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Abstract

Domestic hot water (DHW) heating accounts for up to 30% of average household energy use.
Compared to gas fired water heaters, electric water heaters (EWH) can be powered by renewable
generation resources, thus making it a potential renewable heating option. Furthermore, with the
growing need for energy storage, incorporation of renewable resources, and initiatives worldwide,
the electrification of DHW heating is expected to continue the rapid growth. However, many
commercial EWH products with monitoring and alerting functionalities lack the intelligence to
optimize and perform predictive control with data; on the other hand, research studies with refined
models and simulations come short in incorporating real-time data and providing robust optimal
controls under uncertainties in real-world settings. This paper presents a EWH Smart Scheduling
and Control System using data-driven disturbance forecasts in a robust Model Predictive Control
(MPC) to accomplish various demand side management objectives. Testing with a real-world EWH
dataset and a two-state EWH model, prediction uncertainty is quantified an included in robust
MPC simulations are conducted on a central EWH supplying DHW for a multi-unit apartment
building. Results show that the proposed system is capable of anticipating DHW demand with an
uncertainty interval covering up to 97% of the actual demand during the test days and reducing
electricity cost up to 33.2% as well as maintaining a desired DHW temperature without affecting
user comfort. Further, the flexibility of the system to alter load profiles under different Demand
Response (DR) programs are demonstrated. Reductions in both power and gross consumption can
be accomplished. The proposed system can create an implementable solution of forecasting DHW
usage and optimizing controls as a part of a robust and reliable building energy management and
control system in real-world settings.

1

Nomenclature2

∆t Control time interval s3

Ṁw Hot water demand m3/s4

Q̇demand Heat loss due to demand of hot water W5

Q̇gen Heat generation from power input W6

Q̇loss Heat loss from water to ambient environment W7

η Rated efficiency of water heater8
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A Surface area of water heater m2
9

Coff Off peak electricity price $/kWh10

Con On peak electricity price $/kWh11

cp Isobaric specific heat of water kJ/(kgK)12

P Rated power consumption of water heater W13

Pe Penalty during Demand Response period $/W14

Pe1 Unit penalty for violation in magnitude of temperature $/◦C15

Pe2 Unit penalty for violation in duration of time $/s16

Pevio Comfort violation penalty $17

R Thermal resistance of the water tank (m2K)/W18

Si State of water heater, binaryon/off)19

Ta Ambient temperature ◦C20

Th,i Hot water temperature at ith time step ◦C21

Tini Initial hot water temperature ◦C22

Tin Supply domestic cold water temperature ◦C23

Tlow Lower limit of hot water temperature ◦C24

Tup Upper limit of hot water temperature ◦C25

Tvio Temperature magnitude violation ◦C26

tvio Time duration of violation s27

1. Introduction28

According to the 2015 Resident Energy Consumption Survey (RECS) [1], Domestic Hot Water29

(DHW) provision consumes about 17.9 GJ of primary energy in the U.S., making it the second30

largest end-use category in home energy use after space heating. The 2015 RECS also estimated31

that around 16% of the average U.S. household’s energy expenditure is for water heating. Apart32

from energy consumption, DHW usage accounts for a sizable part of total water usage in residential33

and commercial buildings. For example, an average person in North America uses around 64 liters34

of hot water per day with typically higher usage during winters and lower usage during summers35

[2].36

Ranked by fuel types, natural gas, electricity (either through resistance heaters or heat pumps),37

propane, and fuel oil are the main sources of energy for providing DHW [1]. With various initiatives38

worldwide to decarbonize energy systems, the electrification of DHW heating is expected to continue39

the rapid growth. In terms of energy management, a major advantage of electric water heaters40

(EWHs) over fossil fuel-based options is that EWHs can be effectively integrated into the overall41
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building Demand Side Management (DSM), which has been shown to provide benefits such as peak42

load reduction (peak shaving), lower electricity costs, and integration of intermittent renewable43

energy resources. These DSMs can also incorporate or include flexible pricing structures and on-44

site generation with additional capabilities to predict conditions and store energy. Thermal energy45

stored in water storage tanks can decouple the demand for electricity and thermal power. There46

are already more than 50 million electric water heaters (EWHs) in the U.S., comprising about 50%47

of all water heaters in the country, which can provide a potential storage capacity of approximately48

50 GWh [3]. With the built-in energy storage capability, EWHs have the potential to provide49

services such as maximizing self-consumption of on-site renewable electricity generation, peak load50

reduction (peak shaving), lowering electricity costs under dynamic or flexible pricing structures,51

and integrating intermittent renewable energy resources into the power systems. DHW provision52

systems are commonly designed so that more than enough hot water is always available to avert53

comfort violations and the corresponding penalties that may be incurred. Thus, these systems may54

experience significant energy loss without an accurate prediction of DHW usage. Moreover, a reliable55

prediction of the DHW consumption profile over a control horizon is of paramount importance to56

obtaining the optimal performance. So far, most of the existing DSM studies concerning EWHs have57

been carried out based on artificially generated profiles with extensive statistical information [4–6].58

The three yearly DHW demand profiles described by Jordan et al. [7] have been commonly used59

in these studies. Nevertheless, when it comes to different buildings in real-life settings, the demand60

behavior may vary significantly from one building to another and individual building behaviors61

may not necessarily converge to the desired distribution. Thus, a data-driven approach with data62

gathered on-site would be more reliable for predictions and further optimal control based on the63

predictions.64

When it comes to predicting DHW consumption, different factors need to be taken into consider-65

ation. Region, culture, household size, and personal preferences are important contributing factors66

in the hot water usage profile of a household [8], affecting peaks during morning and evening, dura-67

tion of use, and average consumption. As mentioned earlier, the average DHW usage was estimated68

at about 64 liters per person per day (LPD) for a U.S. household [2], while it was reported to be69

around 43 LPD and 33 LPD for Finish and Swedish households, respectively [9, 10]. Forecasting70

DHW can be targeted toward different sizes of households personal information may be required71

and data acquisition can be very privacy intrusive especially for individual users. The problem also72

becomes more of a human behavioral prediction problem [11]. While predicting the DHW consump-73

tion of a multi-family dwelling can be essentially treated as a time series forecasting problem [12].74

The approaches that deal with single and multi-family usage can be very different and approaches75

developed can not be applied to or unable to generate satisfying results for both problems in general.76

Different approaches can be found in the literature for predicting DHW consumption including77

an analytical bottom-up approach [8], a feature specified bottom-up approach [13], and a statistical78

approach with Autoregressive–Moving-Average (ARMA) [14, 15]. With the development of machine79

learning algorithms, data-driven techniques for forecasting DHW consumption are becoming more80

and more popular. Artificial Neural Network (ANN) [16], Recurrent Neural Network (RNN) [17],81

and Reinforcement Learning [18] among others have been implemented for DHW consumption82

predictions and demonstrated promising performance. Gelanzanskas and Gamage [19] compared83

various DHW usage forecasting models and concluded that seasonal decomposition of the time-series84

is of the utmost importance for obtaining accurate predictions.85

In an EWH system scheduling problem, the main sources of uncertainty are associated with86
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hot water consumption prediction, ambient temperature, and cold water supply temperature over87

the planning horizon. It is worth noting that all the reviewed prediction approaches have their88

corresponding uncertainty levels, which need to be considered when formulating an optimization89

problem. Hong et al. [20] formulated an optimization problem to obtain the optimal temperature90

scheduling for an air-conditioning system which could be inspirational for other energy systems. As91

there existed uncertainty in the price and temperature predictions, they utilized fuzzy parameters92

for formulating the optimization problem. Thanks to the advances in robust optimization and opti-93

mization under uncertainty, different theories and methodologies can be used to take uncertainties94

into account in an optimization problem including probability theory [21], evidence theory, possi-95

bility theory, Bayes theory, and imprecise probabilities [22]. The most appropriate methodology for96

a given application should be selected considering data availability, uncertainty level, and problem97

complexity. Even though statistical models [23] or machine learning techniques [24] have proven98

their capabilities to model or quantify uncertainties, they have been rarely used water heating99

systems to develop stochastic or robust formulations for predictive control problems.100

Figure 1: System design of the Electric Water Heater Smart Scheduling and Control System which consists of the
Water Sensing that measures and stores data using Internet of Things (IoT) hardware and smart sensors, the DHW
Forecasting that generates forecasting of hot water usage with machine learning algorithms from historical data, and
the EWH Optimization that produces optimal schedules and controls for the EWH.

In an attempt to bridge the above-mentioned gap, this paper introduces a data-driven, predictive101

control scheme for optimizing the performance of an EWH system with the uncertainties taken102

into account. Unlike previous studies, real-life historical data has been used to formulate the103

robust optimization problem. The designed system, illustrated in Figure 1, consists of three main104

components named Water Sensing, DHW Forecasting, and EWH Optimization. The data obtained105

from the water metering is used to generate a forecast of the next day’s DHW consumption profile.106

Combined with an EWH model, Model Predictive Control (MPC) simulations are performed to107

provide optimal control signals. Uncertainties in the DHW demand prediction are considered by108

specifying upper and lower bounds to ensure a robust control that brings financial savings for109

the consumer while maintaining thermal comfort. The performance of the system has also been110

investigated when participating in a demand response (DR) program. With all these features,111

the proposed system, referred to as Electric Water Heater Smart Scheduling and Control, has the112

potential to be integrated into real-world energy management systems to achieve the benefits of113

more intelligent control of electric water heating. While this paper focuses on the software and114
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algorithm side of the whole designed system, the designed IoT smart water meter which has the115

capability to measure water usage noninvasively is beyond the scope of this paper.116

The rest of the paper is organized as follows. Section 2 outlines the methods and techniques117

employed for the proposed system. Section 3 presents and discusses the results obtained from the118

MPC simulations. Finally, Section 4 concludes the paper and provides recommendations for future119

work.120

2. Methodology121

The optimization problem formulated serves to achieve two main functions. First, it enables122

an optimized expected schedule for the next day EWH operation. It allows building operators and123

users to visualize the following day’s operation and identify potential problems that might happen124

during some of the critical hours. Second, it is constantly resolved during the day to adjust and125

output the optimal control decisions. This allows the understanding of the current status of the126

system and future decisions based on what happened. It also allows the EWH to respond to various127

Demand Response programs or other emergency calls while still keeping the operation schedule128

close to optimal by minimizing cost and maintaining user comfort.129

2.1. Control Model and Variables130

With data and controls recorded and implemented every 5 minutes, the 24 hours of the planning131

horizon can be visualized in Figure 2. The system will solve for the optimized schedule of EWH132

over the whole remaining planning horizon with the initial conditions that are updated at each time133

step. Further, the nearest time step will take the action from the optimal schedule generated. The134

states of the EWH are calculated with an efficient EWH model in combination with data-driven135

predictions that will both be discussed in the following paragraphs.136

Figure 2: Planning horizon visualization with a day divided into 288 five minute intervals where flag represents the
initial conditions.

2.2. Electric Water Heater Model137

For the purpose of this paper, a fully mixed single-node EWH model is chosen since it is138

most computationally efficient and provides a reasonable confidence in making control decisions139

for EWHs. A Single-Node EWH model still is precise when the EWH is turned on for heating while140

precision drops when EWH is discharging water [25, 26]. Many existing works of control EWH sys-141

tems using a Single-Node model [27, 28] showed promising results. Admittedly, DHW use in terms142

of water flow might be affected by the differences in DHW temperature: a higher DHW setpoint143

might lead to reduced flow and volume usage with more cold water mixed. A better way of quan-144

tifying DHW use could be in terms of energy(enthalpy). Nevertheless, due to the limitation that145

the dataset does not gather DHW temperature data, volume usage is used for the prediction and146

modeling of EWH heat balances. The heat loss from the water mass to the ambient environment147

(W ) can be modeled as:148

Q̇loss = A(1/R)(Th − Ta) (1)
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where A is the surface area of the water heater, R is the thermal resistance of the tank insulation,149

Th is the hot water temperature inside the tank, Ta is the ambient temperature. In addition, the150

heat loss due to the demand for hot water can be modeled as:151

Q̇demand = Ṁwcp(Th − Tin) ∗ 1000 (2)

Where Ṁw is the average hot water demand rate during the time interval, cp is the isobaric specific152

heat capacity of water in , and Tin is the supply domestic cold water temperature. Lastly, the heat153

supplied from the EWH can be modeled as:154

Q̇gen = PηS (3)

where P is the power consumption, η is the efficiency of the electricity-to-heat transformation, S155

is the binary variable representing the on/off state of the water heater. The heat balance equation156

then can be derived as follows:157

Mcp
dTh

dt
= −Q̇loss − Q̇demand + Q̇gen (4)

where Mw is the total mass of water stored in the water heater. An approximate solution can be158

obtained by taking the discrete average behavior over the 5 minute time interval of each control159

block to formulate a mixed integer linear programming problem. The governing equation for heat160

balance thus becomes:161

(Th,i+1 − Th,i) ∗M ∗ cp/∆ t = −A(1/R)(Th,i − Ta)−
Ṁw,icp(Th,i − Tin) ∗ 1000 + PηSi

(5)

The parameters used specifically in solving the governing equation are shown in Table 1. The162

specific parameters of the EWH can be set by referring to manufacturer documents or determining163

experimentally through data collection. In real-world settings, a data driven EWH would be desired164

since it would precisely fit each EWH in different conditions. The EWH used in this paper is a 950165

liter PVI Durawatt [29] commercial scale electric water heater. It is an EWH widely used in many166

multi-unit apartments with shared DHW supply. Electricity prices Con and Coff are referenced from167

ConEd [30]. Further, the upper and lower limits of the DHW temperatures are set to avoid extreme168

high temperatures that could shorten the lifespan of components, preventing Legionnaires’ disease,169

and complying local laws [31, 32].170

2.3. Objectives and Settings171

The objectives for many energy systems can vary from minimizing energy consumption, peak172

demand, or cost to maximizing user comfort or stability or a mix of both. For a EWH smart173

scheduling and control system addressed in this paper shown in Figure 1, it is important to have174

capabilities to adjust accordingly based on different types DSM. To show the capability of the175

system, two examples from Price-Based Program (PBP) and Incentive-Based Program (IBP) are176

chosen. From PBP, a Time of Use (ToU) tariff is chosen to be the objective for the problem to177

minimize the cost. Depending on the specific program chosen, ToU tariffs and demand charge may178

be considered. Thus, for a system modeled in this problem which only switches on and off with179

a constant power input, it is more reasonable to focus on the kWh cost. The chosen program for180

this paper is based on Consolidated Edison (ConEd) [30] PSC10-Class No.1 Rate II tariff shown in181

Figure 3.182
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Table 1: Parameters chosen in the optimization problem

Symbol Meaning Value
A surface area,m2 6
R thermal resistance, (m2K)/W 1
cp isobaric specific heat of water, kJ/(kgK) 4.18
P nominal power of EWH, W 50000
η efficiency of the EWH 0.95
M mass of water in EWH, kg 946
Tin input cold water temp, C 17
Ta ambient temperature, C 17
Con on peak price (summer months), $/kWh 0.345
Con on peak price (other months), $/kWh 0.125
Coff off peak price, $/kWh 0.0132
Tup upper limit of DHW temp, C 72
Tlow lower limit of DHW temp, C 49
Tini initial temperature of DHW, C 52
∆ t control time interval, s 300

Regarding IBP, these programs normally require a coordinated reduction in energy use for all183

energy systems at demand side. While EWH alone plays a part of the overall electricity consumption184

for buildings, this smart scheduling and control system can be optimized and controlled to contribute185

to the overall reduction for the whole building. A high penalty can be added to the objective function186

during the DR period to motivate the EWH to be planned off and use its storage capacity to shift187

its load in advance. Once the DR call is received, normally with a minimal notice period of 1 to188

2 hours, the MPC can take in that information and modify the objective for the following EWH189

operation schedule.190

The target multi-unit building chosen has about 130 residents in 60 units. The building has191

two PVI Durawatt electric water heaters with specifications described in Table 1. One EWH is192

the main one running with the other one as a backup. The EWH is also located in the basement193

with a stable room temperature. To generate the DHW use profile, we aggregate the data from 77194

individual EWHs given in [33]. This aggregated profile gives an example DHW usage behavior for195

a large population of residents that can be used to mimic a multi-family apartment building196

2.4. Hot Water Demand Forecasting197

The dataset used for this paper is reported in Refs. [33, 34]. The data is gathered from 77 electric198

water heaters over 120 days in South Africa. The days recorded are divided into four seasons with199

30 days for each season in the months of February, March, July, and September. Since South Africa200

is in the Southern Hemisphere, the coolest months are July and August while the warmest months201

are around January and February. The average temperature does not show a large variation over a202

typical year with lows around 45◦F to highs around 61◦F . Data include both water use, ambient203

temperature, and power for each electric water heater at a frequency of 1 minute. This dataset204

is chosen because it gathers data for a large number of EWHs over an extended period of time,205

providing opportunities to compare both individual and aggregate behaviors. The dataset does206

provide multiple measurements for potential feature correlation analysis to understand how other207

factors might affect DHW usage, but the limited features provided motivate the forecasting to be208
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Figure 3: Consolidated Edison (ConEd) SC10-Class NO.1 Rate II Time of Use (ToU) tariff which is used to quantify
electricity cost in this study.

a pure time series forecasting.209

PROPHET [23] is employed for this DWH usage prediction problem. PROPHET is an open210

source software developed by Facebook that deals with common time series problems. Similar to211

ideas discussed by Gelanzanskas [19], PROPHET treats time series forecasting as a curve-fitting212

problem with the summation of multiple levels of curves:213

y(t) = g(t) + s(t) + h(t) + εt (6)

Where the overall trend g(t) is combined with seasonalities s(t) from yearly, weekly, and daily levels214

in addition to the holiday effects h(t) as well as noises εt extra conditional seasonality and regressor215

specified. Specifically, the model trend can be either a saturation growth model:216

g(t) =
C(t)

1 + exp(−k(t−m))
(7)

or a piecewise linear model:217

g(t) = (k + a(t)T δ)t+ (m+ a(t)Tγ) (8)

depending on the training data with C(t) being the time varying carrying capacity, k being the218

growth rate, and m being an offset parameter. To determine the change points in the trend, the219

rate of change is estimated with Maximum Likelihood Estimation (MLE) with a prior defined as a220

Laplace distribution. With a default value of 0.05, increasing the diversity parameter of the Laplace221

distribution can make the trend more flexible. Seasonalities are fitted using Fourier Series for the222

period effects with a stack of sine curves and a number of parameters that need to be estimated223

depending on the order of Fourier Series chosen:224

s(t) =
N∑

n=1

an cos(
2πnt

P
) + bn sin(

2πnt

P
) (9)
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Where n is the order of Fourier Series chosen and an and bn are the parameters that need to be225

estimated. In this case, P = 365.25 is the interval length defined in Fourier Series for the yearly226

trend, and P = 7 is the interval length for the weekly trend. Holiday effects h(t) are predefined227

with a list of U.S. holidays but can also be additionally specified. PROPHET also captures and228

predicts the uncertainty in both the overall trend, seasonalities, and additional observation noises.229

For uncertainty in the overall trend, it is assumed that the future change would replicate a similar230

rate as previously detected. By default, PROPHET samples 1000 points and sets an uncertainty231

interval of 80%. While for the uncertainty in seasonality, a generative model with full Bayesian232

Sampling using Monte Carlo Markov Chain technique can be defined to generate the uncertainty233

interval. This technique can be suitable for this problem to predict the aggregate behavior of 77234

EWHs to mimic a multi-family dwelling.235

2.5. Optimization and Robust MPC Formulation236

First to generate the optimal schedule through the planning horizon, an integer program assum-237

ing deterministic prediction can be formulated as below:238

min
N∑
i=1

Ci ∗ P ∗ Si

s.t. Ci =

{
Con if during on-peak hours

Coff if during off-peak hours

Tlow <= Th,i <= Tup

(Th,i − Th,i−1) ∗M ∗ cp/∆ t = −A(1/R)(Th,i−1 − Ta)−
Ṁw,icp(Th,i−1 − Tin) ∗ 1000 + PηSi

Th,0 = Tini

(10)

Where the objective is to minimize electricity cost based on sample ToU tariff while making sure239

the temperature of the hot water is maintained between the limits and the heat balance of the hot240

water heater is satisfied. This basic formulation assumes a deterministic expected DHW demand241

in the future. Solving this optimization allows the visualization and understanding of the expected242

EWH behavior and electricity cost for the upcoming day.243

To account for uncertainties from DHW forecasting, at each future time step, a range of the244

probable DHW consumption rates is calculated by PROPHET. The effects of a higher than predicted245

DHW consumption would lead to a greater value of heat loss, causing a lower than expected246

value of the DHW temperature inside the tank. On the other hand, a lower than expected DHW247

consumption would cause a higher than expected DHW temperature. Thus, when producing control248

outputs during the MPC simulations, it is important to make sure that the system is robust through249

these possible variations of future DHW consumption values at the upcoming time step. Based on250

this relationship, the uncertain DHW consumption can be modelled by modifying the temperature251

constraints in the optimization as follows,252
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Figure 4: Planning horizon visualization with a DR notification received at 5pm for demand response period during
7pm to 8pm.

min
N∑
i=1

Ci ∗ P ∗ Si

s.t. Ci =

{
Con if during on-peak hours

Coff if during off-peak hours

Th,i − ((Ṁw up,i−1 − Ṁw,i−1) ∗ cp ∗ (Th,i−1 − Tin) ∗ ∆ t)/(M ∗ cp) >= Tlow

Th,i + ((Ṁw,i−1 − Ṁw low,i−1)) ∗ cp ∗ (Th,i−1 − Tin) ∗ ∆ t)/(M ∗ cp) <= Tup

(Th,i − Th,i−1) ∗M ∗ cp/∆ t = −A(1/R)(Th,i − Ta)−
Ṁw,icp(Th,i−1 − Tin) ∗ 1000 + PηSi

Th,0 = Tini

(11)

As time propagates during the simulation, the initial temperature Tini is updated from the EWH253

model while in real-life application, a temperature sensor is assumed to provide reliable feedback254

on the updated temperature.255

Distribution Load Relief Program (DLRP) is an example of an emergence demand response pro-256

gram by ConEd. The program has a 2 hour notification period. An example of this program which257

notifies at 5pm for demand reduction during 7pm to 8pm is visualized in Figure 4. The objective258

function for the optimization is modified to add a penalty, acting like the potential incentive, for259

turning on the EWH during the DR period. Doing so would demotivate the EWH from turning260

on during this period of time and thus reduces both the average power and overall electricity con-261

sumption without jeopardizing thermal comfort. As a result, the robust optimization formulation262

is modified as follows,263

min
N∑
i=1

Ci ∗ P ∗ Si +
∑

j∈DR period

Pej ∗ P ∗ Si

s.t. Ci =

{
Con if during on-peak hours

Coff if during off-peak hours

Th,i − ((Ṁw up,i−1 − Ṁw,i−1) ∗ cp ∗ (Th,i−1 − Tin) ∗ ∆ t)/(M ∗ cp) >= Tlow

Th,i + ((Ṁw,i−1 − Ṁw low,i−1)) ∗ cp ∗ (Th,i−1 − Tin) ∗ ∆ t)/(M ∗ cp) <= Tup

(Th,i − Th,i−1) ∗M ∗ cp/∆ t = −A(1/R)(Th,i−1 − Ta)−
Ṁw,icp(Th,i−1 − Tin) ∗ 1000 + PηSi

Th,0 = Tin

(12)

In addition to the capability to optimize control schedules for the ToU tariff structure and264
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respond to DR programs, the system can also incorporate other price structures and energy sources265

such as critical peak pricing and onsite solar generation. For example, dynamic pricing requires the266

predictions of the electricity prices that can be accomplished with the similar methodology using267

PROPHET and adding another uncertainty variable into the robust MPC formulations.268

2.6. Performance Evaluation269

To evaluate the performance of the control strategies, we quantify and compare two of the270

most important factors for a demand-side user: electricity cost and user comfort. The cost can271

be calculated by the actual schedule of EWH through the simulations and compared to a baseline272

situations. In this paper, the baseline is constructed based on a thermostatic control, namely a273

simple and widely used rule-based temperature control method which maintains the temperature274

within the upper and lower limits. Evaluating the performance of the system with regard to thermal275

comfort needs further analysis. In some states in the US such as New York, it is required for276

residential buildings to provide DHW with a minimum temperature of 120◦F always. Building277

management companies could be subject to significant fines and penalties starting from $250 per278

day [32]. Nevertheless, the rules normally get relaxed as a minor deficiency in temperature for a279

short period of time is typically tolerable. Thus, to evaluate the performance, a 95% fulfillment280

limit is set. If DHW temperature is maintained above 120◦F for over 95% of the time during the281

day, the following minor penalty would be applied based on the average temperature violation and282

the duration of violation with unit penalties of Pe1 and Pe2:283

Pevio = Pe1 ∗ Tvio + Pe2 ∗ tvio (13)

where Tvio is the temperature of violation and tvio is the duration of violation. If the fulfillment284

time drops below 95%, it would be considered a major violation which is not tolerable and would285

incur the large penalties.286

For DR program in New York State specifically, there exists a large variety of criteria designed287

and enforced by wholesale power system operators and energy suppliers like New York Independent288

System Operator (NYISO) and ConEd. To calculate the demand reduction for a DR program, the289

normal procedure is to calculate the Customer Base Load based on recorded usage from previous290

days with adjustments [35, 36]. Thus, to evaluate how well the EWH responds to the overall building291

demand reduction call, the average base load is calculated by generating the anticipated schedules292

over past days and then compared to the actual load during the day with a DR call.293

3. Results and Discussion294

3.1. Domestic Hot Water Forecasting295

3.1.1. Dataset Analysis and Visualization296

Considering DHW usage over 30 days for one EWH from the dataset, a recognizable pattern297

can be observed for individual DHW usage with a larger peak with shorter duration in the morning298

and a lower peak with longer duration in the evening. While the duration of DHW use is similar299

in different seasons, the average daily DHW use takes a higher value in winter and a lower value in300

summer. Specifically, winter has the highest average daily DHW use of 23.8 L, following by spring301

of 20.9 L, fall of 17.2 L, and summer of 16.8 L. This proves seasonal variation of household’s DHW302

use with 41.7 % increase from warmer months to cooler months.303
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Figure 5: Aggregated pattern of 77 EWHs for three example days.

A correlation analysis of the dataset shows that DHW use is relatively independent of outdoor304

air temperature, with a correlation coefficient of 0.004. This is mainly because the dataset is pro-305

vided with one month for each season preventing year-long training data to show the continuous306

seasonal variations. With one month of data used for each season, in addition to the well-maintained307

indoor temperature, the correlation is thus low and neglectable on a sub-hourly basis. The seasonal308

variation can be better understood when comparing the daily usage versus the daily average tem-309

perature. These two variables show a moderate correlation of 0.23. Further, the average seasonal310

usage numbers are much more convincing on proving the seasonal variations discussed in the fol-311

lowing paragraph. Thus, ambient temperature is not included in the DHW forecasting model which312

aims to predict sub-hourly usage of DHW, leading to a pure time-series treatment of the DHW313

forecasting with this dataset.314

In order to use the data to mimic a multi-dwelling apartment complex, the data from the 77315

individual EWHs is aggregated as shown in Figure 5 for 3 typical days in the summer season. The316

aggregated data also shows a more recognizable daily pattern for multi-family dwellings [37]. The317

aggregated data shows the daily average usages for different seasons to be 7670.9 L for summer,318

7821.6 L for fall, 10850.1 L for winter, and 9522.97 L for spring, leading to a daily average use of319

8966.4 L over the year. Comparing to the 130 resident target building in the U.S. with 64 liters320

per day per person usage, the dataset can well represent the usage in the target building with a321

discrepancy less than 10%. Thus, the aggregated profile will be used for training and testing the322

model.323

3.1.2. Forecast Generations324

The forecasts were generated using PROPHET and are shown in Figure 6. The black dots325

represent the training data while the grey line represents the fitted curve and the predicted values326

of the following day and the grey shades represent the uncertainty range. Ideally in real-world327

settings, over a year of data would be desired to capture more patterns. The package generates328

multiple plots for visualization in Figure 7. It shows how PROPHET’s additive model works by329

adding up (a) the overall model trend defined as a piecewise linear model, (b) the daily and (c)330

the weekly seasonalities fitted with Fourier Series curves, and (d) the extra morning and evening331

regressors. When predicting demand at one timestamp into the future, the trend is assumed to be332

maintained with possible changepoints sampled randomly. In addition to the time of day value,333

day of week, and morning and evening regressor values summed. From Figure 7, the training data334

shows the most obvious pattern for the daily seasonality with the morning and evening peaks. If335

more data were gathered in the future, the seasonal behavior change of DHW demand and better336
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Figure 6: PROPHET prediction visualization.

weekly seasonalities can be expected. Further, with the incorporation of the morning and evening337

regressors, the ”outlier” points that are filtered out by the daily seasonality curve got preserved to338

provide better predictions.339

The forecasting result of a test summer day is shown in Figure 8 together with the actual DHW340

profile, and the upper and lower limits. It can be observed that the overall trend of the DHW profile341

is well captured and the fluctuation of the actual DHW consumption can be well covered within342

the upper and lower limits of the prediction while a few peaks are not fully covered. Note that, the343

seasonality profiles based on Fourier Series tend to smooth out the high morning and evening peaks344

and consider them as outliers. To better predict and incorporate these values into the possible range,345

additional regressors are added during the morning and evening peak times. The addition of the346

extra regressor significantly helps with producing an uncertainty interval that covers the variations347

in the actual values. Changing the uncertainty interval does impact the width of the upper and348

lower limits due to the sampling method that PROPHET uses. A proper uncertainty interval should349

maintain the robustness of the system while not affecting energy and cost savings. These results350

provide a good foundation for the following optimization of the EWH control schedules and model351

predictive control simulations. PROPHET’s Python API also makes integration seamlessly with352

further data manipulation as well as optimization.353

3.2. Electric Water Heater Optimal MPC Simulation354

Optimizing the schedule for the EWH with a Mixed-Integer Programming formulation is a NP-355

Complete problem that requires extensive computing resources and time to get an optimal solution.356

A one day ahead optimal schedule can be generated by solving the optimization problem once.357

Furthermore, by solving the optimization repeatedly over the receding horizon, the optimal controls358

can be generated. Though global optimum is not guaranteed by the solution presented since the359

optimality gap does not necessarily converge to zero, only the first control signal is applied to the360
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Figure 7: (a) Overall trend, (b) daily seasonality, (c) weekly seasonality, and (d) additional morning and evening
peak regressors for the additive model that generates the resulted forecast.

Figure 8: PROPHET prediction for one summer day.
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Figure 9: Optimal schedule of the EWH state and DHW temperature for one summer test day.

system. The continuously running MPC will repeatedly take in new information about the latest361

state of the system and generate a new optimal schedule for the remaining period of time.362

3.2.1. ToU (PBP) simulation and Performance363

Using the predictions generated, Figure 9 shows the optimized schedule with the predicted364

hot water demand as a single deterministic value at each time step. The optimized schedule is365

minimizing the electricity cost based on the ToU tariff structure chosen with a higher electricity price366

from 8am to 10pm. The top subplot shows the on/off state of the EWH while the bottom subplot367

shows the anticipated DHW temperature inside the EWH. Repeating the process for optimizing a368

winter day, the expected electricity costs are $68.06 and $38.76 respectively.369

Observing the results from the optimal day ahead schedules, a period of preheating the water370

before 8am can be seen. The water temperature is raised to around 60◦C (140◦F ) which is much371

higher than the desired DHW temperature normally set at 49◦C (120◦F ). In this case, because the372

objective is set to minimize electricity cost under a ToU tariff, the behavior of preheating happens373

right before when electricity price increases drastically. This allows heat energy to be generated374

at a lower cost and be stored for future demand. Afterward, during the on-peak period, the main375

behavior of the EWH is to remain close to the lower bound of water temperature of 49◦C (120◦F )376

in order to minimize the electricity cost. The expected electricity cost can be calculated and shown377

at the beginning of the day as a reference. Solving this optimization problem also outputs the next378

control action of the EWH as one step of the MPC simulation. By solving the optimization problem379

repeatedly as new measurements are feedback to the system, the system is able to determine the380

following control actions.381

Conventional thermostatic control, an example of heuristic or rule-based control, tries to main-382

tain a constant temperature set-point of DHW with a small range of variation. The system is383

controlled in response to demand: turn on the EWH if the lower limit temperature is reached, turn384

off EWH if the upper limit temperature is reached. One of the easiest Demand Side Management385

for households is actually to lower the DHW temperature set point. While Lowering DHW temper-386

ature can save a significant amount of energy, risk of being unable to meet the demand increases387

which could affect user comfort and cause high penalties.388

Shown in Figure 10a are the expected behaviors of the EWH with DHW temperature set at389
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(a) Simulation for rule-based thermostatic control of EWH over one summer test day at different set-point temperature.

(b) Simulation for MPC of EWH state and DHW temperature over one summer test day.

Figure 10: Simulation for different control methods for EWH over one summer test day where (a) simulates the
DHW temperature under rule-based thermostatic control and (b) simulates the EWH state and DHW temperature
under MPC.

around 66◦C (150◦F ), 57◦C (135◦F ), and 52◦C (125◦F ) on the summer test day. Respectively,390

setting DHW at lower temperatures generates 17.0% and 29.1% savings in electricity cost compared391

to to a fixed set-point above 66◦C (150◦F ). Note that these control strategies are purely responsive392

to the previous time step’s demand and have a high probability to run out of hot water if the393

EWH is not properly sized or a high demand is expected in the future. Thus, normally to avoid394

the violations, temperatures are set to a higher value. In both of the cases where DHW set points395

are 66◦C (150◦F ) and 57◦C (135◦F ), no violation occurs. While setting the temperature at 52◦C396

(125◦F ), 15 minutes of average violation of 2◦F occurred, dropping the fulfillment range to 99.0%.397

Figure 10b shows how could an EWH behave with prediction and MPC. Similar to the previously398

shown day-ahead schedule, the MPC simulation shows a preheating before 8am to utilize the lower399

electricity charges. In addition, because MPC constantly takes in updated temperature values while400

re-optimizing, the violation time is reduced to only 5 minute with an average of 1◦C (1.8◦F ). Listed401

in Table 2, MPC method generates 33.2% savings over the base cost with conventional control by402

maintaining water at 66◦C (150◦F ).403

Repeating the process for the winter test day, the results are plotted in Figure 11a and the404

electricity costs simulated are shown in Table 3. Compared to the base case of conventional control,405

the reductions in electricity cost are 16.3%, 28.2% and 28.0% respectively. Note that due to the406
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Table 2: Electricity costs and comfort fulfillment comparison for one summer day simulation with different control
methods.

Electricity Cost Reduction Fulfillment
Fixed @66◦C (150◦F ) $85.23 100%
Fixed @57◦C (135◦F ) $70.71 17.0% 100%
Fixed @52◦C (125◦F ) $60.44 29.1% 99.0%

MPC $59.00 33.2% 99.7%

Table 3: Electricity costs and comfort fulfillment comparison for one winter day simulation with different control
methods.

Electricity Cost Reduction Fulfillment
Fixed @66◦C (150◦F ) $57.38 100%
Fixed @57◦C (135◦F ) $48.02 16.3% 99.0%
Fixed @52◦C (125◦F ) $41.22 28.2% 94.4%

MPC $41.35 28.0% 98.3%

higher DHW demand, the high morning peak causes the temperature to drop significantly below407

the set-points for conventional control methods if the temperature settings are too low. In this408

test example, if DHW temperature is set at around 49◦C (120◦F ), there would be 80 minutes of409

violation of average 2◦C (4◦F ) which makes the fulfillment rate drop below the 95% limit. Thus,410

it is expected to cause significant penalties and this control strategy is not desired. If MPC is used411

as the control method shown in Figure 11b, the violation time is significantly reduced due to the412

presence of DHW demand prediction while the electricity cost is still reduced by 28% compared to413

the baseline case. The result shows the capability of MPC to provide energy cost reduction and414

maintain user comfort when conventional controls are unable to achieve both objectives.415

Performing an extended simulation over six test days, the results are shown in Figure 12. The416

baseline conventional controls with fixed DHW set-points are also plotted. The results for cost417

reduction and user comfort fulfillment are shown in Table 4. On average, 29.7% reduction in418

electricity cost and 98.9% user comfort fulfillment can be achieved. Consistently, MPC is reliable419

and efficient to reduce electricity cost and maintain user comfort.420

Table 4: Electricity costs reduction and comfort fulfillment over six days of MPC simulation compared with rule-based
thermostatic control simulation.

Cost Reduction Fulfillment Improvement Fulfillment
Summer Day1 29.7% 1.8% 98.6%
Summer Day2 30.0% 2.9% 99.7%
Summer Day3 33.2% 0.7% 99.7%
Winter Day1 28.3% 2.5% 99.0%
Winter Day2 29.0% 2.2% 98.0%
Winter Day3 28.0% 3.9% 98.3%

Average 29.7% 2.3% 98.9%

17



(a) Simulation for rule-based thermostatic control of EWH over one winter test day at different set-point temperature.

(b) Simulation for MPC of EWH state and DHW temperature over one winter test day.

Figure 11: Simulation for different control methods for EWH over one winter test day where (a) simulates the DHW
temperature under rule-based thermostatic control with a set point temperature at 66◦C (150◦F ) and (b) simulates
the EWH state and DHW temperature under MPC.
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Figure 12: Left: Simulation of EWH state and DHW temperature over three summer test day using thermostatic con-
trol and MPC. Right: Simulation of EWH state and DHW temperature over three winter test day using thermostatic
control and MPC.
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Figure 13: Adjusted schedule of EWH state and DHW temperature for demand response program notifying at 5pm
and happening during 7pm to 8pm.

Figure 14: Comparison between the summer baseline load profile and the actual optimally adjusted load profile with
demand reduction between 7pm to 8pm.

3.2.2. Demand Response(IBP) Simulation and Performance421

Simulating a DR call made at 6pm for a demand reduction from 7pm to 8pm, the schedule will422

be instantly adjusted accordingly and the result is shown in Figure 13. With the modified objective,423

the EWH is planned to be off during this one hour period. Even though raising DHW temperature424

during the on-peak period may cause excessive heat loss and higher tariff, the EWH turns on to425

heat the water before 7pm to generate enough storage for the use during the DR period.426

To quantify the reduction in both average power and gross consumption, a baseline hourly load427

profile needs to be constructed first. Shown in Figure 14, the consumption based on the optimized428

schedules of 20 previous days in the summer are calculated and divided into hourly profile and the429

actual load profile for the day with a DR call during 7pm to 8pm. A reduction of 19.66 kWh of430

electricity can be achieved during the DR period. Thus, for the whole building system, a reduction431

in average power during the DR period contributed by the EWH system can be expected as well.432

4. Conclusion433

This paper presents a part of the closed loop electric water heater (EWH) smart scheduling and434

control system with forecast and robust model predictive control algorithms. The objective is to435
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create an implementable solution of forecasting usage and optimizing controls as a part of a robust436

and reliable smart building energy management and control system in real-world settings.437

To achieve these, an EWH dataset containing data for over 120 days of DHW usage from438

77 EWHs gathered at one minute frequency is chosen to demonstrate the methods and results.439

PROPHET [23] is used for DHW forecasting with a quantified uncertainty range. Results both440

capture the overall trend and cover the actual usage profile with the uncertainty interval well. A441

mixed-integer linear programming problem is formulated using a fully mixed single node EWH442

model to solve for the optimal schedule over the planning horizon and the following control actions443

with the flexibility to alter between different objectives based on energy programs enrolled. Simu-444

lation shows up to about 30% electricity cost reductions over 6 test days with an average comfort445

fulfillment rate of about 99%. Simulation also shows the capability to shift load profile for reducing446

average power and gross consumption on short notice. On an example summer day with a demand447

response (DR) call, testing with a constructed baseline load profile, a reduction of about 20 kWh448

of electricity is observed during the demand response period.449

DHW demand data, while currently very limited, can go a long way in improving EWH control450

efficiency. By using real data instead of artificially generated demand profiles, our data-driven451

approach can capture more realistic operating conditions and can be tuned to each building’s specific452

DHW demand behavior. However, measuring volumetric flow, as in the presented dataset, may not453

be completely sufficient for determining DHW demand in all cases. While in most cases the discharge454

temperature remains relatively constant, large DHW draws can sometimes lower this temperature,455

resulting in a higher volume draw to maintain the same enthalpy draw. Thus, data containing456

additional measurements that determine enthalpy demand may provide a more complete model457

of DHW demand. Moreover, implementation can require additional ongoing research topics such458

as hardware and sensor installation, performing state estimation, and reducing the computational459

burden.460

There are also several potential extensions of this work, including the incorporation of onsite461

generations from photovoltaic systems, day-ahead and real-time electricity pricing, and other more462

complex and flexible systems and variations[38]. While the general methodology that accounts for463

uncertainty remains similar to that proposed in this paper, additional modifications to the objective464

function and system model could expand the potential control objectives. Finally, while this system465

is designed for aggregated multi-family DHW control, more complex prediction algorithms that can466

achieve the significantly more difficult task of predicting single-family DHW demand could allow467

this methodology to provide efficient single-family DHW control as well.468
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