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SUMMARY: Researchers often have to deal with heterogeneous population with mixed regression relationships,
increasingly so in the era of data explosion. In such problems, when there are many candidate predictors, it is
not only of interest to identify the predictors that are associated with the outcome, but also to distinguish the
true sources of heterogeneity, i.e., to identify the predictors that have different effects among the clusters and thus
are the true contributors to the formation of the clusters. We clarify the concepts of the source of heterogeneity
that account for potential scale differences of the clusters and propose a regularized finite mizture effects regression
to achieve heterogeneity pursuit and feature selection simultaneously. We develop an efficient algorithm and show
that our approach can achieve both estimation and selection consistency. Simulation studies further demonstrate the
effectiveness of our method under various practical scenarios. Three applications are presented, namely, an imaging
genetics study for linking genetic factors and brain neuroimaging traits in Alzheimer’s disease, a public health study
for exploring the association between suicide risk among adolescents and their school district characteristics, and a
sport analytics study for understanding how the salary levels of baseball players are associated with their performance

and contractual status.
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Pursuing Sources of Heterogeneity in Modeling Clustered Population
1. Introduction

Regression is a fundamental statistical problem, of which a prototype is to model a response
y € R as a function of a p-dimensional predictor vector x. In many applications, the
classical assumption that the conditional association between y and x is homogeneous in
the population does not hold. Rather, their conditional association may vary across several
latent sub-populations or clusters. Such population heterogeneity can be modeled by a finite
mixture regression (FMR), which is capable of identifying the clusters by learning multiple
models together. Since first introduced by Goldfeld and Quandt (1973), FMR has been
further developed in various directions and is widely used in various fields; see, e.g., Jiang
and Tanner (1999), Bohning (1999), McLachlan and Peel (2004), and Chen et al. (2018).

In the era of data explosion, regression problems with a large sample size and/or a large
number of variables become increasingly common, which makes the modeling of population
heterogeneity even more relevant. However, while many high-dimensional methods have been
developed for mixture regression (Khalili and Chen, 2007; Stéadler et al., 2010; Khalili, 2011),
utilizing regularization has been mainly for the purpose of variable selection, i.e., to identify
the predictors that are relevant to the modeling of the outcome.

In this paper, we tackle a challenging and interesting problem in the context of mixture
model: to identify the predictors that are truly the sources of heterogeneity. That is, besides
the selection of important predictors, we aim to further divide the selected predictors into
two categories, the ones that only have common effects on the outcome and the ones that
have different effects in different clusters. Being able to identify the sources of heterogeneity
not only could reduce the complexity of the mixture model, but also could improve the model
interpretability and enable us to gain deeper insights on the outcome-predictor association.

One important field that motivates our study is the imaging genetics with application to

mental disorders such as Alzheimer’s disease. As demonstrated by twin studies (Van Cauwen-
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berghe et al., 2016), genetic factors play an import role in Alzheimer’s disease and offers great
promise for disease modeling and drug development. Compared with categorical diagnoses,
neuroimaging trait has distinct advantages to capture disease etiology, and has been used
in replacement of conventional clinical behavioral phenotypes in genome wide association
studies (GWAS). Due to the availability of large-scale brain imaging and genetics data in
landmark studies like the Alzheimer’s Disease Neuroimaging Initiative (Weiner et al., 2013), a
large body of literature in imaging genetics focuses on high-dimensional modeling to identify
risk genetic variants (Vounou et al., 2012; Lu et al., 2015; Zhao et al., 2019). However, a
major challenge in the field that has not been well investigated is how to link the imaging-
associated genetic factors to actual disease diagnosis or progression and provide meaningful
interpretations. Specifically, for progressive mental illness like Alzheimer’s disease, it is
critical to identify biomarkers that can predict the disease at early time. Therefore, we believe
that not only there are genetic factors that impact overall disease risk, but also there are
the ones that have differential impacts across some sub-groups which may be corresponding
to different progressive periods/stages. While a few attempts have been made to bridge the
pathological paths among genotype, imaging and clinical outcomes (Hao et al., 2017; Bi
et al., 2017; Xu et al., 2017), to the best of our knowledge, none of the existing methods
consider the heterogeneity within patient cohort or imaging endophenotype, nor are they
capable to identify genetic factors that give arise disease sub-groups.

Indeed, the problem of heterogeneity pursuit is prevelent in various fields, ranging from
genetics, population health, to even sports analytics. In a study on suicide risk among
adolescents, we used data from the State of Connecticut to explore the association between
suicide risk among 15-19 year old and the characteristics of their school districts. It is of
great interest to learn whether different association patterns co-exist and whether they

are due to the differences in demographic, social-economic, and/or academic factors of the
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school districts. In a study on major league baseball players, the goal is to find out which
performance measures and contract/free agent statues of the players contributed to the
formation of distinct salary mechanisms or clusters.

In this work, we propose a reqularized finite mizture effects regression model to perform fea-
ture selection and identify sources of heterogeneity simultaneously. The problem is formulated
using the effects model parameterization (in analogous to the formulations used in analysis
of variance), that is, the effect of each predictor on the outcome is decomposed to a common
effect term and a set of cluster-specific terms that are constrained to sum up to zero. We
consider adaptive /1 penalization on both the cluster-specific effect parameters and common
effect parameters, which leads to the identification of the relevant variables and those with
heterogeneous effects. The model estimation is conducted via an Expectation-Maximization
(EM) algorithm, in which the M step results in a linearly constrained ¢; penalized regression
and is solved by a Bregman coordinate descent algorithm (Bregman, 1967; Goldstein and
Osher, 2009). We show that the proposed approach can also be cast as a regularized finite
mixture regression with a generalized lasso penalty; this connection facilitates our theoretical
analysis in showing the estimation and selection consistency. Although we mainly focus on
normal mixture model and ¢; regularization, our approach can be readily generalized to
other non-Gaussian models with broad class of penalties and constraints. A user-friendly R

package is developed for practitioners to apply our approach.

2. Mixture Effects Model For Heterogeneity Pursuit
2.1 An Owverview of Finite Mixture Regression (FMR)

We start with a description of the classical normal finite mixture regression (FMR). Let

T ¢ RP be a p-dimensional

y € R be a response/outcome variable and x = (z1,...,1))
predictor vector. In FMR with m components, it is assumed that a linear regression model

holds for each of the m components, i.e., with probability 7;, a random sample (y, x) belongs
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to the jth mixture component (j = 1,...,m), for which we have that y = xTb; + ¢;, where
b; € R? is a fixed and unknown coefficient vector, and €; ~ N(O,sz-) with 0]2- > (. For the
ease of notation, here the intercept term is included by setting the first element of x as one.

Therefore, the conditional probability density function of y given x is

“ 1 —(y —x"b,)?
Tj————exp{———F5—} (1)
; V2mo, 20;
where 7;’s are the mixing probabilities satisfying 7; > 0, Z;n:l m; = 1. We write (by,...,by,,) =
(El, . ,lN)p)T, where Bk € R™ collects m component-specific coefficients for the predictor

xp. With finite samples, the maximum likelihood approach is often used for parameter
estimation and inference in FMR, via the celebrated EM algorithm (Dempster et al., 1977)
and its many variates (Meng and Rubin, 1991, 1993). Khalili and Chen (2007) was among
the first to propose penalized likelihood approach for variable selection in FMR models;
asymptotic properties were established in their work under the fixed p, large n paradigm.
Stéadler et al. (2010) studied ¢; penalized FMR and derived estimation errors bounds and
selection consistency under general high-dimensional setups. Khalili and Lin (2013) further
studied penalized FMR for a general family of penalty functions. Other relevant works include
Wedel and DeSarbo (1995), Weruaga and Via (2015), Bai et al. (2016), and Dogru and Arslan
(2017). For a comprehensive review, see, e.g., Khalili (2011). The penalized FMR models have
been widely applied in many real-world problems, such as gene expression analysis (Xie et al.,
2008), disease progression subtyping (Gao et al., 2016), multi-species distribution modeling
(Francis K. C. Hui and Foster, 2015), protein clustering (Chen et al., 2018), among others.

In the above mixture setup, the variance parameters 0]2- play important roles. Unlike in
regular linear regression where its single variance parameter generally can be treated as
nuisance in the estimation of the regression coefficients, the variance parameters in mixture
models directly impact on the scaling (thus interpretation) and estimation of the regression

coefficients of the multiple mixture components, and consequently, they also affect the



103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Pursuing Sources of Heterogeneity in Modeling Clustered Population

assessment and even the definition of “heterogeneous regression effects”. To facilitate the

further discussion, we present a re-scaled version of FMR (Stadler et al., 2010),

b _
Q; = 04 = (¢1js- - )" py=0;"

J

(j=1,...,m),

and subsequently rewrite the conditional density in (1) as

; 1
Fly | %) Z% T expl =5 (s = x"9,)°} ©)
where ® = (1, ..., Pm; T, o, Tm; P15 - - -, Pm) collects all the unknown parameters. We write
®=(d1,...,0m) = (b1,..., )  €R”™ = vec(®T) € R™,
where (Zk € R™ collects m component-specific regression coefficients for the predictor ) for

k=1,...,pand vec(-) is the columnwise vectorization operator.

2.2 Sources of Heterogeneity under Finite Mixture Regression

Now let’s consider predictor selection and heterogeneity pursuit. A predictor xy is said to be

relevant or important, if Bk = 0, or equivalently, ggk # 0. Correspondingly, define

Sp={k;1 <k <p,y # 0}
to be the index set of all the relevant predictors, and let pg = |Sg| denote its size. Estimating
Sg is typically the main task of a variable selection method.
We aim higher. That is, besides identifying the relevant variables, we want to also find out
among them which ones actually contribute to the population heterogeneity. However, the
concept of “source of heterogeneity” is not as easily defined as it appears, since the different

mixture components are possibly with different scales. We consider two definitions.

DEFINITION 1: A predictor x; is said to be a source of heterogeneity, if bs = c1 for any

ceR.

DEFINITION 2: A predictor z; is said to be a scaled source of heterogeneity, if (Ek #+cl

for any ¢ € R.
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Both definitions have their own merits. Definition 1 is in terms of the inequality of each raw
coefficient vector by, from (1), which is simple and aims to draw a direct comparison of the raw
effects of z;, in different mixture components regardless of their scales. Definition 2 is in terms
of the scaled counterpart q;k in (2), and the motivation is to distinguish the heterogeneity
induced by the predictors and that caused by inherit scaling differences. In other words,
under the second definition, we compare the standardized effects of x; in different mixture
components after putting them on the same scale. An analogy can be drawn from the
familiar analysis of variance context: comparing the means of different groups is mostly
appropriate when the groups are with the same variances. Notice that the two definitions
become equivalent when the component variances are equal, e.g., 07 = --- = ¢2,, which is a
commonly adopted assumption in mixture regression analysis.

In this work, we shall mainly focus on Definition 2, although our methodologies can be
readily modified to handle the alternative definition. Based on Definition 2, let Sy = {k; 1 <
kE<p, &Fk # c1,Ve € R} and pyy = |Sy|. Henceforth, our objective is to recover both Sg and
Sp. This can potentially lead to a much more parsimonious and interpretable model. To see
this, consider as above that in a m-component mixture model with p predictors, there are
po relevant variables, and among those, only pyo variables are sources of heterogeneity. The
classical FMR fits a model with mp free regression parameters, which can be infeasible when
p is even moderately large comparing to the sample size. Meanwhile, the best model a sparse
predictor selection method can possibly produce would have mpy free regression parameters.
We can do better: since only pyy predictors are truly the source of heterogeneity, the best
model would have only pg + (m — 1)pgo regression parameters. The saving can be substantial
when pgy < po < p and/or m is large. As an example, consider one of the simulation settings
to be presented in Section 5 with m = 3, p = 30, py = 10, and pyy = 3. The classic FMR

is with mp = 90 regression parameters, the sparse selection method can possibly reduce
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the number to be mpy = 30, while our method can possibly further reduce the number to

po + (m — 1)poo = 16 through identifying the sources of heterogeneity.

2.3 Regularized Mixture Effects Regression

Motivated by the so-called effects-model formulation commonly used in analysis of variance
models, we propose the following constrained mixture effects model formulation, to facilitate

the pursuit of the sources of heterogeneity in mixture regression,
y | X, 0 ZW] eXp{_ (pjy BO_XT/BJ‘)Q}’ StZﬁ]k:Oak: L...,p, (3)
j=1

where 3, = (601, .., Bop)T € R? collects the common effects, and B, = B, Bip)t € RP,
j =1,...,m, are the coefficient vectors of cluster-specific effects. The equality constraints

are necessary to ensure the identifiablility of the parameters. We write

B - (ﬂo?ﬁl?‘ A 7/3m> = (El?' A 7Bp)T e RpX(m+1)7 B - VeC<BT> E Rp(m+1)7

where Bk = (Bok, Biks - - - » Bnke) T € R™ 1 collects the common effect and the m cluster-specific
effects for predictor xj. The rest of the terms are similarly defined as in (2), except that we
now write @ = (By, B1s- -+, B Ty -+ T P15 - - -, Pm) tO correct all the parameters under
this alternative effects-model parameterization.

Now a predictor x;, is deemed to be relevant whenever B r 7 0. Moreover, a relevant variable
is deemed to be a source of heterogeneity only if there exists a 1 < j < m such that 3, # 0.
As such, variable selection and heterogeneity pursuit can be achieved together through a
sparse estimation of B. With n independent samples {(y;,x;);i = 1,...,n}, we propose to

conduct model estimation by maximizing a constrained penalized log-likelihood criterion,

mélX {[)\Y(e) = ;10g {f(yi | xi,0)} — n)‘kZ;P’Y(Bk)} ; 8.t Z_;Bﬂf =0,k=1,....p, (4

where f(y | x, ) is the conditional density function from (3), and P,(-) is a penalty function

with A being its tuning parameter; we mainly focus on the ¢; penalty (Tibshirani, 1996) and
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its adaptive version (Zou, 2006; Huang et al., 2008), i.e.,
Py(Br) =D wirlBil,  wi =187 (5)
§=0

where wj;s are the adaptive weights constructed from some initial estimator B\R py With v =0
corresponding to the non-adaptive version and v > 0 the adaptive version. Apparently there
are many other reasonable choices of penalty functions (Fan and Li, 2001; Khalili and Lin,
2013), but our choice of ¢; is simple, convex and yet fundamental for sparse estimation.

Interestingly, the proposed constrained sparse estimation approach can also be understood
as a generalized lasso method (She, 2010; Tibshirani and Taylor, 2011) based on the un-
constrained model formulation in (2). To see this, observe that each Ek can be written as a
function of ng as

1/m1k

Bkz = Ag{;ku A= S R(erl)Xm’
I,—1/mJ,

where 1,, is the m x 1 vector of all ones, I,, is the m x m identity matrix and J,, is the

m x m matrix of ones. Therefore, the generalized lasso criterion is expressed as

max {lz(’ﬁ) =) log{f(y: | x:,9)} —nA|W(L, ® A)¢>||1} : (6)
i=1
where f(y | x,9) is the conditional density function from (2), and W = diag{w;;} €

Re(m+1)xp(m+1) §g constructed from the adaptive weights in (5) accordingly.

PROPOSITION 1: The two problems in (4) and (6) are equivalent, in the sense that

o If 9 = (¢, 7, p) solves (6), then 8 = (B, 7, p) solves (4) where 3 = (I, ® A).

e And conversely, if 8 = (8,7, p) solves (4), then ¥ = (¢, &, p) solves (6) where ¢ is such

that ¢; = By + B, j =1,...,m.

It turns out that (4) is more convenient to use in computation, while (6) is more useful
in the theoretical investigation. We also show that these penalized estimation criteria avoids

the unbounded likelihood problem (McLachlan and Peel, 2004) in Web Appendix B.
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3. Asymptotic Properties

The generalized lasso formulation allows us to perform the asymptotic analysis under the
unconstrained mixture regression model setup given in (2). The main issue is then in dealing
with the special form of the generalized lasso penalty in (6). To make things clear, we use
0 or ¥9* to denote the true parameters. We have defined Sy and Sy as the sets of relevant

predictors and the predictors of sources of heterogeneity, respectively. Correspondingly, define

S ={i; (I, ® A)g"); # 0}.
Recall that 8* = vec(B*T) = (I, ® A)¢@*, which means that S encodes the sparsity pattern
of all the regression coefficients 3" in the effects models. Then the recovery of Sg and Sy is
immediate if S can be recovered.
We consider the setup that the design is random, and the number of predictors p and the
number of components m are considered as fixed as the sample size n grows. Building upon
the works by Fan and Li (2001), Stédler et al. (2010) and She (2010), our main results are

presented in the following two theorems.

THEOREM 1 (Non-adaptive Estimator): Consider model (2) with random design, fixed p
and m. Choose A = O(n~/2). Assume the regularity conditions (A)-(C) from Web Appendix
A on the joint density of (y,x) hold. Then for v = 0, there exists a local maximizer 3} of

(6) such that /n(9] —9*) = O,(1).

THEOREM 2 (Adaptive Estimator): Consider model (2) with random design, fixed p and
m. Choose \/nA — 0, nO+tD/2X\ — o0 as n — oo, and suppose the initial estimator in
constructing the weights is y/n-consistent, i.e., \/ﬁ(f’\z)\m —19*) = Op(1). Assume the regularity
conditions (A)-(C) from Web Appendix A on the joint density of (y,x) hold. Then for
any 7 > 0, there exists a local maximizer 5} of (6) such that it is /n-consistent and

P(8) =8) = 1 as n — oo.
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Theorem 1 shows that the non-adaptive estimator can achieve y/n-consistency in model
estimation, under typical regularity conditions on the joint density of (y,x). Theorem 2
shows that the adaptive estimator, under the same conditions and with weights constructed
from a consistent estimator such as the non-adaptive one in Theorem 1, can further achieve

consistency in feature selection and heterogeneity pursuit.

4. Computation

We propose a generalized EM algorithm for optimizing the criterion in (4), which enjoys
desirable convergence guarantee that the object function is monotone ascending along the
iterations. The algorithmic structure is mostly straightforward based on the work of Stadler
et al. (2010), except that in the M-step we need to efficiently solve an ¢; regularized weighted
least squares problem with equality constraints. A Bregman coordinate descent algorithm
(Goldstein and Osher, 2009) is proposed to solve it. For tuning the number of component
m and the penalty parameter A\, we propose to minimize a Bayesian information criterion
(BIC). To save space, the derivations of the algorithm and the details on tuning are provided

in Web Appendix C.

5. Simulation

We compare the following methods via simulation,

e Normal mixture regression with variable selection via lasso (Mix-L, or M1) and via adap-
tive lasso (Mix-AL, or M2), proposed by Stadler et al. (2010).
e The proposed normal mixture effects regression with variable selection and heterogeneity

pursuit via lasso (Mix-HP-L, or M3) and via adaptive lasso (Mix-HP-AL, or M4).

The sample size is set to n = 200 and the number of components is set to m = 3. The data

on the predictors, x; € RP for ¢ = 1,...,n, are generated independently from multivariate



244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

Pursuing Sources of Heterogeneity in Modeling Clustered Population

normal distribution with mean 0 and covariance matrix 3. We consider two correlation
structures, i.e., the uncorrelated case with ¥ = I,, and the correlated case with o;; =
0.5/"=91 where o;; denotes the (i, j)’s entry of 3. We consider three predictor dimensions: p €
{30,60,120}. As such, the number of free model parameters is 95, 185, and 365, respectively,
being either comparable or much larger than the sample size.

In each setting, the first po = 10 predictors are relevant, and among them only pgy = 3
predictors have scaled heterogeneous effects over different components according to Definition
2. Specifically, under the mixture effects model (3) with m = 3, the sub-vectors of the first

10 entries of the scaled coefficient vectors 3;, denoted as 3,4, 7 = 0, 1,2, 3, are set as

ﬁOO = (17 1a ]-7 17 17 1a 07 07 O)T/\/gv /610 - (07 07 07 07 Oa 07 07 07 _37 3)T/\/5a

By = (0,0,0,0,0,0,0,—3,3,0)"/v8, By = (0,0,0,0,0,0,0,3,0,—3)" /V/3,

and the variance components are set as (07,05,03)T = § x (0.1,0.1,0.4)™, where § controls
the signal to noise ratio (SNR) defined as SNR = 77", ;b cov(X)b;/ > iy mios, with
b; = (By +B;) x g, j =1,...,m being the corresponding unscaled coefficient vectors as in
the mean model (1). We remark that b;s remain the same for different § values, for facilitating
the comparison among different SNRs. We choose § = 1/8,1/4,1/2, 1,2, corresponding to
SNR = 200, 100, 50, 25, 12.5, respectively. We set m; = my = m3 = 1/m and generate the
response values by (3). We choose the tuning parameter A and the number of components
m € {2,3,4} by minimizing BIC. The experiment is repeated 500 times under each setting.

The following performance measures are computed. The estimation performance for the
unscaled regression coefficients (by,...,b,,), the mixing probability (my,...,m,) and the
variances (0%,...,02) is measured by their corresponding mean squared errors (MSE). The
variable selection performance is measured by the false positive rate (FPR) and the true

positive rate (TPR) for identifying relevant predictors, and the false heterogeneity rate (FHR)

for identifying predictors with heterogeneous effects. Specifically, they are defined as below:

11
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e FPR = #falsely selected variables with no effects / #variables with no effects;
e TPR = #correctly selected variables with effects / #variables with effects;
e FHR = #falsely selected variables with heterogeneous effects / #variables with common

effects.

Figure 1 displays the boxplots of mean squared errors in various simulation settings, and
Table 1 shows the detailed results for p = 60 with 3 = I,. The results for p € {30,120} and
for the cases of correlated predictors convey similar messages, which are provided in Web

Appendix D. The findings are summarized as follows.

e As expected, in general the larger the signal to noise ratio and the smaller the model
dimensions, the better the performance of each method.

e Adaptive method in general leads to more accurate results in both model estimation and
variable selection than its non-adaptive counterpart. The improvement can be substantial.
Specifically, both Mix-HP-L and Mix-HP-AL rarely miss important variables, but the former
tends to select a larger model with more irrelevant variables. Indeed, the over-selection
property of ¢, penalization is well known.

e The proposed methods Mix-HP-L and Mix-HP-AL outperform their counterparts without
heterogeneity pursuit, Mix-L and Mix-AL, respectively, in most simulation setups, except
that when SNR = 12.5 and p = 120, all methods suffer from very low signal to noise
ratio and very high dimensionality. The Mix-HP-AL has the best performance among all
the competing methods; its improvement over others can be substantial especially when the
signal is weak or moderate and the model dimension is high; moreover, in those relatively
difficult scenarios, even Mix-HP-L can outperform Mix-AL.

e We have examined settings where all relevant predictors have heterogeneous effects, for
which the methods with or without heterogeneity pursuit perform similarly. We have also

considered settings with unequal mixing probabilities, where the implications are similar; see
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Web Appendix D. These results clearly demonstrate the benefit of heterogeneity pursuit, as

it enables the potential of identifying the most parsimonious model.

We conclude that overall the proposed heterogeneity pursuit approach with adaptive
lasso (Mix-HP-AL) is preferable to both the non-adaptive counterpart Mix-HP-L. and the
conventional methods like Mix-L and Mix-AL. The proposed method is particularly beneficial

when it is believed that only very few predictors contribute to the regression heterogeneity.
[Figure 1 about here.|

[Table 1 about here.]

6. Applications
6.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

We performed imaging genetics analysis based on data from the ADNI database which is a
public-private partnership to study the progression of mild cognitive impairment and early
Alzheimer’s disease based on different data sources including genetics, neuroimaging, clinical
assessments, etc. (See ADNI for detailed study design and data collection information). Our
goal here is to find out whether distinct clusters of disease-gene associations exist, possibly
corresponding the disease stages, and to identify common genetic factors associated with
overall disease risk, as well as cluster-specific ones.

Briefly, to control data quality and reduce population stratification effect, we only include
760 Caucasian subjects in this analysis. For each subject, single nucleotide polymorphisms
(SNPs) genotyping data were acquired by Human 610-Quad BeadChip (Illumina, Inc., San
Diego, CA) according to the manufacturer’s protocols; and raw MRI data were collected
through 1.5 Tesla MRI scanners and then preprocessed by standard steps including ante-
rior commissure and posterior commissure correction, skull-stripping, cerebellum removing,

intensity inhomogeneity correction, segmentation, and registration (Shen and Davatzikos,
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2004). The preprocessed brain images were further labelled regionally by existing template
and then transferred following the deformable registration of subject images (Wang et al.,
2011), which eventually led to 93 regions of interest over whole brain. After removing the
ones with sex check failure, more than 10% missing single nucleotide polymorphisms (SNPs),
and outliers, 741 subjects including 174 Alzheimer’s disease, 362 mild cognitive impairment
and 205 healthy controls remain in the analysis.

We consider the following imaging phenotypes: two global brain measurements, i.e. whole
brain/white matter volumes, and two Alzheimer’s disease related endophenotypes, i.e. left
and right lateral ventricles volumes. For each imaging trait, we include both SNPs belonging
to the top 10 Alzheimer’s disease candidate genes provided by the AlzGene database and
those identified from United Kingdom (UK) Biobank (Zhao et al., 2019) (~20,000 subjects)
under the same imaging phenotype. The final lists of SNP names are provided in supple-
mentary materials. We fit our proposed Mix-AL-HP model for each imaging trait and its
corresponding genetic predictors to examine the cluster patterns and select risk factors that
impact the whole cohort with common effects and those impact the sub-groups/clusters
heterogeneously. Age, gender and the top five genetic principal components are always
included in the models as controls with common effects and no regularization. We fit models
with different component numbers (m € {1,2,...,5}) and with/without the assumption of
equal variance; the best model is selected based by BIC.

We first examine the identified clusters for each imaging trait to see whether the cluster
pattern is associated with disease progression. The numbers of clusters for the four imaging
traits, left/right ventricles and whole brain/white matter volumes, are 2, 3, 3, 1 with the
smallest BIC values regarding \ being 1873.12, 1871.58, 1794.04 and 2144.72, respectively.
And among the three imaging traits with more than one identified cluster, the average

values of imaging phenotype are shown to be clearly different over different clusters. See
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Web Figure 2 in Web Appendix E, which shows the cluster-specific boxplots of each imaging
trait. Intriguingly, given the fact that the size of brain increases along Alzheimer’s disease
progression, we are able to clearly align the identified clusters to different disease stages in
light of the average volume of imaging traits. Note that for the white matter volume, which
is a global brain phenotype, no cluster pattern is detected, which is biologically reasonable
due to its weaker pathological bounding to disease etiology.

All the selected SNPs and their types of effect (common or cluster-specific) are summarized
in Figure 2. Most of the identified genetic risk variants (e.g. SNPs within genes CD2AP,
MRVI1, GNA12) associated with two Alzheimer’s disease imaging biomarkers are consistent
and subtype-related, indicating the existence of varying genetic effects on brain structure
over diesease progression. Meanwhile, the selected SNPs related to global brain phenotypes
are generally with common effect; again, this is due to their weaker pathological bounding
to disease etiology compared with the Alzheimer’s disease related endophenotypes.

Figure 3 provides a visualization of the estimated coefficients of each selected SNP under
different clusters. Based on Figure 3, we successfully detect a few SNPs showing a particular
strong impact on early- to middle-stage Alzheimer’s disease including rs2025935, rs677909
and rs798532 located in genes BIN1, MS4A4E and GNA12. Among them, BIN1 is the key
molecular factor to modulate tau pathology and has recently been recognized as an important
risk locus for late-onset Alzheimer’s disease (Tan et al., 2013); MS4A4E has been detected
by GWAS as a genetic risk factor for Alzheimer’s disease based on Alzheimer’s Disease
Genetic Consortium (Hollingworth et al., 2011); and GNA12, though has not been extensively
reported in existing experiments, is known to over-express in human brain. Due to a typical
small/moderate effect of single genetic signal, some of these variants are highly likely to
be buried under existing methods without clustering overall heterogeneity. Moveover, our

results provide valuable insights to prioritize future early therapeutic strategies even among
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all the Alzheimer’s disease genotypes. In terms of other selected SNPs, most of them have
been recognized as Alzheimer’s disease risk factors in previous experiments or analyses, and
they either show a common effect across all the clusters or a mixing one including both early

and late stages in our results. Detailed estimation results are reported in Web Appendix E.
[Figure 2 about here.|

[Figure 3 about here.]

6.2 Connecticut Adolescent Suicide Risk Study

Suicide among youth is a serious public health problem in the United States. The Centers
for Disease Control (CDC) reported that suicide is the third leading cause of death of youth
aged 15-24 based on 2013 data, and more alarmingly there has been an increasing trend over
time. Suicide prevention among youth is a very challenging task, which requires a systematic
approach through developing reliable metrics for assessing suicide risk, locating areas of
greater risk for effective resource allocation, identifying important risk factors, among others.

We use data from the State of Connecticut at the school district level to explore the
association between suicide risk among 15-19 year olds and the characteristics of their school
district. Specifically, the overall suicide risk of the 15-19 age group within each school district
is proxied by its log-transformed 5-year average rate of inpatient hospitalizations due to
suicide attempts from 2010 to 2014 (per year per 10,000 population). Several characteristics of
the n = 119 school district characteristics were collected in the same period: (1) demographic
measures, including percent of households that included an adult male, average household
size, percent of the population that are under 18 years of age, percent of population who
are White; (2) academic measures, including average score on the Connecticut Academic
Performance Test (CAPT), graduation rate, dropout rate, and attendance rate of high
schools in the district; (3) behavioral measures, including incidence rate, defined as the

ratio between the number of disciplinary incidences and the total enrollment, and serious
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incidence rate; (4) economic measures, including median income and free lunch rate. More
details about the data can be found in Chen and Aseltine (2017).

In the previous study, a generalized mixed-effects model was used to estimate the common
effects of the school district characteristics on the suicide risk (through fixed-effects terms)
and identify the “overachievers” and “underachievers” (through district-level random effects)
among school districts. (It was also shown that there was no significant spatial effect.) Indeed,
the existence of these anomalous school districts suggests that the regression association may
not be homogeneous, and thus it is interesting to see whether additional insights can be
gained by a mixture regression analysis, to reveal the potentially heterogeneous association
structure, cluster the school districts, and identify the district characteristics that drive
the heterogeneity. We thus apply our proposed Mix-HP-AL method to analyze the data.
For dealing with the highly-correlated school district measurements, we perform group-wise
principal component analysis and use each leading factor to summarize the information of
each category, which results in p = 4 district factors; the details of the principal component
analysis results are provided in Web Appendix F.

Table 2 reports the estimation results, and Figure 4 shows the corresponding cluster pattern
of the school districts using the naive Bayes classification rule with the estimated component
probabilities p;;, i.e., zix = 1 if k = argmax; p;;. A three-component model is selected based
on the BIC, in which the three factors differentiate school districts not in terms of their overall
suicide risk as we did in our prior analysis, but in terms of the association between the risk
factors and suicide risk. In Table 2 one can see that only the demographic and academic
factors are selected; when conditioning on the selected factors, the economic factor and the
behavior factor are no longer related to the suicide risk, which may be partly due to the fact
that the four factors are still moderately correlated. The major difference among the 3 clusters

of communities involves the direction of effects of the demographic factor, which indicates
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a great deal of heterogeneity in how this factor impact suicide risk across communities.
The majority of the school districts are in cluster 3, in which the suicide risk is negatively
associated with the demographic factor; that is, in general, the larger the household size, the
greater percentage of households with an adult male, the greater the proportion of population
under age 18, and higher the proportion of White residents are associated with lower suicide
risk, after adjusting for the effect of academic performance. In contrast, in cluster 1 the
association between the suicide risk and the demographic factor is positive, such that higher
rates of male householders, larger household size, higher proportions of children under 18, and
a higher proportion of White residents is associated with higher suicide risk. Further analysis
reveals that the 12 school districts in cluster 1 have significantly lower mean suicide risk than
those in cluster 3; this suggests that the impact of the demographic factors on suicide risk
may change and even flip sign with the mean suicide risk level itself. It is possible that this
is caused by some “unmeasured” factors confounded with the demographic factor. Cluster
2 is the smallest in size among the three, consisting of “Regional 19” (near the University
of Connecticut), “New London” and “Monroe”; these are anomalous districts with very low
suicide risk. The academic factor, in contrast, is identified to have only common effects after
scaling by the variances according to Definition 2, which makes the estimated model even
more parsimonious. That the effect of the academic factor is always positive indicates that
suicide risk tends to be higher in those school districts with better academic performance;
as discussed in Chen and Aseltine (2017), students in school districts of better academic
performance could be under higher pressure, which in turn may induce more psychological
distress. In general, our results agree well with previous studies, and we gain additional

insight on the changing impact of the school district characteristics on the suicide risk.

[Table 2 about here.]

We have also compared Mix-HP-AL to Mix-AL by performing a random-splitting pro-
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cedure to evaluate their out-of-sample predictive performance. Each time the data is split
to 80% training for model fitting and 20% testing for out-of-sample evaluation, and the
procedure is repeated 500 times. The average predictive log-likelihood (with standard error
in the parenthesis) is —24.6 (2.32) and —23.2 (2.16) for Mix-AL and Mix-HP-AL, respectively,

indicating that the proposed method indeed performs better for this dataset.
[Figure 4 about here.|

The proposed method has also been applied to another application in sports analytics for
understanding how the salaries of baseball players are associated with their performance and

contractual status. Due to space limit, the application is detailed in Web Appendix G.

7. Discussion

In this paper, we propose a mixture regression method to thoroughly explore the heterogene-
ity in a population of interest, which is increasingly encountered in the era of big data. Our
approach goes beyond the conventional variable selection methods, by not only identifying
the relevant predictors, but also distinguishing from them the true sources of heterogeneity.
As such, the proposed approach can potentially lead to a much more parsimonious and
interpretable model to facilitate scientific discovery.

There are a number of future research directions. It is pressing to extend the proposed
method to handle non-Gaussian outcomes, such as binomial mixture and Poisson mixture.
This extension can help us to improve the analysis for the suicide risk study, as the raw counts
of the suicide-related hospital admissions may be better modeled by Poisson distribution.
Another possible direction is to consider other forms of penalty functions. For example,
when the predictors are highly correlated, it could be beneficial to use the elastic-net penalty
(Zou and Hastie, 2005) to ensure stable coefficient estimation. Non-convex penalties could

also be considered to improve variable selection. A related task is to extend the theoretical
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analysis to high-dimensional settings where the number of variables may grow with or exceed
the sample size. A potential byproduct of the proposed approach is that it can lead to
automatic reduction of the number of pre-specified clusters when the effects of some clusters
are estimated to be exactly the same; it is hopeful that this interesting feature can allow
us to build a more general mixture learning framework where relevant variables, sources
of heterogeneity and the number of clusters are simultaneously learned. It would also be
interesting to consider heterogeneity pursuit in multivariate mixture regression, but it is
not straightforward. The mixture components may have different covariance matrices which
complicate the definition of the sources of heterogeneity, and the set of predictors with
heterogeneous effects may differ across different responses.

In this work, we mainly focus on the framework of mixture regression to pursue the
sources of heterogeneity at the “global” level. An interesting direction is to extend our
work to utilize the frameworks of individualized modeling and sub-group analysis which
mainly pursue the sources of heterogeneity at the “individual” level (Tang et al., 2020). To
lessen the assumptions of mixture regression, several recent works formulate the problem as
a penalized regression with a fusion-type penalty. Ma and Huang (2017) proposed a concave
pairwise fusion approach to identify sub-groups with pairwise penalization on subject-specific
intercepts. Austin et al. (2020) proposed a grouping fusion approach to identify unknown
sub-groups and their corresponding regression models. Tang et al. (2020) proposed a method
to simultaneously achieve individualized variable selection and sub-grouping. Comparing to
the mixture model framework, an individualized penalized regression approach may not fully
utilize the potential global mixture structure and fails to consider the potential heterogeneity
in variances. Therefore, we will explore the idea of combining mixture model and individu-

alized fusion, to simultaneously perform global and individualized heterogeneity pursuits.
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Figure 1. Boxplots of mean squared errors (in log scale) for estimating the unscaled
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Figure 2. ADNI study: effects of selected SNPs and their associated genes for the four
imaging phenotypes. Light color means a SNP has only common effect across clusters; Dark
color means a SNP has different effects across clusters and thus is considered as a source
of heterogeneity. The SNPs are ordered based on the their positions on chromosomes. This
figure appears in color in the electronic version of this article, and any mention of color refers
to that version.
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Figure 3. ADNI study: estimated scaled coefficients (ggkj) of selected SNPs for the four
imaging phenotypes, showing along their positions on chromosomes. The numbers of clusters
are 2,3,3,1 for the four imaging phenotypes, showing from top to bottom. For each imaging
phenotype, its cluster labels are aligned with decreasing average values of the phenotype
(thus correspond to different disease stages). Grey color means a SNP has only common
effect across clusters; red color indicates cluster 1; blue color indicates cluster 2; and green
color indicates cluster 3. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version.
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Figure 4. Suicide risk study: district clustering using Mix-HP-AL. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.
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Table 1
Comparison of mean squared error of estimation, variable selection and heterogeneity pursuit performance of four
methods, Miz-L, Miz-AL, Miz-HP-L and Miz-HP-L, under settings with n = 200, p = 60, and ¥ = 1I,. The mean
squared errors (MSE) are reported along with their standard errors in the parenthesis. The simulation is based on
500 replications. The MSE values are scaled by multiplying 100, and the FPR, FHR, TPR values are reported in

percentage.
MSE RATE
SNR Method b o? = FPR FHR TPR
200  Mix-L 0.04 (0.02) 7.32 (4.04) 0.18 (0.15) 53.0 100.0 100.0
Mix-AL 0.01 (0.00) 0.09 (0.08) 0.12 (0.10) 10.2 100.0 100.0
Mix-HP-L.  0.01 (0.00) 4.95 (1.88) 0.14 (0.11) 39.1 4.4 100.0
Mix-HP-AL 0.00 (0.00) 0.07 (0.05) 0.11 (0.10) 4.0 0.3 100.0
100 Mix-L 0.10 (0.04)  10.58 (5.57) 0.22 (0.18) 48.3 100.0 100.0
Mix-AL 0.03 (0.01) 0.10 (0.10) 0.12 (0.11) 13.3 100.0 100.0
Mix-HP-L. ~ 0.03 (0.01) 7.04 (2.83) 0.15(0.12) 36.8 3.8 100.0
Mix-HP-AL 0.01 (0.00) 0.07 (0.06) 0.12 (0.10) 3.8 0.1 100.0
50 Mix-L 0.23 (0.11) 14.66 (8.24) 0.28 (0.23) 43.9 100.0 100.0
Mix-AL 0.08 (0.05) 0.22 (0.22) 0.15 (0.13) 16.6 100.0 100.0
Mix-HP-L  0.07 (0.02) 9.91 (3.85) 0.17 (0.14) 334 2.8 100.0
Mix-HP-AL 0.02 (0.01) 0.09 (0.10) 0.13 (0.11) 3.7 0.1 100.0
25 Mix-L 0.72 (0.60)  29.07 (25.26) 0.54 (0.61) 33.9 100.0 100.0
Mix-AL 0.36 (0.25) 1.34 (1.70) 0.28 (0.32) 19.0 100.0 100.0
Mix-HP-L 0.15 (0.06) 12.57 (5.30) 0.19 (0.15) 33.2 1.9 100.0
Mix-HP-AL 0.04 (0.02) 0.15 (0.16) 0.13 (0.11) 4.0 0.2 100.0
12.5  Mix-L 4.11 (2.58) 101.20 (76.46) 7.01 (5.90) 16.0 100.0  90.0
Mix-AL 3.24 (2.56)  33.17 (37.18) 4.66 (4.71) 12.3 100.0  90.0
Mix-HP-L  0.36 (0.13)  16.50 (8.27) 0.22 (0.18) 35.0 1.9 100.0
Mix-HP-AL  0.10 (0.04) 0.38 (0.40) 0.15(0.13) 5.5 0.1 100.0
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Table 2
Suicide risk study: the coefficient estimates using Miz-HP-AL. The zero values are shown as blanks.
Factors o1 b2 ®s3
Intercept 6.23 6.23 6.23
Demographic factor 0.27 -0.27

Academic factor 0.13 0.13 0.13
Behavioral factor
Economical factor
0.33 0.20 0.46
0.13 0.02 0.85
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