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Curvature-driven feedback on aggregation–
diffusion of proteins in lipid bilayers†

Arijit Mahapatra, David Saintillan * and Padmini Rangamani

Membrane bending is an extensively studied problem from both modeling and experimental

perspectives because of the wide implications of curvature generation in cell biology. Many of the

curvature generating aspects in membranes can be attributed to interactions between proteins and

membranes. These interactions include protein diffusion and formation of aggregates due to protein–

protein interactions in the plane of the membrane. Recently, we developed a model that couples the

in-plane flow of lipids and diffusion of proteins with the out-of-plane bending of the membrane.

Building on this work, here, we focus on the role of explicit aggregation of proteins on the surface of

the membrane in the presence of membrane bending and diffusion. We develop a comprehensive

framework that includes lipid flow, membrane bending, the entropy of protein distribution, along with an

explicit aggregation potential and derive the governing equations for the coupled system. We compare

this framework to the Cahn–Hillard formalism to predict the regimes in which the proteins form patterns

on the membrane. We demonstrate the utility of this model using numerical simulations to predict

how aggregation and diffusion, when coupled with curvature generation, can alter the landscape of

membrane–protein interactions.

1 Introduction

Cellular membranes contain a variety of integral and peripheral
proteins whose spatial organization has biophysical implications
for cellular function.1,2 In the plane of the membrane, many of
these proteins are known to diffuse,3 induce curvature in the
bilayer,4 and aggregate either through protein-specific
interactions5 or due to membrane curvature.6 Interactions
between proteins can also lead to the formation of protein
microdomains depending on the strength of interaction
forces.6,7 The ability of these proteins to induce curvature,
coupled with the ability of curvature to influence the lateral
diffusion–aggregation dynamics, can result in a feedback loop
between membrane curvature and protein density on the surface
(Fig. 1a).8–10 In addition to protein aggregation, in-plane viscous
flow of the lipid molecules has been found to dominate some of
the phase-transition kinetics of vesicle shapes.11 Recently,
we showed that the interaction of membrane bending,
protein diffusion, and lipid flow can lead to an aggregation-
like configuration on the membrane under specific conditions.12

The aggregation of particles in solvents is a well-studied
theoretical problem. Flory13 and Huggins14 presented a theoretical
formulation for a polymer chain in solution and established the
conditions that can lead to its phase separation from the solvent.
In binary alloy systems, there has been significant progress on the
modeling of the phase transition mechanisms starting from
the fundamental Ginzburg–Landau energy15 that models the
interaction energy between the phases as an algebraic expansion
in the area fraction of the binary phases around a reference value.
Additionally, there are a number of studies that considered the
effect of surface tension in the phase separation of solid solutions
with an elastic field as a function of concentration field of
solute.16–18

Fig. 1 Schematic of protein aggregation and representation of a
membrane surface. (a) Aggregation of transmembrane proteins on the
membrane can lead to domain formation and curvature generation. Here,
we develop a continuum model that captures these different interactions.
(b) Representation of a membrane surface and the surface coordinates. r is
the position vector, a1 and a2 are the tangent basis vectors, n is the unit
surface normal.

Department of Mechanical and Aerospace Engineering, University of California San Diego,

9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail: dsaintillan@eng.ucsd.edu,

prangamani@ucsd.edu

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
d1sm00502b

Received 3rd April 2021,
Accepted 19th August 2021

DOI: 10.1039/d1sm00502b

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
3 

A
ug

us
t 2

02
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

10
/2

5/
20

21
 7

:1
6:

15
 P

M
. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0001-9948-708X
http://orcid.org/0000-0001-5953-4347
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/d1sm00502b
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM017036


8374 |  Soft Matter, 2021, 17, 8373–8386 This journal is © The Royal Society of Chemistry 2021

While the classical theories were developed for three-
dimensional continua, domain formation and phase separation
on two-dimensional surfaces such as lipid bilayers have been of
paramount interest recently. The aggregation of proteins on the
membrane surface can be viewed as an example of a binary
system with lipids and proteins as two phases in a two-
dimensional curvilinear space. For example, a recent modeling
study showed that in a reaction–diffusion system, a pair of
activator and inhibitor molecules can lead to an aggregation
instability in a specific parameter space, and this instability
governs the pattern formation of proteins on membranes.19

There are many models in the literature that investigate various
aspects of phase separation on surfaces. Gera and Salac10

numerically solved a Cahn–Hilliard system for aggregation–
diffusion on a closed torus and observed the temporal evolution
of the formation of the aggregation patches. In this case, the
surface geometry was fixed. In a subsequent study, they analyzed
the effect of bulk shear flow on the dynamics of the
density distribution of species on a deformable vesicle,
where the material properties are dependent on the species
concentration.20 Nitschke et al.8 modeled aggregation–diffusion
of a two-phase mixture on a spherical surface with in-plane
viscous flow, and presented numerical results on pattern
formation between the two phases and its strong interplay with
the surface flow. The relative interactions between the proteins
on the cellular membrane can lead to phase segregation and
form protein domains depending on the strength of interaction
forces compared to the entropy of mixing.7 Such aggregation
phenomena have been modeled as a polymerization reaction
with a very weak free energy of polymerization.7

Coupling these aggregation phenomena on the membrane
surface with membrane deformation is a difficult mathematical
and computational problem. Reynwar et al.6 modeled the
interaction between proteins with the help of an inter-particle
energy and showed that curvature alone can lead to aggregation
of these protein particles. A majority of the aggregation studies
in the continuum realm consider an aggregation–diffusion
chemical potential, which results in the well-known Cahn–
Hilliard equation that represents phase separation. The energy
potential used in studies of protein aggregation on membrane
surfaces consists of an inter-molecular aggregation energy and
a diffusion potential comprising of the entropy of the protein
distribution. Veksler and Gov21 considered the Ginzburg–
Landau energy potential for the aggregation–diffusion energy
and modeled the curvature-diffusion instability to identify the
parameter space where such instability occurs. Mikucki and
Zhou22 developed a numerical solution for aggregation–
diffusion of proteins with bending of the membrane
and inviscid flow of lipids. However, their model assumes
that the local membrane curvature is a function of the density
of the proteins as opposed to using a spontaneous curvature,
resulting in a weak coupling between bending and diffusion.
Givli et al.23 presented a theoretical model of diffusion–
aggregation in a multicomponent inviscid stretchable
membrane coupled with the bending of the membrane.
Additionally, they performed a stability analysis of the system

on a sphere, and obtained the most critical modes for the
instabilities.

While the models described above capture different aspects
of the same problem, here, we sought to develop a comprehensive
mathematical model that captures the coupled diffusion and
aggregation dynamics, where the proteins induce a curvature
resulting in membrane bending and lipids can flow in the plane
of the membrane. Such a framework can allow us to explore how
the different transport contributions in the plane of the
membrane (protein aggregation, protein diffusion, and lipid flow)
can contribute both to the formation of protein microdomains
and to the curvature generation capability of the membrane. The
manuscript is organized as follows. The full system of governing
equations is presented in Section 2. We first analyzed the special
case in the absence of bending and reduced the model to a classic
Cahn–Hilliard system in Section 3. We solved the Cahn–Hilliard
equation numerically on a square domain and demonstrated the
configuration of patch formations in the parameter space. Next,
we simulated the fully coupled system in the case of small
deformations from a flat plane in Section 4 and studied the effect
of bending energy on the dynamics of aggregation and diffusion
of proteins. Our results show that coupling between curvature,
protein aggregation, and diffusion can lead to a strong
mechanical feedback loop stabilizing the protein microdomains
in regions of high curvature.

2 Model development

We first formulate the governing equations for coupled
diffusion and aggregation of curvature-inducing proteins on a
deformable viscous lipid membrane with bending elasticity,
building on previous models.12,24,25 We begin by formulating a
free energy function for the membrane and apply the principle
of energy minimization to derive the governing equations.
Complete details of the derivation are provided in the ESI.†

2.1 Free energy of the membrane

Our system consists of the lipids that comprise the membrane
and transmembrane proteins that are embedded in the plane of
the membrane and are capable of inducing curvature (Fig. 1).
Our model does not include the binding or unbinding of
proteins from the bulk or the interactions of the bulk fluid with
the membrane. The lipid bilayer is modeled as a thin elastic
shell with negligible thickness that can bend out of the plane
and be subject to in-plane viscous flow. Importantly, we assume
that the membrane is areally incompressible and this constraint
is imposed on the membrane using a Lagrange multiplier.
Additionally, we use a continuum description for the protein
distribution on the membrane. We describe the different con-
tributions to the total free energy of the system in detail below.

2.1.1 Protein diffusion. The diffusion of proteins on the
membrane surface is modeled using the principle of entropy
maximization.26 The entropy S of q proteins on n binding sites
can be found from the number of combinations, O = nCq, and is
given by
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S = kB logO, (1)

where kB is the Boltzmann constant.27 For sufficiently large
values of q and n, the entropic component of the free energy per
binding site can be represented as a function of area fraction
f = q/n as,26

Wentropy

n
¼ �TS

n
¼ kBT ½f logfþ ð1� fÞ logð1� fÞ�; (2)

where T is the temperature of system. Note that the area fraction f
can also be represented as the ratio of the local protein density, s,
and the saturation density of proteins on the surface, ss. The free
energy density per unit area of the membrane is obtained by
multiplying the free energy density per binding site (Wentropy/n)
with the saturation density of the proteins (ss). Note that the
entropic component of the free energy Wentropy is minimized when
the entropy S is maximum, which corresponds to a uniform
distribution of the proteins in the domain.

2.1.2 Protein aggregation. Aggregation of proteins, on the
other hand, can be modeled using the interaction enthalpy of
particles in a binary system. With the help of mean-field theory,
a continuum representation of the aggregation free energy per
binding site can be derived as21,23,26

Waggregation

n
¼ g

2
fð1� fÞ þ g

4ss
jrfj2; (3)

where g is the net effective interaction energy of the proteins.
This term captures protein–protein attraction when g 4 0 and
protein–protein repulsion when g o 0.

2.1.3 Bending of the membrane. We model the curvature
elastic free energy density of the membrane using the Helfrich
Hamiltonian28 given by

Wbending = k[H � C(s)]2 + �kK. (4)

Here, H and K are mean and Gaussian curvatures of the
membrane, k and �k are the bending and Gaussian rigidities,
and C is the spontaneous curvature induced by the proteins.
The spontaneous curvature is assumed to depend linearly on
protein density s12,25 as

C(s) = cs, (5)

where the proportionality constant, c, has units of length.
We obtain the total free energy density of the membrane, in

terms of protein area fraction f, by combining eqn (2)–(4) as

W ¼ kBTss½f logfþð1� fÞlogð1� fÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
entropic

þ gss
2
fð1� fÞþg

4
jrfj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aggregation

þ kðH � ‘sÞ2 þ �kK|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bending

:

(6)

2.2 Equations of motion

The lipid bilayer is modeled as a two-dimensional surface in a
three-dimensional space (Fig. 1b). We refer the reader to12,24,29

for details of the derivation and briefly summarize the key steps
here. The equations of motion are obtained from a local stress
balance on the interface, which can be compactly stated as

r�R + pn = 0, (7)

where R is the stress tensor,r�R is the surface divergence of the
stress, p is the normal pressure acting on the surface, and n is
the unit surface normal vector. As a result, the local equilibrium
of forces, in the tangential and normal directions, is given by
eqn (S2) and (S3) in the ESI.† The incompressibility constraint
on the surface results in the following form of the continuity
equation29

r�v = 2Hw, (8)

where v is the velocity field of the tangential lipid flow and w is
the normal velocity of the surface.

2.3 Mass conservation of proteins

Conservation of mass for the protein density s is given by

@s
@t
þr �m ¼ 0; (9)

where the flux is

m ¼ vs� 1

f
frm: (10)

This flux has contributions from advection due to the in-plane
velocity field v and from gradients in the protein chemical
potential m. The constant f denotes the thermodynamic drag
coefficient of a protein and is related to its diffusivity D by the
Stokes–Einstein relation: D = kBT/f.

The chemical potential, m, is obtained as the variational
derivative

m ¼ dF
df
; (11)

where F is the total energy of the system of area A, given by,

F ¼
ð
o
Wðf;rfÞdA: (12)

Note that the energy density is a function of both the protein
area fraction f and its gradient rf. Using the definition of the
variational derivative, we get the expression of the chemical
potential as:

m ¼ dF
df
¼ @W
@f
�r � @W

@rf: (13)

Using eqn (6) for W yields

m ¼ kBTss½logf� logð1� fÞ� � 2k‘ssðH � ‘ssfÞ

� gss
2
ð2f� 1Þ � g

2
jrfj2:

(14)

Substituting eqn (14) in eqn (10) will result in the evolution
equation for s.
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2.4 System of governing equations

Here we summarize the governing equations for the coupled
dynamics of the system. Using eqn (S4)–(S7) (ESI†) for the
stresses, the tangential force balance in eqn (S2) (ESI†)
becomes12,24,29

rl þ 2nðr � d �rw � bÞ � 4nwrH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
viscous

¼ �rs kBT log
f

1� f|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
entropic

2
6664

� 2k‘ðH � ‘ssfÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
bending

� g
2
ð2f� 1Þ þ g

2ss
Df

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aggregation

3
7775:

(15)

Here, we have introduced a new variable l, which is the
Lagrange multiplier for area incompressibility and physically
represents the membrane tension (see eqn (S6) in the ESI† for
details), d is the rate-of-strain tensor (see eqn (S8) in the ESI†
for details), b is the curvature tensor of the surface, and D(�) =
r�r(�) is the surface Laplacian. Along with the surface incom-
pressibility condition

r�v = 2wH, (16)

Eqn (15) describes how the surface pressure gradient is
balanced by the tangential contributions of lipid flow,
membrane bending, and membrane–protein interactions.
On the other hand, eqn (16) captures surface incompressibility
for a deformed membrane. Eqn (15) and (16) constitute the
governing equations for the velocity field and tension on the
evolving surface of the membrane.

The shape of the surface is obtained by the normal force
balance eqn (S3) (ESI†), which, after substituting in eqn (S5),
(S4) and (S7) (ESI†), is given by

kDðH�‘ssfÞþ2kðH�‘ssfÞð2H2�KÞ�2HðkðH�‘ssfÞ2þ�kKÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bending

�2n½b:d�wð4H2�2KÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
viscous

�2H kBTssfflogfþð1�fÞlogð1�fÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
entropic

2
64

þgss
2
fð1�fÞþg

4
jrfj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

aggregation

3
775¼pþ2lH:|fflfflfflfflffl{zfflfflfflfflffl}

capillary

(17)

While this equation is complex and contains many terms, it can
be understood intuitively by making the following observations.
In the absence of all other stresses (bending, viscous, entropic,
and aggregation), eqn (17) simply reduces to the Young–Laplace
law. When the viscous, entropic, and aggregation terms are
removed, we recover the so-called ‘shape equation’ that is
commonly used in membrane mechanics.29 The additional
terms capture the non-trivial coupling between protein density,

aggregation, lipid flow, and membrane bending, and are the
novel aspect of the present model. Eqn (15) and (17) both involve
the area fraction of proteins f = s/ss, which evolves according to
the mass conservation equation given by

ftþr�ðvfÞ ¼
1

f
Df

kBT

1�fþ2k‘
2ssf�gf

� �

�1
f
f 2k‘DHþ g

2ss
D2f

� �
þ1
f
rf

� rf kBT

ð1�fÞ2þ2k‘
2ss�g

� ��

�2k‘rH� g
2ss
rðDfÞ

�
;

(18)

where ft denotes the time derivative
@f
@t

. Note that, in the

absence of flow and protein-induced spontaneous curvature,
eqn (18) reduces to the Cahn–Hilliard equation for aggregation–
diffusion as discussed in Section 3. Additionally, if we eliminate
protein aggregation (g = 0), in the limit of dilute concentration of
proteins (f { 1), we recover the classical equation for Fickian
diffusion.

2.5 Non-dimensionalization

We non-dimensionalize the system of eqn (15)–(18) using the
following reference scales. The characteristic length scale is
taken to be the size L of the domain. The membrane tension
l is scaled by its mean value l0. Velocities are non-
dimensionalized by vc = l0L/n, and we use the diffusive time
scale tc = L2/D. Note that the protein area fraction f = s/ss is
already dimensionless. The governing equations in dimension-
less form (where tildes are used to denote the dimensionless
variables) are provided in the ESI† (eqn (S10)–(S13)).

The system of dimensionless equations involves seven
dimensionless groups that are defined in Table 1 along with their
physical interpretation. In all the analyses that follow, we assume
that the transmembrane pressure, p, is zero. From here on, we use
dimensionless variables but omit the tildes for brevity.

Table 1 List of dimensionless numbers and their definitions

Dimensionless
number Expression Physical interpretation

B̂ kBT

k
Thermal energy

Bending energy
L̂ ‘

L

Spontaneous curvature length

Domain length
Â g

kBT
Aggregation coefficient

Diffusion coefficient
Ŝ ssL2 Domain area

Protein footprint
T̂ 2L2l0

k

Membrane tension energy

Bending energy
Pe l0L2

nD
Advection strength

Diffusion strength
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2.6 Estimation of physical parameters

Given the vast number of physical parameters in the model, we
used data from the literature to estimate the ranges for these
parameters and use these to inform the range of the dimensionless
parameters in our simulations. We set the value of the bending
rigidity k to 84 pN nm.30,31 The range of spontaneous curvature
length, c, was chosen as 1–8 nm based on known protein-induced
spontaneous curvature values.32 The saturation density of
proteins, ss, on the lipid bilayer was varied in the range of 2 �
10�4 to 2 � 10�3 nm�2, which corresponds to 20–70 nm for the
protein size.33 The viscosity of the membrane, n, was taken as 5 �
10�6 pN s nm�1,34,35 and the diffusion coefficient of a protein, D,
was taken to be 5 � 105 nm2 s�1.3,36,37 For all the simulations, the
domain was fixed as a square of side L of 1 mm. The average
membrane tension, l0, was considered as 1 � 10�4 pN nm�1.38

As a result, the Péclet number, Pe, was fixed at 40, the range of Ŝ
was 200 to 2000, and the range of L̂ became 1 � 103 to 8 � 103.
We found that the minimum value of Â to promote aggregation is
11.1 based on stability analysis (Section 3.2) and considered the
value of Â in the range of 25 to 100 for the Cahn–Hilliard system
(Section 3.3), although, for the coupled system of aggregation with
bending, we used the value of Â as 25 (Section 4.2). The value of B̂ at
room temperature became 4.93 � 10�2. However, to demonstrate
the dynamic coupling of aggregation and bending, we used a
lower value of temperature T in the numerical simulations; the
corresponding value of B̂ was 4.93 � 10�4. This regime led to
a strong interaction between the membrane deformations and
aggregation diffusion dynamics.

3 Cahn–Hilliard system and stability
analysis
3.1 Reduction to the Cahn–Hilliard system

We first consider the simplified diffusion–aggregation system
in the absence of membrane bending and in-plane lipid flow
to gain insight into how diffusion and aggregation compete
in the plane of the membrane to form protein aggregates
(also referred to as patterns or microdomains). We assume that
the proteins have zero spontaneous curvature (L̂ = 0) in this
case. As a result of these simplifications, the surface gradient

reduces to the planar gradient r ¼ @

@x
i þ @

@y
j and the surface

Laplacian D becomes r2 ¼ @2

@x2
þ @2

@y2
. Neglecting the flow and

bending terms in eqn (18), we arrive at a transport equation
similar to the Cahn–Hilliard equation:

ft ¼ r2f
1

1� f
� Âf

� �
þ jrfj2 1

ð1� fÞ2 � Â

� �
� f

Â

2Ŝ
r4f

" #
:

(19)

Eqn (19) reduces to Fickian diffusion in the dilute limit (f{ 1)
in the absence of aggregation (Â = 0). Eqn (19) is also similar to
the system presented by Givli and Bhattyacharya,23 for which
they conducted a stability analysis on a closed surface. Here, we

present a stability analysis of the equivalent Cahn–Hilliard
system on a flat surface, and complement the analysis with
numerical simulations of the nonlinear system in a periodic
domain.

3.2 Linear stability analysis

We perform a linear stability analysis of eqn (19) to identify
the parameter regimes that can lead to protein aggregation. The
homogeneous state with uniform concentration f0 is perturbed
by a small amount f0 such that f = f0 + f0. Linearizing eqn (19)
results in the equation for density fluctuation f0 as

f
0
t ¼ r2f0

1

1� f0

� Âf0

� �
� Â

2Ŝ
f0r4f0: (20)

We consider normal modes of the form f0 = eatei2pk�x and
obtain the dispersion relation

a ¼ 4p2 Âf0 �
1

1� f0

� �
k2 � 8p4

Â

Ŝ
f0k

4: (21)

We find that the growth rate a is always real. The first term in
eqn (21) is positive and is destabilizing as long as the strength
of aggregation exceeds a certain threshold: Â Z Âc = [f0(1� f0)]�1

(E11.1 for f0 = 0.1), whereas the second term is always stabiliz-
ing. The marginal stability curves a = 0 in the (Â,Ŝ) plane are
plotted for various wavenumbers k in Fig. 2. For a given choice of
Â and Ŝ, this results in a band of unstable wavenumbers 0 r k r
kc, where

kc
2 ¼ Ŝ

2p2
1� Âc

Â

" #
; (22)

and the maximum growth rate occurs at wavenumber

km ¼ kc=
ffiffiffi
2
p

. The corresponding wavelength L = 2p/km provides
a prediction for the characteristic lengthscale of aggregation
patches, which is expected to decay with increasing Ŝ but to
increase with increasing Â.

Fig. 2 Marginal stability curves for the Cahn–Hilliard system in the (Â,Ŝ)
plane for f0 = 0.1 and various wavenumbers k, as predicted by eqn (19).
We mark three points in this figure to identify the parameter values for
which we perform nonlinear numerical simulations in Fig. 3.
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3.3 Numerical simulations

We conducted numerical simulations of eqn (19) inside a square
domain for various combinations of Â and Ŝ that satisfy the
necessary condition of aggregation as given in eqn (22) and
Fig. 2. The initial condition was set as a homogeneous distribution
of f0 = 0.1 with a small random spatial perturbation with
magnitude |f0| r 1 � 10�4. We numerically restricted the
value of f to the interval [e, 1 � e] with e = 1 � 10�3 to ensure

that neither f or 1 � f becomes zero during the simulations.
We used periodic boundary conditions for the protein density
and solved the equation numerically using a finite difference
technique (the Fortran code is available on https://github.com/
armahapa/protein_aggregation_in_membranes). In Fig. 3, we
show the evolution of the protein distribution over time for
three different values of the dimensionless number Ŝ that
denotes the ratio of domain area to the protein footprint, while

Fig. 3 Temporal evolution of the protein distribution in simulations of the Cahn–Hilliard model of eqn (19) on a flat square patch of area 1 mm2 for Â = 25
and three different values of Ŝ. The three rows in panels (a–i) correspond to three distinct times: at an early time tb = 3 � 10�3 shortly after the start of the
simulation, at an intermediate time tin when protein density variance reaches Vf = 2 � 10�3, and at a late time ts = 0.3 when the system has reached
steady state. The three columns correspond to Ŝ = 200 (a–c), Ŝ = 500 (d–f), and Ŝ = 1000 (g–i). Also see Movies M1–M3 in the ESI† for the corresponding
dynamics. ( j) Temporal evolution of the variance Vf of the protein density for the same cases shown in (a–i). The dashed lines indicate the intermediate
time tin when the variance reaches Vf = 2 � 10�3.
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maintaining the aggregation strength at Â = 25. In all cases, we
find that the initial perturbation in the density field evolves
towards the formation of distinct dense circular protein
patches that are distributed randomly and nearly uniformly
across the domain, in agreement with standard Cahn–Hilliard
aggregation dynamics.10 The main effect of varying Ŝ, which is
more dramatic than varying Â as we further show below, is to
control the number of patches as well as their size. Indeed, we
recall that Ŝ, which is a dimensionless measure of the finite size
of the proteins, directly controls the stabilizing term in
the dispersion relation eqn (21) and therefore the dominant
wavenumber of the instability. Consistent with the stability
predictions, we find that larger values of Ŝ produce larger
numbers of patches with smaller sizes. During the transient
evolution, proteins get drawn towards the emerging patches due
to aggregation, and at steady state we find that the density inside
the patches approached the saturation density (f = 1), whereas it
approaches zero outside (also see Movies M1–M3 in the ESI†).
We quantify the growth of density fluctuations by plotting in
Fig. 3j the time evolution of the density variance, defined as

Vf ¼
ð
A

ðf� f0Þ2dA: (23)

We find that the growth of the variance is exponential at short
times, consistent with the expected behavior for a linear instabil-
ity, before reaching a constant plateau at long times. The growth
is observed to increase with Ŝ in agreement with the linear
prediction of eqn (21). The steady state value, on the other hand,
is found to decrease slightly with Ŝ, although the differences
are small.

A more complete exploration of pattern formation is
provided in Fig. 4a, showing the long-time configurations of
aggregated protein patches in the parameter space of Â and Ŝ.
We note that the number of patches, their size, and their
homogeneity vary with both parameters. As we already observed
in Fig. 3, increasing Ŝ for a given value of Â increases the
number of patches and decreases their size. On the other hand,
increasing Â for a given Ŝ tends to increase inhomogeneity
among patches, with some visibly denser patches while
others tend to be more diffuse. The dependence of the
number of patches as a function of both Â and Ŝ is shown
in Fig. 4b, while the steady-state variance is plotted in Fig. 4c.
The variance is found to decrease with Â, as the more
diffuse patches forming at large Â result in weaker spatial
fluctuations.

Fig. 4 (a) Configurations of protein aggregates on a flat square membrane at a late time t = 0.3 approaching steady state for various combinations of Â
and Ŝ. (b) Variation of the number of protein patches with Â, for different values of Ŝ. (c) Variation of the protein density variance Vf with Â for different
values of Ŝ.
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4 Coupling of aggregation with
bending: analysis in the small
deformation regime

To understand how the inclusion of membrane curvature alters
the aggregation–diffusion landscape, we simulated the
dynamics of the coupled system eqn (S10)–(S13) (ESI†) in the
regime of small deformations from a plane. The surface is
represented using the Monge parametrization, such that the
position vector is given by r = xaea + z(x1,x2,t)e3. In the regime of
small deformations from the plane, we consider gradients of
the surface deformation to be small and ignore the higher-
order terms.12 The surface gradient and Laplacian in the

Monge parameterization simplify to r ¼ @

@x
i þ @

@y
j and

r2 ¼ @2

@x2
þ @2

@y2
. In the limit of small deformations, the system

of governing equations eqn (S11)–(S13) reduces to eqn (S14)–
(S17) (ESI†).

4.1 Linear stability analysis

We first perform a stability analysis of the system of equations
(eqn (S14)–(S17), ESI†) to identify the parameter regimes similar
to the analysis of Section 3.2 but in the presence of bending due to
spontaneous curvature induced by the protein. In the base state,
the membrane is flat and at rest with uniform tension (z0 = 0,
v0 = 0, l0 = 1), and the protein density is uniform with value f0. We
showed in an earlier study12 that a uniform protein distribution
on a flat membrane is indeed a steady state even when the
proteins induce a spontaneous curvature. We perturb the
variables by small amounts with respect to this base state:

f = f0 + f0, z = 0 + z0, v = 0 + v0, and, l = 1 + l0.
(24)

Linearizing eqn (S14) and (S15) (ESI†) provides the governing
equations for velocity and tension fluctuations as

r�v0 = 0, (25)

and,

rl0 þ r2v0 þ rðr � v0Þ

¼ �rf0 2B̂Ŝ

T̂
log

f0

1� f0

þ 4L̂2Ŝ2

T̂
f0 �

ÂB̂Ŝ

T̂
ð2f0 � 1Þ

" #
:

(26)

The normal force balance of eqn (S16) (ESI†) reduces to

r4z0 � 2L̂Ŝr2f0 � 2B̂Ŝr2z0

"
ff0 logf0 þ ð1� f0Þ logð1� f0Þg

þ Â

2
f0ð1� f0Þ þ

L̂2Ŝ

B̂
f0

2

#
¼ T̂r2z0:

(27)

Finally, the transport equation for the protein density given in

eqn (S17) (ESI†) becomes

f
0
t ¼ r2f0

1

1� f0

þ 2L̂2Ŝ

B̂
f0 � Âf0

" #
� f0

L̂

B̂
r4z0 þ Â

2Ŝ
r4f0

" #
:

(28)

We find that the linearized equations the velocity field and
tension partially decouple from the shape eqn (27) and protein
transport eqn (28): in other words, lipid flow and tension
fluctuations do not affect the membrane shape and protein
transport in the linear regime. To analyze the dynamics of
protein aggregation, we therefore need only consider eqn (27)
and (28). Performing a normal model analysis (see ESI† for
details), we obtain the dispersion relation as

a ¼ 4p2k2 Âf0 �
1

1� f0

� 2L̂2Ŝ

B̂
f0gðkÞ

" #
� 8p4f0

Â

Ŝ
k4; (29)

where g(k) is given by

gðkÞ ¼ 1� 16p4k4

MðkÞ ; (30)

and,

MðkÞ ¼ 16p4k4 þ 8p2k2B̂Ŝ

"
ff0 logf0 þ ð1� f0Þ logð1� f0Þg

þ Â

2
f0ð1� f0Þ þ

L̂2Ŝ

B̂
f0

2

#
þ 4p2k2T̂ :

(31)

Similar to eqn (21), the second term in eqn (29) is always
stabilizing, and therefore protein aggregation takes place only
if the first term is positive. The necessary condition for protein
aggregates to form becomes

Â� 2L̂2Ŝ

B̂
gðkÞ � 1

f0ð1� f0Þ
; (32)

or

Â � Âc þ
2L̂2Ŝ

B̂
gðkÞ; (33)

where Âc was previously defined in Section 3.2 in the Cahn–Hilliard
case. Here again, we find that there exists an unstable range of wave
numbers 0 o k o kc, where kc satisfies the implicit equation

kc
2 ¼ Ŝ

4p2
1� Âc

A
� 2L̂2Ŝ

B̂Â
gðkcÞ

" #
: (34)

The maximum growth rate occurs at wavenumber km, also given
by an implicit equation:

km ¼
kcffiffiffi
2
p 1þ 1

4p2km

L̂2Ŝ2

B̂Â
g0ðkmÞ

" #�1=2
: (35)

Fig. 5 shows the dependence of g(k) on wave number k for Â = 25
and various combinations of L̂ and Ŝ. When both L̂ and Ŝ
increase, g(k) tends to increase for small wavenumbers and thus
stabilizes the system. This means in particular that proteins

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
3 

A
ug

us
t 2

02
1.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Sa

n 
D

ie
go

 o
n 

10
/2

5/
20

21
 7

:1
6:

15
 P

M
. 

View Article Online

https://doi.org/10.1039/d1sm00502b


This journal is © The Royal Society of Chemistry 2021 Soft Matter, 2021, 17, 8373–8386 |  8381

with large spontaneous curvature, as captured by L̂, can in fact
have a stabilizing effect on protein aggregation, and this
counterintuitive observation will be confirmed in numerical
simulations as we discuss next.

4.2 Numerical simulations

We solved eqn (S14)–(S17) (ESI†) numerically on a square
domain with periodic boundary conditions for a small random
density perturbation over a homogeneous steady state density
of f = 0.1. The proteins now induce a spontaneous curvature in
the membrane, and the model also captures the viscous flow
on the membrane manifold. Typical transient dynamics are
illustrated in Fig. 6 in a simulation with L̂ = 8 � 10�3, Â = 25,
and Ŝ = 2000. The initial random distribution resolves into
strong patches of proteins over time with the same number of
patches as we observed in the Cahn–Hilliard system (compare
Fig. 3a–c with Fig. 6a–c). Because the system of equations now
accounts for coupling of curvature with protein dynamics,
we observe that the formation of dense protein patches is
accompanied by the localized growth of membrane deformations,
in the form of nearly circular peaks surrounded by flatter regions
of oppositely-signed curvature (Fig. 6a–c). We also observe that the
formation of protein aggregates is coupled with a tangential
velocity field in the plane of the membrane, to accommodate
the deformation of the membrane (Fig. 6d–f): as the protein
aggregates form and deflect the membrane in the normal

Fig. 5 Dependence of g defined in eqn (30) on wavenumber k for
different values of Ŝ and L̂, with Â = 25.

Fig. 6 Temporal evolution of protein distribution, membrane shape, in-plane velocity and tension for a square membrane of size 1 mm2 with Â = 25,
Ŝ = 200, and L̂ = 8 � 10�3. (a–c) Height of the membrane colored with the local protein density, (d–f) in-plane velocity field, and (g–i) membrane tension
at dimensionless times 0.003, 0.216, and 0.3.
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direction, a source-like flow is generated locally as dictated by the
continuity relation eqn (S14) (ESI†). During this process, the
magnitude of the velocity increases until the system approaches
a steady state where aggregation balances diffusion. As the steady
state is approached, the flow in the membrane changes nature as
the normal velocity vanishes, with each protein patch driving a
weaker flow with quadrupolar symmetry.

As we have noted in prior works,12,24,39 coupling of lipid flow
to membrane deformation not only completes the description
of the physics underlying the viscoelastic nature of the
membrane but also allows for the accurate calculation of
the membrane tension field (the Lagrange multiplier for incom-
pressibility). This is particularly relevant for understanding how
microdomains of proteins can alter the tension field in the
membrane. The tension field on the membrane tracks with
the protein microdomains and the deformation in the coupled
system (Fig. 6g–i). Initially, the membrane has nearly uniform
tension, but as regions of high protein aggregation and therefore
high membrane curvature form, these locations are found to
have lower tension in comparison with the rest of the membrane

(see ref. 39 for a detailed discussion on this point). Thus,
the dynamics of the coupled system is able to capture key
experimental observations in the field of membrane–protein
interactions: (a) regions of high curvature and aggregation are
correlated for curvature-inducing proteins suggesting a positive
feedback between these two important factors,40 (b) lipid flow is
important to sustain the deformations (ref. 41), and (c)
membrane tension is a heterogeneous field and varies with the
local membrane composition.38

To further quantify these behaviors, we investigated the
parameter space of Ŝ and L̂, to understand how the
spontaneous-curvature induction versus protein footprint
compete in a fixed regime of aggregation-to-diffusion (Â =
25 fixed) (see eqn (33)). We varied Ŝ in the range of 200 to
2000 and L̂ from 1 � 10�3 to 8 � 10�3 and summarize these
results in Fig. 7. We first observed that the growth rate of the
variance of f shows a strong dependence on L̂ (Fig. 7a).
For Ŝ = 200, the growth rate for the two different values of L̂
differ slightly with the growth rate being slower for larger L̂.
This effect persists and is amplified for larger Ŝ: as both Ŝ and L̂

Fig. 7 Effect of Ŝ and L̂ on protein aggregation and membrane dynamics. (a) Temporal evolution of the protein density variance Vf for two values L̂ and
the same three values of Ŝ shown in (b). (b) Distribution of protein density on the deformed membrane at a long time approaching steady state (t = 0.3) for
various combinations of L̂ and Ŝ, with Â = 25. The corresponding dynamics are also shown in Movies M4–M6 of the ESI.† (c) Distribution of the local
membrane tension for the same cases as in (b). (d) Variance of protein density Vf and (e) number of protein patches np at t = 0.3 as functions of L̂, for
various values of Ŝ.
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increase, the growth rate decreases, indicating that it takes
longer time for patterns to form on the membrane. However,
when Ŝ = 2000, we see a decay in the variance of protein density
f as opposed to the exponential growth and eventual plateau
for the cases where protein aggregrates form. This result, which
is consistent with the stability analysis of Section 4.1, suggests
that the induction of curvature on the membrane can alter
significantly the dynamics of protein aggregation.

The steady-state patterns and deformations are illustrated in
Fig. 7b (also see Movies M4–M6, and Fig. B.1, B.2 in the ESI†),
where we observe that the number of protein patches is largely
unaffected by L̂ for Ŝ = 200. The number of patches increases
with Ŝ for a given L̂ (as already found in Fig. 4). However, when
Ŝ increases to 1000, the number of patches decrease with L̂.
Since the deformation is directly affected by spontaneous
curvature, we find however that L̂ has a strong effect on the
magnitude of membrane deflections, with larger protein foot-
prints resulting in stronger deflections. Surprisingly, when
Ŝ = 2000, we noticed that protein aggregates do not form for
the value of L̂ = 8 � 10�3 and the membrane remains flat. This
phenomenon can be explained from the critical value of Â in
eqn (33). Since both L̂ and Ŝ have a stabilizing effect on density
fluctuations f0 (eqn (33)), for higher value of Ŝ and L̂, an
aggregation coefficient of Â = 25 is not sufficient to overcome
the stabilizing barrier. However, for lower values of L̂ or lower
values of Ŝ, where the stabilizing effect is relatively weak, we see
the formation of protein aggregates.

The tension profile in the membrane follows the inhomo-
geneity of the protein distribution as expected (Fig. 7c and
Fig. B.2, ESI†). As previously noted in Fig. 6, the patches
are associated with tension minima. We find that the
range of l depends strongly on Ŝ and L̂, as rl depends linearly
on the negative of the gradient of the spontaneous curvature,
which in turn depends on both c and s. This is consistent
with our previous results showing that l is a heterogeneous
field on the membrane and varies with the protein-induced
spontaneous curvature.12,39 Fig. 7c further highlights the
coupling between curvature, flow, and aggregation dynamics.
Finally, we look at the variance and the number of patches
as a function of both Ŝ and L̂ (Fig. 7d and e). We note that
for a given value of Ŝ, the variance decreases with increasing
L̂ for higher values of Ŝ and this decrease is more dramatic
when compared to the Cahn–Hilliard model (Fig. 4b).
Even though the number of patches remains more or less
unaltered for small values of Ŝ as L̂ increases, the number
decreases with increasing L̂ for larger values of Ŝ (Fig. 7e),
consistent with the stability behavior noted in eqn (33). These
results suggest that the landscape of protein inhomogeneity is
not only governed by the Â–Ŝ space as is the case in the Cahn–
Hilliard model; rather, the curvature parameters, specifically L̂
in this case, can have a significant impact on the protein
aggregation behavior. Thus, we find that the aggregation–
diffusion landscape on the surface of the membrane is altered
by the protein-induced spontaneous curvature – tuning these
different effects can allow for differential control of curvature-
aggregation feedback.

5 Discussion

The interaction of peripheral and integral membrane proteins
with the lipid bilayer of cellular membranes is fundamental
to cellular function.42–44 In this work, we have developed a
comprehensive modeling framework that couples the multiple
effects that take place in such membrane–protein interactions:
protein diffusion in the plane of the membrane, interaction
between the proteins resulting in aggregation, lipid flow in the
plane of the membrane, and out-of-plane curvature generation
due to protein-induced spontaneous curvature. The resulting
system of equations now completely describes the mechanics of
a lipid membrane with a second species that can both diffuse
and aggregate in the plane of the membrane. We compared this
system against a reduced system of Cahn–Hilliard equations to
show how the coupling with membrane bending alters
the system behavior using both linear stability analysis and
numerical simulations. In the absence of curvature coupling
(the Cahn–Hilliard system), the dynamics of protein aggregation
is driven by the competition between two key parameters, Ŝ,
representing the relative size of the protein footprint and Â,
representing the relative strength of protein aggregation over
diffusion. In the presence of curvature coupling due to protein-
induced spontaneous curvature, these dynamics are altered and
depend strongly on the strength of the spontaneous curvature
induced by these proteins. These altered dynamics can be sum-
marized as follows: for certain regimes of Ŝ and L̂, microdomains
of proteins form on the membrane and are closely tied to the
membrane curvature as is expected, generating a strong feedback
between curvature and aggregation. We also found that for certain
regimes of Ŝ and L̂, the growth rate decays, preventing the
formation of protein aggregates and the membrane remains flat.

The interaction between curvature and protein aggregation
in membranes has been studied in multiple modeling,21,23,45,46

simulation,6,7,10 and experimental contexts.47–51 Our work
builds on this literature with a few key differences. Many of the
theoretical models analyze the governing equations in simplified
settings. In some cases, the geometry is fixed and the emergence
of patterns is analyzed, and in other cases, the dynamics of the
protein interactions on the surface is ignored.10,23 Here, we have
analyzed the fully coupled system without any assumptions on the
dominant regimes and demonstrated how curvature generation
can affect aggregation. Another important feature of our model is
the calculation of membrane tension. Since the lipid bilayer is
assumed to be incompressible, the calculation of the Lagrange
multiplier, which is widely interpreted as membrane tension
(see detailed discussion in ref. 39 and references therein), is an
important aspect of the coupled physics. By incorporating
the viscous nature of the membrane, we ensure that the
incompressibility constraint is met rigorously at all times and
therefore obtain the tension fields on the membrane. Our calcula-
tion of the heterogeneous tension fields are consistent with pre-
vious models as noted above and with experimental observations.52

Moreover, a lower tension inside the phase-separated domain
further supports the existence of line tension at the domain
boundary, which has been observed experimentally.38
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Finally, we discuss the relevance of our model in the context
of biological systems. Coarse-grained molecular dynamic
simulations of N-BAR proteins on flat membranes and spherical
vesicles showed that at low protein density these proteins form
linear aggregates and meshes on the membrane surface.53 Many
proteins, especially those that belong to the coat family of
proteins including clathrin and COP, are known to aggregate on
the membrane and their aggregation results in morphological
changes of the membrane.54 The nucleation of these protein
aggregates and the subsequent deformation of the membrane
has been studied using simplified systems.55 While the exact role
of lipid flow, diffusion, and aggregation is often not unraveled
in these experiments, they have shown that the extent of
curvature induced depends on multiple physical parameters
including the composition of the membrane and the nature
of the protein.43,56 From a physiological perspective, many
neurodegenerative diseases such as Alzheimer’s disease,
Parkinson’s disease, and Huntington’s disease are associated
with surface aggregation of proteins in cells. Even though the
precise mechanisms of such aggregation are not fully established,
the role of membrane–protein interactions, particularly
aggregation, is becoming increasingly important.57

The formation of domains is not specific to lipid–protein
systems but is also observed in vesicles that have two different
kinds of lipids. The temporal behavior of formation of
disordered lipid domains was studied in a ternary mixture of fluid
membrane41 and it was shown that in-plane flow was critical to
the formation of such domains8 and that smaller domains can be
attracted towards larger domains following the internal flows.58

In developing models for many of these experimental
observations described above, aggregation of domains of
protein-induced curvature is often assumed a priori or curvature
is proposed as an organizing factor to explain cellular observa-
tions and experiments in reconstituted systems.59–65 By develop-
ing a general theoretical framework that accounts for the coupled
effects of protein diffusion, aggregation, and curvature genera-
tion, we have eliminated the need for such strong assumptions
and more importantly, demonstrated that the intricate interac-
tions between these different physics can lead to different regimes
of pattern formation and membrane deformations. These regimes
can be tuned and controlled by different parameters, allowing for
exquisite control of experimental design. In summary, the com-
prehensive model that we have developed here allows for a
broader interpretation and understanding of membrane–protein
interactions in a unifying framework.
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