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Summary: Researchers often have to deal with heterogeneous population with mixed regression relationships,

increasingly so in the era of data explosion. In such problems, when there are many candidate predictors, it is

not only of interest to identify the predictors that are associated with the outcome, but also to distinguish the

true sources of heterogeneity, i.e., to identify the predictors that have different effects among the clusters and thus

are the true contributors to the formation of the clusters. We clarify the concepts of the source of heterogeneity

that account for potential scale differences of the clusters and propose a regularized finite mixture effects regression

to achieve heterogeneity pursuit and feature selection simultaneously. We develop an efficient algorithm and show

that our approach can achieve both estimation and selection consistency. Simulation studies further demonstrate the

effectiveness of our method under various practical scenarios. Three applications are presented, namely, an imaging

genetics study for linking genetic factors and brain neuroimaging traits in Alzheimer’s disease, a public health study

for exploring the association between suicide risk among adolescents and their school district characteristics, and a

sport analytics study for understanding how the salary levels of baseball players are associated with their performance

and contractual status.
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1. Introduction3

Regression is a fundamental statistical problem, of which a prototype is to model a response4

y ∈ R as a function of a p-dimensional predictor vector x. In many applications, the5

classical assumption that the conditional association between y and x is homogeneous in6

the population does not hold. Rather, their conditional association may vary across several7

latent sub-populations or clusters. Such population heterogeneity can be modeled by a finite8

mixture regression (FMR), which is capable of identifying the clusters by learning multiple9

models together. Since first introduced by Goldfeld and Quandt (1973), FMR has been10

further developed in various directions and is widely used in various fields; see, e.g., Jiang11

and Tanner (1999), Bohning (1999), McLachlan and Peel (2004), and Chen et al. (2018).12

In the era of data explosion, regression problems with a large sample size and/or a large13

number of variables become increasingly common, which makes the modeling of population14

heterogeneity even more relevant. However, while many high-dimensional methods have been15

developed for mixture regression (Khalili and Chen, 2007; Städler et al., 2010; Khalili, 2011),16

utilizing regularization has been mainly for the purpose of variable selection, i.e., to identify17

the predictors that are relevant to the modeling of the outcome.18

In this paper, we tackle a challenging and interesting problem in the context of mixture19

model: to identify the predictors that are truly the sources of heterogeneity. That is, besides20

the selection of important predictors, we aim to further divide the selected predictors into21

two categories, the ones that only have common effects on the outcome and the ones that22

have different effects in different clusters. Being able to identify the sources of heterogeneity23

not only could reduce the complexity of the mixture model, but also could improve the model24

interpretability and enable us to gain deeper insights on the outcome-predictor association.25

One important field that motivates our study is the imaging genetics with application to26

mental disorders such as Alzheimer’s disease. As demonstrated by twin studies (Van Cauwen-27
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berghe et al., 2016), genetic factors play an import role in Alzheimer’s disease and offers great28

promise for disease modeling and drug development. Compared with categorical diagnoses,29

neuroimaging trait has distinct advantages to capture disease etiology, and has been used30

in replacement of conventional clinical behavioral phenotypes in genome wide association31

studies (GWAS). Due to the availability of large-scale brain imaging and genetics data in32

landmark studies like the Alzheimer’s Disease Neuroimaging Initiative (Weiner et al., 2013), a33

large body of literature in imaging genetics focuses on high-dimensional modeling to identify34

risk genetic variants (Vounou et al., 2012; Lu et al., 2015; Zhao et al., 2019). However, a35

major challenge in the field that has not been well investigated is how to link the imaging-36

associated genetic factors to actual disease diagnosis or progression and provide meaningful37

interpretations. Specifically, for progressive mental illness like Alzheimer’s disease, it is38

critical to identify biomarkers that can predict the disease at early time. Therefore, we believe39

that not only there are genetic factors that impact overall disease risk, but also there are40

the ones that have differential impacts across some sub-groups which may be corresponding41

to different progressive periods/stages. While a few attempts have been made to bridge the42

pathological paths among genotype, imaging and clinical outcomes (Hao et al., 2017; Bi43

et al., 2017; Xu et al., 2017), to the best of our knowledge, none of the existing methods44

consider the heterogeneity within patient cohort or imaging endophenotype, nor are they45

capable to identify genetic factors that give arise disease sub-groups.46

Indeed, the problem of heterogeneity pursuit is prevelent in various fields, ranging from47

genetics, population health, to even sports analytics. In a study on suicide risk among48

adolescents, we used data from the State of Connecticut to explore the association between49

suicide risk among 15-19 year old and the characteristics of their school districts. It is of50

great interest to learn whether different association patterns co-exist and whether they51

are due to the differences in demographic, social-economic, and/or academic factors of the52
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school districts. In a study on major league baseball players, the goal is to find out which53

performance measures and contract/free agent statues of the players contributed to the54

formation of distinct salary mechanisms or clusters.55

In this work, we propose a regularized finite mixture effects regression model to perform fea-56

ture selection and identify sources of heterogeneity simultaneously. The problem is formulated57

using the effects model parameterization (in analogous to the formulations used in analysis58

of variance), that is, the effect of each predictor on the outcome is decomposed to a common59

effect term and a set of cluster-specific terms that are constrained to sum up to zero. We60

consider adaptive `1 penalization on both the cluster-specific effect parameters and common61

effect parameters, which leads to the identification of the relevant variables and those with62

heterogeneous effects. The model estimation is conducted via an Expectation-Maximization63

(EM) algorithm, in which the M step results in a linearly constrained `1 penalized regression64

and is solved by a Bregman coordinate descent algorithm (Bregman, 1967; Goldstein and65

Osher, 2009). We show that the proposed approach can also be cast as a regularized finite66

mixture regression with a generalized lasso penalty; this connection facilitates our theoretical67

analysis in showing the estimation and selection consistency. Although we mainly focus on68

normal mixture model and `1 regularization, our approach can be readily generalized to69

other non-Gaussian models with broad class of penalties and constraints. A user-friendly R70

package is developed for practitioners to apply our approach.71

2. Mixture Effects Model For Heterogeneity Pursuit72

2.1 An Overview of Finite Mixture Regression (FMR)73

We start with a description of the classical normal finite mixture regression (FMR). Let74

y ∈ R be a response/outcome variable and x = (x1, . . . , xp)
T ∈ Rp be a p-dimensional75

predictor vector. In FMR with m components, it is assumed that a linear regression model76

holds for each of the m components, i.e., with probability πj, a random sample (y,x) belongs77
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to the jth mixture component (j = 1, . . . ,m), for which we have that y = xTbj + εj, where78

bj ∈ Rp is a fixed and unknown coefficient vector, and εj ∼ N(0, σ2
j ) with σ2

j > 0. For the79

ease of notation, here the intercept term is included by setting the first element of x as one.80

Therefore, the conditional probability density function of y given x is81

m∑
j=1

πj
1√

2πσj
exp{−(y − xTbj)

2

2σ2
j

} (1)82

where πj’s are the mixing probabilities satisfying πj > 0,
∑m

j=1 πj = 1. We write (b1, . . . ,bm) =83

(b̃1, . . . , b̃p)
T, where b̃k ∈ Rm collects m component-specific coefficients for the predictor84

xk. With finite samples, the maximum likelihood approach is often used for parameter85

estimation and inference in FMR, via the celebrated EM algorithm (Dempster et al., 1977)86

and its many variates (Meng and Rubin, 1991, 1993). Khalili and Chen (2007) was among87

the first to propose penalized likelihood approach for variable selection in FMR models;88

asymptotic properties were established in their work under the fixed p, large n paradigm.89

Städler et al. (2010) studied `1 penalized FMR and derived estimation errors bounds and90

selection consistency under general high-dimensional setups. Khalili and Lin (2013) further91

studied penalized FMR for a general family of penalty functions. Other relevant works include92

Wedel and DeSarbo (1995), Weruaga and Vı́a (2015), Bai et al. (2016), and Doğru and Arslan93

(2017). For a comprehensive review, see, e.g., Khalili (2011). The penalized FMR models have94

been widely applied in many real-world problems, such as gene expression analysis (Xie et al.,95

2008), disease progression subtyping (Gao et al., 2016), multi-species distribution modeling96

(Francis K. C. Hui and Foster, 2015), protein clustering (Chen et al., 2018), among others.97

In the above mixture setup, the variance parameters σ2
j play important roles. Unlike in98

regular linear regression where its single variance parameter generally can be treated as99

nuisance in the estimation of the regression coefficients, the variance parameters in mixture100

models directly impact on the scaling (thus interpretation) and estimation of the regression101

coefficients of the multiple mixture components, and consequently, they also affect the102
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assessment and even the definition of “heterogeneous regression effects”. To facilitate the103

further discussion, we present a re-scaled version of FMR (Städler et al., 2010),104

φj =
bj
σj

= (φ1j, . . . , φpj)
T, ρj = σ−1j (j = 1, . . . ,m),105

and subsequently rewrite the conditional density in (1) as106

f(y | x,ϑ) =
m∑
j=1

πj
ρj√
2π

exp{−1

2
(ρjy − xTφj)

2}, (2)107

where ϑ = (φ1, . . . ,φm; π1, . . . , πm; ρ1, . . . , ρm) collects all the unknown parameters. We write108

Φ = (φ1, . . . ,φm) = (φ̃1, . . . , φ̃p)
T ∈ Rp×m, φ = vec(ΦT) ∈ Rpm,109

where φ̃k ∈ Rm collects m component-specific regression coefficients for the predictor xk for110

k = 1, . . . , p and vec(·) is the columnwise vectorization operator.111

2.2 Sources of Heterogeneity under Finite Mixture Regression112

Now let’s consider predictor selection and heterogeneity pursuit. A predictor xk is said to be113

relevant or important, if b̃k 6= 0, or equivalently, φ̃k 6= 0. Correspondingly, define114

SR = {k; 1 6 k 6 p, φ̃k 6= 0}115

to be the index set of all the relevant predictors, and let p0 = |SR| denote its size. Estimating116

SR is typically the main task of a variable selection method.117

We aim higher. That is, besides identifying the relevant variables, we want to also find out118

among them which ones actually contribute to the population heterogeneity. However, the119

concept of “source of heterogeneity” is not as easily defined as it appears, since the different120

mixture components are possibly with different scales. We consider two definitions.121

Definition 1: A predictor xk is said to be a source of heterogeneity, if b̃k 6= c1 for any122

c ∈ R.123

Definition 2: A predictor xk is said to be a scaled source of heterogeneity, if φ̃k 6= c1124

for any c ∈ R.125
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Both definitions have their own merits. Definition 1 is in terms of the inequality of each raw126

coefficient vector b̃k from (1), which is simple and aims to draw a direct comparison of the raw127

effects of xk in different mixture components regardless of their scales. Definition 2 is in terms128

of the scaled counterpart φ̃k in (2), and the motivation is to distinguish the heterogeneity129

induced by the predictors and that caused by inherit scaling differences. In other words,130

under the second definition, we compare the standardized effects of xk in different mixture131

components after putting them on the same scale. An analogy can be drawn from the132

familiar analysis of variance context: comparing the means of different groups is mostly133

appropriate when the groups are with the same variances. Notice that the two definitions134

become equivalent when the component variances are equal, e.g., σ2
1 = · · · = σ2

m, which is a135

commonly adopted assumption in mixture regression analysis.136

In this work, we shall mainly focus on Definition 2, although our methodologies can be137

readily modified to handle the alternative definition. Based on Definition 2, let SH = {k; 1 6138

k 6 p, φ̃k 6= c1,∀c ∈ R} and p00 = |SH |. Henceforth, our objective is to recover both SR and139

SH . This can potentially lead to a much more parsimonious and interpretable model. To see140

this, consider as above that in a m-component mixture model with p predictors, there are141

p0 relevant variables, and among those, only p00 variables are sources of heterogeneity. The142

classical FMR fits a model with mp free regression parameters, which can be infeasible when143

p is even moderately large comparing to the sample size. Meanwhile, the best model a sparse144

predictor selection method can possibly produce would have mp0 free regression parameters.145

We can do better: since only p00 predictors are truly the source of heterogeneity, the best146

model would have only p0 + (m− 1)p00 regression parameters. The saving can be substantial147

when p00 � p0 � p and/or m is large. As an example, consider one of the simulation settings148

to be presented in Section 5 with m = 3, p = 30, p0 = 10, and p00 = 3. The classic FMR149

is with mp = 90 regression parameters, the sparse selection method can possibly reduce150
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the number to be mp0 = 30, while our method can possibly further reduce the number to151

p0 + (m− 1)p00 = 16 through identifying the sources of heterogeneity.152

2.3 Regularized Mixture Effects Regression153

Motivated by the so-called effects-model formulation commonly used in analysis of variance154

models, we propose the following constrained mixture effects model formulation, to facilitate155

the pursuit of the sources of heterogeneity in mixture regression,156

f(y | x,θ) =
m∑
j=1

πj
ρj√
2π

exp{−1

2
(ρjy − xTβ0 − xTβj)

2}, s.t.
m∑
j=1

βjk = 0, k = 1, . . . , p, (3)157

where β0 = (β01, . . . , β0p)
T ∈ Rp collects the common effects, and βj = (βj1, . . . , βjp)

T ∈ Rp,158

j = 1, . . . ,m, are the coefficient vectors of cluster-specific effects. The equality constraints159

are necessary to ensure the identifiablility of the parameters. We write160

B = (β0,β1, . . . ,βm) = (β̃1, . . . , β̃p)
T ∈ Rp×(m+1), β = vec(BT) ∈ Rp(m+1),161

where β̃k = (β0k, β1k, . . . , βmk)
T ∈ Rm+1 collects the common effect and the m cluster-specific162

effects for predictor xk. The rest of the terms are similarly defined as in (2), except that we163

now write θ = (β0,β1, . . . ,βm; π1, . . . , πm; ρ1, . . . , ρm) to correct all the parameters under164

this alternative effects-model parameterization.165

Now a predictor xk is deemed to be relevant whenever β̃k 6= 0. Moreover, a relevant variable166

is deemed to be a source of heterogeneity only if there exists a 1 6 j 6 m such that βjk 6= 0.167

As such, variable selection and heterogeneity pursuit can be achieved together through a168

sparse estimation of B. With n independent samples {(yi,xi); i = 1, . . . , n}, we propose to169

conduct model estimation by maximizing a constrained penalized log-likelihood criterion,170

max
θ

{
`γλ(θ) ≡

n∑
i=1

log {f(yi | xi,θ)} − nλ
p∑

k=1

Pγ(β̃k)

}
, s.t.

m∑
j=1

βjk = 0, k = 1, . . . , p, (4)171

where f(y | x,θ) is the conditional density function from (3), and Pγ(·) is a penalty function172

with λ being its tuning parameter; we mainly focus on the `1 penalty (Tibshirani, 1996) and173
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its adaptive version (Zou, 2006; Huang et al., 2008), i.e.,174

Pγ(β̃k) =
m∑
j=0

wjk|βjk|, wjk = |β̂0
j,k|−γ (5)175

where wjks are the adaptive weights constructed from some initial estimator β̂0
j,k, with γ = 0176

corresponding to the non-adaptive version and γ > 0 the adaptive version. Apparently there177

are many other reasonable choices of penalty functions (Fan and Li, 2001; Khalili and Lin,178

2013), but our choice of `1 is simple, convex and yet fundamental for sparse estimation.179

Interestingly, the proposed constrained sparse estimation approach can also be understood180

as a generalized lasso method (She, 2010; Tibshirani and Taylor, 2011) based on the un-181

constrained model formulation in (2). To see this, observe that each β̃k can be written as a182

function of φ̃k as183

β̃k = Aφ̃k, A =

 1/m1T
m

Im − 1/mJm

 ∈ R(m+1)×m,184

where 1m is the m × 1 vector of all ones, Im is the m × m identity matrix and Jm is the185

m×m matrix of ones. Therefore, the generalized lasso criterion is expressed as186

max
ϑ

{
lγλ(ϑ) ≡

n∑
i=1

log {f(yi | xi,ϑ)} − nλ‖W(Ip ⊗A)φ‖1

}
, (6)187

where f(y | x,ϑ) is the conditional density function from (2), and W = diag{wjk} ∈188

Rp(m+1)×p(m+1) is constructed from the adaptive weights in (5) accordingly.189

Proposition 1: The two problems in (4) and (6) are equivalent, in the sense that190

• If ϑ̂ = (φ̂, π̂, ρ̂) solves (6), then θ̂ = (β̂, π̂, ρ̂) solves (4) where β̂ = (Ip ⊗A)φ̂.191

• And conversely, if θ̂ = (β̂, π̂, ρ̂) solves (4), then ϑ̂ = (φ̂, π̂, ρ̂) solves (6) where φ̂ is such192

that φ̂j = β̂0 + β̂j, j = 1, . . . ,m.193

It turns out that (4) is more convenient to use in computation, while (6) is more useful194

in the theoretical investigation. We also show that these penalized estimation criteria avoids195

the unbounded likelihood problem (McLachlan and Peel, 2004) in Web Appendix B.196
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3. Asymptotic Properties197

The generalized lasso formulation allows us to perform the asymptotic analysis under the198

unconstrained mixture regression model setup given in (2). The main issue is then in dealing199

with the special form of the generalized lasso penalty in (6). To make things clear, we use200

θ∗ or ϑ∗ to denote the true parameters. We have defined SR and SH as the sets of relevant201

predictors and the predictors of sources of heterogeneity, respectively. Correspondingly, define202

S = {i; ((Ip ⊗A)φ∗)i 6= 0}.203

Recall that β∗ = vec(B∗T) = (Ip ⊗A)φ∗, which means that S encodes the sparsity pattern204

of all the regression coefficients β∗ in the effects models. Then the recovery of SR and SH is205

immediate if S can be recovered.206

We consider the setup that the design is random, and the number of predictors p and the207

number of components m are considered as fixed as the sample size n grows. Building upon208

the works by Fan and Li (2001), Städler et al. (2010) and She (2010), our main results are209

presented in the following two theorems.210

Theorem 1 (Non-adaptive Estimator): Consider model (2) with random design, fixed p211

and m. Choose λ = O(n−1/2). Assume the regularity conditions (A)-(C) from Web Appendix212

A on the joint density of (y,x) hold. Then for γ = 0, there exists a local maximizer ϑ̂γλ of213

(6) such that
√
n(ϑ̂γλ − ϑ∗) = Op(1).214

Theorem 2 (Adaptive Estimator): Consider model (2) with random design, fixed p and215

m. Choose
√
nλ → 0, n(γ+1)/2λ → ∞ as n → ∞, and suppose the initial estimator in216

constructing the weights is
√
n-consistent, i.e.,

√
n(ϑ̂iniλ −ϑ∗) = Op(1). Assume the regularity217

conditions (A)-(C) from Web Appendix A on the joint density of (y,x) hold. Then for218

any γ > 0, there exists a local maximizer ϑ̂γλ of (6) such that it is
√
n-consistent and219

P (Ŝγλ = S)→ 1 as n→∞.220
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Theorem 1 shows that the non-adaptive estimator can achieve
√
n-consistency in model221

estimation, under typical regularity conditions on the joint density of (y,x). Theorem 2222

shows that the adaptive estimator, under the same conditions and with weights constructed223

from a consistent estimator such as the non-adaptive one in Theorem 1, can further achieve224

consistency in feature selection and heterogeneity pursuit.225

4. Computation226

We propose a generalized EM algorithm for optimizing the criterion in (4), which enjoys227

desirable convergence guarantee that the object function is monotone ascending along the228

iterations. The algorithmic structure is mostly straightforward based on the work of Städler229

et al. (2010), except that in the M-step we need to efficiently solve an `1 regularized weighted230

least squares problem with equality constraints. A Bregman coordinate descent algorithm231

(Goldstein and Osher, 2009) is proposed to solve it. For tuning the number of component232

m and the penalty parameter λ, we propose to minimize a Bayesian information criterion233

(BIC). To save space, the derivations of the algorithm and the details on tuning are provided234

in Web Appendix C.235

5. Simulation236

We compare the following methods via simulation,237

• Normal mixture regression with variable selection via lasso (Mix-L, or M1) and via adap-238

tive lasso (Mix-AL, or M2), proposed by Städler et al. (2010).239

• The proposed normal mixture effects regression with variable selection and heterogeneity240

pursuit via lasso (Mix-HP-L, or M3) and via adaptive lasso (Mix-HP-AL, or M4).241

The sample size is set to n = 200 and the number of components is set to m = 3. The data242

on the predictors, xi ∈ Rp for i = 1, . . . , n, are generated independently from multivariate243
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normal distribution with mean 0 and covariance matrix Σ. We consider two correlation244

structures, i.e., the uncorrelated case with Σ = Ip, and the correlated case with σij =245

0.5|i−j| where σij denotes the (i, j)’s entry of Σ. We consider three predictor dimensions: p ∈246

{30, 60, 120}. As such, the number of free model parameters is 95, 185, and 365, respectively,247

being either comparable or much larger than the sample size.248

In each setting, the first p0 = 10 predictors are relevant, and among them only p00 = 3249

predictors have scaled heterogeneous effects over different components according to Definition250

2. Specifically, under the mixture effects model (3) with m = 3, the sub-vectors of the first251

10 entries of the scaled coefficient vectors βj, denoted as βj0, j = 0, 1, 2, 3, are set as252

β00 = (1, 1, 1, 1, 1, 1, 0, 0, 0)T/
√
δ, β10 = (0, 0, 0, 0, 0, 0, 0, 0,−3, 3)T/

√
δ,253

β20 = (0, 0, 0, 0, 0, 0, 0,−3, 3, 0)T/
√
δ, β30 = (0, 0, 0, 0, 0, 0, 0, 3, 0,−3)T/

√
δ,254

and the variance components are set as (σ2
1, σ

2
2, σ

2
3)T = δ × (0.1, 0.1, 0.4)T, where δ controls255

the signal to noise ratio (SNR) defined as SNR =
∑m

j=1 πjb
T
j cov(X)bj/

∑m
j=1 πjσ

2
j , with256

bj = (β0 + βj)× σj, j = 1, . . . ,m being the corresponding unscaled coefficient vectors as in257

the mean model (1). We remark that bjs remain the same for different δ values, for facilitating258

the comparison among different SNRs. We choose δ = 1/8, 1/4, 1/2, 1, 2, corresponding to259

SNR = 200, 100, 50, 25, 12.5, respectively. We set π1 = π2 = π3 = 1/m and generate the260

response values by (3). We choose the tuning parameter λ and the number of components261

m ∈ {2, 3, 4} by minimizing BIC. The experiment is repeated 500 times under each setting.262

The following performance measures are computed. The estimation performance for the263

unscaled regression coefficients (b1, . . . ,bm), the mixing probability (π1, . . . , πm) and the264

variances (σ2
1, . . . , σ

2
m) is measured by their corresponding mean squared errors (MSE). The265

variable selection performance is measured by the false positive rate (FPR) and the true266

positive rate (TPR) for identifying relevant predictors, and the false heterogeneity rate (FHR)267

for identifying predictors with heterogeneous effects. Specifically, they are defined as below:268
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• FPR = #falsely selected variables with no effects / #variables with no effects;269

• TPR = #correctly selected variables with effects / #variables with effects;270

• FHR = #falsely selected variables with heterogeneous effects / #variables with common271

effects.272

Figure 1 displays the boxplots of mean squared errors in various simulation settings, and273

Table 1 shows the detailed results for p = 60 with Σ = Ip. The results for p ∈ {30, 120} and274

for the cases of correlated predictors convey similar messages, which are provided in Web275

Appendix D. The findings are summarized as follows.276

• As expected, in general the larger the signal to noise ratio and the smaller the model277

dimensions, the better the performance of each method.278

• Adaptive method in general leads to more accurate results in both model estimation and279

variable selection than its non-adaptive counterpart. The improvement can be substantial.280

Specifically, both Mix-HP-L and Mix-HP-AL rarely miss important variables, but the former281

tends to select a larger model with more irrelevant variables. Indeed, the over-selection282

property of `1 penalization is well known.283

• The proposed methods Mix-HP-L and Mix-HP-AL outperform their counterparts without284

heterogeneity pursuit, Mix-L and Mix-AL, respectively, in most simulation setups, except285

that when SNR = 12.5 and p = 120, all methods suffer from very low signal to noise286

ratio and very high dimensionality. The Mix-HP-AL has the best performance among all287

the competing methods; its improvement over others can be substantial especially when the288

signal is weak or moderate and the model dimension is high; moreover, in those relatively289

difficult scenarios, even Mix-HP-L can outperform Mix-AL.290

• We have examined settings where all relevant predictors have heterogeneous effects, for291

which the methods with or without heterogeneity pursuit perform similarly. We have also292

considered settings with unequal mixing probabilities, where the implications are similar; see293
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Web Appendix D. These results clearly demonstrate the benefit of heterogeneity pursuit, as294

it enables the potential of identifying the most parsimonious model.295

We conclude that overall the proposed heterogeneity pursuit approach with adaptive296

lasso (Mix-HP-AL) is preferable to both the non-adaptive counterpart Mix-HP-L and the297

conventional methods like Mix-L and Mix-AL. The proposed method is particularly beneficial298

when it is believed that only very few predictors contribute to the regression heterogeneity.299

[Figure 1 about here.]300

[Table 1 about here.]301

6. Applications302

6.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)303

We performed imaging genetics analysis based on data from the ADNI database which is a304

public-private partnership to study the progression of mild cognitive impairment and early305

Alzheimer’s disease based on different data sources including genetics, neuroimaging, clinical306

assessments, etc. (See ADNI for detailed study design and data collection information). Our307

goal here is to find out whether distinct clusters of disease-gene associations exist, possibly308

corresponding the disease stages, and to identify common genetic factors associated with309

overall disease risk, as well as cluster-specific ones.310

Briefly, to control data quality and reduce population stratification effect, we only include311

760 Caucasian subjects in this analysis. For each subject, single nucleotide polymorphisms312

(SNPs) genotyping data were acquired by Human 610-Quad BeadChip (Illumina, Inc., San313

Diego, CA) according to the manufacturer’s protocols; and raw MRI data were collected314

through 1.5 Tesla MRI scanners and then preprocessed by standard steps including ante-315

rior commissure and posterior commissure correction, skull-stripping, cerebellum removing,316

intensity inhomogeneity correction, segmentation, and registration (Shen and Davatzikos,317
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2004). The preprocessed brain images were further labelled regionally by existing template318

and then transferred following the deformable registration of subject images (Wang et al.,319

2011), which eventually led to 93 regions of interest over whole brain. After removing the320

ones with sex check failure, more than 10% missing single nucleotide polymorphisms (SNPs),321

and outliers, 741 subjects including 174 Alzheimer’s disease, 362 mild cognitive impairment322

and 205 healthy controls remain in the analysis.323

We consider the following imaging phenotypes: two global brain measurements, i.e. whole324

brain/white matter volumes, and two Alzheimer’s disease related endophenotypes, i.e. left325

and right lateral ventricles volumes. For each imaging trait, we include both SNPs belonging326

to the top 10 Alzheimer’s disease candidate genes provided by the AlzGene database and327

those identified from United Kingdom (UK) Biobank (Zhao et al., 2019) (∼20,000 subjects)328

under the same imaging phenotype. The final lists of SNP names are provided in supple-329

mentary materials. We fit our proposed Mix-AL-HP model for each imaging trait and its330

corresponding genetic predictors to examine the cluster patterns and select risk factors that331

impact the whole cohort with common effects and those impact the sub-groups/clusters332

heterogeneously. Age, gender and the top five genetic principal components are always333

included in the models as controls with common effects and no regularization. We fit models334

with different component numbers (m ∈ {1, 2, . . . , 5}) and with/without the assumption of335

equal variance; the best model is selected based by BIC.336

We first examine the identified clusters for each imaging trait to see whether the cluster337

pattern is associated with disease progression. The numbers of clusters for the four imaging338

traits, left/right ventricles and whole brain/white matter volumes, are 2, 3, 3, 1 with the339

smallest BIC values regarding λ being 1873.12, 1871.58, 1794.04 and 2144.72, respectively.340

And among the three imaging traits with more than one identified cluster, the average341

values of imaging phenotype are shown to be clearly different over different clusters. See342
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Web Figure 2 in Web Appendix E, which shows the cluster-specific boxplots of each imaging343

trait. Intriguingly, given the fact that the size of brain increases along Alzheimer’s disease344

progression, we are able to clearly align the identified clusters to different disease stages in345

light of the average volume of imaging traits. Note that for the white matter volume, which346

is a global brain phenotype, no cluster pattern is detected, which is biologically reasonable347

due to its weaker pathological bounding to disease etiology.348

All the selected SNPs and their types of effect (common or cluster-specific) are summarized349

in Figure 2. Most of the identified genetic risk variants (e.g. SNPs within genes CD2AP,350

MRVI1, GNA12) associated with two Alzheimer’s disease imaging biomarkers are consistent351

and subtype-related, indicating the existence of varying genetic effects on brain structure352

over diesease progression. Meanwhile, the selected SNPs related to global brain phenotypes353

are generally with common effect; again, this is due to their weaker pathological bounding354

to disease etiology compared with the Alzheimer’s disease related endophenotypes.355

Figure 3 provides a visualization of the estimated coefficients of each selected SNP under356

different clusters. Based on Figure 3, we successfully detect a few SNPs showing a particular357

strong impact on early- to middle-stage Alzheimer’s disease including rs2025935, rs677909358

and rs798532 located in genes BIN1, MS4A4E and GNA12. Among them, BIN1 is the key359

molecular factor to modulate tau pathology and has recently been recognized as an important360

risk locus for late-onset Alzheimer’s disease (Tan et al., 2013); MS4A4E has been detected361

by GWAS as a genetic risk factor for Alzheimer’s disease based on Alzheimer’s Disease362

Genetic Consortium (Hollingworth et al., 2011); and GNA12, though has not been extensively363

reported in existing experiments, is known to over-express in human brain. Due to a typical364

small/moderate effect of single genetic signal, some of these variants are highly likely to365

be buried under existing methods without clustering overall heterogeneity. Moveover, our366

results provide valuable insights to prioritize future early therapeutic strategies even among367
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all the Alzheimer’s disease genotypes. In terms of other selected SNPs, most of them have368

been recognized as Alzheimer’s disease risk factors in previous experiments or analyses, and369

they either show a common effect across all the clusters or a mixing one including both early370

and late stages in our results. Detailed estimation results are reported in Web Appendix E.371

[Figure 2 about here.]372

[Figure 3 about here.]373

6.2 Connecticut Adolescent Suicide Risk Study374

Suicide among youth is a serious public health problem in the United States. The Centers375

for Disease Control (CDC) reported that suicide is the third leading cause of death of youth376

aged 15–24 based on 2013 data, and more alarmingly there has been an increasing trend over377

time. Suicide prevention among youth is a very challenging task, which requires a systematic378

approach through developing reliable metrics for assessing suicide risk, locating areas of379

greater risk for effective resource allocation, identifying important risk factors, among others.380

We use data from the State of Connecticut at the school district level to explore the381

association between suicide risk among 15-19 year olds and the characteristics of their school382

district. Specifically, the overall suicide risk of the 15-19 age group within each school district383

is proxied by its log-transformed 5-year average rate of inpatient hospitalizations due to384

suicide attempts from 2010 to 2014 (per year per 10,000 population). Several characteristics of385

the n = 119 school district characteristics were collected in the same period: (1) demographic386

measures, including percent of households that included an adult male, average household387

size, percent of the population that are under 18 years of age, percent of population who388

are White; (2) academic measures, including average score on the Connecticut Academic389

Performance Test (CAPT), graduation rate, dropout rate, and attendance rate of high390

schools in the district; (3) behavioral measures, including incidence rate, defined as the391

ratio between the number of disciplinary incidences and the total enrollment, and serious392
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incidence rate; (4) economic measures, including median income and free lunch rate. More393

details about the data can be found in Chen and Aseltine (2017).394

In the previous study, a generalized mixed-effects model was used to estimate the common395

effects of the school district characteristics on the suicide risk (through fixed-effects terms)396

and identify the “overachievers” and “underachievers” (through district-level random effects)397

among school districts. (It was also shown that there was no significant spatial effect.) Indeed,398

the existence of these anomalous school districts suggests that the regression association may399

not be homogeneous, and thus it is interesting to see whether additional insights can be400

gained by a mixture regression analysis, to reveal the potentially heterogeneous association401

structure, cluster the school districts, and identify the district characteristics that drive402

the heterogeneity. We thus apply our proposed Mix-HP-AL method to analyze the data.403

For dealing with the highly-correlated school district measurements, we perform group-wise404

principal component analysis and use each leading factor to summarize the information of405

each category, which results in p = 4 district factors; the details of the principal component406

analysis results are provided in Web Appendix F.407

Table 2 reports the estimation results, and Figure 4 shows the corresponding cluster pattern408

of the school districts using the naive Bayes classification rule with the estimated component409

probabilities p̂ij, i.e., ẑik = 1 if k = arg maxj p̂ij. A three-component model is selected based410

on the BIC, in which the three factors differentiate school districts not in terms of their overall411

suicide risk as we did in our prior analysis, but in terms of the association between the risk412

factors and suicide risk. In Table 2 one can see that only the demographic and academic413

factors are selected; when conditioning on the selected factors, the economic factor and the414

behavior factor are no longer related to the suicide risk, which may be partly due to the fact415

that the four factors are still moderately correlated. The major difference among the 3 clusters416

of communities involves the direction of effects of the demographic factor, which indicates417
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a great deal of heterogeneity in how this factor impact suicide risk across communities.418

The majority of the school districts are in cluster 3, in which the suicide risk is negatively419

associated with the demographic factor; that is, in general, the larger the household size, the420

greater percentage of households with an adult male, the greater the proportion of population421

under age 18, and higher the proportion of White residents are associated with lower suicide422

risk, after adjusting for the effect of academic performance. In contrast, in cluster 1 the423

association between the suicide risk and the demographic factor is positive, such that higher424

rates of male householders, larger household size, higher proportions of children under 18, and425

a higher proportion of White residents is associated with higher suicide risk. Further analysis426

reveals that the 12 school districts in cluster 1 have significantly lower mean suicide risk than427

those in cluster 3; this suggests that the impact of the demographic factors on suicide risk428

may change and even flip sign with the mean suicide risk level itself. It is possible that this429

is caused by some “unmeasured” factors confounded with the demographic factor. Cluster430

2 is the smallest in size among the three, consisting of “Regional 19” (near the University431

of Connecticut), “New London” and “Monroe”; these are anomalous districts with very low432

suicide risk. The academic factor, in contrast, is identified to have only common effects after433

scaling by the variances according to Definition 2, which makes the estimated model even434

more parsimonious. That the effect of the academic factor is always positive indicates that435

suicide risk tends to be higher in those school districts with better academic performance;436

as discussed in Chen and Aseltine (2017), students in school districts of better academic437

performance could be under higher pressure, which in turn may induce more psychological438

distress. In general, our results agree well with previous studies, and we gain additional439

insight on the changing impact of the school district characteristics on the suicide risk.440

[Table 2 about here.]441

We have also compared Mix-HP-AL to Mix-AL by performing a random-splitting pro-442
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cedure to evaluate their out-of-sample predictive performance. Each time the data is split443

to 80% training for model fitting and 20% testing for out-of-sample evaluation, and the444

procedure is repeated 500 times. The average predictive log-likelihood (with standard error445

in the parenthesis) is−24.6 (2.32) and−23.2 (2.16) for Mix-AL and Mix-HP-AL, respectively,446

indicating that the proposed method indeed performs better for this dataset.447

[Figure 4 about here.]448

The proposed method has also been applied to another application in sports analytics for449

understanding how the salaries of baseball players are associated with their performance and450

contractual status. Due to space limit, the application is detailed in Web Appendix G.451

7. Discussion452

In this paper, we propose a mixture regression method to thoroughly explore the heterogene-453

ity in a population of interest, which is increasingly encountered in the era of big data. Our454

approach goes beyond the conventional variable selection methods, by not only identifying455

the relevant predictors, but also distinguishing from them the true sources of heterogeneity.456

As such, the proposed approach can potentially lead to a much more parsimonious and457

interpretable model to facilitate scientific discovery.458

There are a number of future research directions. It is pressing to extend the proposed459

method to handle non-Gaussian outcomes, such as binomial mixture and Poisson mixture.460

This extension can help us to improve the analysis for the suicide risk study, as the raw counts461

of the suicide-related hospital admissions may be better modeled by Poisson distribution.462

Another possible direction is to consider other forms of penalty functions. For example,463

when the predictors are highly correlated, it could be beneficial to use the elastic-net penalty464

(Zou and Hastie, 2005) to ensure stable coefficient estimation. Non-convex penalties could465

also be considered to improve variable selection. A related task is to extend the theoretical466
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analysis to high-dimensional settings where the number of variables may grow with or exceed467

the sample size. A potential byproduct of the proposed approach is that it can lead to468

automatic reduction of the number of pre-specified clusters when the effects of some clusters469

are estimated to be exactly the same; it is hopeful that this interesting feature can allow470

us to build a more general mixture learning framework where relevant variables, sources471

of heterogeneity and the number of clusters are simultaneously learned. It would also be472

interesting to consider heterogeneity pursuit in multivariate mixture regression, but it is473

not straightforward. The mixture components may have different covariance matrices which474

complicate the definition of the sources of heterogeneity, and the set of predictors with475

heterogeneous effects may differ across different responses.476

In this work, we mainly focus on the framework of mixture regression to pursue the477

sources of heterogeneity at the “global” level. An interesting direction is to extend our478

work to utilize the frameworks of individualized modeling and sub-group analysis which479

mainly pursue the sources of heterogeneity at the “individual” level (Tang et al., 2020). To480

lessen the assumptions of mixture regression, several recent works formulate the problem as481

a penalized regression with a fusion-type penalty. Ma and Huang (2017) proposed a concave482

pairwise fusion approach to identify sub-groups with pairwise penalization on subject-specific483

intercepts. Austin et al. (2020) proposed a grouping fusion approach to identify unknown484

sub-groups and their corresponding regression models. Tang et al. (2020) proposed a method485

to simultaneously achieve individualized variable selection and sub-grouping. Comparing to486

the mixture model framework, an individualized penalized regression approach may not fully487

utilize the potential global mixture structure and fails to consider the potential heterogeneity488

in variances. Therefore, we will explore the idea of combining mixture model and individu-489

alized fusion, to simultaneously perform global and individualized heterogeneity pursuits.490
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Figure 1. Boxplots of mean squared errors (in log scale) for estimating the unscaled
coefficient vectors, for simulation settings with n = 200, p ∈ {30, 60, 120}, and Σ = Ip,
and SNR ∈ {200, 100, 50, 25, 12.5}. Four methods are compared: Mix-L (M1), Mix-AL (M2),
Mix-HP-L (M3) and Mix-HP-AL (M4). The log(MSE): logarithm of mean squared errors.
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Figure 2. ADNI study: effects of selected SNPs and their associated genes for the four
imaging phenotypes. Light color means a SNP has only common effect across clusters; Dark
color means a SNP has different effects across clusters and thus is considered as a source
of heterogeneity. The SNPs are ordered based on the their positions on chromosomes. This
figure appears in color in the electronic version of this article, and any mention of color refers
to that version.
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Figure 3. ADNI study: estimated scaled coefficients (φ̂kj) of selected SNPs for the four
imaging phenotypes, showing along their positions on chromosomes. The numbers of clusters
are 2,3,3,1 for the four imaging phenotypes, showing from top to bottom. For each imaging
phenotype, its cluster labels are aligned with decreasing average values of the phenotype
(thus correspond to different disease stages). Grey color means a SNP has only common
effect across clusters; red color indicates cluster 1; blue color indicates cluster 2; and green
color indicates cluster 3. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version.



30 Biometrics, 0000 0000

Monroe

New London

Regional 19

●

●

●

Farmington

Groton

Ledyard

Litchfield

Old Saybrook

Regional 12

Salem, East Lyme

Seymour Stonington

Windham
●

●

●

●

●

●

●

●

●

●

Region type cluster 1 cluster 2 cluster 3 Not included

Figure 4. Suicide risk study: district clustering using Mix-HP-AL. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.
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Table 1
Comparison of mean squared error of estimation, variable selection and heterogeneity pursuit performance of four
methods, Mix-L, Mix-AL, Mix-HP-L and Mix-HP-L, under settings with n = 200, p = 60, and Σ = Ip. The mean
squared errors (MSE) are reported along with their standard errors in the parenthesis. The simulation is based on
500 replications. The MSE values are scaled by multiplying 100, and the FPR, FHR, TPR values are reported in

percentage.

MSE RATE

SNR Method b σ2 π FPR FHR TPR

200 Mix-L 0.04 (0.02) 7.32 (4.04) 0.18 (0.15) 53.0 100.0 100.0
Mix-AL 0.01 (0.00) 0.09 (0.08) 0.12 (0.10) 10.2 100.0 100.0
Mix-HP-L 0.01 (0.00) 4.95 (1.88) 0.14 (0.11) 39.1 4.4 100.0
Mix-HP-AL 0.00 (0.00) 0.07 (0.05) 0.11 (0.10) 4.0 0.3 100.0

100 Mix-L 0.10 (0.04) 10.58 (5.57) 0.22 (0.18) 48.3 100.0 100.0
Mix-AL 0.03 (0.01) 0.10 (0.10) 0.12 (0.11) 13.3 100.0 100.0
Mix-HP-L 0.03 (0.01) 7.04 (2.83) 0.15 (0.12) 36.8 3.8 100.0
Mix-HP-AL 0.01 (0.00) 0.07 (0.06) 0.12 (0.10) 3.8 0.1 100.0

50 Mix-L 0.23 (0.11) 14.66 (8.24) 0.28 (0.23) 43.9 100.0 100.0
Mix-AL 0.08 (0.05) 0.22 (0.22) 0.15 (0.13) 16.6 100.0 100.0
Mix-HP-L 0.07 (0.02) 9.91 (3.85) 0.17 (0.14) 33.4 2.8 100.0
Mix-HP-AL 0.02 (0.01) 0.09 (0.10) 0.13 (0.11) 3.7 0.1 100.0

25 Mix-L 0.72 (0.60) 29.07 (25.26) 0.54 (0.61) 33.9 100.0 100.0
Mix-AL 0.36 (0.25) 1.34 (1.70) 0.28 (0.32) 19.0 100.0 100.0
Mix-HP-L 0.15 (0.06) 12.57 (5.30) 0.19 (0.15) 33.2 1.9 100.0
Mix-HP-AL 0.04 (0.02) 0.15 (0.16) 0.13 (0.11) 4.0 0.2 100.0

12.5 Mix-L 4.11 (2.58) 101.20 (76.46) 7.01 (5.90) 16.0 100.0 90.0
Mix-AL 3.24 (2.56) 33.17 (37.18) 4.66 (4.71) 12.3 100.0 90.0
Mix-HP-L 0.36 (0.13) 16.50 (8.27) 0.22 (0.18) 35.0 1.9 100.0
Mix-HP-AL 0.10 (0.04) 0.38 (0.40) 0.15 (0.13) 5.5 0.1 100.0
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Table 2
Suicide risk study: the coefficient estimates using Mix-HP-AL. The zero values are shown as blanks.

Factors φ̂1 φ̂2 φ̂3

Intercept 6.23 6.23 6.23
Demographic factor 0.27 -0.27
Academic factor 0.13 0.13 0.13
Behavioral factor
Economical factor
σ̂ 0.33 0.20 0.46
π̂ 0.13 0.02 0.85


	Introduction
	Mixture Effects Model For Heterogeneity Pursuit
	An Overview of Finite Mixture Regression (FMR)
	Sources of Heterogeneity under Finite Mixture Regression
	Regularized Mixture Effects Regression

	Asymptotic Properties
	Computation
	Simulation
	Applications
	Alzheimer's Disease Neuroimaging Initiative (ADNI)
	Connecticut Adolescent Suicide Risk Study

	Discussion
	References

