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a b s t r a c t

Multivariate regression techniques are commonly applied to explore the associations
between large numbers of outcomes and predictors. In real-world applications, the out-
comes are often of mixed types, including continuous measurements, binary indicators,
and counts, and the observations may also be incomplete. Building upon the recent ad-
vances in mixed-outcome modeling and sparse matrix factorization, generalized co-sparse
factor regression (GOFAR) is proposed, which utilizes the flexible vector generalized
linear model framework and encodes the outcome dependency through a sparse singular
value decomposition (SSVD) of the integrated natural parameter matrix. To avoid the
estimation of the notoriously difficult joint SSVD, GOFAR proposes both sequential and
parallel unit-rank estimation procedures. By combining the ideas of alternating convex
search and majorization–minimization, an efficient algorithm is developed to solve the
sparse unit-rank problem and implemented in the R package gofar. Extensive simulation
studies and two real-world applications demonstrate the effectiveness of the proposed
approach.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Advances in science and technology have led to exponential growth in the collection of different types of large data in
arious fields, including healthcare, biology, economics, and finance. Many problems of interest amount to exploring the
ssociation between multivariate outcomes/responses and multivariate predictors/features. For example, in an ongoing
roject of the Framingham Heart Study (Cupples et al., 2007), researchers are interested in understanding the effect of
ingle nucleotide polymorphisms on multiple phenotypes related to cardiovascular disease. Some phenotypes are binary,
epicting medical conditions, whereas others, such as cholesterol levels, are continuous. In the Longitudinal Study of
ging (LSOA) (Stanziano et al., 2010), it is of interest to understand the association between future health status (memory,
epression, cognitive ability) and predictors such as demographics, past medical conditions, and daily activities. Here some
utcome measurements, such as memory score, are continuous, while others are of the categorical/indicator type.
As exemplified by the aforementioned problems, the outcome variables collected in real-world studies are often of

ixed types. Moreover, the data can be of large dimensionality and may contain a substantial number of missing values.
t is apparent that classical multivariate linear regression (MLR) is no longer applicable, and the approach of separately

✩ For this work, there exists supplementary materials providing all the proofs, reproducible simulation code, additional plots, tables showing
model evaluation, and the application data to demonstrate model efficacy.
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regressing each response using the predictors via a generalized linear model may also perform poorly because it ignores
the potential dependency of the mixed outcomes. Our main objective in this paper is thus to tackle the problem of
modeling mixed and incomplete outcomes with large-scale data.

Many existing multivariate regression methods focus on continuous outcomes. Principal component regression (Jolliffe,
982) and multivariate ridge regression (Hoerl and Kennard, 1970; Brown and Zidek, 1980) focus on tackling the problem
f multicollinearity among predictors. Reduced-rank regression (Anderson, 1951; Velu and Reinsel, 2013; Bunea et al.,
011) achieves dimension reduction and information sharing by assuming that all the responses are related to a small set
f latent factors. Sparse (Tibshirani, 1996) multivariate regression models (Turlach et al., 2005; Peng et al., 2010; Obozinski
t al., 2011) take advantage of certain shared sparsity patterns in the association structure. Regularized multivariate
odels often boil down to matrix approximation problems; see, e.g., singular-value penalized models (Yuan et al., 2007;
egahban andWainwright, 2011; Koltchinskii et al., 2011; Chen et al., 2013), and sparse matrix factorization models (Chen
t al., 2012; Chen and Huang, 2012; Bunea et al., 2012; Ma and Sun, 2014; Mishra et al., 2017).
Until recently, only a handful of methods have attempted to solve the modeling challenge with non-Gaussian and

ixed outcomes. Cox and Wermuth (1992) and Fitzmaurice and Laird (1995) proposed a likelihood-based approach for
ivariate responses in which one variable is discrete and the other is continuous. Prentice and Zhao (1991) and Zhao
t al. (1992) utilized the generalized estimating equations framework to obtain mean and covariance estimates. She
2013) and Yee and Hastie (2003) studied the reduced-rank vector generalized linear model (RR-VGLM), assuming the
utcomes are of the same type and are from an exponential family distribution (Jørgensen, 1987). Recently, Luo et al.
2018) proposed mixed-outcome reduced-rank regression (mRRR), extending the RR-VGLM to the more realistic scenario of
mixed and incomplete outcomes. However, the method only considered rank reduction, rendering it inapplicable when
many redundant or irrelevant variables are present.

Building upon the recent advances in mixed-outcome modeling and sparse matrix factorization, we propose generalized
o-sparse factor regression, which utilizes the flexible vector generalized linear model framework (She, 2013; Luo et al.,
018) and encodes the outcome dependency through an appealing sparse singular value decomposition (SVD) of the
ntegrated natural parameter matrix. The co-sparse SVD structure in our model, i.e., the fact that both the left and the
ight singular vectors are sparse, implies a flexible dependency pattern between the outcomes and the predictors: on one
and, the model allows a few latent predictors to be constructed from possibly different subsets of the original predictors,
nd on the other hand, the model allows the responses to be associated with possibly different subsets of the predictors.
he model also covers the generalized matrix completion problem under unsupervised learning. Motivated by Chen et al.
2012) and Mishra et al. (2017), we propose computationally efficient divide-and-conquer procedures to conduct model
stimation. The main idea is to extract unit-rank components of the natural parameter matrix in either a sequential or
parallel way, thus avoiding the difficult joint estimation alternative. Each step solves a generalized co-sparse unit-rank
stimation problem, and these problems differ only in their offset terms, which are designed to account for the effects
f other non-targeted unit-rank components. Our model also allows us to deal with the missing values in the same way
s in the celebrated matrix completion. To the best of our knowledge, our approach is among the first to enable both
ariable selection and latent factor modeling in analyzing incomplete and mixed outcomes.
The rest of the paper is organized as follows. We propose a generalized co-sparse factor regression model in Section 2.

ection 3 proposes divide-and-conquer estimation procedures, which reduce the problem to a set of generalized unit-rank
stimation problems; these are then studied in detail in Section 3.3. We study the large sample property of the estimator
n a unit step in Section 4. Section 5 shows the effectiveness of the proposed procedures via extensive simulation studies.
wo applications, one on the longitudinal study of aging and the other on sound annotation, are presented in Section 6.
e provide some concluding remarks in Section 7. All the proofs are provided in Supplementary Materials.

. Generalized co-sparse factor regression

Consider the multivariate regression setup with n instances of independent observations, forming a response/outcome
atrix Y = [yik]n×q = [y1, . . . , yn]T ∈ Rn×q, a predictor/feature matrix X = [x1, . . . , xn]T ∈ Rn×p, and a control variable
atrix Z = [z1, . . . , zn]T ∈ Rn×pz . Z consists of a set of variables that should always be included in the model and are thus
ot regularized. Depending on the application, we consider experimental input such as age or gender (factor variable) as
ontrol variables.
We assume that each of the response variables follows a distribution in the exponential-dispersion family (Jørgensen,

987). The probability density function of the ith entry in the kth outcome, yik, is given by

f (yik; θ∗ik, φ
∗

k ) = exp
{
yikθ∗ik − bk(θ∗ik)

ak(φ∗k )
+ ck(yik;φ∗k )

}
, (1)

where θ∗ik is the natural parameter, φ∗k ∈ R+ is the dispersion parameter, and {ak(·), bk(·), ck(·)} are functions determined by
he specific distribution; see Table 1 in Supplementary Materials for more details on some of the standard distributions
n the exponential family, e.g., Gaussian, Poisson and Bernoulli. We collectively denote the natural parameters of Y by
∗
= [θ∗ik]n×q ∈ Rn×q and the dispersion parameters by Φ∗ = diag[a1(φ∗1 ), . . . , aq(φ

∗
q )]. Let gk = (b′k)

−1 be the canonical
link function. Consequently, E(y ) = b′ (θ∗) = g−1(θ∗), where b′ (·) denotes the derivative function of b (·).
ik k ik k ik k k
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We model the natural parameter matrix Θ∗ as

Θ(C∗, β∗,O) = O+ Zβ∗ + XC∗, (2)

where O = [oik]n×q ∈ Rn×q is a fixed offset term, C∗ = [c∗1, . . . , c
∗
q] ∈ Rp×q is the coefficient matrix corresponding to the

predictors, and β = [β∗1, . . . ,β
∗

q] ∈ Rpz×q is the coefficient matrix corresponding to the control variables. The intercept is
included by taking the first column of Z to be 1n, the n× 1 vector of ones. For simplicity, we may write Θ(C∗, β∗,O) as
Θ∗ if no confusion arises.

To proceed further, we define some notations. The kth column of Θ∗ is denoted Θ∗.k, and consequently bk(Θ∗.k) =
[bk(θ∗ik), . . . , bk(θ

∗

nk)]
T. The element-wise derivative vector of bk(Θ∗.k) is b′k(Θ

∗

.k) = [b
′

k(θ
∗

ik), . . . , b
′

k(θ
∗

nk)]
T. We then define

B(Θ∗) = [b1(Θ∗.1), . . . , bq(Θ∗.q)], B′(Θ∗) = [b′1(Θ
∗

.1), . . . , b
′

q(Θ
∗

.q)]. (3)

Similarly, B′′(Θ∗) denotes the second-order derivative of B(Θ∗).
We assume the outcomes are conditionally independent given X and Z. Then the joint negative log-likelihood function

is given by

L(Θ∗,Φ∗) = −
n∑

i=1

q∑
k=1

ℓk(θ∗ik, φ
∗

k ), (4)

where ℓk(θ∗ik, φ
∗

k ) = log f (yik; θ∗ik, φ
∗

k ). Using the definition from (3), a convenient representation of (4) is given by

L(Θ∗,Φ∗) = − tr(YTΘ∗Φ−1∗)+ tr(JTB(Θ∗)Φ−1∗), (5)

where J = 1n×q and tr(A) is the trace of a square matrix A. In the presence of missing entries in Y, let us define an index
set of the observed outcomes as

Ω = {(i, k); yik is observed, i = 1, . . . , n, k = 1, . . . , q},

and denote the projection of Y ontoΩ by Ỹ = PΩ (Y), where ỹik = yik for any (i, k) ∈ Ω and ỹik = 0 otherwise. Accordingly,
the negative log-likelihood function with incomplete data is given by

L(Θ∗,Φ∗) = − tr(̃YTΘ∗Φ−1∗)+ tr(̃JTB(Θ∗)Φ−1∗),

where J̃ = PΩ (J). Henceforth, we mainly focus on the complete data case (5) when presenting our proposed model, as
the extension to the missing data case by and large only requires replacing Y by Ỹ and J by J̃.

Without imposing additional structural assumptions on the parameters, maximum likelihood estimation, i.e., minimiz-
ing L(Θ,Φ) with respect to {C, β,Φ} for Θ = O+ XC+ Zβ, does not work in high-dimensional settings. The marginal
modeling approach, i.e., the fitting of a univariate generalized linear model (uGLM) (or its regularized version) for each
individual response, would ignore the dependency among the outcomes. The mixed reduced rank regression (mRRR) (Luo
et al., 2018) imposes a rank constraint on C, but its usage is limited as it does not explore variable selection.

We assume that the regression association is driven by a few latent factors, each of which is constructed from a possibly
different subset of the predictors, and, moreover, that each response may be associated with a possibly different subset of
the latent factors. To be specific, this amounts to assuming a co-sparse SVD of C∗ (Mishra et al., 2017), i.e., we decompose
C∗ as

C∗ = U∗D∗V∗T, s.t. U∗TXTXU∗/n = V∗TV∗ = Ir∗ , (6)

where both the left singular vector matrix U∗ = [u∗1, . . . ,u
∗

r∗ ] ∈ Rp×r∗ and the right singular vector matrix V∗ =
[v∗1, . . . , v

∗

r∗ ] ∈ Rq×r are assumed to be sparse, and D = diag{d∗1, . . . , dr∗} ∈ Rr∗×r∗ is the diagonal matrix with the
nonzero singular values on its diagonal. The orthogonality constraints ensuring identifiability suggest that the sample
latent factors, i.e., (1/

√
n)Xu∗k for k = 1, . . . , r∗, are uncorrelated with each other, and the strength of the association

between the latent factors and the multivariate response Y is denoted by the singular values {d∗1, . . . , dr∗}. Fig. 1 shows
a diagram of the proposed model structure. We thus term the proposed model Generalized co-sparse factor regression
(GOFAR).

3. Divide-and-conquer estimation procedures

Rather than jointly estimating all the sparse singular vectors simultaneously, which may necessarily involve identifi-
ability constraints such as orthogonality in optimization (Uematsu et al., 2019), we take a divide-and-conquer approach.
The main idea is to extract the unit-rank components of XC one by one, in either a sequential or a parallel way. In this
way, we are able to divide the main task into a set of simpler unit-rank problems, which we then conquer in Section 3.3.
3
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Fig. 1. GOFAR: Generalized co-sparse factor regression, modeling a multivariate mixed response matrix Y using a predictor matrix X with sparse
singular vector components of the low-rank coefficient matrix C∗ .

3.1. Sequential approach

Motivated by Mishra et al. (2017), we propose to sequentially extract the unit-rank components of C, i.e., (dk,uk, vk), for
k = 1, . . . , r . The resulting method is termed generalized co-sparse factor regression via sequential extraction (GOFAR(S)).

Algorithm 1 and Fig. 2 summarize the computation procedure. In step k = 1, we conduct the following generalized
co-sparse unit-rank estimation (G-CURE),

(d̂1, û1, v̂1, β̂, Φ̂) ≡ argmin
u,d,v,β,Φ

L(Θ,Φ)+ ρ(C; λ), (7)

s.t. C = duvT, uTXTXu/n = vTv = 1,Θ = Θ(C, β,O(1)),

where O(1)
= O (the original offset matrix), and ρ(C; λ) is a sparsity-inducing penalty function with tuning parameter

λ. We discuss the formulation of ρ(C; λ) in Section 3.3.1 and the selection of tuning parameter λ in Section 3.3.4. To
streamline the presentation, for now let us assume that we are able to solve G-CURE and select the tuning parameter λ

suitably. Denote the produced unit-rank solution of C as Ĉ1 = d̂1û1̂vT1.
In the subsequent steps, i.e., for k = 2, . . . , r , we repeat G-CURE each time with an updated offset term,

O(k)
= O+ X

k∑
i=2

Ĉi−1. (8)

In general, the G-CURE problem in the kth step, for k = 1, . . . , r , can be expressed as

(d̂k, ûk, v̂k, β̂, Φ̂) ≡ argmin
u,d,v,β,Φ

L(Θ,Φ)+ ρ(C; λ), (9)

s.t. C = duvT, uTXTXu/n = vTv = 1,Θ = Θ(C, β,O(k)).

e remark that the low-dimensional parameters β and Φ are re-estimated at the intermediate steps, and their final
stimates are obtained from the last step.
The rationale of the proposed procedure can be traced back to the power method for computing SVD. In each step,

hrough the construction of the offset term, the regression effects from the previous steps are adjusted or ‘‘deflated’’ in
rder to enable G-CURE to target a new unit-rank component. The procedure terminates after a pre-specified number of
teps or when d̂k is estimated to be zero.
Algorithm 1 Generalized Co-Sparse Factor Regression via Sequential Extraction

Initialize: β(0), Φ(0), and set the maximum number of steps r ≥ 1, e.g., an upper bound of rank(C).
for k← 1 to r do
(1) Update offset: O(k)

= O+ X
∑k

i=2 Ĉi−1
(2) G-CURE with tuning (see Section 3.3):
(̂dk, ûk, v̂k, β̂, Φ̂) = G-CURE(C, β,Φ;Y,X,O(k), ρ), and Ĉk = d̂kûk̂vkT.
if d̂k = 0 then
Set r̂ = k; k← r;

end if
end for
return Ĉ =

∑r̂
k=1 Ĉk, β̂, Φ̂.
4
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Fig. 2. Estimation procedure for the generalized co-sparse factor regression (GOFAR) via sequential (GOFAR(S)) and parallel (GOFAR(P)) extraction.

3.2. Parallel extraction

When the true rank of C is moderate or high, the above sequential extraction procedure may be time consuming.
his motivates us to also consider generalized co-sparse factor regression via parallel extraction (GOFAR(P)), in which the
onstruction of the offset terms for targeting different unit-rank components is based on some computationally efficient
nitial estimator of C.

We summarize the GOFAR(P) procedure in Algorithm 2 and Fig. 2. Given a desired rank r , we first obtain an initial
stimate of C, denoted C̃, by solving an initialization problem denoted G-INIT(C, β,Φ;Y,X,O, r); see Section 1.3 of

Supplementary Materials for more details. The initial estimates of the unit-rank components are then computed from
the SVD of the regression components X̃C,

C̃ =
r∑

k=1

C̃k = ŨD̃ṼT, s.t. ŨTXTXŨ/n = ṼTṼ = Ir ,

where Ũ = [̃u1, . . . , ũr ] ∈ Rp×r , Ṽ = [̃v1, . . . , ṽr ] ∈ Rq×r , D̃ = diag[̃d1, . . . , d̃r ] ∈ Rr×r , and C̃k = d̃kũk̃vkT.
The required offset terms for targeting different components are computed based on C̃ as

Õ(k)
= O+ X

∑
i̸=k

C̃i, k = 1, . . . , r. (10)

Then, the problems G-CURE(C, β,Φ;Y,X, Õ(k)), k = 1, . . . , r , can be solved in parallel. GOFAR(P) obtains the final estimate
of β and Φ from the output of the rth (last) parallel procedure.

It is clear that the quality of the initial estimator directly affects both the computational efficiency and the model
accuracy of GOFAR(P). In practice, we recommend using either the mixed-outcome reduced-rank estimator proposed
by Luo et al. (2018) when the model dimension is moderate or the lasso estimator when the model dimension is very
high.

Algorithm 2 Generalized Co-sparse Factor Regression via Parallel Extraction
Initialization:

(1) Solve {̃D, Ũ, Ṽ, β̃, Φ̃} = G-INIT(C, β,Φ;Y,X,O, r) and obtain C̃k (Section 1.3 of Supplementary Materials).
(2) Compute offsets: Õ(k)

= O+ X
∑

i̸=k Ĉi, for k = 1, . . . , r .

for k← 1 to r do
G-CURE with tuning (see Section 3.3):
(̂dk, ûk, v̂k, β̂, Φ̂) = G-CURE(C, β,Φ;Y,X, Õ(k), ρ);
Ĉk = d̂kûk̂vkT.

⎫⎪⎬⎪⎭ in parallel

end for
return Ĉ =

∑r
k=1 Ĉk, β̂, Φ̂.

3.3. Generalized co-sparse unit-rank estimation

3.3.1. Choice of penalty function
We denote the generic G-CURE problem as

G-CURE(C, β,Φ;Y,X,O, ρ).
5
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First, we discuss the choice of the penalty function. In this work we use the elastic net penalty and its adaptive version (Zou
and Hastie, 2005; Zou and Zhang, 2009; Mishra et al., 2017), i.e., for the kth step,

ρ(C; λ) = ρ(C;W, λ, α) = αλ∥W ◦ C∥1 + (1− α)λ∥C∥2F . (11)

ere ∥ · ∥1 denotes the ℓ1 norm, the operator ‘‘◦’’ stands for the Hadamard product, W = [wij]p×q is a pre-specified
weighting matrix, λ is a tuning parameter controlling the overall amount of regularization, and α ∈ (0, 1) controls the
relative weights between the two penalty terms. Several other penalties, such as the lasso (α = 1, γ = 0), the adaptive
asso (α = 1, γ > 0), and the elastic net (0 < α < 1, γ = 0), are its special cases.

In the kth step of GOFAR(S) or GOFAR(P), we let Wk = |̃Ck|
−γ

, where γ = 1 and C̃k = d̃kũk̃vTk is an initial estimate of
Ck. As such, wijk = w

(d)
k w

(u)
ik w

(v)
jk , with

w
(d)
k = |̃dk|

−γ
,w(u)

k = [w
(u)
1k , . . . , w

(u)
pk ]

T
= |̃uk|

−γ ,w(v)
k = [w

(v)
1k , . . . , w

(v)
qk ]

T
= |̃vk|−γ . (12)

Compared to lasso, a small amount of ridge penalty in the elastic net allows correlated predictors to be in or out of
the model together, thereby improving the convexity of the problem and enhancing the stability of optimization (Zou and
Hastie, 2005; Mishra et al., 2017); in our work, we fix α = 0.95 and write ρ(C;W, λ, α) = ρ(C;W, λ) for simplicity. Now
we express G-CURE(C, β,Φ;Y,X,O, ρ) as

(d̂, û, v̂, β̂, Φ̂) ≡ argmin
u,d,v,β,Φ

{
Fλ(d,u, v, β,Φ) = L(Θ,Φ)+ ρ(C;W, λ)

}
, (13)

s.t. C = duvT, uTXTXu/n = vTv = 1,Θ = Θ(C, β,O).

3.3.2. A blockwise coordinate descent algorithm
To solve the problem in (13), we propose an iterative algorithm that cycles through a u-step, a v-step, a β-step and a

Φ-step to update the unknown parameters in blocks of (u, d), (v, d), β and Φ, respectively, until convergence. Below we
describe each of these steps in detail.

u-step. For fixed {v, β,Φ} with vTv = 1, we rewrite the objective function (13) in terms of the product variable ǔ = du
to avoid the quadratic constraints. For simplicity, we write Θ(C, β,O) as Θ(C). Motivated by She (2012) and Luo et al.
(2018), we construct a convex surrogate of the objective function (13) with respect to ǔ as follows,

Gλ(a; ǔ) = L(Θ(avT),Φ)+ tr({B′(Θ(ǔvT))}TX(a− ǔ)vTΦ−1)−

tr(JT[B(Θ(avT))− B(Θ(ǔvT))]Φ−1)+
su
2
∥a− ǔ∥22 + ρ(avT;W, λ)

=
su
2
∥a− ǔ−

XT

su
[Y− B′(Θ(ǔvT))]Φ−1v∥22 + ρ(avT;W, λ)+ const, (14)

here su is a scaling factor for the u-step and ‘‘const’’ represents any remaining term that does not depend on the
ptimization variables; in this case, it is a ∈ Rp. It is easy to verify that Gλ(ǔ; ǔ) = Fλ(d,u, v, β,Φ). We show in the

convergence analysis (see Section 3.3.3) that F is majorized by Gλ(a; ǔ) with appropriate scaling factor su. The problem of
minimizing Gλ(a; ǔ) is separable in each entry of the vector a. Hence, following Zou and Hastie (2005), the unique optimal
solution is given by

â = S(ǔ+ XT
[Y− B′(Θ(ǔvT/su))]Φ−1v;

αλvTw(v)w(d)w(u)/su)/{1+ 2λ(1− α)∥v∥22/su}, (15)

where S(t; λ̃) = sign(t)(|t| − λ̃)+ is the elementwise soft-thresholding operator on any t ∈ Rp. Now, using the equality
constraint, i.e., ∥Xu∥2 =

√
n, we can retrieve the individual estimates of (d,u) from â.

v-step. As in the u-step, we rewrite the objective function (13) in terms of the product v̌ = dv. A convex surrogate that
majorizes the objective function (13) with respect to v̌ is constructed as

Hλ(b; v̌) = L(Θ(ubT),Φ)+ tr({B′(Θ(uv̌T))}TXu(b− v̌)TΦ−1)−

tr(JT[B(Θ(ubT))− B(Θ(uv̌T))]Φ−1)+
sv
2
∥b− v̌∥22 + ρ(ubT

;W, λ)

=
sv
2
∥b− v̌−Φ−1[Y− B′(Θ(uv̌T))]T

X
sv

u∥22 + ρ(ubT
;W, λ)+ const, (16)

here sv is a scaling factor for the v-step and b ∈ Rq is the optimization variable. Following the u-step, the unique optimal
solution minimizing Hλ(b; v̌) is given by

b̂ = S(v̌+Φ−1[Y− B′(Θ(uv̌T))]TXu/sv;

αλuTw(u)w(d)w(v)/sv)/{1+ 2λ(1−α)∥u∥22/sv}. (17)

Again, we retrieve the estimates of (d, v) from the equality constraint vTv = 1.
6
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β-step. For fixed C and Φ, denote Θ(β) = Θ(C, β,O). We construct a convex surrogate that majorizes the objective
unction (13) with respect to β as

K (α;β) =L(Θ(α),Φ)+
sβ
2
∥α− β∥22 + tr({B′(Θ(β))}TZ(α− β)Φ−1)−

tr(JT[B(Θ(α))− B(Θ(β))]Φ−1)

=
sβ
2
∥α− β −

ZT

sβ
{Y− B′(Θ(β))}Φ−1∥2F + const, (18)

here sβ is a scaling factor for the β-step.
A globally optimal solution minimizing K (α;β) is given by

α̂ = β + ZT
{Y− B′(Θ(β))}Φ−1/sβ . (19)

-step. For fixed C and β, we update Φ by minimizing the negative log-likelihood function with respect to Φ, which
can be obtained by a standard algorithm such as Newton–Raphson (R Core Team, 2019).

The proposed G-CURE algorithm is summarized in Algorithm 3.

Algorithm 3 Generalized Co-Sparse Unit-Rank Estimation

Given: X, Y, Z, W, O, κ0, λ, α.
Initialize u(0)

= ũ, v(0) = ṽ, d(0) = d̃, β(0)
= β̃, Φ(0)

= Φ̃. Set t ← 0.
repeat

Set su = κ0∥X∥2/ϕ, sβ = κ0∥Z∥2/ϕ, sv = nκ0/ϕ where ϕ = min(Φ(t)).

(1) u-step: Set ǔ = d(t)u(t) and v = v(t). Update ǔ(t+1) using Eq. (15). Recover block variable (d̃(t+1),u(t+1)) using
equality constraint in Eq. (13).

(2) v-step: Set v̌ = d̃(t+1)v(t) and u = u(t+1). Update v̌(t+1) using Eq. (17). Recover block variable (d(t+1), v(t+1)) using
equality constraint in Eq. (13).
(3) β-step: Update β(t+1) using Eq. (19).
(4) Φ-step: Φ(t+1)

= argmaxΦ L(Θ(C(t+1), β(t+1)),Φ).
t ← t + 1.

until convergence, e.g., the relative ℓ2 change in parameters is less than ϵ = 10−6.
return û, d̂, v̂, β̂, Φ̂.

3.3.3. Monotone descending property
In Algorithm 3, we use several convex surrogates of the objective function in order to deal with the general form of

the loss function. We show that the procedure can ensure that the objective function is monotone descending with the
scaling factors su, sv and sβ .

We mainly consider mixed outcomes of Gaussian, Bernoulli, and Poisson distributions as examples. To conduct a formal
convergence analysis, let us denote the parameter estimates in the tth step as {u(t), d(t), v(t), β(t),Φ(t)

}. From Algorithm 3,
the u-step produces (d̃(t+1),u(t+1)), the v-step produces (d(t+1), v(t+1)), the β-step produces β(t+1), and theΦ-step produces
Φ(t+1).

Now, denote ǔ(t+1)
= u(t+1)d̃(t+1). For ξ(t+1)u ∈ {aǔ(t)v(t)T+(1−a)ǔ(t+1)v(t)T; 0 < a < 1} and ζ(Θ .k(ξ(t+1)u , β(t)), ak(φ

(t)
k )) =

diag[B′′.k(Θ .k(ξ(t+1)u , β(t)))]/ak(φ
(t)
k ), we define

γ
(t)
1 = sup

a∈(0,1)
∥XT

q∑
k=1

v
(t)2
k ζ(Θ .k(ξ(t+1)u , β(t)), ak(φ

(t)
k ))X∥.

Similarly, denote v̌(t+1) = v(t+1)d(t+1). Then, for ξ(t+1)v ∈ {au(t)v̌(t)T + (1 − a)u(t)v̌(t+1)T; 0 < a < 1} and ζ(Θ .k(ξ(t+1)v , β(t)),
ak(φ

(t)
k )) = diag[B′′.k(Θ .k(ξ(t+1)v , β(t)))]/ak(φ

(t)
k ), we define

γ
(t)
2 = max

1≤k≤q
sup

a∈(0,1)
∥u(t)TXTζ(Θ .k(ξ(t+1)v , β(t)), ak(φ

(t)
k ))Xu(t)

∥

Finally, for ξ
(t+1)
β ∈ {aβ(t)

+ (1− a)β(t+1)
; 0 < a < 1} and C(t+1)

= d(t+1)u(t+1)v(t+1)T, we define

γ
(t)
3 = max

1≤k≤q
sup

a∈(0,1)
∥ZTζ(Θ .k(C(t+1), ξ

(t+1)
β ), ak(φ

(t)
k ))Z∥.

Theorem 3.1. The sequence {d(t),u(t), v(t), β(t),Φ(t)
}t∈N produced by Algorithm 3 satisfies

Fλ(d(t),u(t), v(t), β(t),Φ(t)) ≥ Fλ(d(t+1),u(t+1), v(t+1), β(t+1),Φ(t+1)),

for the scaling factors s ≥ γ
(t), s ≥ γ

(t) and s ≥ γ
(t).
u 1 v 2 β 3

7
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Fig. 3. G-CURE: (a) cross-validation plot for selecting the tuning parameter λ; (b)–(c) solution paths of du and dv, respectively, in case of simulation
setup I with Gaussian–Binary responses; see Table 1 for details. The dashed and continuous lines in (c) differentiate between the two types of
responses.

The proof of Theorem 3.1 is relegated to Section 1.5 of Supplementary Materials. Further, we follow She (2012) to obtain
the scaling factors su, sv and sβ that ensure that the objective function will be monotone decreasing along the iterations.
The key is to find a good upper bound of b′′k (x). It is known that for Gaussian responses, b′′k (x) = 1 and ak(φk) = σ 2

k , and
or Bernoulli responses, b′′k (x) = ex/(1 + ex)2 ≤ 1/4 and ak(φk) = 1. But for Poisson responses, b′′k (x) = ex is unbounded
nd ak(φk) = 1. Hence, in practice we choose a large enough upper bound αp of b′′k (x) empirically (default αp = 10).
Now, based on the above discussion, define the upper bound κ0 for q outcomes such that b′′k (x) ≤ κ0 for all k = 1, . . . , q.

hen, at the tth step, we have γ
(t)
1 ≤ κ0∥X∥2/min(ak(φ

(t)
k )); γ

(t)
2 ≤ κ0u(t)TXTXu(t)T/min(ak(φ

(t)
k )) = nκ0/min(ak(φ

(t)
k )); and

γ
(t)
3 ≤ κ0∥Z∥2/min(ak(φ

(t)
k )). Hence, we set the scaling factors su = κ0∥X∥2/ϕ for the u-step, sv = nκ0/ϕ for the v-step

nd sβ = κ0∥Z∥2/ϕ for the β-step where ϕ = min(ak(φ
(t)
k )).

Algorithm 3 always converges in our extensive numerical studies. Both of the estimation procedures for GOFAR are
mplemented, tested, validated, and made publicly available in a user-friendly R package, gofar.

.3.4. Tuning and a toy example
Using Algorithm 3, we minimize Fλ(d,u, v, β,Φ) over a range of λ values while fixing α = 0.95 and γ = 1. The

ange of λ (equispaced on the log-scale), i.e., λmax to λmin, is chosen in order to produce a spectrum of possible sparsity
atterns in u and v. Specifically, λmax is the smallest λ at which the singular value estimate is zero. In practice, we
hoose λmax = ∥XT(Y − µ(0))∥∞, and set λmin as the fraction of λmax, i.e., λmin = λmax × 10−6, at which the estimated
ingular vectors have larger support, i.e., nonzero entries, than expected. The optimal λ can then be selected by K -fold
ross-validation (Stone, 1974).
Fig. 3 shows the solution paths in simulation setup I with Gaussian–Binary responses; see Table 1 for details. The

odels on the solution paths are compared by the cross-validated negative log-likelihood. As with the implementation
f glmnet, we suggest using the one-standard-deviation rule to select the final solution.

. Theoretical properties

In order to focus on the large sample properties of the estimate of the unit-rank components of C, we assume that
he dispersion parameters Φ are known. Now, without loss of generality, we set Φ = I and O = 0. Using the natural
arameter Θ∗ formulated in Eq. (2) and the notations defined in Eq. (3), we represent the multivariate model (1) for
ixed outcomes as

Y = B′(Θ∗)+ E, (20)

here

A1. the entries of the error E = [eik] are independent (σ 2, b)-sub-exponential random variables with expectation
E(eij) = 0.

n large sample theory, we let n tend to infinity with (p, q) fixed. To ensure identifiability of the parameters, we make the
ollowing assumptions on the covariates (X, Z) and the true coefficient matrix C∗.

A2. (1/n)XTX a.s
−→ Γ 1, (1/n)ZTZ a.s

−→ Γ 2 and (1/n)XTZ a.s
−→ 0 as n → ∞, where Γ 1 and Γ 2 are fixed, positive definite

matrices.

A3. d∗ > · · · > d∗ > 0.
1 r∗

8
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To conveniently present our analysis, we allow each of the singular values d∗k to be absorbed into the pair (u∗k, v
∗

k) of
the decomposition (6) (Chen et al., 2012). Specifically, let ℓk denote the index of any nonzero entry v∗k . Then, a uniquely
identifiable reparameterization C∗k is given by

C∗k = u∗kv
∗

k
T, s.t. v∗ℓkk = 1.

This results in (u∗k
TΓu∗k)(v

∗

k
Tv∗k) = d∗k . Consequently,

C∗ = U∗V∗T, s.t. U∗TΓU∗ and V∗TV∗ are both diagonal matrices,

v∗ℓkk = 1, k = 1, . . . , r∗. (21)

In terms of the new parameterization, the objective function of the G-CURE optimization problem (13) is given by

F (n)
k (u, v, β) = L(C, β;Ok)+ ρ(C;Wk, λ

(n)
k ), (22)

here u ∈ Rp, v ∈ Rq with vℓk = 1, C = uvT, and the offset matrix Ok depends on the choice of the estimation
rocedure, i.e., GOFAR(S) or GOFAR(P), and mainly follows from Eqs. (8) and (10). Here Wk = [wijk]p×q = [wikwjk]p×q,
here wik = |̃uik|

−γ and wjk = |̃vjk|
−γ for some γ > 0. The regularization parameter λ

(n)
k is a function of the sample size,

ut 0 < α ≤ 1 is considered as a fixed constant. In our model formulation, b′′k (θik) corresponds to the variance of the
stimate of the ikth outcome for θik. Motivated by Luo et al. (2018), we assume that

A4. bk(·) is a continuously differentiable, real-valued and strictly convex function, and the entries of the natural
parameter Θ defined in (2) satisfy

min
1≤i≤n
1≤k≤q

inf
{β,C}
|b′′k (θik)| ≥ γ l,

or some constant γ l > 0.
Moreover, GOFAR(P) requires an initial estimate of the unit-rank components of the rank-r coefficient matrix C, given

y C̃i for i = 1, . . . , r . We require the initial estimators to be
√
n-consistent, i.e.,

A5. ∥̃Ci − C∗i ∥ = Op(n−1/2) for i = 1, . . . , r .

his can be achieved by the unpenalized GLM estimators or the reduced-rank estimator (Velu and Reinsel, 2013; Luo
t al., 2018), although these estimators do not have the desired sparse SVD structure.

heorem 4.1. Assume A1–A5 hold and λ
(n)
k /
√
n → λk ≥ 0 as n → ∞. Then the estimator (̂uk, v̂k, β̂), from either the

sequential or the parallel estimation, is
√
n-consistent, i.e.,

i. ∥̂uk − u∗k∥ = Op(n−1/2), ∥̂vk − v∗k∥ = Op(n−1/2), and ∥̂β − β∗∥ = Op(n−1/2) for k = 1, . . . , r∗.
ii. |̂dk| = Op(n−1/2) where d̂k = (1/n)(̂uk

TXTX̂uk)(̂vk T̂vk), for k = r∗ + 1, . . . , r.

Here, we have mainly followed the setup of Mishra et al. (2017) to prove the required results, the details of which
re relegated to Supplementary Materials, Section 1.6. Similarly, by following Mishra et al. (2017), we can establish the
election consistency of GOFAR(S) and GOFAR(P) under assumptions A1–A5.

. Simulation

.1. Setup

We compare the estimation performance, prediction accuracy and sparsity recovery of GOFAR(S) and GOFAR(P) to
hose of the following modeling strategies: (a) uGLM: fit each response by the univariate sparse GLM implemented in
he R package glmnet (Friedman et al., 2010); and (b) mRRR: fit by mixed-outcome reduced-rank regression (Luo et al.,
018). In addition, to show the merit of jointly learning from mixed outcomes, we also use GOFAR(S) to fit each type of
esponses separately; the resulting method is labeled GOFAR(S,S).

We have summarized all the simulation settings in Table 1. The setup covers scenarios with the same type of outcomes
nd with mixed types of outcomes. In the first scenario, the outcomes are either Gaussian (G), Bernoulli (B) or Poisson
P), whereas in the second scenario, the outcomes consist of an equal number of (a) Gaussian and Bernoulli (G–B) or (b)
aussian and Poisson (G–P) outcomes. Moreover, setup I and setup II refer to the low-dimensional and high-dimensional
imulation examples, respectively.
We set the true rank as r∗ = 3. Denote the true coefficient matrix as C∗ = U∗D∗V∗T, with U∗ = [u∗1,u

∗

2,u
∗

3],
∗
= [v∗1, v

∗

2, v
∗

3] and D∗ = s × diag[d∗1, d
∗

2, d
∗

3]. We set d∗1 = 6, d∗2 = 5, d∗3 = 4 and s = 1, except that when Poisson
utcomes are present we set s = 0.4. The particular choice of the default value of αp = 10 for Poisson outcomes
nsures a monotone descending objective function for the G-CURE optimization problem (13). Let unif(A, b) denote
vector of length b whose entries are uniformly distributed on the set A, and rep(a, b) denote the vector of length
9
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Table 1
Simulation: model dimensions of all the simulation settings, including the sample size n, the number
of predictors p, and the numbers {q1 , q2 , q3} of Gaussian (G), Bernoulli (B) and Poisson (P) outcomes,
respectively.
Setup n p Single-type scenario Mixed-type scenario

G B P G–B G–P

I 200 100 (30,0,0) (0,30,0) (0,0,30) (15,15,0) (15,0,15)
II 200 300 (30,0,0) (0,30,0) (0,0,30) (15,15,0) (15,0,15)

Table 2
Simulation: model evaluation based on 100 replications using various performance measures (standard deviations are shown in parentheses) in
Setup II with Bernoulli responses.

Er(C) Er(Θ) FPR FNR R% r Time (s)

M% = 0

GOFAR(S) 22.59 (5.15) 41.29 (6.59) 2.40 (0.98) 4.00 (2.95) 0.00 (0.00) 3.00 (0.00) 247.21 (13.82)
GOFAR(P) 26.08 (6.94) 55.10 (14.65) 6.26 (2.70) 3.30 (2.98) 0.00 (0.00) 3.00 (0.00) 49.34 (6.96)
mRRR 149.30 (12.27) 272.49 (27.92) 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 3.00 (0.00) 51.17 (0.80)
uGLM 58.11 (2.92) 120.95 (6.69) 72.56 (5.68) 1.40 (1.47) 18.17 (2.74) 25.14 (1.51) 8.05 (0.19)

M% = 20

GOFAR(S) 28.69 (4.96) 54.95 (7.36) 2.74 (0.95) 7.66 (4.19) 0.00 (0.00) 3.00 (0.00) 274.09 (15.10)
GOFAR(P) 38.03 (9.65) 88.77 (25.48) 8.81 (3.37) 5.63 (4.15) 0.00 (0.00) 3.00 (0.00) 54.54 (7.14)
mRRR 150.53 (24.42) 307.31 (48.92) 81.65 (20.33) 17.96 (19.89) 0.00 (0.00) 2.45 (0.61) 50.96 (0.93)
uGLM 63.93 (2.90) 140.12 (8.66) 67.57 (6.81) 2.94 (2.71) 28.70 (12.66) 24.72 (1.62) 5.90 (0.19)

b with all entries equal to a. For the single-type response scenario, we generate u∗k as u∗k = ǔk/∥ǔk∥, where ǔ1 =

[unif(Au, 8), rep(0, p−8)]T, ǔ2 = [rep(0, 5), unif(Au, 9), rep(0, p−14)]T, and ǔ3 = [rep(0, 11), unif(Au, 9), rep(0, p−20)]T;
and we generate v∗k as v∗k = v̌k/∥v̌k∥, where v̌1 = [unif(Av, 5), rep(0, q−5)]T, v̌2 = [rep(0, 5), unif(Av, 5), rep(0, q−10)]T,
and v̌3 = [rep(0, 10), unif(Av, 5), rep(0, q − 15)]T. Here we set Au = ±1 and Av = [−1,−0.3] ∪ [0.3, 1]. For the
mixed-type scenario, while the u∗ks are generated in the same way, we set the v∗ks to make sure there is sufficient
sharing of information among the different types of responses. Specifically, we generate v∗k as v̌k = [v̄k, v̄k]T for
k = 1, 2, 3, where v̄1 = [unif(Au, 5), rep(0, q/2 − 5)], v̄2 = [rep(0, 3), v̄14,−v̄15, unif(Au, 3), rep(0, q/2 − 8)], and
v̄3 = [v̄11,−v̄12, rep(0, 4), v̄27,−v̄28, unif(Au, 2), rep(0, q−10)]. In all the settings, we set Z = 1n with β∗ = [rep(0.5, q)]T,
to include an intercept term.

The predictor matrix X ∈ Rn×p is generated from a multivariate normal distribution with some rotations to make sure
that the latent factors XU∗/

√
n are orthogonal according to the proposed GOFAR model; the details can be found in Mishra

et al. (2017). The dispersion parameter ak(φ∗k ) = σ 2 for the Gaussian outcomes is set to make the signal-to-noise ratio
(SNR) equal to 0.5. (For the Binary and Poisson outcomes, ak(φ∗k ) = 1). Finally, Y is generated according to model (1) with
Θ∗ = Zβ∗ + XC∗. We also consider the incomplete data setup by randomly deleting 20% of the entries in Y (M% = 20).
The experiment under each setting is replicated 100 times.

The model estimation performance is measured by Er(C) = ∥̂C−C∗∥F/(pq) and Er(Θ) = ∥Θ̂−Θ∗∥F/(nq). The sparsity
ecovery is evaluated by the false positive rate (FPR) and the false negative rate (FNR), calculated by comparing the support
f (ûk, v̂k) to that of (u∗k, v

∗

k) for k = 1, . . . , r∗. For rank recovery, we report the mean of the rank estimates and the relative
ercentage of signal in the (r∗ + 1)th component and beyond, i.e., R% = 100(

∑r̂
i=r∗+1 d̂

2
i )/(

∑r̂
i=1 d̂

2
i ); as such, R% = 0 if

the rank is not over-estimated. Finally, we depict the computational complexity in terms of mean execution time.

5.2. Simulation results

Tables 2–5 report the results for the high-dimensional models in Setup II (Table 1). Figs. 4–5 show the boxplots of the
estimation errors for Setups I and II. The detailed results under Setup I are relegated to Supplementary Materials, as the
results under the two setups convey similar messages.

Both GOFAR(S) and GOFAR(P) consistently outperform the other methods in terms of estimation accuracy, sparsity
recovery, and rank identification at the expense of reasonably manageable execution time. In particular, we observe that
GOFAR methods maintain their superiority over the other competing methods for handling incomplete data; compared to
the complete data counterpart, there is only a mild deterioration in the model estimator evaluation statistics. GOFAR(P)
tends to have slightly better performance, which may be owing to the use of an offset that accounts for all the information
of the non-targeted unit-rank components. So depending on the computational resources, one can use either of the
approaches.

The superior performance of GOFAR is due to its ability to model the underlying association between multivariate
responses and high-dimensional predictors through the low-rank and sparse coefficient matrix. On the other hand, the
mRRR is only equipped to handle dependency through the low-rank structure. Because of this, the noise variables are
10
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Table 3
Simulation: model evaluation based on 100 replications using various performance measures (standard deviations are shown in parentheses) in
Setup II with Poisson responses.

Er(C) Er(Θ) FPR FNR R% r Time (s)

M% = 0

GOFAR(S) 2.22 (0.60) 3.86 (0.73) 0.53 (0.50) 1.85 (2.39) 0.00 (0.00) 3.00 (0.00) 815.40 (37.25)
GOFAR(P) 2.22 (0.59) 3.97 (0.72) 6.80 (3.46) 0.91 (1.38) 0.07 (0.16) 3.59 (0.77) 188.18 (7.01)
mRRR 12.10 (0.39) 10.64 (0.59) 100.00 (0.00) 0.00 (0.00) 11.74 (2.36) 4.00 (0.00) 54.26 (0.98)
uGLM 5.93 (0.69) 10.28 (0.79) 84.65 (4.44) 0.00 (0.00) 10.46 (1.66) 25.57 (1.46) 17.03 (0.71)

M% = 20

GOFAR(S) 2.74 (0.67) 4.84 (0.96) 0.67 (0.51) 3.51 (2.93) 0.00 (0.00) 3.00 (0.00) 846.06 (47.99)
GOFAR(P) 3.00 (0.77) 5.18 (0.98) 9.10 (4.22) 1.21 (1.41) 1.37 (1.73) 3.69 (0.77) 197.56 (6.14)
mRRR 13.04 (0.53) 14.95 (2.47) 100.00 (0.00) 0.00 (0.00) 8.63 (6.13) 3.67 (0.61) 54.85 (1.25)
uGLM 7.22 (0.72) 13.04 (0.94) 81.50 (4.86) 1.18 (1.49) 13.14 (2.07) 25.34 (1.46) 12.32 (0.44)

Table 4
Simulation: model evaluation based on 100 replications using various performance measures (standard deviations are shown in parentheses) in
Setup II with Gaussian–Bernoulli responses.

Er(C) Er(Θ) FPR FNR R% r Time (s)

M% = 0

GOFAR(S) 20.49 (2.97) 43.34 (5.23) 0.31 (0.29) 0.88 (1.21) 0.00 (0.00) 3.00 (0.00) 129.46 (16.65)
GOFAR(P) 14.64 (4.59) 29.60 (7.83) 6.25 (3.06) 1.54 (1.96) 0.00 (0.00) 3.00 (0.00) 29.82 (4.13)
mRRR 76.17 (8.10) 164.50 (31.49) 33.37 (0.00) 67.24 (0.00) 0.00 (0.00) 1.00 (0.00) 53.74 (1.00)
uGLM 45.57 (2.54) 86.09 (5.65) 81.40 (4.66) 0.00 (0.00) 12.69 (1.52) 23.94 (1.50) 7.74 (0.16)
GOFAR(S,S) 34.14 (5.44) 80.96 (14.23) 24.15 (5.75) 6.33 (4.83) 7.27 (9.94) 6.66 (1.37) 211.37 (45.36)

M% = 20

GOFAR(S) 24.64 (4.11) 51.56 (6.75) 0.38 (0.27) 2.25 (1.97) 0.00 (0.00) 3.00 (0.00) 156.40 (19.51)
GOFAR(P) 20.50 (6.32) 42.40 (11.35) 11.67 (5.01) 3.61 (3.65) 0.67 (1.33) 3.39 (0.65) 34.80 (3.25)
mRRR 79.19 (6.96) 171.80 (37.15) 39.26 (12.75) 60.80 (13.92) 0.00 (0.00) 1.18 (0.38) 54.77 (1.01)
uGLM 51.89 (2.54) 102.61 (7.21) 79.26 (5.37) 0.00 (0.00) 15.85 (2.09) 24.06 (1.64) 5.64 (0.14)
GOFAR(S,S) 38.30 (4.61) 90.68 (14.64) 20.80 (5.80) 7.73 (5.53) 3.73 (1.83) 6.00 (1.36) 193.92 (46.18)

Table 5
Simulation: model evaluation based on 100 replications using various performance measures (standard deviations are shown in parentheses) in
Setup II with Gaussian–Poisson responses.

Er(C) Er(Θ) FPR FNR R% r Time (s)

M% = 0

GOFAR(S) 2.26 (0.50) 3.66 (0.64) 0.32 (0.28) 0.71 (1.06) 0.00 (0.00) 3.00 (0.00) 686.87 (23.35)
GOFAR(P) 2.00 (0.54) 3.08 (0.55) 7.75 (4.83) 0.00 (0.00) 0.00 (0.00) 3.00 (0.00) 148.44 (5.12)
mRRR 13.88 (0.63) 32.68 (2.52) 33.37 (0.00) 67.24 (0.00) 0.00 (0.00) 1.00 (0.00) 57.01 (1.19)
uGLM 5.93 (0.57) 9.31 (0.60) 87.09 (3.12) 0.00 (0.00) 10.65 (1.33) 24.03 (1.66) 12.38 (0.38)
GOFAR(S,S) 3.69 (1.28) 8.01 (3.60) 14.16 (4.76) 0.56 (1.05) 38.72 (38.17) 5.34 (0.89) 493.27 (50.71)

M% = 20

GOFAR(S) 2.77 (0.58) 4.58 (0.88) 0.55 (0.46) 1.39 (1.51) 0.00 (0.00) 3.00 (0.00) 678.94 (24.96)
GOFAR(P) 3.02 (0.72) 4.21 (0.78) 15.02 (6.13) 0.00 (0.00) 0.00 (0.00) 3.00 (0.00) 147.07 (5.04)
mRRR 14.81 (0.53) 35.89 (2.47) 33.37 (0.00) 67.24 (0.00) 0.00 (0.00) 1.00 (0.00) 57.14 (1.16)
uGLM 7.08 (0.52) 11.84 (0.77) 83.87 (3.61) 0.00 (0.00) 13.51 (1.73) 24.09 (1.68) 8.90 (0.29)
GOFAR(S,S) 3.64 (1.02) 6.29 (1.92) 16.46 (4.72) 0.59 (1.15) 37.48 (37.06) 5.98 (0.90) 533.82 (47.11)

all used in the estimated factors, thereby compromising the performance of the model; it may fail to identify important
factors due to this limitation, which may cause rank underestimation, particularly in the mixed-type scenario. The uGLM
does not explore the shared information among the outcomes, while GOFAR(S,S) does not explore the shared information
among the different types of responses; so the superior performance of GOFAR over these two models further showcases
the merit of integrative multivariate learning.

6. Application

6.1. Modeling of mixed outcomes from LSOA

The Longitudinal Study of Aging (LSOA) (Stanziano et al., 2010), a joint project of the National Center for Health
tatistics and the National Institute on Aging, was designed to collect data measuring medical conditions, functional
tatus, experiences and other socioeconomic dimensions of health in an aging population (70 years of age and over). The
11
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Fig. 4. Simulation: notched boxplots of the estimation error Er(C) for the single-type scenario under Setups I and II based on 100 replications.

Fig. 5. Simulation: notched boxplots of the estimation error Er(C) for the mixed-type scenario under Setups I and II based on 100 replications.

study collected data from a large cohort of senior people in the period of 1997–1998. They were studied again between
1999–2000. Our goal is to understand the association between health-related events in the future (denoted as outcome
Y) and health status in the past (denoted as predictor X) using data from n = 3988 subjects from this study.

The multivariate responses in Y include: (a) q1 = 3 continuous outcomes related to overall health status, memory status
and depression status; and (b) q2 = 41 binary/Bernoulli outcomes related to physical conditions, medical issues, memory
status, vision and hearing status, and social behavior. Our analysis considers a total of p = 294 predictors, constructed from
the variables related to demography, family structure, daily personal care, medical history, social activity, health opinion,
behavior, nutrition, health insurance, income, and assets, a majority of which are binary measurements. For simplicity, we
impute missing entries in the predictors with the sample mean. GOFAR(S)/GOFAR(P) can efficiently handle missing entries
in the multivariate response, so such imputations are not required for the 20.2% of entries in Y that are missing. Now,
to determine the association between X and Y, we model the mixed outcomes jointly and apply GOFAR(S)/GOFAR(P) to
obtain a low-rank and sparse estimate of the coefficient matrix. The model specifies gender and age as control variables Z
(not penalized in the model). The parameter estimates then relate a subset of future health outcomes to a subset of past
health conditions via latent factors (constructed from the subset of predictors).

On the LSOA data, GOFAR(S)/GOFAR(P) demonstrates comparable prediction performance with the advantage of
producing the most parsimonious model when compared with the non-sparse method mRRR and the marginal approach
uGLM. Table 6 summarizes the results from 100 replications with 75% of data selected using random sampling without
replacement for training and the remaining 25% for testing. On the test data, the metric Er(G) computes the mean square
error for Gaussian outcomes and the metric Er(B) computes the area under curve for binary outcomes. With the lesser
number of latent factors (from r) and sufficiently sparse left and right singular vectors, GOFAR(S) produces the most
parsimonious model, thus facilitating better interpretation.
12
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Table 6
Application — LSOA: Model evaluation (standard deviations are shown in parentheses)
based on prediction error of Gaussian and binary outcomes, rank estimation r and support
recovery {supp(U) and supp(V)}.
Method Er(G) Er(B) r supp(U) {%} supp(V) {%}

GOFAR(S) 0.69(0.06) 0.76(0.10) 4.45(0.65) 20(3) 43(5)
GOFAR(P) 0.72(0.06) 0.76(0.10) 4.46(0.50) 25(3) 51(5)
mRRR 0.70(0.06) 0.74(0.10) 13.15(1.75) 100(0) 100(0)
uGLM 0.68(0.06) 0.78(0.08) 41.51(0.61) 72(2) 99(0)

Fig. 6. Application — LSOA Data: The sparse estimate of the coefficient matrix Ĉ with its unit-rank components using GOFAR(S). Horizontal lines
eparate the response into 7 categories given by self-evaluation, fundamental daily activity, extended daily activity, medical condition, cognitive
bility, sensation condition and social involvement (bottom to top). Vertical lines (left to right) separate the 294 predictors into five categories:
amely, change in medical procedure since the last interview, daily activity, family status, housing condition, and prior medical condition.

Owing to the superior performance of GOFAR(S) in terms of producing the most interpretable model, we apply
he procedure to the full data and obtain the parameter estimates. The GOFAR(S) approach identifies r = 5 subsets
f outcome variables (inferred from the sparse V) that are associated with the predictor X via an equivalent number
f latent factors (constructed from a subset of predictors using the sparse U). Fig. 6 displays the sparse estimate of
he coefficient matrix C and its r unit-rank components. Support of the estimate of the singular vectors is given by
upp(U) = {16%, 30%, 34%, 54%, 6%} and supp(V) = {86%, 72%, 34%, 14%, 9%}. The block structure of the unit-rank
omponents facilitates a similar interpretation, as expected from biclustering. First, latent factors constructed from a
ubset of predictors, mainly in the category of daily activity and prior medical conditions, determine all outcomes except
ognitive ability. The latent factor clearly distinguishes social involvement outcomes from others. Apart from identifying
he subset of predictors in each category, the approach finds a subgroup of the prior medical conditions affecting the
utcome in the opposite way. The second latent factor helps us to identify a subgroup of the fundamental daily activity
utcomes. One of the subgroups is similar to the group of outcomes related to social involvement and medical conditions.
he third and fourth latent factors clearly distinguish outcomes related to social involvement from all others.

.2. Modeling of binary outcomes from CAL500

In the second application, we consider the Computer Audition Lab 500-song (CAL500) dataset (Turnbull et al., 2007) and
pply the proposed procedure to explore the underlying associations. The dataset consists of 68 audio signal characteristics
rom signal processing as the predictor X, and 174 annotations of songs by a human after listening as outcomes. The song
eatures are mainly related to zero crossings, spectral centroid, spectral rolloff, spectral flux and Mel-Frequency Cepstral
oefficients (MFCC). On the other hand, the 174 binary outcomes from song annotations are categorized into emotions,
enre, instrument, usage, vocals and song features. Some songs are annotated fewer than 20 times. We merge the disjoint
ets of outcomes in a given category into one. After preprocessing, we are left with 107 binary outcomes (Y). Since the
nderlying distribution of outcomes is Bernoulli, we model the song annotations using acoustic features and apply the
roposed procedure to estimate the low-rank and sparse coefficient matrix. This allows us to find subsets of song features
hat affect only a subset of song annotations.

As in the LSOA data analysis, we compare the parameter estimates from GOFAR(S), GOFAR(P), mRRR and uGLM, and
ummarize the results from 100 replicates (80% training and 20% testing) in Table 7. All the rank-constrained approaches
emonstrate better prediction error performance than the marginal modeling approach (uGLM), thus proving the merit
f the idea of using joint estimation to determine the underlying dependency. The prediction error performance of
OFAR(S), GOFAR(P) and mRRR are comparable, with a slight edge to mRRR. This can be attributed to the fact that the
nderlying system is not sufficiently sparse (see the support of U and V). We have already observed that the simulation
13
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Table 7
Application — CAL500: Model evaluation (standard deviations are shown in parentheses)
based on prediction error (PE), rank estimation r and support recovery {supp(U) and
supp(V)}.
Method PE r supp(U) {%} supp(V) {%}

GOFAR(S) 0.57(0.09) 3.00(0.00) 77(4) 72(4)
GOFAR(P) 0.55(0.08) 2.71(0.65) 43(6) 46(6)
mRRR 0.58(0.10) 3.38(0.52) 100(0) 100(0)
uGLM 0.52(0.04) 20.00(0.00) 96(3) 55(5)

Fig. 7. Application — CAL500 Data: The sparse estimate of the coefficient matrix Ĉ with its unit-rank components using GOFAR(S). Vertical lines (left
o right) separate 68 predictors into five categories: namely, spectral centroid, spectral flux, MFCC, spectral rolloff, and zero crossings. Horizontal
ines separate the 102 response variables into seven groups: namely, emotion, genre, genre best, instrument, song, usage, and vocals (bottom to
op).

esults effectively demonstrate the usefulness of GOFAR(S)/GOFAR(P) in both large and high-dimensional setups where
ur underlying system is very sparse. Moreover, compared to the non-sparse model mRRR, GOFAR(S)/GOFAR(P) facilitates
etter interpretation via sparse singular vector estimates.
Again, following the LSOA data analysis, because of the better support recovery of GOFAR(S), we apply this method

o analyze the full data. Fig. 7 represents the low-rank and sparse coefficient matrix C and its unit-rank components
i for i = 1, 2, 3. Through the row-wise sparsity of U, the model discards 16 predictors overall, facilitating variable
election. Support of the unit-rank components is given by supp(U) = {68%, 74%, 65%} and supp(V) = {81%, 72%, 51%}.
Sparsity results in block cluster representation of the unit-rank components, so we interpret it accordingly. From the
first unit-rank component, we clearly identify new subgroups in the song annotation category associated with the MFCC
covariates. The sign of the entries in the block matrix accordingly denotes the positive/negative associations. Among the
MFCC covariates, we clearly find two separate subgroups. Blocks resulting from the second unit-rank component estimate
suggest the second set of covariates (mostly disjoint from first one) that are associated with a subset of song annotations.
The third unit-rank component identifies features associated with a subgroup in the outcomes related to the instrument
category.

In summary, as we demonstrated in two real-world examples, the proposed GOFAR is parsimonious and effective in
recovering the underlying associations through the sparse unit-rank components of the low-rank coefficient matrix.

7. Discussion

In this article, we model the mixed type of outcomes via a multivariate extension of the GLM, with each response
following a distribution in the exponential dispersion family. The model encodes the response-predictor dependency
through an appealing co-sparse SVD of the nature parameter matrix. We develop two estimation procedures, i.e., a
sequential method, GOFAR(S) and a parallel method, GOFAR(P), to avoid the notoriously difficult joint estimation
alternative.

There are many future research directions. Our model formulation (1) is restricted to outcomes from the exponential
dispersion family with canonical link; it would be interesting to consider more flexible link functions and other
distributional families. Theoretically, we are interested in performing non-asymptotic analysis to understand the finite
sample behavior of the proposed estimators. Our approach handles missing entries in the response matrix using the same
idea of matrix completion (Candès and Recht, 2009); however, it may be fruitful to further explore the role that the type
of missing entry plays in parameter estimation. Moreover, it is pressing to extend our method to handle missing entries
in the predictor matrix. Further, the proposed algorithms are still computationally intensive for large-scale problems;
we will make the computation more scalable either by utilizing acceleration techniques in the current algorithms or
14
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by developing path-following algorithms and stagewise learning procedures (He et al., 2018; Chen et al., 2020). Finally,
Algorithm 3 is a block coordinate descent optimization procedure for minimizing the nonsmooth and nonconvex objective
functions Fλ(d,u, v, β,Φ). This type of problem has been studied in, e.g., Gorski et al. (2007), Razaviyayn et al. (2013)
nd Mishra et al. (2017). In each of the sub-problems, the algorithm minimizes a convex surrogate that majorizes the
bjective function, which results in a unique and bounded solution when the elastic net penalty is used (Mishra et al.,
017). We aim to provide a detailed convergence analysis of the algorithm in our future work.
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