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Abstract

We propose a nested reduced-rank regression (NRRR) approach in fitting a regres-
sion model with multivariate functional responses and predictors to achieve tailored
dimension reduction and facilitate model interpretation and visualization. Our ap-
proach is based on a two-level low-rank structure imposed on the functional regression
surfaces. A global low-rank structure identifies a small set of latent principal func-
tional responses and predictors that drives the underlying regression association. A
local low-rank structure then controls the complexity and smoothness of the asso-
ciation between the principal functional responses and predictors. The functional
problem boils down to an integrated matrix approximation task through basis ex-
pansion, where the blocks of an integrated low-rank matrix share some common row
space and/or column space. This nested reduced-rank structure also finds potential
applications in multivariate time series modeling and tensor regression. A blockwise
coordinate descend algorithm is developed. We establish the consistency of NRRR
and show through non-asymptotic analysis that it can achieve at least a comparable
error rate to that of the reduced-rank regression. Simulation studies demonstrate
the effectiveness of NRRR. We apply the proposed methods in an electricity demand
problem to relate daily electricity consumption trajectories with daily temperatures.
Supplementary materials are available online.

Keywords: Dimension reduction; Matrix approximation; Multi-scale learning.

∗Corresponding author; kun.chen@uconn.edu

1



1 Introduction

Multivariate functional data, which are generated when multiple variables are observed over

a certain continuum, have become increasingly prevalent, partly due to the rapid advances

in record keeping, inspection, and monitoring technologies in various fields. An object might

be captured by cameras/scanners at a sequence of different angles/positions. As measured

by various physiological indicators, the progression of a disease may be monitored frequently

over time. With the richness of such data, it is often of interest to study the association

between some multivariate functional responses and predictors. For example, with half-

hourly observations on temperature and electricity consumption of the city Adelaide, the

interest is to explore the predictive association between the daily electricity profiles and

the daily temperature profiles for each day in a week simultaneously. Such a predictive

model can then be used to infer future weekly power demand curves based on temperature

forecasts to facilitate power supply and peak load management.

The aforementioned problem can be cast under the framework of functional regression,

which has attracted considerable research efforts. Cardot et al. (1999, 2003) considered

regressing a scalar response variable on a functional predictor, and James (2002) generalized

it to the generalized linear regression setting. Faraway (1997) and Chiou et al. (2003)

derived methods to model univariate functional response with scalar predictors. For relating

a functional response and a functional predictor, Yao et al. (2005) considered a model based

on functional principal component analysis (FPCA). He et al. (2010) studied a model which

connects functional regression to functional canonical correlation analysis (FCCA). Ebaid

(2008) imposed a low-rank structure on the coefficient surface and showed that low-rank

regularization is closely connected to FPCA and FCCA. Extensions to the cases of multiple

scalar or functional responses/predictors have been studied by various authors, e.g., Matsui

et al. (2008), Zhu et al. (2017), and Krzyśko and Smaga (2017). Recently, He et al. (2018)

proposed a multivariate varying-coefficient model to study the changing effects of predictors

on responses, in which FPCA is used to reduce the number of unknown coefficient functions.

As for the most general situation where both the response and the predictor are multivariate

and functional, Ebaid (2008) considered imposing a low-rank structure on the coefficient
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surface with basis expansion. Chiou et al. (2016) incorporated into their model the possible

relationship between components of responses and predictors, respectively, by conducting

multivariate FPCA to two sets of variables as the first step. For a comprehensive account

of functional regression, see, e.g., Morris (2015) and Wang et al. (2016).

We consider the general scenario where both the response and the predictor are mul-

tivariate and functional. To formulate, let y(t) = [y1(t), . . . , yd(t)]
T be a d-dimensional

vector of zero-mean functional response with t ∈ T and x(s) = [x1(s), . . . , xp(s)]
T be

a p-dimensional vector of zero-mean functional predictor with s ∈ S. We consider the

multivariate functional linear regression model

y(t) =

∫
S

C0(s, t)x(s)ds+ ε(t), t ∈ T , (1)

where C0(s, t) = [ck,l(s, t)]d×p consists of unknown bivariate functions ck,l(s, t) assumed to

be square integrable, i.e.,
∫
T

∫
S c

2
k,l(s, t)dsdt < ∞, k = 1, . . . , d, l = 1, . . . , p, and ε(t) is a

d-dimensional zero-mean random error function. This formulation is a natural extension

of the classical functional linear model (FLM) developed for univariate time-dependent

responses. The key is to jointly estimate the many functional surfaces in Model (1) by

utilizing the potential associations among the functional variables.

In this paper, our focus is on exploring the potentials of the reduced-rank methodology for

fitting Model (1) with finite samples. In classical multivariate regression, low-rank models

have been commonly applied to induce information sharing among the correlated responses

and predictors in order to boost predictive performance and enhance model interpretation

(Reinsel and Velu, 1998; Bunea et al., 2011; Chen et al., 2013). It appears straightforward

to utilize this idea for functional regression, once a pragmatic basis expansion/truncation

procedure (Ramsay and Silverman, 2005) is applied to transform the functional problem

to finite dimensions. Imposing a low-rank structure on the resulting coefficient matrix

is then a natural and somewhat generic choice for controlling model complexity (Ebaid,

2008). However, we argue that such a naive reduced-rank implementation does not take

full advantage of the problem’s multivariate and functional nature, and hence it can be

inadequate in practice.
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We innovate a nested reduced-rank matrix representation, to enable multi-scale learning

in Model (1). At the global level, our method identifies latent principal functional factors

that drive the functional association between the responses and the predictors. As such,

dimension reduction is achieved when the number of latent responses is less than d and/or

the number of latent predictors is less than p. This reduction can be quite effective in the

presence of high-dimensional and highly-correlated functional variables. At the local level,

the smaller-dimensional latent regression surface is assumed to be smooth and correspond-

ingly its coefficient matrix derived through basis expansion is assumed to be of low rank,

enabling another chance of dimension reduction. With these structures, the problem then

boils down to a high-dimensional matrix decomposition and approximation task, where the

nested reduced-rank structure implies that the blocks or submatrices of an integrated high-

dimensional low-rank matrix share some common row space and/or column space. The

applicability of the nested reduced-rank structure goes well beyond the functional setup; it

also arises in vector autoregressive modeling of time series and tensor regression.

The paper is organized as follows. Section 2 introduces the nested reduced-rank for-

mulation under Model (1), derives the model estimation procedure, and showcases the

applicability of such nested reduced-rank matrix recovery in time series modeling, image

compression, and tensor regression. Computational algorithms and rank selection methods

are proposed, with details given in Supplementary Material A. In Section 3, we show the

consistency of the proposed estimator and derive a non-asymptotic error bound. Simula-

tion studies and the application on electricity demand are presented in Sections 4 and 5,

respectively. In Section 6, we conclude with some remarks.

2 Nested Reduced-Rank Regression

2.1 Model Formulation

We propose a nested reduced-rank structure under Model (1), to appreciate both the mul-

tivariate and the functional natures of the problem.
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Structure 1. (Global reduced-rank structure)

C0(s, t) = U0C
∗
0(s, t)VT

0 , s ∈ S, t ∈ T ,

where U0 ∈ Rd×ry with ry ≤ d, V0 ∈ Rp×rx with rx ≤ p, and C∗0(s, t) is an ry × rx latent

regression surface. Without loss of generality, we assume UT
0 U0 = Iry and VT

0 V0 = Irx.

In Structure 1, U0 and V0 are designed to capture the “global” effects of the functional

association, i.e., it implies that the association between y(t) and x(t) is driving by some

lower-dimensional latent functional responses and latent predictors that are formed as some

linear combinations of the original functional responses and predictors, respectively. That

is, it implies that y∗(t) =
∫
S C∗0(s, t)x∗(s)ds+ε∗(t), where y∗(t) = UT

0 y(t), x∗(s) = VT
0 x(s)

and ε∗(t) = UT
0 ε(t). When ry < d and/or rx < p, our model achieves great dimensionality

reduction and parsimony while retaining flexibility. The proposed structure is particularly

helpful for simultaneously modeling a large number of functional responses and predictors

that are highly correlated across s or t.

It is conventional to take a basis expansion and truncation approach to facilitate the

modeling of the latent regression surface C∗0(s, t) ∈ Rry×rx (Ramsay and Silverman, 2005),

for inducing its smoothness over s and t and converting the infinite-dimensional problem

to be finite-dimensional. Specifically, we represent the latent regression surface C∗0(s, t) as

C∗0(s, t) ≈ (Iry ⊗ΨT(t))C∗0(Irx ⊗Φ(s)), C∗0 ∈ R(Jyry)×(Jxrx), (2)

where Ia denotes the a × a identity matrix, Φ(s) = [φ1(s), . . . , φJx(s)]T consists of Jx

basis functions with Jφφ =
∫
S Φ(s)ΦT(s)ds being positive definite (p.d.), and similarly,

Ψ(t) = [ψ1(t), . . . , ψJy(t)]T consists of Jy basis functions with Jψψ =
∫
T Ψ(t)ΨT(t)dt being

p.d. The matrix C∗0 on the right-hand side of (2) then collects all the coefficients to expand

the ry × rx many bivariate functions in C∗0(s, t) with the basis Φ(s) and Ψ(t). Here we

assume the basis is given, such as spline, wavelet, and Fourier basis, and is with a sufficiently

large number of components.

With the expansion in (2), it boils down to consider the modeling of the high-dimensional
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coefficient matrix C∗0. We further explore a potential low-rank structure in C∗0.

Structure 2. (Local reduced-rank structure)

rank(C∗0) ≤ r,

for r ≤ min(Jyry, Jxrx); that is, C∗0 = A∗0B
∗T
0 for some A∗0 ∈ R(Jyry)×r, B∗0 ∈ R(Jxrx)×r.

Since the above structure induces the dependency between the latent responses and the

latent predictors through their basis-expanded representations, we achieve a finer dimension

reduction at the “local” level.

The approximation error in (2) can be controlled under reasonable conditions. Assume

that the bγcth order derivative of each function in C∗0(s, t) satisfies the Hölder condition

of order γ − bγc with γ > 1/2, where bγc is the biggest integer strictly smaller than γ.

This smoothness condition together with Structures 1–2 imply that the regression surface

C0(s, t) approximately admits a nested reduced-rank representation,

sup
s∈S,t∈T

|C0(s, t)−U0(Iry ⊗ΨT(t))A∗0B
∗T
0 (Irx ⊗Φ(s))VT

0 | = O(J−γy + J−γx ). (3)

We can choose the number of basis functions satisfying Jy →∞ and Jx →∞ as n→∞, so

that the above approximation error vanishes. Indeed, this is allowed in our non-asymptotic

analysis that provides a high-probability prediction error bound; see Section 3 for details.

Model (1) then becomes

y(t) ≈
∫
S

U0(Iry ⊗ΨT(t))A∗0B
∗T
0 (Irx ⊗Φ(s))VT

0 x(s)ds+ ε(t)

≈ (Id ⊗ΨT(t))(U0 ⊗ IJy)A∗0B
∗T
0 (VT

0 ⊗ IJx)

{∫
S
(Ip ⊗Φ(s))x(s)ds

}
+ ε(t). (4)

We remark that U0, V0, A∗0 and B∗0 are not fully identifiable individually up to rotation or

nonsingular transformation, similar to the settings in conventional reduced-rank estimation;

nevertheless, the structure as a whole is well-defined and identifiable.

It is worthwhile to mention a few special cases. When the low-dimensional structures

do not present at all, i.e., rx = p, ry = d and r = min(Jxrx, Jyry), the model becomes
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C0(s, t) = (Id ⊗ΨT(t))C∗0(Ip ⊗Φ(s)), for which the least squares estimation is equivalent

to separately regressing each response yk(t) on x(s) and hence there is no gain of conducting

a multivariate analysis. When the global structure does not present, i.e., rx = p and ry = d,

the model reduces to a reduced-rank functional model as in Ebaid (2008).

2.2 Estimation

The model estimation at the population level can be conducted through minimizing the

mean integrated squared error (MISE) with respect to C(s, t),

E
∫
T

∥∥∥∥y(t)−
∫
S

C(s, t)x(s)ds

∥∥∥∥2

dt, (5)

where ‖a‖ =
√

aTa denotes the `2 norm. Define the integrated predictor and response as

x =

∫
S
(Ip ⊗Φ(s))x(s)ds, y = (Id ⊗ J

− 1
2

ψψ )

∫
T

(Id ⊗Ψ(t))y(t)dt, (6)

and write y(t) = (Id ⊗ΨT(t))(Id ⊗ J
− 1

2
ψψ )y + (Id ⊗ΨT

⊥(t))(Id ⊗ J
− 1

2
ψ⊥ψ⊥

)y⊥, where x ∈ RJxp,

y ∈ RJyd, y⊥ ∈ RJyd, and
∫

Ψ(t)ΨT
⊥(t)dt = 0. Under the nested reduced-rank model in

(4), the MISE in (5) becomes

E
∫
T

∥∥∥y(t)− (Id ⊗ΨT(t))(U⊗ IJy)A∗B∗
T

(VT ⊗ IJx)x
∥∥∥2

dt

=E
∫
T

∥∥∥(Id ⊗ΨT(t))(Id ⊗ J
− 1

2
ψψ )y − (Id ⊗ΨT(t))(U⊗ IJy)A∗B∗

T

(VT ⊗ IJx)x
∥∥∥2

dt+ const,

where “const” represents the constant term that is free of the model parameters. As a

result, the estimation criterion becomes

min
U,V,A∗,B∗

{
E
∥∥∥y − (Id ⊗ J

1
2
ψψ)(U⊗ IJy)A∗B∗

T

(VT ⊗ IJx)x
∥∥∥2
}
. (7)

This is a generalization of the reduced-rank regression criterion (Reinsel and Velu, 1998).

Unlike the latter, however, (7) does not lead to an explicit analytic expression in general.

We now consider the corresponding sample estimation problem. Suppose the functional
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responses and predictors are fully observed over their respective domains for n random

subjects, i.e., (yi(t),xi(s)) for t ∈ T , s ∈ S, and i = 1, . . . , n. The integrated predictors

and responses for each subject i can then be computed according to (6),

xilj =

∫
S
φj(s)xli(s)ds, l = 1, . . . , p; j = 1, . . . , Jx,

y0
ikj =

∫
T
ψj(t)yki(t)dt, k = 1, . . . , d; j = 1, . . . , Jy, (8)

(yik1, . . . ,yikJy)T = J
− 1

2
ψψ (y0

ik1, . . . , y
0
ikJy)T, k = 1, . . . , d.

In practice with discretely observed data, the integrals in (8) can be approximated by finite

Riemann sums (Ramsay and Silverman, 2005); see Supplementary Material A.

Define Y·j = (yikj)n×d, for j = 1, . . . , Jy, and let Y = (Y·1, . . . ,Y·Jy) ∈ Rn×(Jyd).

Similarly, define X·j = (xilj)n×p, and let X = (X·1, . . . ,X·Jx) ∈ Rn×(Jxp). We write A∗ =

(AT
1·, . . . ,A

T
ry ·)

T where Ah· ∈ RJy×r for h = 1, . . . , ry, and B∗ = (BT
1·, . . . ,B

T
rx·)

T where

Bh· ∈ RJx×r for h = 1, . . . , rx. Define Ãh· = J
1
2
ψψAh· and Ã∗ = (ÃT

1·, . . . , Ã
T
ry ·)

T. Since Jψψ

is nonsingular, it suffices to consider the estimation of Ã∗ instead of A∗. It is necessary

to rearrange the rows of Ã∗ and B∗, i.e., let A = (AT
·1, . . . ,A

T
·Jy)T where A·j ∈ Rry×r is

formed by collecting the jth row of each Ãh·, and B = (BT
·1, . . . ,B

T
·Jx)T where B·j ∈ Rrx×r

is formed by collecting the jth row of each Bh·. Finally, these matrix notations allow us to

write the sample MISE criterion as a nested reduced-rank regression (NRRR) problem,

min
C
‖Y −XC‖2

F, s.t.C = (IJx ⊗V)BAT(IJy ⊗UT), (9)

where ‖·‖F denotes the Frobenius norm. Figure 1 shows a conceptual diagram of the nested

reduced-rank structure in C. The U and V can be regarded as two loading matrices for the

responses and the predictors, respectively; see also the discussion after Structure 1. From

matrix approximation point of view, they respectively capture the shared column and row

spaces among the blockwise sub-matrices of C. The score matrix BAT is assembled from

all the corresponding blockwise score matrices, and as a whole, it is of low rank.

The optimization problem in (9) is non-convex and has no closed-form solution, and
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V

V: Predictor loading

+ UT

U: Response loading

+ ...
. . .

...

· · ·

· · ·

BAT: Integrated score matrix

· · · · · ·

V UT

V UT

· · · V UT

· · · · · ·

· · · V UT

Figure 1: A diagram of the nested reduced-rank matrix structure in (9). The coefficient
matrix C admits a block structure and is parameterized by two loading matrices U and
V, and an integrated score matrix BAT. The U and V respectively capture the shared
column and row spaces among the blockwise sub-matrices of C; the BAT is assembled
from all the corresponding blockwise score matrices, and as a whole it is of low rank.

thus we develop a blockwise coordinate descent algorithm to solve it. In the proposed algo-

rithm, with fixed triplets of rank values (r, rx, ry), we alternatingly update each component

A, B, U and V in the nested reduced-rank representation while keeping others fixed. The

resulting sub-optimization problems are with explicit solutions. The objective function in

(9) is monotone decreasing along the iterations, and consequently the convergence to a

limiting point is guaranteed. We provide an initialization method to help achieve conver-

gence in an efficient and stable manner; simulation studies demonstrate the robustness of

the algorithm with respect to random perturbations of the initial values. The details of the

algorithm, the initialization, and the robustness checks are in Supplementary Material A.

To choose an optimal set of rank values (r, rx, ry), the K-fold cross validation proce-

dure can be used, which, however, can be quite computationally expensive. We propose

a Bayesian Information Criterion (BIC) (Schwarz, 1978). Denote Ĉ(r, rx, ry) as the es-

timator of C by solving (9) with the rank values fixed at some (r, rx, ry) and write the

sum of squared errors as SSE(r, rx, ry) = ‖Y −XĈ(r, rx, ry)‖2
F. We define BIC(r, rx, ry) =

ndJy log {SSE(r, rx, ry)/(ndJy)} + log(ndJy)df(r, rx, ry), where df(r, rx, ry) is the effective

degrees of freedom of the model and is estimated by the number of free model parameters

d̂f(r, rx, ry) = rx{r(X)/Jx − rx}+ ry(d− ry) + (Jyry + Jxrx − r)r. (10)

When ry = d, rx = r(X)/Jx, the above formula gives d̂f(r, r(X)/Jx, d) = (Jyry+r(X)−r)r,
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which is exactly the effective number of parameters in a rank-r reduced-rank regression

model (Mukherjee et al., 2015). The difference in the number of parameters is (Jyd −

Jyry)(r − ry/Jy) + (r(X)− Jxrx)(r − rx/Jx).

2.3 Other Applications and Connection with Tensor Regression

The applicability of the nested reduced-rank estimation is beyond the functional setup.

An interesting application is in high-dimensional vector autoregressive (VAR) modeling in

multivariate time series analysis. Let yt ∈ Rp be the observed multivariate time series at

time t. Consider a VAR model of order h,

yt = A1yt−1 + . . .+ Ahyt−h + et = Axt−1 + et, t = 1, . . . , T,

where Ai ∈ Rp×p, A = (A1, . . . ,Ah) ∈ Rp×hp, xt−1 = (yT
t−1, . . . ,y

T
t−h)

T ∈ Rhp, and et ∈ Rp

is a zero-mean innovative process. Stationary reduced-rank VAR model was introduced in

Luetkepohl (1993), where the coefficient matrix A is assumed to be of low rank. In high-

dimensional scenarios, it is possible that (1) some linear combinations of the multivariate

time series yt are processes of pure noise, and (2) the dynamics of yt is driven by its

lags only through some linear combinations. This fact gives rise to a nested reduced-rank

structure. Specifically, the global structure can be modeled as Ai = U0A
∗
iV

T
0 , i = 1, . . . , h,

where U0 ∈ Rp×r1 with r1 ≤ p, V0 ∈ Rp×r2 with r2 ≤ p, satisfying UT
0 U0 = Ir1 and

VT
0 V0 = Ir2 . The local low-dimensional structure can be modeled by letting the matrix

(A∗1, . . . ,A
∗
h) ∈ Rr1×(hr2) be of low rank. As such, VT

0 yt gives the latent principal time

series, and U⊥
T

0 yt are pure noise where U⊥0 ∈ Rp×(p−r1) and UT
0 U⊥0 = 0.

Another application is in surveillance video processing. In recent years, the sparse

plus low-rank decomposition has been a popular method for surveillance video decoding,

in which the low-rank component represents the background and the sparse component

captures the moving objects. Since the surveillance video frames are usually with a static or

gradually changed background, using a nested reduced-rank component with an extra global

reduction scheme may improve the efficiency of background representation by dramatically

reducing the temporal redundancy. These ideas will be further explored in our future work.
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The proposed nested reduced-rank regression can also be regarded as a tensor-on-tensor

regression (Kolda and Bader, 2009; Lock, 2018) with a delicately structured coefficient

tensor. Specifically, the response matrix Y ∈ Rn×(Jyd) in (9) can be rearranged along three

directions, i.e., subject, response component, and functional basis, into a 3rd-order response

tensor Y ∈ Rn×d×Jy . Similarly, X ∈ Rn×(Jxp) can be rearranged into a 3rd-order predictor

tensor X ∈ Rn×p×Jx . Consequently, the estimation criterion in (9) can be rewritten as

‖Y − 〈X , C〉‖2
F, where C ∈ Rp×Jx×d×Jy is a 4th-order coefficient tensor as a rearrangement

of the coefficient matrix C, and 〈·, ·〉 is the contracted tensor product. Interestingly, the

nested reduced-rank structure in C implies a novel tensor factorization structure in C.

The global reduced-rank structure implies a rank-restricted Tucker decomposition, i.e.,

C = [G; V, IJx ,U, IJy ] = G ×1 V ×2 IJx ×3 U ×4 IJy , where ×i is the i-mode product,

G ∈ Rrx×Jx×ry×Jy is the core tensor, and U and V are the loading matrices as in (9). The

local reduced-rank structure is equivalent to impose a low-rank structure on a flattened

matrix G of the core tensor G, i.e., G is formed by arranging the slices Gl,k ∈ Rrx×ry , l =

1, . . . , Jx; k = 1, . . . , Jy along (l, k) as a blockwise matrix G = (Gl,k) ∈ RJxrx×Jyry . To the

best of our knowledge, existing studies mainly consider sparsity of the core tensor (Li et al.,

2018), while we show that certain low-rank structure of the core tensor can be effective and

interpretable. Our work thus offers a new venue for dimension reduction in tensor models.

3 Theoretical Analysis

Our theoretical analysis concerns the fundamental NRRR setup,

Y = XC0 + E, s.t. C0 = (IJx ⊗V0)B0A
T
0 (IJy ⊗UT

0 ). (11)

Accordingly, the objective function is Qn(V,B,A,U) = ‖Y−X(IJx⊗V)BAT(IJy⊗UT)‖2
F,

and the NRRR estimator is obtained as (V̂, B̂, Â, Û) ∈ arg minV,B,A,U Qn(V,B,A,U). To

facilitate the analysis, it is necessary to make the components (V0,B0,A0,U0) identifiable

individually; we defer the discussion until presenting the main results. Here, the integrated

response and predictor matrices from functional data are treated as given, as the problem’s
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functional approximation aspect is not our focus. We have assumed that the rank values are

known. Even so, the non-convexity of the NRRR problem, induced by the nested low-rank

matrix decomposition, makes the theoretical analysis challenging. We need the following

conditions on the model in (11) for our asymptotic analysis.

Assumption 1. XTX/n
a.s.−−→ Γ as n→∞, where Γ is a fixed, positive-definite matrix.

Assumption 2. Each row ei of E is independently and identically distributed with E(ei) =

0 and cov(ei) = Σ, where Σ is positive-definite.

Theorem 1. (Consistency) Suppose Assumptions 1 and 2 hold. Then there exists a local

minimizer (V̂, B̂, Â, Û) of Qn(V,B,A,U) such that ‖V̂−V0‖F = Op(n
− 1

2 ), ‖B̂−B0‖F =

Op(n
− 1

2 ), ‖Â−A0‖F = Op(n
− 1

2 ) and ‖Û−U0‖F = Op(n
− 1

2 ).

Theorem 1 shows the consistency of the NRRR estimation in estimating the components

of the nested low-rank structure, in the sense that there exists a local minimizer that

is
√
n−consistent. For non-convex problems, such an asymptotic result is what to be

expected (Chen et al., 2012). While the details of the proof are provided in Supplementary

Material B.2, we briefly outline the main steps here. We first parameterize the coefficient

matrix C0 such that the components in its nested low-rank structure, (V0,B0,A0,U0),

can be identifiable. Then a local neighborhood around the true value C0 with radius h is

constructed, denoted as N (C0, h). We then show that for any given ε > 0,

P
{

inf
‖Ř1‖F=‖Ř2‖F=‖Ř3‖F=‖Ř4‖F=h

Qn(V0 +
1√
n

R1,B0 +
1√
n

R2,A0 +
1√
n

R3,U0 +
1√
n

R4)

> Qn(V0,B0,A0,U0)

}
≥ 1− ε

with a large enough constant h. Here the infimum is taken over the perturbation matrices

R1,R2,R3,R4 (one-to-one transformations of Ř1, Ř2, Ř3, Ř4) of V0,B0,A0,U0, respec-

tively, with a fixed Frobenius norm h. That is, the objective function evaluated at any

boundary point of the neighborhood of radius h is larger than that evaluated at the true

value, with an arbitrarily large probability. It thus follows that a local minimizer must

exist within the neighborhood with a
√
n convergence rate.
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We also attempt a non-asymptotic analysis to understand better the behavior of NRRR

estimator in high-dimensional setups. Let’s express the true functional regression surface as

C0(s, t) = {Id⊗Ψ(t)T}{Id⊗J
− 1

2
ψψ}C̃T

0 {Ip⊗Φ(s)}, where C̃0 is obtained by a rearrangement

of the columns and rows of C0. Let Ĉ = (IJx ⊗ V̂)B̂ÂT(IJy ⊗ ÛT) be the NRRR estimator

of C0, and Ĉ(s, t) is obtained by plugging in the corresponding components.

Theorem 2. Suppose the random error matrix E has independent N (0, σ2) entries. With

probability of at least 1− exp {−θ2(r(X) + dJy)/2}, we have

‖XĈ−XC0‖2
F . (r(X) + dJy)r,∫

T

∫
S

∥∥∥(Ĉ (s, t)−C0 (s, t)
)

x(s)
∥∥∥2

dsdt . (r(X) + dJy)r,

where θ > 0 is a positive constant. Here . means that the inequality holds up to some

multiplicative numerical constants.

Theorem 2 shows that the prediction error bounds of NRRR are at least comparable

to those of reduced-rank regression (Bunea et al., 2011). The proof of Theorem 2 is in

Supplementary Material B.3. This result provides support for using NRRR in problems

with diverging dimensionality; indeed, we see from numerical studies that NRRR always

outperforms RRR. We expect that the optimal rate for NRRR is faster than that given

above, since the number of free parameters in a nested low-rank structure can be much

smaller than that in a regular reduced-rank structure due to the global dimension reduction

by (V0,U0); see the formulation of the degrees of freedom in (10) and the discussion

afterward. We will explore this conjecture in our future work.

4 Simulation

We compare the performance of the proposed NRRR methods with several competing

methods, including the ordinary least squares method (OLS), the classical reduced-rank

regression (RRR), and the reduced-rank ridge regression (RRS). For NRRR, besides the

regular version, we consider a special case of setting ry = d, denoted as NRRR-X, and the

13



nested reduced-rank ridge regression, denoted as NRRS, in which a ridge penalty is added

to the NRRR criterion for inducing parameter shrinkage.

To generate synthetic data, we let x(s) = {Ip⊗ΦT(s)}x and ε(t) = {Id⊗ΨT(t)}ε, where

x ∈ RJxp, y ∈ RJyd, and ε ∈ RJyd are random vectors, and Φ(s) and Ψ(t) are the same two

sets of B-spline basis functions used to expand C(s, t). The y(t) is then given according to

(4), i.e., y(t) =
{
Id ⊗ΨT(t)

}{
(U0 ⊗ IJy)A∗0B

∗T
0 (V0 ⊗ IJx)T(Ip ⊗ Jφφ)x + ε

}
. Then, for

each i = 1, ..., n, the discrete-time observations (xi(s),yi(t)) are generated as follows,

1. Generate xi(s) =
{
Ip ⊗ΦT(s)

}
xi for uniformly distributed points su, u = 1, . . . , g

in S = [0, 1], where xi ∈ RJxp is from N(0,Σ) with Σ = (ρ|i−j|) for some 0 < ρ < 1.

2. Generate the entries of εi ∈ RJyd as independent samples from N(0, σ2).

3. Generate yi(t) =
{
Id ⊗ΨT(t)

}{
(U0 ⊗ IJy)A∗0B

∗T
0 (V0 ⊗ IJx)T(Ip ⊗ Jφφ)xi + ε

}
for

uniformly distributed time points tv, v = 1, . . . ,m in T = [0, 1].

The entries of A∗0 ∈ RJyry×r and B∗0 ∈ RJxrx×r are independent samples from N(0, 1),

and U0 ∈ Rd×ry and V0 ∈ Rp×rx are generated by orthogonalizing random matrices of

independent N(0, 1) entries via QR decomposition.

Two settings of model dimensions are considered:

Setting 1 : n = 100, m = g = 60, p = 10, d = 10, r = 5, rx = 3, jx = 8, ry = 3, jy = 8.

Setting 2 : n = 100, m = g = 100, p = 20, d = 20, r = 3, rx = 3, jx = 8, ry = 3, jy = 8.

In Setting 1, the model dimensions, pjx = 80, djy = 80 are comparable and slightly smaller

than the sample size, but the number of unknowns, 80×80, is already very large. In Setting

2, the model dimensions are much higher than the sample size, i.e., pjx = 160, djy = 160,

and the total number of unknowns is four times that in Setting 1. For each setting,

we try different signal to noise ratios (SNR ∈ {1, 2, 4}), defined as the ratio between

the standard deviation of all the elements in the response matrix (U0 ⊗ IJy)A∗0B
∗T
0 (V0 ⊗

IJx)T(Ip ⊗ Jφφ)(x1,x2, . . . ,xn) and the noise level σ, and different design correlations (ρ ∈

{0.1, 0.5, 0.9}). The ranks and tuning parameters (if there is any) for other methods are

selected by 10-fold cross validation. For methods with nested reduced-rank structure,

14



we also experiment with the proposed BIC criterion to select ranks; see Supplementary

Material A.3 for details. The experiment is replicated 300 times for each setting.

To evaluate the performance of different methods, we compute for each method the

trimmed mean squared prediction error (MSPE) from all runs (the smallest and largest

20 observations are deleted from 300 runs) based on an independent testing set of size

nte = 500, i.e, MSPE(Ĉ,C0) = ‖Yte −XteĈ‖2
F/nte where Yte and Xte are the integrated

response and predictor matrices. Similarly, to evaluate the estimation of the functional

responses, we compute the trimmed mean squared functional prediction error (MSFPE)

defined as
∑nte

i=1

∑m
v=1 ‖yte,i(tv)− ŷte,i(tv)‖2

F/nte.

Tables 1 and 2 present the prediction errors (MSPE) under Settings 1 and 2, respec-

tively. The results from OLS are omitted as they are much worse than those of the other

methods. Among the five methods presented, RRR has the worst performance. The per-

formance of NRRR is slightly better than that of NRRR-X. RRS substantially improves

its corresponding counterpart RRR by incorporating `2 shrinkage estimation. In general,

the improvement is more substantial when the SNR is low and/or the design correlation

is high. In contrast, in most scenarios, NRRS only slightly outperforms or has compara-

ble performance to NRRR. This is because NRRR has already considered a more delicate

low-dimensional structure so that the extra shrinkage becomes less effective. Due to space

limitations, we present the results on estimating r, rx and ry in Supplementary Material

C.1. RRR usually leads to an underestimation of r; this is expected as RRR tries to use

an overall low-rank structure to mimic the finer or even lower-dimensional nested low-rank

structure. NRRR performs well in rank estimation in general. The results confirm that

NRRR can produce a more interpretable model with improved predictive accuracy.

To visualize the effects of nested low-rank dimension reduction, Figure 2 displays the

boxplots of MSFPE for NRRR, NRRR-X, and RRR under Settings 1 and 2 with SNR = 1,

and Figure 3 draws two particular sets of the true and predicted curves by NRRR, RRR,

and OLS from the simulation. The efficacy of the nested dimension reduction is apparent.

The results under other settings deliver the same message and hence are omitted. Except

for RRR and RRS, all the above results are obtained using BIC to select the model ranks.
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Table 1: Simulation results on model estimation under Setting 1. Reported are the mean
MSPE values with their standard deviations in parentheses. To improve the presentation,
all values are multiplied by 10.

ρ NRRR NRRR-X RRR RRS NRRS
0.1 11.43 (2.64) 12.16 (2.81) 14.47 (3.16) 11.34 (2.46) 10.97 (2.50)

SNR = 1 0.5 18.14 (4.28) 19.07 (4.33) 22.42 (4.92) 17.46 (3.81) 17.61 (4.18)
0.9 26.20 (9.17) 26.58 (9.01) 29.56 (9.92) 23.87 (8.04) 25.6 (8.92)
0.1 2.68 (0.56) 2.84 (0.59) 3.84 (0.80) 3.08 (0.59) 2.77 (0.55)

SNR = 2 0.5 4.18 (1.01) 4.47 (1.10) 5.91 (1.40) 4.56 (1.06) 4.20 (0.99)
0.9 6.42 (2.19) 6.79 (2.31) 8.26 (2.58) 6.48 (2.09) 6.29 (2.06)
0.1 0.65 (0.14) 0.68 (0.15) 0.92 (0.21) 0.96 (0.19) 0.77 (0.17)

SNR = 4 0.5 1.04 (0.26) 1.08 (0.27) 1.47 (0.38) 1.31 (0.29) 1.14 (0.27)
0.9 1.52 (0.52) 1.61 (0.55) 2.11 (0.70) 1.69 (0.53) 1.59 (0.51)

Table 2: Simulation results on model estimation under Setting 2. The layout is the same
as in Table 1.

ρ NRRR NRRR-X RRR RRS NRRS
0.1 6.20 (1.47) 6.56 (1.55) 7.82 (1.98) 6.97 (1.60) 6.30 (1.50)

SNR = 1 0.5 9.76 (3.15) 10.33 (3.38) 11.82 (3.91) 10.55 (3.29) 9.76 (3.12)
0.9 14.44 (5.72) 15.06 (5.87) 16.21 (6.40) 14.88 (5.76) 14.28 (5.67)
0.1 1.56 (0.41) 1.58 (0.41) 2.40 (1.11) 2.07 (0.49) 1.61 (0.43)

SNR = 2 0.5 2.46 (0.74) 2.51 (0.74) 3.16 (0.98) 3.08 (0.88) 2.49 (0.73)
0.9 3.28 (1.22) 3.40 (1.28) 3.86 (1.46) 3.91 (1.66) 3.34 (1.22)
0.1 0.37 (0.10) 0.38 (0.10) 1.05 (1.01) 0.78 (0.18) 0.42 (0.16)

SNR = 4 0.5 0.61 (0.19) 0.62 (0.19) 0.95 (0.28) 0.91 (0.23) 0.63 (0.19)
0.9 0.88 (0.35) 0.90 (0.36) 1.05 (0.41) 1.07 (0.44) 0.89 (0.37)
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Figure 2: Boxplots of MSFPE under Settings 1 & 2. Each set of three boxplots for ρ =
0.1, 0.5, 0.9 is showing in black, grey, and white colors from left to right.
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Figure 3: Comparison of the true curves and the predicted curves in two simulation runs
under Setting 1 with SNR = 2 and ρ = 0.5.

The results obtained from using 10-fold cross validation for all methods are similar and

presented in Supplementary Material C.2.

5 Application to Adelaide Electricity Demand Data

Adelaide is the capital city of the state of South Australia. The city has a Mediterranean

climate, with warm-dry summers and cool-mild winters. In the summertime, the cooling

mainly depends on air conditioning, which makes the electricity demand highly dependent

on the weather conditions, and large volatility in temperature throughout the day could

make stable electricity supply challenging. Therefore, it is of great interest to understand

the dependence and predictive association between the electricity demand and the tem-

perature for facilitating electricity supply management (Magnano, 2007; Magnano et al.,

2008; Fan and Hyndman, 2015). Here we apply NRRR to perform a multivariate functional

regression analysis between daily half-hour electricity demand profiles for the seven days

of a week and the corresponding temperature profiles for the seven days of the same week.

Half-hourly temperature records at two locations, Adelaide Kent town and Adelaide

airport, are available between 7/6/1997 and 3/31/2007. Also available are the half-hourly

electricity demand records of Adelaide for the same period. As such, for each day during the

period, there are three observed functional curves, each with 48 half-hourly observations.

As an illustration, Figure 4 plots the temperature and electricity demand profiles of all the

Mondays from 7/6/1997 to 3/31/2007. Since our primary focus is on studying the general
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association between the within-day demand and temperature trajectories in a week, we

center the 48 discrete observations of each daily curve to remove the between-day trend

and seasonality of the data. Each week is then treated as a replication.
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Figure 4: Adelaide electricity demand analysis: (a) electricity demand in Adelaide, (b)
temperature in Kent town, and (c) temperature at the airport. Plotted are the half-hourly
observed profiles for all Mondays.

After data pre-processing, we use the daily half-hour electricity demand as the multi-

variate functional response with d = 7 (corresponding to 7 days in a week from Monday to

Sunday), and as for the predictors, we consider two settings. In the first setting, we only

use the half-hour temperature data from Kent as the multivariate functional predictors,

so that p = 7; in the second setting, we also include temperature data from the airport

to make p = 14. Not surprisingly, the two sets of temperature data are extremely highly

correlated, so the second setting is meant to test for the behaviors of different methods in

the presence of high collinearity. In either setting, the total sample size is n = 508, equal-

ing the number of weeks in the study period. To leave sufficient flexibility in estimating

the regression surface, we use B-spline with 30 degrees of freedom to convert the discrete

observations to the integrated form according to (6).

First, we compare different methods using an out-of-sample random splitting procedure.

Each time, we randomly select 400 samples as the training set and the remaining 108

samples as the test set. The model is fitted using the training data, and the relative

mean squared prediction error (RMSPE) is then computed based on the test data, i.e.,

RMSPE(ŷ,y) = 1
nte

∑nte

i=1

∫
‖yte,i(t)−ŷte,i(t)‖2dt/

∫
‖yte,i(t)‖2dt. The procedure is repeated

100 times, and the results are reported in Table 5. NRRR and NRRS perform very well in

18



−400

−200

0

200
00

:0
0

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

Time

E
le

c
tr

ic
it
y
 d

e
m

a
n
d

−400

−200

0

200

00
:0

0
1:

00
2:

00
3:

00
4:

00
5:

00
6:

00
7:

00
8:

00
9:

00
10

:0
0

11
:0

0
12

:0
0

13
:0

0
14

:0
0

15
:0

0
16

:0
0

17
:0

0
18

:0
0

19
:0

0
20

:0
0

21
:0

0
22

:0
0

23
:0

0

Time

E
le

c
tr

ic
it
y
 d

e
m

a
n
d

−400

−200

0

200

00
:0

0
1:

00
2:

00
3:

00
4:

00
5:

00
6:

00
7:

00
8:

00
9:

00
10

:0
0

11
:0

0
12

:0
0

13
:0

0
14

:0
0

15
:0

0
16

:0
0

17
:0

0
18

:0
0

19
:0

0
20

:0
0

21
:0

0
22

:0
0

23
:0

0

Time

E
le

c
tr

ic
it
y
 d

e
m

a
n
d

Figure 5: Adelaide electricity demand analysis: selected examples of observed demand
curves (solid) and out-of-sample predicted curves by RRR (dotted) and NRRR (dashed).

both settings, and their predicted curves can account for about 74% of the total variation

in the observed demand curves. The results show a dramatic global dimension reduction

of the functional predictors, as rx is estimated to be only 1 most of the time. As ry is

often close to the number of original functional responses, this indicates that each daily

electricity demand curve has its own pattern, and thus there is not much room for a

global dimension reduction. In contrast, RRR and RRS perform much worse in prediction,

and RRR even fails in Setting 2. To visualize, Figure 5 plots some randomly selected

observed and predicted curves under Setting 1; the superiority of NRRR is apparent. These

results clearly show the power and necessity of global dimension reduction, especially in

the presence of a high correlation among the functional predictors.

Table 3: Adelaide electricity demand analysis: out-of-sample performance of different meth-
ods. Reported are the means and standard deviations (in parenthesis) of RMSPE, r, rx,
and ry over 100 simulation runs.

Methods RRR NRRR RRS NRRS
Setting 1 RMSPE 0.42 (0.04) 0.27 (0.02) 0.38 (0.03) 0.26 (0.02)

r 1.53 (0.63) 4.06 (0.28) 3.60 (0.70) 4.09 (0.35)
rx 1.00 (0.00) 1.01 (0.10)
ry 5.70 (1.47) 5.73 (1.43)

Setting 2 RMSPE 1.08 (0.19) 0.26 (0.02) 0.55 (0.05) 0.26 (0.02)
r 0.26 (0.44) 4.45 (0.89) 1.00 (0.00) 4.40 (0.80)
rx 1.00 (0.00) 1.01 (0.10)
ry 6.72 (0.57) 6.75 (0.52)

We then use all data to fit a final NRRR model with only the temperature observations
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from Kent. The estimated rank values are r̂ = 4, r̂x = 1, and r̂y = 5. The estimated loading

matrix for the predictors is V̂ = (0.22, 0.39, 0.46, 0.52, 0.43, 0.28, 0.25)T. This shows that

only one latent functional predictor is driving the electronic demands patterns, and this

factor can be roughly explained as the averaged daily temperature profile of the week. It

appears that the days closer to the middle of the week load higher. There is not much global

reduction on the response side, as the estimated loading matrix Û is of rank 5. To make

sense of Û, it may be more convenient to examine the two basis vectors of its orthogonal

complement, i.e., the first two singular vectors of I− ÛÛT, which give the latent response

factors that are not related to the temperatures at all. While the first loading vector

(−0.52, 0.36, 0.28, 0.25,−0.56, 0.34,−0.18)T is hard to interpret, the second loading vector

(0.00,−0.68, 0.73, 0.00,−0.04, 0.05,−0.04)T clearly indicates that the difference between

the electronic demand profiles of Tuesday and Wednesday is mostly a noise process. In

other words, the demand profiles of these two days are related to the temperature process

in almost the same way.

Let ũk be the kth row of Û. Then Model (4) shows that the estimated regression surface

c̃k(s, t) = ũT
k (Ir̂y ⊗ΨT(t))Â∗B̂∗T(Ir̂x ⊗Φ(s)), k = 1, . . . , d, (12)

would indicate how the response yk(t) is related to the latent predictor V̂Tx(s) over s and

t. In the context of this application, c̃k(s, t) shows how the electricity demand trajectory

on the kth day of a week is related to the trajectory of the week’s average temperature.

We therefore plot the heatmaps of these surfaces to visualize. Figure 6 displays the plots

for Tuesday and Saturday. While the patterns of the association are hard to comprehend

in general, some observations can be made. First, there are three association regimes

throughout each day, i.e., night hours from about midnight to 7:30, daylight hours from

about 7:30 to 18:00, and the rest hours from about 18:00 to midnight. This corresponds well

with the general patterns of daily electricity demand, and the three regimes are separated

by the “Morning ramp”, i.e., the transition from relatively lower loads to higher loads in

the morning, and the peak load time around 18:00. Noticeably, the electricity demand in

daylight hours is the least associated with the temperature. Another observation is that
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Figure 6: Adelaide electricity demand analysis: heatmaps of estimated regression surfaces
defined in (12).

temperatures between about 19:00 to 20:30 and 23:00 to 00:00 in general have the largest

effects on the electricity demand. This may be related to household and entertainment

activities. Lastly, we observe that the association patterns on the workdays are similar and

are slightly different from those on the weekends.

6 Discussion

There are many research directions that stem from the proposed nested reduced-rank es-

timation framework. Our method can be extended to the historical functional regression,

i.e., when s and t are both on the same domain such as time, it is required that C0(s, t) = 0

for any s > t, so that the future dynamics of x(s) is not used in the modeling of the current

or past dynamics of y(t). Another interesting direction is to consider sparse and low-rank

estimation. For example, to enable the selection of the functional predictors, we could

assume that V0 is a row-sparse matrix and utilize group-wise regularization such as group

lasso in estimation. We have taken a basis expansion approach to deal with the functional

aspect of the problem, where we assume the basis functions are given. An alternative is to

take a functional principal component analysis or functional canonical correlation analysis,

in which the basis functions are obtained as the eigenfunctions of the covariance operators

of y(t) and x(s). While with any given number of components such a data-driven basis
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expansion has the advantage of explaining most of the variations in the `2 sense, the anal-

ysis is much more complicated as it then involves the estimation of the unknown basis. For

the non-convex NRRR problem, the proposed algorithm enjoys the monotone descending

property and works well empirically, and it will be interesting to fully explore its converges

properties. In view of Gorski et al. (2007) and Mishra et al. (2017), it is expected that the

algorithm can at least converge to some coordinatewise minimum point. On the theoret-

ical side, it is pressing to study the non-asymptotic behavior of NRRR under reasonable

conditions on the integrated design matrix originated from the functional setup. Last but

not least, we will further explore the nested reduced-rank structure, or even more generally,

a multi-resolution reduced-rank structure in other statistical problems such as time series

analysis and large-scale matrix and tensor approximation tasks.
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SUPPLEMENTARY MATERIAL

Technical details and additional simulation results: The pdf file contains three sec-

tions of contents, including A. Computation: details of the computational algorithm

and procedures; B. Proofs: proofs of Theorems 1 and 2; and C. Additional simulation:

simulation results on rank estimation and cross validation tuning. (NRRR-supp.pdf)

Codes and data: The proposed methods are implemented in an R package named NRRR,

which is publicly available at https://github.com/xliu-stat/NRRR. The scripts

for numerical studies are included. The electricity demand dataset is available in the

R package fds on CRAN. Please read the file README contained in the zip file for

more details. (NRRR-supp.zip, zip archive)
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