced by wholesale power system operators and energy suppliers like New York Independent
System Operator (NYISO) and ConEd. To calculate the demand reduction for a DR program, the
normal procedure is to calculate the Customer Base Load based on recorded usage from previous
days with adjustments [35, 36]. Thus, to evaluate how well the EWH responds to the overall building
demand reduction call, the average base load is calculated by generating the anticipated schedules
over past days and then compared to the actual load during the day with a DR call.

3. Results and Discussion

3.1. Domestic Hot Water Forecasting

3.1.1. Dataset Analysis and Visualization

Considering DHW usage over 30 days for one EWH from the dataset, a recognizable pattern
can be observed for individual DHW usage with a larger peak with shorter duration in the morning
and a lower peak with longer duration in the evening. While the duration of DHW use is similar
in different seasons, the average daily DHW use takes a higher value in winter and a lower value in
summer. Specifically, winter has the highest average daily DHW use of 23.8 L, following by spring
of 20.9 L, fall of 17.2 L, and summer of 16.8 L. This proves seasonal variation of household’s DHW
use with 41.7 % increase from warmer months to cooler months.
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Figure 5: Aggregated pattern of 77 EWHs for three example days.

A correlation analysis of the dataset shows that DHW use is relatively independent of outdoor
air temperature, with a correlation coefficient of 0.004. This is mainly because the dataset is pro-
vided with one month for each season preventing year-long training data to show the continuous
seasonal variations. With one month of data used for each season, in addition to the well-maintained
indoor temperature, the correlation is thus low and neglectable on a sub-hourly basis. The seasonal
variation can be better understood when comparing the daily usage versus the daily average tem-
perature. These two variables show a moderate correlation of 0.23. Further, the average seasonal
usage numbers are much more convincing on proving the seasonal variations discussed in the fol-
lowing paragraph. Thus, ambient temperature is not included in the DHW forecasting model which
aims to predict sub-hourly usage of DHW, leading to a pure time-series treatment of the DHW
forecasting with this dataset.

In order to use the data to mimic a multi-dwelling apartment complex, the data from the 77
individual EWHs is aggregated as shown in Figure 5 for 3 typical days in the summer season. The
aggregated data also shows a more recognizable daily pattern for multi-family dwellings [37]. The
aggregated data shows the daily average usages for different seasons to be 7670.9 L for summer,
7821.6 L for fall, 10850.1 L for winter, and 9522.97 L for spring, leading to a daily average use of
8966.4 L over the year. Comparing to the 130 resident target building in the U.S. with 64 liters
per day per person usage, the dataset can well represent the usage in the target building with a
discrepancy less than 10%. Thus, the aggregated profile will be used for training and testing the
model.

3.1.2. Forecast Generations

The forecasts were generated using PROPHET and are shown in Figure 6. The black dots
represent the training data while the grey line represents the fitted curve and the predicted values
of the following day and the grey shades represent the uncertainty range. Ideally in real-world
settings, over a year of data would be desired to capture more patterns. The package generates
multiple plots for visualization in Figure 7. It shows how PROPHET’s additive model works by
adding up (a) the overall model trend defined as a piecewise linear model, (b) the daily and (c)
the weekly seasonalities fitted with Fourier Series curves, and (d) the extra morning and evening
regressors. When predicting demand at one timestamp into the future, the trend is assumed to be
maintained with possible changepoints sampled randomly. In addition to the time of day value,
day of week, and morning and evening regressor values summed. From Figure 7, the training data
shows the most obvious pattern for the daily seasonality with the morning and evening peaks. If
more data were gathered in the future, the seasonal behavior change of DHW demand and better
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Figure 6: PROPHET prediction visualization.

weekly seasonalities can be expected. Further, with the incorporation of the morning and evening
regressors, the "outlier” points that are filtered out by the daily seasonality curve got preserved to
provide better predictions.

The forecasting result of a test summer day is shown in Figure 8 together with the actual DHW
profile, and the upper and lower limits. It can be observed that the overall trend of the DHW profile
is well captured and the fluctuation of the actual DHW consumption can be well covered within
the upper and lower limits of the prediction while a few peaks are not fully covered. Note that, the
seasonality profiles based on Fourier Series tend to smooth out the high morning and evening peaks
and consider them as outliers. To better predict and incorporate these values into the possible range,
additional regressors are added during the morning and evening peak times. The addition of the
extra regressor significantly helps with producing an uncertainty interval that covers the variations
in the actual values. Changing the uncertainty interval does impact the width of the upper and
lower limits due to the sampling method that PROPHET uses. A proper uncertainty interval should
maintain the robustness of the system while not affecting energy and cost savings. These results
provide a good foundation for the following optimization of the EWH control schedules and model
predictive control simulations. PROPHET’s Python API also makes integration seamlessly with
further data manipulation as well as optimization.

3.2. FElectric Water Heater Optimal MPC Simulation

Optimizing the schedule for the EWH with a Mixed-Integer Programming formulation is a NP-
Complete problem that requires extensive computing resources and time to get an optimal solution.
A one day ahead optimal schedule can be generated by solving the optimization problem once.
Furthermore, by solving the optimization repeatedly over the receding horizon, the optimal controls
can be generated. Though global optimum is not guaranteed by the solution presented since the
optimality gap does not necessarily converge to zero, only the first control signal is applied to the
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Figure 9: Optimal schedule of the EWH state and DHW temperature for one summer test day.

system. The continuously running MPC will repeatedly take in new information about the latest
state of the system and generate a new optimal schedule for the remaining period of time.

3.2.1. ToU (PBP) simulation and Performance

Using the predictions generated, Figure 9 shows the optimized schedule with the predicted
hot water demand as a single deterministic value at each time step. The optimized schedule is
minimizing the electricity cost based on the ToU tariff structure chosen with a higher electricity price
from 8am to 10pm. The top subplot shows the on/off state of the EWH while the bottom subplot
shows the anticipated DHW temperature inside the EWH. Repeating the process for optimizing a
winter day, the expected electricity costs are $68.06 and $38.76 respectively.

Observing the results from the optimal day ahead schedules, a period of preheating the water
before 8am can be seen. The water temperature is raised to around 60°C' (140°F') which is much
higher than the desired DHW temperature normally set at 49°C' (120°F’). In this case, because the
objective is set to minimize electricity cost under a ToU tariff, the behavior of preheating happens
right before when electricity price increases drastically. This allows heat energy to be generated
at a lower cost and be stored for future demand. Afterward, during the on-peak period, the main
behavior of the EWH is to remain close to the lower bound of water temperature of 49°C' (120°F)
in order to minimize the electricity cost. The expected electricity cost can be calculated and shown
at the beginning of the day as a reference. Solving this optimization problem also outputs the next
control action of the EWH as one step of the MPC simulation. By solving the optimization problem
repeatedly as new measurements are feedback to the system, the system is able to determine the
following control actions.

Conventional thermostatic control, an example of heuristic or rule-based control, tries to main-
tain a constant temperature set-point of DHW with a small range of variation. The system is
controlled in response to demand: turn on the EWH if the lower limit temperature is reached, turn
off EWH if the upper limit temperature is reached. One of the easiest Demand Side Management
for households is actually to lower the DHW temperature set point. While Lowering DHW temper-
ature can save a significant amount of energy, risk of being unable to meet the demand increases
which could affect user comfort and cause high penalties.

Shown in Figure 10a are the expected behaviors of the EWH with DHW temperature set at
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O - N T B I LRI L LT L
OFF i i ; ; ; B EEEL R T ; ; ; ; ; ; ; e, — ; ; ;
lﬁﬂﬂl23455TB9101112131415151?18192021222324
o bttty el Lower Comfort Limit ===============ss==ss======
o 150 1 —-—- Upper Comfort Limit
fo -
2 140 - On Peak Time
o
130 -
G
2120 A
=
T 110 1
(=]
100

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 189 20 21 22 23 24
Hour

(b) Simulation for MPC of EWH state and DHW temperature over one summer test day.

Figure 10: Simulation for different control methods for EWH over one summer test day where (a) simulates the
DHW temperature under rule-based thermostatic control and (b) simulates the EWH state and DHW temperature
under MPC.

around 66°C' (150°F), 57°C' (135°F), and 52°C' (125°F') on the summer test day. Respectively,
setting DHW at lower temperatures generates 17.0% and 29.1% savings in electricity cost compared
to to a fixed set-point above 66°C' (150°F). Note that these control strategies are purely responsive
to the previous time step’s demand and have a high probability to run out of hot water if the
EWH is not properly sized or a high demand is expected in the future. Thus, normally to avoid
the violations, temperatures are set to a higher value. In both of the cases where DHW set points
are 66°C' (150°F) and 57°C (135°F), no violation occurs. While setting the temperature at 52°C'
(125°F), 15 minutes of average violation of 2°F occurred, dropping the fulfillment range to 99.0%.
Figure 10b shows how could an EWH behave with prediction and MPC. Similar to the previously
shown day-ahead schedule, the MPC simulation shows a preheating before 8am to utilize the lower
electricity charges. In addition, because MPC constantly takes in updated temperature values while
re-optimizing, the violation time is reduced to only 5 minute with an average of 1°C' (1.8°F). Listed
in Table 2, MPC method generates 33.2% savings over the base cost with conventional control by
maintaining water at 66°C' (150°F).

Repeating the process for the winter test day, the results are plotted in Figure 11a and the
electricity costs simulated are shown in Table 3. Compared to the base case of conventional control,
the reductions in electricity cost are 16.3%, 28.2% and 28.0% respectively. Note that due to the
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Table 2: Electricity costs and comfort fulfillment comparison for one summer day simulation with different control

methods.
Electricity Cost | Reduction | Fulfillment
Fixed @66°C (150°F) $85.23 100%
Fixed @57°C (135°F) $70.71 17.0% 100%
Fixed @52°C (125°F) $60.44 20.1% 99.0%
MPC $59.00 33.2% 99.7%
Table 3: Electricity costs and comfort fulfillment comparison for one winter day simulation with different control
methods.
Electricity Cost | Reduction | Fulfillment
Fixed @66°C (150°F) $57.38 100%
Fixed @57°C (135°F) $48.02 16.3% 99.0%
Fixed @52°C' (125OF) $41.22 28.2% 94.4%
MPC $41.35 28.0% 98.3%

higher DHW demand, the high morning peak causes the temperature to drop significantly below
the set-points for conventional control methods if the temperature settings are too low. In this
test example, if DHW temperature is set at around 49°C' (120°F'), there would be 80 minutes of
violation of average 2°C' (4°F') which makes the fulfillment rate drop below the 95% limit. Thus,
it is expected to cause significant penalties and this control strategy is not desired. If MPC is used
as the control method shown in Figure 11b, the violation time is significantly reduced due to the
presence of DHW demand prediction while the electricity cost is still reduced by 28% compared to
the baseline case. The result shows the capability of MPC to provide energy cost reduction and
maintain user comfort when conventional controls are unable to achieve both objectives.

Performing an extended simulation over six test days, the results are shown in Figure 12. The
baseline conventional controls with fixed DHW set-points are also plotted. The results for cost
reduction and user comfort fulfillment are shown in Table 4. On average, 29.7% reduction in
electricity cost and 98.9% user comfort fulfillment can be achieved. Consistently, MPC is reliable
and efficient to reduce electricity cost and maintain user comfort.

Table 4: Electricity costs reduction and comfort fulfillment over six days of MPC simulation compared with rule-based
thermostatic control simulation.

Cost Reduction | Fulfillment Improvement | Fulfillment

Summer Day1l 29.7% 1.8% 98.6%
Summer Day?2 30.0% 2.9% 99.7%
Summer Day3 33.2% 0.7% 99.7%
Winter Day1l 28.3% 2.5% 99.0%
Winter Day2 29.0% 2.2% 98.0%
Winter Day3 28.0% 3.9% 98.3%

Average 29.7% 2.3% 98.9%
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(a) Simulation for rule-based thermostatic control of EWH over one winter test day at different set-point temperature.
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Figure 11: Simulation for different control methods for EWH over one winter test day where (a) simulates the DHW
temperature under rule-based thermostatic control with a set point temperature at 66°C' (150°F) and (b) simulates
the EWH state and DHW temperature under MPC.
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Figure 12: Left: Simulation of EWH state and DHW temperature over three summer test day using thermostatic con-
control and MPC.
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Figure 13: Adjusted schedule of EWH state and DHW temperature for demand response program notifying at 5pm
and happening during 7pm to 8pm.
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Figure 14: Comparison between the summer baseline load profile and the actual optimally adjusted load profile with
demand reduction between 7pm to 8pm.

3.2.2. Demand Response(IBP) Simulation and Performance

Simulating a DR call made at 6pm for a demand reduction from 7pm to 8pm, the schedule will
be instantly adjusted accordingly and the result is shown in Figure 13. With the modified objective,
the EWH is planned to be off during this one hour period. Even though raising DHW temperature
during the on-peak period may cause excessive heat loss and higher tariff, the EWH turns on to
heat the water before 7pm to generate enough storage for the use during the DR period.

To quantify the reduction in both average power and gross consumption, a baseline hourly load
profile needs to be constructed first. Shown in Figure 14, the consumption based on the optimized
schedules of 20 previous days in the summer are calculated and divided into hourly profile and the
actual load profile for the day with a DR call during 7pm to 8pm. A reduction of 19.66 kWh of
electricity can be achieved during the DR period. Thus, for the whole building system, a reduction
in average power during the DR period contributed by the EWH system can be expected as well.

4. Conclusion

This paper presents a part of the closed loop electric water heater (EWH) smart scheduling and
control system with forecast and robust model predictive control algorithms. The objective is to
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create an implementable solution of forecasting usage and optimizing controls as a part of a robust
and reliable smart building energy management and control system in real-world settings.

To achieve these, an EWH dataset containing data for over 120 days of DHW usage from
77 EWHs gathered at one minute frequency is chosen to demonstrate the methods and results.
PROPHET [23] is used for DHW forecasting with a quantified uncertainty range. Results both
capture the overall trend and cover the actual usage profile with the uncertainty interval well. A
mixed-integer linear programming problem is formulated using a fully mixed single node EWH
model to solve for the optimal schedule over the planning horizon and the following control actions
with the flexibility to alter between different objectives based on energy programs enrolled. Simu-
lation shows up to about 30% electricity cost reductions over 6 test days with an average comfort
fulfillment rate of about 99%. Simulation also shows the capability to shift load profile for reducing
average power and gross consumption on short notice. On an example summer day with a demand
response (DR) call, testing with a constructed baseline load profile, a reduction of about 20 kWh
of electricity is observed during the demand response period.

DHW demand data, while currently very limited, can go a long way in improving EWH control
efficiency. By using real data instead of artificially generated demand profiles, our data-driven
approach can capture more realistic operating conditions and can be tuned to each building’s specific
DHW demand behavior. However, measuring volumetric flow, as in the presented dataset, may not
be completely sufficient for determining DHW demand in all cases. While in most cases the discharge
temperature remains relatively constant, large DHW draws can sometimes lower this temperature,
resulting in a higher volume draw to maintain the same enthalpy draw. Thus, data containing
additional measurements that determine enthalpy demand may provide a more complete model
of DHW demand. Moreover, implementation can require additional ongoing research topics such
as hardware and sensor installation, performing state estimation, and reducing the computational
burden.

There are also several potential extensions of this work, including the incorporation of onsite
generations from photovoltaic systems, day-ahead and real-time electricity pricing, and other more
complex and flexible systems and variations[38]. While the general methodology that accounts for
uncertainty remains similar to that proposed in this paper, additional modifications to the objective
function and system model could expand the potential control objectives. Finally, while this system
is designed for aggregated multi-family DHW control, more complex prediction algorithms that can
achieve the significantly more difficult task of predicting single-family DHW demand could allow
this methodology to provide efficient single-family DHW control as well.
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