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Abstract

Advanced building control methods such as model predictive control (MPC) offer significant
benefits to both consumers and grid operators, but high computational requirements have acted as
barriers to more widespread adoption. Local control computation requires installation of expensive
computational hardware, while cloud computing introduces data security and privacy concerns. In
this paper, we drastically reduce the local computational requirements of advanced building control
through a reinforcement learning (RL)-based approach called Behavioral Cloning, which represents
the MPC policy as a neural network that can be locally implemented and quickly computed on a
low-cost programmable logic controller. While previous RL and approximate MPC methods must
be specifically trained for each building, our key improvement is that the proposed controller can
generalize to many buildings, electricity rates, and thermostat setpoint schedules without additional,
effort-intensive retraining. To provide this versatility, we have adapted the traditional Behavioral
Cloning approach through two innovations: (1) a constraint-informed parameter grouping (CIPG)
method that provides a more efficient representation of the training data and (2) a new deep
learning model-structure called reverse-time recurrent neural networks (RT-RNN) that allows future
information to flow backward in time to more effectively interpret the temporal information in
disturbance predictions. The result is an easy-to-deploy, generalized behavioral clone of MPC
that can be implemented on a programmable logic controller and requires little building-specific
controller tuning, reducing the effort and costs associated with implementing smart residential heat
pump control.

Keywords: Deep Reinforcement Learning; Behavioral Cloning; Model Predictive Control; Smart
Grid; Heat Pump;

Highlights

• Behavioral Cloning reduces model predictive control (MPC) computational requirements.

• One Behavioral Cloning agent generalizes to new buildings without further training.

• Constraint-informed parameter groupings provide more efficient state representations.

• Reverse-Time Recurrent Neural Networks incorporate future disturbance predictions.

• Simulations show Behavioral Cloning offers energy efficient control similar to MPC.
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1. Introduction

As the energy system relies more and more on variable renewable energy sources, efficient grid-

interactive buildings that can modulate their demand according to the availability of renewable

energy become ever more important. Buildings are becoming increasingly electrified, replacing fossil

fuel based space heating with clean, electric alternatives such as heat pumps. A substantial amount

of research has shown that smart heat pump control can harness the inherent thermal storage of the

building envelope and provide important grid services such as load shifting and demand response [1],

which are generally considered as requirements for maintaining a reliable electrical grid with high

penetrations of renewable energy resources [2]. However, more advanced control methods that can

provide this demand flexibility still face large technical, economical, and social barriers to adoption,

and therefore they lack the scalability needed to have a large impact on the overall energy system.

One of the most widely studied advanced building control methods is model predictive control

(MPC) [3]. Compared to conventional rule-based approaches, MPC can offer substantial energy

consumption savings of 20% or more [4], as well as achieve other control objectives such as peak

load reduction [5] and demand response [6]. At each time step, a constrained optimization problem

is solved to determine the optimal control given a model of the building and predictions of future

disturbances like weather, occupancy, and electricity prices. But despite substantial research efforts

into the development of MPC for heat pumps, it has yet to be widely adopted due to its costly

installation and computational hardware costs [7]. With over 30% of US households already re-

porting some difficulty in paying their energy bills [8], these high capital costs can make advanced

building control economically unfeasible for low-income populations and neglect a significant source

of demand flexibility.

One potential avenue for more scalable building control is through smart thermostats, which

feature a simple plug-and-play installation that has resulted in rapid recent adoption [9]. However,

smart thermostats have limited computational hardware that often cannot handle the high memory

and processing requirements needed to solve MPC. Instead, smart thermostats use rule-based ap-

proaches for energy efficiency and demand response, but can connect to the cloud for more advanced

data processing. While they can reduce energy consumption, these rule-based control methods of-

ten provide insufficient perceived benefit to justify the high capital costs of smart thermostats. In

a recent US nationwide survey, 30% of people said that smart thermostats are too expensive and

60% said that they simply do not see the merits of upgrading their current system [10]. Moreover,

for cloud-based smart thermostats, data privacy and security are other key concerns [11]. Thus,

inexpensive plug-and-play control solutions that provide higher cost savings while preserving data

privacy can reduce many of the barriers to more widespread adoption of smart heat pump control.

Some studies have simplified the MPC computation by analytically deriving its closed-form so-

lution, called explicit MPC, so that it can be computed locally on low-cost, resource-constrained de-

vices such as programmable logic controllers (PLC), which typically have limited processing speeds
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in the range of MHz and memory on the order of hundreds of kB. Explicit stochastic MPC [12] and

explicit scenario-based MPC [13] have both been shown to drastically improve MPC computational

efficiency for building climate control with relatively small state spaces and time horizons. However,

as the problem size gets larger, explicit MPC requires substantially more memory, meaning that the

longer time horizons needed to achieve the benefits of building MPC can be prohibitively large. In

addition, the important mixed-integer constraints like minimum cycle times or minimum compres-

sor speeds [14] make these closed-form solutions to the optimal control problem significantly more

difficult to derive.

More recently, machine learning-based control approaches have emerged as powerful tools for

learning optimal control policies for systems with large state spaces and time horizons. Rather

than analytically deriving the mapping from the state to the optimal control, these approaches

leverages techniques like decision trees and deep learning to learn an approximate mapping using

data collected from the system. One approach called Approximate MPC (AMPC) was recently

proposed by Drgonaňa et al. [15] that approximated the explicit MPC formulation for a single

building by training a feed-forward neural network on samples from closed-loop MPC simulations

generated in EnergyPlus [16]. AMPC was also successfully implemented experimentally for an office

building in Ref. [17]. Other reinforcement learning (RL) approaches like Deep Q-learning [18] and

Asynchronous Advantage Actor Critic (A3C) [19] have been used to learn optimal control policies

from scratch by interacting with a virtual building simulated in software like EnergyPlus.

However, the main problem with these approaches is that data generation is very time and

labor intensive. A new controller must be trained for each specific building installation, and can

require months to years of data samples to learn that building’s optimal control policy. While

large commercial buildings can cover the high capital costs required to develop virtual buildings to

generate this data, small buildings and residences cannot. As a result, the fact that these machine

learning-based building controllers cannot generalize to different buildings without expensive model

retraining has been noted as a key obstacle to implementation [20].

In this paper, we combine ideas from both AMPC and RL research to create a resource efficient

optimal controller that can generalize to many buildings while being trained only once, significantly

reducing the capital costs and installation effort to implement more advanced building control.

In particular, we apply a form of reinforcement learning called Behavioral Cloning [21] that has

to our knowledge not been applied in the building control context. Behavioral Cloning attempts

to mimic the actions of an available expert controller, such as MPC, and results in much faster

training compared to other RL approaches [22]. By training one controller on a large number of

simulated buildings, setpoint schedules, and electricity rates up front, the controller can generalize

to different buildings, various resident preferences, and changing utility prices without additional

controller tuning.

In addition, we improve the conventional Behavioral Cloning approach to make it more suitable

for building control. First, we introduce a more efficient representation of the input state using MPC
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constraint-informed parameter groupings (CIPG). Second, we present a new machine learning model

structure called reverse-time recurrent neural networks (RT-RNN) that more accurately interprets

the future disturbance information that is vital to effectively pre-heat or pre-cool the building for

energy efficiency. The result is a behavioral clone of MPC that uses only around 100 kB of memory,

requires negligible computational time, and can be implemented in buildings on a PLC in a low-cost

thermostat with minimal installation effort and costs.

We begin the paper with an overview of Behavioral Cloning and related work in Section 2. Sec-

tion 3 then provides our proposed methodology. Next in Section 4, we implement the methodology

on a common heat pump system architecture. Section 5 tests this implementation on a popula-

tion of simulated buildings and operating conditions and compares the results and computational

requirements to MPC and a baseline rule-based control. Section 6 concludes the paper.

2. Preliminaries

2.1. Behavioral Cloning

While most RL applications require a very large amount of training data to learn the optimal

control policy from scratch, Behavioral Cloning can learn the policy much more efficiently by taking

advantage of an available expert controller [23]. Behavioral Cloning is typically used when training

data generation is expensive or time consuming and when the expert controller is impractical to

deploy. For example, the most common Behavioral Cloning application has been to mimic human

drivers for autonomous driving purposes [24]. Another example which uses MPC as the expert

controller was given in [25] to control a walking robot with faster online control. Behavioral Cloning

can even learn policies only from observations by inferring the actions of the expert policy [26].

Behavioral Cloning seeks to learn a stochastic policy µ̂ that provides probabilities µ̂(u|s) of

taking a control u that most closely matches the expert control policy µ∗(s). Here, the state s

contains all of the information relevant to solving the optimal problem, such as current and past

measurements and future disturbances. Finding the approximate, or learner, policy µ̂ is a supervised

learning problem that seeks to minimize the difference between the predicted control and the expert

control given the input state. A diagram of the behavioral cloning process is given in Fig. 1.

This initial description of Behavioral Cloning is virtually the same as AMPC, which also learns

an approximate optimal policy from samples generated by an expert MPC control. However, the

key difference is how the training samples are generated: In AMPC, they are generated through

closed-loop MPC simulations. For some applications such as in [15] and [17], where the operating

conditions do not vary much, the control prediction can make very few errors and can provide

statistical guarantees on constraint satisfaction and stability [27]. However, if the agent faces new

operating conditions, such as changing setpoints or different electricity prices, the agent will likely

make mistakes and deviate from the optimal control trajectory. Since closed-loop MPC simulations

have no information outside of the optimal control trajectory, they are unable to provide sufficient
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information for the agent to correct itself should it drift to a sub-optimal state, often known as the

compounding error problem.

2.2. DAgger Algorithm

Behavioral cloning solves the compounding error problem by generating additional data outside

of the optimal control trajectory. One of the most common methods for generating this data is

called Dataset Aggregation (DAgger) [28]. DAgger is used in many different Behavioral Cloning

applications, ranging from natural language processing [29] to autonomous driving [22]. DAgger

is an iterative algorithm that uses the Behavioral Cloning agent to control the system, while the

expert controller records the correct control decision at each time step to teach the agent how to

recover from mistakes. DAgger therefore enriches the training dataset above pure closed-loop MPC

simulations to allow the agent to be stable on new operating conditions and correct for control

policy imperfection.

The general DAgger algorithm is as follows. At iteration i = 0, initialize the policy by simu-

lating an episode controlled by the expert policy and train the Behavioral Cloning agent on the

resulting state-control samples (s, u?). For each following iteration, simulate another episode this

time controlled by the Behavioral Cloning agent. At first, the agent will likely perform poorly and

deviate from the optimal control trajectory due to the limited data. However, at each time step,

the expert controller calculates and records, but does not implement, the true optimal control. At

the end of each iteration, the optimal control solutions are added to the training data set and the

agent is retrained with the additional data. Through this process, the correct control responses to

suboptimal states are added to the training dataset so the agent can know how to correct itself in

the future. These iterations can be repeated until the agent is stable during the testing phase and

its objective value is within some limit of the true MPC objective value.

3. Methodology

Our methodology for Behavioral Cloning of building MPC is outlined in Fig. 2. To improve

the generalization ability to multiple buildings and operating conditions, our methodology contains

several tools to encode domain knowledge that increase training efficiency. The following section

describes the general building control system and our contributions.

3.1. General Building Control System

While in practice building control problems can take many forms, they can often be reduced

to three general components: (1) the heating or cooling sources, (2) the storage medium, and (3)

the cost signal [30], illustrated in Fig. 2. By making very few assumptions on the structure of the

control problem, we design our methodology to be applicable to a wide a range of building system

architectures which require only minor changes to the MPC formulation and input state. For each
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Initialize Policy:

Generate state-
control pairs using 

expert policy

Train learner policy
to predict action 

from state

Iteration: 

Improve Policy:
(DAgger)

Iteration: 

Record optimal 
state-control pairs 
from expert policy

Generate state 
trajectories using

learner policy
Retrain learner 

policy with 
additional state-

control pairs

Behavioral Cloning Training

Figure 1: Behavioral Cloning training process. After initializing the learner policy using the expert controller, the

learner policy then is used to control the system in order to generate samples outside of the optimal control trajectory,

improve the policy, and solve the compounding error problem.

Heating or 
Cooling Source
(E.g., Heat Pump, 

Chiller, Boiler)

Heating or 
Cooling Disturbances 

(E.g., Weather, 
internal gains)

Heat Flow

Storage Media 
(E.g., Building Envelope
Thermal Energy Storage)

Cost Signal 
(E.g., Real Time Price,

Demand Response Calls,
Comfort Violations)

Install Optimal Control Policy 
on PLCs 

Data Flow

Control Flow

 Initialize policy with Reverse-Time 
Recurrent Neural Networks (RT-RNN)

Constraint-Informed 
Parameter Grouping (CIPG) Historical Data 

from Thermostats
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Model to Data

(   3.3)

(   3.2)

(   3.4)
MPC-Guided DAgger

Training Data Generation

Optimal Policy

Building-Specific
Parameters

Offline Behavioral Cloning Automated
Building Modeling

Online Building Implementation

Figure 2: Overall methodology for Behavioral Cloning of MPC and implementing it in a population of buildings.

Behavioral Cloning and building modeling can both be performed offline using a desktop computer, while online

control only requires a programmable logic controller (PLC). The Online Building Implementation section shows a

typical building control system structure.

6



class of building system architectures, only one controller must be trained for the buildings in that

class. The primary assumption we make is to apply our methodology to relatively small buildings

that can be captured using reduced-order models (see Sec. 4.1 for further discussion), since larger

commercial buildings often have the ability to afford more advanced control hardware and develop

virtual buildings.

In essence, the heating and cooling equipment only act as heating or cooling sources that add

or remove heat from the storage medium in order to maintain indoor thermal comfort specified

by the thermostat. The exact thermodynamic mechanism, however, can be very different. For

example, heat pumps can be single stage (binary control) or variable speed (continuous control)

and can exchange heat with either the outdoor air or the ground. While these differences strongly

affect how strongly the efficiency varies (e.g. air-source heat pumps are much more dependent on

the outdoor air temperature), the effects on efficiency follow the same general model and can be

encoded into the state representation. In addition, weather and internal gains also act as heating

or cooling sources, but since they are not controllable, we refer to them as disturbances.

The storage medium most often takes the form of the building’s thermal mass, meaning that the

storage limits are subject to the user-defined thermal comfort preferences. The limits on the storage

medium define how much the heat pump can shift its operation toward times of higher efficiency or

lower cost. In some cases, additional thermal storage like water tanks or phase change material can

also be added, increasing the storage potential and reducing its dependency on user preferences.

Finally, the cost signal defines the desired grid service to be provided by the demand flexibility.

The most basic embodiment of the cost signal is a time-of-use or real time price, which utilities use

to encourage load shifting. However, other grid services like demand response or flexible ramping

[31] can be encoded into the cost signal using artificially high costs during a period when the utility

needs to reduce demand. By imposing penalties for violating thermal comfort [32], the optimal

controller balances the resident’s desired tradeoff between saving money and maintaining thermal

comfort.

3.2. Constraint Informed Parameter Groupings (CIPG)

In order to provide a more sample efficient and generalizable representation of the state and

disturbance inputs, we developed a method called constraint-informed parameter groupings (CIPG),

which group parameters based on the structure of the MPC constraints and building model. This

approach is inspired by dimensionality reduction ideas from of the Buckingham Pi Theorem. As

an example, this method is used in fluid dynamics to non-dimensionalize fluid parameters such

that the solutions to complex fluid flows are no longer functions of the actual parameter values

(e.g., viscosity, velocity, temperature, etc.), but instead functions of the ratios between the values

(e.g., Reynolds number). Similarly, the building thermodynamics and the optimal control are not

necessarily functions of the actual parameter values, but rather the ratios or differences between the

parameter values (e.g., heat loss is a function of the temperature difference). Therefore, by grouping
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the training data parameters based on the constraints in the MPC formulation, we condense the

feature space to allow operating conditions from one training simulation to be more effectively

applied to a different operating condition during test time.

The parameter groupings can be loosely classified into four classes. The first class of parameter

groupings represents the building and heat pump model, which is what allows the agent to gen-

eralize across buildings. Rather than using a black-box or white-box model, which can sometimes

require hundreds of unique parameters, we use a reduced-order grey-box building model to allow

the thermodynamics to be efficiently grouped as part of the state information. The second class

includes the external effect of weather on the building. The third provides the limits of the storage

medium and thermal comfort. The fourth describes the cost signal. A derivation of the parameter

groupings for a specific control problem can be found in Sec. 4.3.

3.3. Control Policy Parameterization

The type of machine learning model structure is especially important to develop a functioning

Behavioral Cloning agent. Particularly with MPC, the ability to extract the temporal information

embedded in the disturbance forecasts heavily affects the model’s performance. Knowing that

the setpoint will rise at a specific time in the future determines at what time the agent should

begin preheating. In most RL applications such as [33], these future disturbances are implicitly

predicted by the control policy using a state representation with a sufficient number of previous

timesteps. However, future disturbances such as weather are independent of the policy, and can be

better predicted separately using available weather forecasts without the need for expensive building

simulations to generate this data. Conventional supervised learning techniques previously used in

approximate MPC [15] like regression trees and feed-forward neural networks do not contain any

inherent structure to interpret this future temporal information and thus were not sufficient to

learn the larger feature space and be able to generalize to new conditions. Therefore, we propose

a new model structure called reverse-time recurrent neural networks (RT-RNN) to better capture

the temporal information contained in the future disturbance predictions.

Traditional recurrent neural networks (RNN) are a type of neural network that use a time-

based structure to take advantage of temporal information in the data. RNNs take inputs from the

current time step and from previous time steps that are passed through the RNN layer as a hidden

state. RNNs perform significantly better than conventional feed-forward neural networks (FFNN)

on sequential data applications such as forecasting and natural language processing [34].

In our case, however, the input features do not contain data from previous time steps, but rather

from future disturbances like weather, electricity price, and setpoint preferences. Nevertheless,

future disturbances can also benefit from being used in RNNs, as is in the case of bidirectional

RNNs, which use both previous and future datapoints to make a prediction at the current time

step [35]. We apply this idea to Behavioral Cloning in the form of reverse-time RNNs, where the

RNN is structured such that time is reversed, and future disturbance prediction information flows
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Reverse-Time Recurrent Neural Network (RT-RNN)
RNN 
Layer

Concatenate Output Layer

Control 
Action

Future 
Disturbances

Remaining Input
Parameters

Fully Connected

Figure 3: Reverse-Time Recurrent Neural Network Structure. Future disturbance parameter groupings containing

weather, electricity price, and setpoint information are input into the reverse RNN layer where information flow

backward in time over MPC horizon. These are concatenated with inputs from the other parameters and then to

the output layer.

backward in time to help predict the optimal control at the current time step.

Since RNNs contain feedback loops to store memory, they can experience vanishing or exploding

gradients if the sequences are too long. Thus, vanilla RNNs are often unable to learn long term

temporal dependencies. To solve this, RNNs have been improved with model structures like gated

recurrent units (GRU) [36] and long short-term memory (LSTM) [37], which are capable of storing a

separate memory state that may be important in a long sequence. These structures can be equally

applied for RT-RNNs, where the memory state can instead be termed the prediction state. For

example, if a setpoint change occurs several hours in the future, the prediction state can store this

information without it being potentially lost due to vanishing gradients over many time steps in the

RNN. While LSTMs often outperform GRUs due to a more complex structure, GRUs can be more

suited for memory constrained applications or on smaller datasets [38]. Therefore, in Sec. 4.4.1,

we test our model structure using both layer types against three other supervised learning methods

to show that RT-RNNs can provide the best performance while maintaining minimal memory and

processing requirements.

Our proposed RT-RNN structure is given in Fig. 3. The time-dependent parameter groupings

that contain future disturbance information are input into the RNN layer. The information then

flows backward in time, from the end of the MPC horizon to the current time step. The output of

this layer is concatenated with the output of the remaining input parameters put through a fully

connected layer. The final output layer contains a sigmoid activation function to give the binary

control action prediction. In the case of continuous control, a linear activation function can also be

used.
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3.4. Model Training and Implementation

To train the Behavioral Cloning agent, we first generate a large amount of training data using

the DAgger algorithm. For each episode, new building and heat pump model parameters are

randomly generated and new operating conditions are selected from a large source of weather, cost,

and setpoint data. Our specific implementation of the DAgger algorithm is given by Algorithm 1.

Algorithm 1: MPC-Guided DAgger

Simulate a set of randomized buildings, weather, and electricity tariffs using MPC;

Train Behavioral Cloning agent on resulting normalized dataset;

while Jappr − JMPC ≤ ε do
Simulate new set of randomized buildings, weather, and electricity tariffs controlled

using the agent;

At each time step, solve MPC and add (but do not implement) the inputs and solutions

to training dataset;

Retrain agent with additional training data;

Evaluate agent on test conditions and calculate total objective value Jappr;

end

After the data is generated, we optimize the policy parameterization by tuning hyperparameters

to achieve the highest control prediction accuracy while minimizing the model’s required memory

consumption. This training is done offline and must only be done once per class of building system

architectures.

Next, the optimal model is implemented in a test simulation on a sample of buildings intended

to mimic real-world operation. To implement the controller, a homeowner buys and installs a low-

cost thermostat containing a PLC with the Behavioral Cloning agent installed. The thermostat

then collects various operational data over a period of time that can be used to automatically

derive a data-driven reduced order building model using the method given in [5]. These model

parameters, combined with weather forecasts and data collected by the thermostat, are then used

as inputs to the Behavioral Cloning agent to provide online approximately optimal control. This test

simulation contains buildings with diverse thermodynamics and heat pump performances, various

thermostat setpoint schedules obtained from real data, and different electricity price schedules, all

of which were not originally included in the training dataset. By testing on these diverse operating

conditions, we show our Behavioral Cloning approach leads to improved versatility and minimal-

effort implementation compared to the current state-of-the-art building AMPC [15].

4. Case Study Formulation

While our methodology is designed to be applicable to a wide range of residential building types

and heat pump configurations, we test our methodology on one of the most common residential
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configurations: a detached home served by a single-stage air-to-air heat pump. However, many heat

pump MPC formulations consist of similar structures, and thus it is straightforward to adapt our

methodology to other system types for both heating and cooling.

4.1. Model Definition

To be able to model each system without significant manual effort, we use a data-driven grey-box

model, where each of the building and heat pump model parameters can be automatically identified

from collected data. While deriving these building parameters sometimes requires data collected

from a variety of sensors throughout the building [39] or from building energy simulations [40], we

use the identification and control method presented in [5], which is designed to require minimal

hardware installation cost and effort.

The building model can be represented by a thermal resistance-capacitance (RC) circuit. RC

models are widely used in the building control literature and are applicable to a wide range of

buildings [30]. In addition, multi-state models can capture the increased energy storage capacity

of the building’s construction [41]. We use a two-state model that includes different states for the

building’s indoor air and the building’s construction and includes effects from solar irradiation,

given by [5],

CaṪa(t) =
T∞ − Ta(t)

Ra∞
+
Tm(t)− Ta(t)

Ram

+ αaG+QHP

CmṪm(t) =
T∞ − Tm(t)

Rm∞
+
Ta(t)− Tm(t)

Ram

+ αmG,

(1)

where the subscript a refers to the indoor air, m to the building mass, and ∞ to the outside air.

The resistance and capacitance values are given by R and C, respectively, while the temperature

of the states is given by T . Solar heat gains are included using the solar irradiation G and the

solar absorption factor α. Based on an analysis of manufacturer performance data [42], the heat

transfer from the heat pump QHP are assumed to vary linearly based on the indoor and outdoor

temperature, given by,

QHP,a = u(β1(T∞ − Ta) + β2). (2)

where βi are data-driven heat pump specific model parameters and u denotes the binary control

input for whether the heat pump is on or off.

Finally, based on an analysis of data in [42] the power consumption P is assumed to be a constant

γ multiplied by the control input,

P = γu

For use in MPC, the model is discretized with time step ∆t into the state space form indexed by k,

xk+1 = Axk +Bkuk + Ewk, (3)
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where,

x =
[Ta,k
Tm,k

]
, uk =

[
uk

]
, wk =

[
T∞,k

Gk

]

A =

[
1− ∆t

Ca

(
1

Ra∞
+ 1

Ram

)
∆t

CaRam

∆t
CmRam

1− ∆t
Cm

(
1

Rm∞
+ 1

Ram

) ]
,

Bk =

[
∆t
Ca

(
β1(T∞,k − Tset,k) + β2

)
0

]
,

E =

[
∆t

Ra∞Ca

αa∆t
Ca

∆t
Rm∞Cm

αm∆t
Cm

]
.

4.2. Control Formulation

The controller seeks to minimize the time-varying electricity cost while maintaining thermal

comfort in response to varying thermostat setpoints decided by the resident. We define thermal

comfort as a temperature range above and below the thermostat setpoint. Since we assume that

setpoints are customizable by the resident, to maintain feasibility we penalize violations outside of

this thermal comfort band. These violations are enforced by the constraints,

Tk+j ≤ Tset,k+j + Tδ,k+j + T pen,k+j ∀j ∈ N

Tk+j ≥ Tset,k+j − T iδ,k+j − T pen,k+j ∀j ∈ N.
(4)

Here, Tpen,k+j is the comfort violation decision variable, Tδ,k+j is the resident’s specified comfort

band above or below the setpoint, Tset,k+j is the resident’s specified setpoint, and N represents the

prediction horizon indexed by j. Note that the comfort band can also vary based on time of day

and can be determined by whether the thermostat is in home, away, or sleep modes.

Next, heat pumps have inherent minimum on and off times to prevent short cycling and the

resulting compressor damage and efficiency reduction. To enforce these minimum cycle times, we

add the following constraints,

uk+j − uk+j−1 = v↑k+j − v
↓
k+j ∀j ∈ N (5)

k+j∑
i=k+j−tmin on

v↑i ≤ uk+j ∀j ∈ N (6)

k+j∑
i=k+j−tmin off

v↓i ≤ 1− uk+j ∀j ∈ N. (7)

Here, v↑i and v↓i are binary variables that are unity if the heat pump turned on or off, respectively, at

the time step i. The parameters tmin, on and tmin, off are the minimum on and off times, respectively.
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The objective function combines the time-varying cost of electricity πe.j with the upper and

lower thermal comfort penalties, πpen and πpen,

min
uk+j

J =
N−1∑
j=0

[
πe,k+jPk+j + πpenT pen,k+j + πpenT pen,k+j

]
(8)

The final MPC problem is therefore,

min
uk+j

N−1∑
j=0

[
πe,k+jPk+j + πpenT pen,k+j + πpenT pen,k+j

]
(9a)

subject to

xk+j+1 = Axk+j +Bk+juk+j + Ewk+j ∀j ∈ N (9b)

Ta,k+j ≤ Tset,k+j + Tδ,k+j + T pen,k+j ∀j ∈ N (9c)

Ta,k+j ≥ Tset,k+j − T iδ,k+j − T pen,k+j ∀j ∈ N (9d)

uk+j − uk+j−1 = v↑k+j − v
↓
k+j ∀j ∈ N (9e)

k+j∑
i=k+j−tmin on

v↑i ≤ uk+j ∀j ∈ N (9f)

k+j∑
i=k+j−tmin off

v↓i ≤ 1− uk+j ∀j ∈ N. (9g)

(9h)

This gives the optimal MPC policy µ∗mpc(s) that maps the total state, which contains the building

parameters and disturbance forecasts, to the optimal control u∗k,

u∗k = µ∗(s) = µ∗(xk, A,Bk+j, E, γ, Tset,k+j, Tδ,k+j, πe,k+j, πpen, πpen).

where µ∗(s) is found numerically by solving the optimization problem.

4.3. Constraint Informed Parameter Groupings (CIPG)

In this section we derive the specific parameter groupings that reformulate the original state

into the more generalizable state representation. Information to each of the following four classes

should be characterized by at least one parameter grouping: (1) the building and heat pump model,

(2) weather effects, (3) the storage medium and thermal comfort, and (4) the cost signal. For the

first grouping, the building’s thermodynamic parameters R, C are simply grouped as the entries of

the A state space matrix defined in Eq. 3. Though this initial grouping is quite straightforward, it

illustrates the point that it is not the parameter values themselves that govern the MPC solution,

but the ratios of the parameters instead. Following the notation of the Buckingham Pi Theorem
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where Π refers to a grouped parameter, the building model parameter groupings are given by the

vector,

Π1 = [a11, a12, a21, a22], (10)

where the subscripts denote the entries in the corresponding state space matrix.

Next, the heat pump’s effect on the indoor air temperature comes from the B matrix defined in

Eq. 3. Since the heat output changes based on the indoor and outdoor air temperature, this param-

eter grouping is indexed by j over the MPC horizon N . The normalized parameter corresponding

to the heat pump is given as,

Π2,k+j = b11,k+j ∀j ∈ N. (11)

The weather’s effect on the solution comes from the forecasts for outdoor temperature and solar

irradiation and the corresponding thermal properties of the home grouped in the C matrix defined

in Eq. 3. We combine these into a matrix indexed over the MPC horizon,

Π3,k+j =


c11T∞,k+j

c21T∞,k+j

c12Gk+j

c22Gk+j

 , ∀j ∈ N. (12)

We reformulate the thermal comfort constraints by taking the distance between the temperature

at the current time step, Ta,0, and the upper and lower thermal comfort bounds indexed over the

control horizon. Here, the upper and lower thermal comfort bounds represent the storage medium

limits, and the current temperature represents the current storage state, and is defined such that

value will be zero if Ta,0 is at the lower comfort bound and unity if it is at the upper comfort bound,

given by,

Π4,k+j =
Ta,k − (Tset,k+j − Tδ,k+j)

2Tδ,k+j

∀j ∈ N. (13)

The normalized parameter corresponding to cost signal is the ratio between the electricity price

at each time step over the control horizon and the average of the upper and lower thermal comfort

penalty parameters, representing the tradeoff between cost savings and thermal comfort. It is then

multiplied by γ to give the total energy cost of turning the heat pump on. This grouping is indexed

over the MPC horizon and given by,

Π5,k+j =
2γπe,k+j

T pen,k+j + T pen,k+j

∀j ∈ N. (14)

Finally, we implement the minimum heat pump on and off time constraints by supplying the

previous control values. Since we assume a 15-minute minimum heat pump cycle time and a five
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minute time step, this becomes three previous control steps,

Π6,k = [uk−1, uk−2, uk−3] (15)

The result is a new functional form for the MPC policy that is a function of the reformulated

state (sΠ) that contains the parameter groupings and spans a reduced parameter space,

u∗ = µ∗(sΠ) = µ∗(Π1,Π2,k,Π3,k,Π4,k,Π5,k,Π6,k). (16)

4.4. Performance Evaluation

We evaluate the Behavioral Cloning agent in two steps: control prediction accuracy to determine

the optimal Behavioral Cloning model structure and control simulation performance to determine

its comparison to existing building control policies.

4.4.1. Policy Structure Optimization

We first evaluate control prediction accuracy to select the optimal policy structure and hyper-

parameter configuration. We compare the control prediction performance and computational re-

quirements of the RT-RNN to three more conventional supervised learning techniques: (1) FFNNs,

(2) Random Forest, and (3) Extreme Gradient Boosting (XGBoost). FFNNs represent the most

basic deep neural network architecture, and pass information forward from the input features to the

output prediction through multiple fully connected layers. Each node in a layer contains a vector

of weights for each of the nodes in the previous layer and a bias parameter. The value of each node

is then put through a nonlinear activation function to allow the network approximate nonlinear

functions.

Random forest is an ensemble based supervised learning method that uses an ensemble of many

different decision trees to classify data [43]. Different decision trees are fit based on random sub-

samples of the dataset, and each tree’s output votes toward the final model’s decision. By taking

the majority vote of many decision trees, random forest reduces the potential for overfitting that

is common with single decision trees. Both the memory requirement and performance of random

forest depends on key hyperparameters that govern the number and size of the trees and must be

optimized.

Extreme Gradient Boosting (XGBoost) is similar to random forest in that it uses an ensemble

of decision trees, but it differs based on how the trees are created [44]. Instead of creating each tree

independently, XGBoost uses extreme gradient boosting to iteratively improve a decision tree using

more trees. At each iteration, the algorithm constructs a new tree to predict the error resulting

from the previous ensemble of trees and then adds the new tree to the ensemble using a scaling

factor called the learning rate. By doing so, the algorithm ”boosts” the prediction at each step

until no more performance gains can be made.
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While more model parameters can theoretically learn more complex representations of the input

data, this comes at the cost of larger model and higher memory requirements. To analyze this

tradeoff, we determine each machine learning model’s optimal hyperparameters through a grid

search with 25 iterations for each model type. For each iteration, we log the model size and the

validation prediction accuracy. Model size refers to the memory requirements to store each of the

individual model parameters and is measured in kilobytes. Validation prediction accuracy refers to

the model’s prediction accuracy where the validation data is comprised of a random selection of

10% of the buildings simulated in the training data.

4.4.2. Control Simulation Performance

After selecting the best predicting model, the actual control performance is found through

control simulations. We define control performance as the cumulative MPC objective function over

a five-day test simulation on a set of buildings B, operating conditions, and electricity tariffs that

were not included in the original training dataset, represented by the equation,

B∑
b=0

K∑
k=0

[
πe,kP

b
k + πpenT

b
pen,k + πpenT

b

pen,k

]
(17)

Here k is the time step and K is the total number of time steps in the five-day test. Since setpoint

preference and building thermal capacity can have a strong effect on MPC benefits, the model is

tested on ten different buildings indexed by b to give a more holistic evaluation of model performance

and generalization. Final computational requirements are logged during this simulation and include

the processing speed and memory requirements required to store and run the model.

We use these metrics to compare the Behavioral Cloning control to a baseline standard rule-

based control policy and the true MPC policy. In this case, the rule-based control policy is the

typical thermostat’s hysteresis control, where the heat pump turns on when the indoor temperature

falls below the lower comfort bound and turns off when the temperature rises above the upper

comfort bound. Note that this rule-based policy uses variable setpoint schedules that may include

energy-saving setbacks when the occupant is away or asleep. In contrast, the MPC policy provides

the target objective function value that Behavioral Cloning is trying to imitate.

5. Case Study Results

5.1. DAgger Training Data Generation

At each iteration of the DAgger algorithm, the system simulates new buildings with different

random R, C, and α values and different heat pump performance coefficients. Various setpoint

schedules were obtained from the Ecobee Donate Your Data dataset [45], which contains smart

thermostat setpoint schedules from thousands of homes throughout the country. Thermal comfort

band schedules were set based on whether those thermostats were in ”home”, ”sleep”, or ”away”

modes. We assume the comfort band is ± .5◦C for ”home”, ± 1.0◦C for ”sleep”, and no limit when
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”away”. Electricity price schedules were obtained from New York State Electric and Gas (NYSEG)

[46], ConEdison (ConEd) [47], and Xcel Energy [48], three utilities that offer time-of-use rates

during winter. Weather data comes from various days in January and February 2019 for New York

City [49]. Note that while our method provides some level of generalization, if the climate varies

significantly from training case, more simulations specific to the target climate may be required.

We generated 15 days of training data, each containing 10 randomized buildings, heat pumps,

and setpoint schedules. For each of the random buildings, the thermodynamic model parameters

were randomly selected from a range of ±25% around the values used in [5]. This totals to 45,760

samples of data used for training. To show the benefit of both the constraint-informed parameter

normalization and the DAgger algorithm, we trained a set of models on three different training data

representations. The first (CIPG + DAgger) is the aforementioned dataset generated by DAgger

and normalized using our constraint-informed parameter groupings. The second (CIPG + AMPC)

uses our constraint-informed parameter groupings, but instead is trained to approximate the closed

loop MPC simulations and thus contains no information outside of the optimal control trajectory.

The third (No Parameter Groupings + DAgger) contains data from the DAgger-generated dataset

that is independently normalized. In other words, the third dataset uses only the conventional

machine learning approach of scaling each individual input variable to have zero mean and unit

variance, rather than our approach of first creating CIPGs and then scaling.

To compare the datasets, we trained 25 RT-RNNs for each dataset using various hyperparameter

combinations to find the combination that provided the highest prediction accuracy on validation

data. We then tested each dataset’s best model in a control simulation containing new conditions

outside of the training dataset. Control performances for each dataset are shown in Fig. 4.

There are two important findings from these results. First, combining the features into parame-

ter groupings in CIPG + DAgger provides a three percentage point increase in validation prediction

accuracy over No Parameter Groupings + DAgger, meaning that it has an improved ability to gen-

eralize outside of the training data distribution. While there is no significant difference in electricity

cost, the improved prediction accuracy translates to significantly reduced comfort violations. Sec-

ond, despite lower validation accuracy, Behavioral Cloning trained with DAgger has an order of

magnitude better control performance than the AMPC model, which was trained to approximate

closed loop MPC. The higher accuracy on the AMPC dataset is somewhat misleading and does

not translate to better control performance. Since it is trained on closed loop MPC simulations

the data is more homogeneous, and the indoor temperature is always within the thermal comfort

limits. This contrasts with the DAgger dataset, which has data across a range of indoor tempera-

tures, particularly from early iterations when the model does not perform well. The implication is

that while it is easier to fit a more homogenous dataset, the AMPC model has insufficient data to

correct itself if it strays from the optimal trajectory, and the result is a model with no knowledge

that comfort violations are undesirable.
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Figure 4: Per-unit Control Objectives (lower is better) and Validation Prediction Accuracy (higher is better) for (1)

constraint informed parameter groupings (CIPG) with DAgger training data, (2) CIPG and trained to approximate

closed loop MPC (AMPC), and (3) CIPG with DAgger training data. When combined, our contributions, CIPG

and DAgger, provide more stability and lower costs.

5.2. Optimal Behavioral Cloning model structure

Fig. 5 gives the results of the hyperparameter grid search in terms of validation accuracy and

model size as presented in Sec. 4.4.1. The worst performers were the feed-forward neural network

and random forest, each requiring high memory requirements with only marginal performance

increases from more complex models. XGBoost and the LSTM Reverse-time Recurrent Neural

Network (RT-RNN) performed similarly, while the GRU RT-RNN performed the best. Therefore,

for our final Behavioral Cloning agent we chose the GRU RT-RNN configuration with the highest

validation prediction accuracy encircled in Fig. 5.

The optimal model configuration for the selected RT-RNN encircled in Fig. 5 contains one

GRU layer with 26 nodes and 7 channels corresponding to each of the parameter groupings that

are indexed over the MPC control horizon (Π2 through Π7). The previous control values (Π5) are

input to the model through a 1-node layer with ReLU activation function [50]. The outputs of

these layers are concatenated with the building model parameters (Π1) and connected to a 25 node

fully connected layer with ReLU activation function. It is then connected to the output layer with

sigmoid activation to give the binary control value prediction. Other training hyperparameters are

summarized in Tab. 1.

5.3. Final Control Simulation Results

Using the selected optimal RT-RNN model configuration, we analyzed the control performance

compared to a baseline thermostat control and the target true MPC control for two scenarios: (1)
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Figure 5: Validation accuracy versus model size for each of the four tested machine learning algorithms. The reverse-

time RNN (RT-RNN) models largely outperform the other models on both metrics: It can maintain the highest

prediction accuracy with a very small memory requirement. The circled marker denotes the chosen model.

Table 1: Results and training parameters for the optimal RT-RNN configuration

Model Type GRU

Batch Size 512

Optimizer Adam [51]

Training Epochs 24

Model Size 106 kB

Validation Accuracy 94.5%

heating in New York City and (2) cooling in Denver, CO. For heating performance, we use the more

common time-of-use electricity rate structure with tiers for off-, mid-, and on-peak. For cooling, we

use a more variable real-time price based on the day-ahead market that changes every hour [52]. Tab.

2 gives the average processing time, memory requirements, and the average per building electricity

cost and comfort violation on the test conditions. The simulations were computed on a Raspberry

Pi Zero, which contains a 1GHz single core processor with 512 MB of RAM. Behavioral cloning only

requires .1% of the memory of MPC and can operate around 93,000x faster, all while maintaining a

similarly low electricity cost and only a modest increase in comfort violations. Moreover, on average

the Raspberry Pi, which contains more computing hardware than a typical PLC, was unable to even

solve the MPC within the required time step (300 seconds).

Fig. 6 depicts each building’s percent improvement in electricity cost and thermal comfort for

Behavioral Cloning and MPC compared to the baseline rule-based approach. On average, MPC
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Table 2: Control Performance for 10 buildings over a five-day span in both heating and cooling seasons computed

on a Raspberry Pi Zero.

Policy Scenario Objective

Value

Electricity

Cost

Comfort

Violation

Memory

Require-

ment

Computational

Time Per Step

Rule-Based

(baseline)

Heating

Cooling

270.79

179.27

$49.45

$108.06

221.34

71.21
∼ 0 5e-4 s

Behavioral

Cloning

Heating

Cooling

161.12

124.08

$42.31

$82.78

118.81

41.30
176 kB 3.3e-3 s

MPC

(target)

Heating

Cooling

144.04

119.24

$42.46

$77.96

101.58

41.27
150,000 kB 309 s

and Behavioral Cloning perform similarly, with broad improvements to both electricity cost and

thermal comfort compared to the baseline. These improvements can vary significantly from building

to building based on the setpoint schedules and how well the building is insulated.

Fig. 7 presents the temperature trajectories for a representative sample of the buildings during

winter for each of the control policies: baseline rule-based control, Behavioral Cloning, and MPC.

This sample shows the various operating conditions that occur in the overall simulation: small and

large setpoint changes and small and large amounts of time when the resident is away. Similar

to MPC, Behavioral Cloning maintains the temperature within the lower range of the acceptable

thermal comfort band, while still able to effectively preheat the building in preparation for large

setpoint changes. These control plots emphasize that though the Behavioral Cloning does not

contain any explicit thermodynamic equations or solve any optimization problem, it is able to

generalize to new operating conditions and changing user preferences like that of MPC. Each of

these setpoint schedules and building-heat pump thermodynamics were not originally included in

the training dataset.

6. Conclusion

In this paper, we have presented a highly scalable and easy-to-install method for implementing

Behavioral Cloning of model predictive control (MPC) on low-cost hardware in many different

residential buildings. Our method significantly reduces the installation effort and cost compared to

previous approximate MPC studies by requiring the Behavioral Cloning agent to be trained only

once for many buildings and operating conditions, rather than needing to be retrained for each

specific building it will be implemented on. In addition, our method can adapt to new setpoint

schedules and different time-of-use electricity prices, which consistently occur in online operation.
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Figure 6: Despite requiring orders of magnitude less computational time, objective values improvements over the

baseline rule-based approach for each building using Behavioral Cloning show similar performance improvements

to that of MPC. Differences in the benefits between buildings are due to varying setpoint schedules and the level

of building insulation. Note that Building 6 had near zero comfort costs during the heating season for all three

controllers, and thus the percent change is not included.

Simulation results across a range of building parameters, setpoint schedules, and electricity

price schedules show that our method provides very similar average efficiency and thermal comfort

improvements to that of MPC. Finally, our method only requires .1% of the memory requirements of

conventional MPC and can provide the optimal control around 93,000x faster, drastically reducing

the computational hardware cost for implementation.

Encouraging building owners to retrofit fossil-fuel systems in favor of heat pumps and to adopt

smart building climate control has been, and will likely continue to be, a challenging problem. High

capital costs combined with building owners’ lack of sufficient knowledge act as barriers to more

widespread adoption of clean and efficient heating and cooling. Our method for Behavioral Cloning

of MPC can potentially mitigate these barriers by providing a low-cost plug-and-play solution for

efficient and flexible heating and cooling control.
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Figure 7: Test control plots for a representative sample of the buildings under each control method for the heating

season. Both MPC and Behavioral Cloning can more effectively take advantage of varying setpoint schedules and

comfort bands by reducing consumption during times the resident is away, and optimally preheating to avoid comfort

violations.
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