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ABSTRACT

Introduction: Studies thus far have focused on automobile accidents that involve driver distraction.
However, it is hard to discern whether distraction played a role if fault designation is missing because
an accident could be caused by an unexpected external event over which the driver has no control.
This study seeks to determine the effect of distraction in driver-at-fault events. Method: Two generalized
linear mixed models, one with at-fault safety critical events (SCE) and the other with all-cause SCEs as the
outcomes, were developed to compare the odds associated with common distraction types using data
from the SHRP2 naturalistic driving study. Results: Adjusting for environment and driver variation, 6 of
10 common distraction types significantly increased the risk of at-fault SCEs by 20-1330%. The three most
hazardous sources of distraction were handling in-cabin objects (OR = 14.3), mobile device use (OR = 2.4),
and external distraction (OR = 1.8). Mobile device use and external distraction were also among the most
commonly occurring distraction types (10.1% and 11.0%, respectively). Conclusions: Focusing on at-fault
events improves our understanding of the role of distraction in potentially avoidable automobile acci-
dents. The in-cabin distraction that requires eye-hand coordination presents the most danger to drivers’
ability in maintaining fault-free, safe driving. Practical Applications: The high risk of at-fault SCEs associ-
ated with in-cabin distraction should motivate the smart design of the interior and in-vehicle information
system that requires less visual attention and manual effort.

© 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Road safety involves an intricate web of interplaying roles by
the driver, the traffic, and the road, and not every element is under
the control of the driver. Distractions have long been established as
a leading cause of automobile accidents. Studies thus far have
focused on automobile accidents that involve driver distraction.
However, it is hard to discern whether distraction played a role if
fault designation is missing, because an accident could be caused
by an unexpected external event through no fault of the driver.
Understanding the human factors involved in at-fault crashes
may be most relevant to pinpointing risky driver behaviors that
are potentially avoidable. Therefore, this study seeks to determine
the effect of distraction in at-fault safety critical events (SCEs) by:
(a) teasing out the effect of distraction from common traffic scenar-
ios and road conditions, and (b) comparing the strength of associ-
ation between distraction and at-fault SCEs against all-cause SCEs
regardless of fault designation.
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1.1. Distraction

Studies have examined the prevalence, the effects, and the
mechanism of driver distraction on automobile accidents. Eight
percent of fatal crashes and 15% of injury crashes in 2018 (most
recent year available) were reported as affected by distraction,
and that was 2,841 people killed and 400,000 people injured
(National Highway Traffic Safety Administration, 2020). By con-
sumption of attention resources, researchers put distraction into
two classes: (a) visual distraction (eyes-off-the-road) and (b) cog-
nitive distraction (mind-off-the-road), with cognitive distraction
disrupting the allocation of visual resources to driving scenes and
slowing the process of oncoming information (Liang & Lee, 2014;
Savage et al., 2020). Common distractions include cell-phone use,
interaction with passengers, eating, and adjusting the radio or cli-
mate controls. Cell phone use and texting, especially among teen
drivers, has been extensively studied (Yannis et al., 2014; Carney
et al., 2018; Ebadi et al., 2019; Qin et al.,, 2019; Seaman et al.,
2017); driver interaction with passengers has also been studied
(Theofilatos et al., 2018; Zhang et al., 2019). Driver distraction
can be detected by video recognition and even solely relying on
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vehicular data with high accuracy in a nonintrusive fashion (Eraqi
et al,, 2019; Ye et al., 2017).

1.2. At-fault accidents

There is limited literature that specifically studies at-fault acci-
dents as opposed to all-cause automobile accidents. Fault determi-
nation requires manual analysis, lacks a universal definition (Dorn
& af Wahlberg, 2019), and is not always available in datasets. The
U.S. Department of Transportation identified 17 Unsafe Driving
Acts (UDA) to be the criteria for fault assignment (i.e., fault was
assigned if any factor was coded for a given driver), including judg-
ment, speed-related, right-of-way or headway-related, and lane
change or lane position problems (Council et al., 2003). Existing
studies on at-fault accidents focused on driver characteristics
(Sagar et al., 2020; Penmetsa et al., 2017; Tseng, 2012) and impro-
per driving maneuvers (Mohammadzadeh Moghaddam et al.,
2017; Wu & Hsu, 2021). The lack of studies on predicting at-fault
crashes was also noted (Wu & Hsu, 2021). No studies have exam-
ined the association between distraction and at-fault events by
our search.

1.3. Risk estimation

To estimate road injury risks, studies traditionally rely on police
and emergency department records (Regev et al., 2018; Sagar et al.,
2020), which are representative of the population, although crash-
specific details are not always fully recalled or captured (Regev
et al,, 2017). To analyze driver or environment impacts on acci-
dents, simulated studies can capture a wide array of variables dur-
ing a trip, but the studies usually focus on a small subset of the
population of interest (e.g., teenage drivers). Large-scale naturalis-
tic driving studies may enjoy the best of both worlds. On one hand,
its study size and naturalistic setting can be used to construct
study designs reflective of real-world exposure. On the other hand,
it captures a variety of variables via pre-fitted motion and vision
sensors that can be helpful for retrospective analysis of what tran-
spired on the road, possibly with high fidelity.

In summary, the past literature indicates that driver distraction
plays an important role in automobile accidents, but there is a need
to further verify these findings with fault data. None of the previ-
ous studies have associated at-fault accidents with specific distrac-
tion types. Such an analysis could help define the effect of
distraction on drivers’ ability to maintain safe, fault-free driving
and inform efforts to improve road safety by reducing hazardous
driver distraction.

2. Materials and methods
2.1. Data source

Data from the 2nd Strategic Highway Research Program
(SHRP2) Naturalistic Driving Study (NDS) (Dingus et al., 2014)
were used for this study. The dataset included human expert anno-
tated variables based on video recordings of trips that captured the
activities and environments both inside and outside of the cabin of
the subject vehicles in real-world road settings. Annotated vari-
ables from the video reduction process make it possible to retro-
spectively analyze the characteristics of the trips involving at-
fault incidents, including the dependent variables derived from
“event severity” and “fault,” the independent variables derived
from “secondary tasks,” and seven control variables including
weather, lighting, roadway surface, profile (e.g., uphill, downhill)
and curvature, presence of roadway junctions, as well as traffic
density.
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2.2. Study design

The SHRP2 dataset allows a case-cohort study design that is
appropriate for time-variant risk exposure approximated by the
odds ratio (Dingus et al., 2016; Guo, 2009). In this study, cases
were identified as SCEs that include all levels of crashes but low-
risk tire strikes as well as near crashes. Non-cases were sampled
from the baseline in a balanced fashion that the number of trips
selected for each driver is proportional to the total traveling time
when they were in the study (i.e., balanced-sample baseline;
Hankey et al.,, 2016). Said in another way, the cases and non-
cases were in terms of the outcome of a trip (i.e., whether an SCE
took place), and all of the trips may be exposed to the independent
variable (i.e., distraction). The cases were further differentiated by
fault assignment, namely, at-fault SCEs, in which the subject vehi-
cle driver was at fault, and all-cause SCEs regardless of fault. As a
result, a total of 7,962 all-cause SCEs, among which 4,908 were
at-fault, and 19,998 balanced-sample baseline trips were selected
for the analysis (Table 1). They were generated by 3,542 participat-
ing drivers.

2.3. Data analysis

We designed a generalized linear mixed model (GLMM) with
random intercepts as one driver can generate multiple trips in
the dataset. The rationale behind choosing this model is two-
fold: first, a multivariate regression can produce adjusted risk esti-
mates that account for scenarios when multiple distraction types
or environmental risk factors were present concurrently. Second,
compared to regular linear regression, the mixed-effect model
can reflect the latent heterogeneity in driver characteristics that
might impact the individuals’ risk levels when distracted. The
model is as follows:

SEW)=Xp+Zu+e¢

E(y) = P(Y =yIX,2)

g)—log (%)

where y is the outcome variable; g(-) is the logistic link function for
a binomial outcome; p is the estimated probability of a positive out-
come; X is a matrix of N trips and g variables; f is a g x 1 vector of
the fixed-effect regression coefficients; Z is a matrix of N trips and d
drivers designating the driver-specific random effects; uis ad x 1
vector of the random intercepts; and € is the general error term
not explained by the model.

Two separate models were run, one with at-fault SCEs as the
outcome and the other with all-cause SCEs, because we wanted
to understand whether a particular kind of distraction particularly
increases the driver’s at-fault risk compared to all-cause SCEs.

The input variables, types of distraction, were engineered from
the annotated secondary tasks. First, the secondary tasks were
mapped into 10 distraction types (Table 2) in addition to a “no sec-
ondary task” category based on their semantic meanings and the
ordering found in the SHRP2 Researcher Dictionary for Video

Table 1
Event distribution.

Result in safety critical
events?

Subject vehicle driver at fault?

Yes No or NA
Yes Crash 766 282
Near crash 4,142 2,772
No Baseline 0 19,998
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Table 2
Distraction type mapping.

Distraction Type Secondary Tasks

Entertainment e Talking/singing, audience unknown
Dancing
e Reading

Writing

External distraction Looking at previous crash or incident
Looking at pedestrian

Looking at animal

Looking at an object external to the vehicle
Distracted by construction

Other external distraction

Food and beverage Reaching for food-related or drink-related
item

Eating with utensils

Eating without utensils

Drinking with lid and straw

Drinking with lid, no straw

Drinking with straw, no lid

Drinking from open container

In-cabin objects Moving object in vehicle
Insect in vehicle

Pet in vehicle

Object dropped by driver
Reaching for object, other

Object in vehicle, other

Interaction Passenger in adjacent seat - interaction
Passenger in rear seat - interaction
Child in adjacent seat - interaction

Child in rear seat - interaction

IVIS (in-vehicle
information system)

Adjusting/monitoring climate control
Adjusting/monitoring radio
Inserting/retrieving CD (or similar)
Adjusting/monitoring other devices integral
to vehicle

Mobile device Cell phone, holding

Cell phone, talking/listening, hand-held
Cell phone, talking/listening, hands-free
Cell phone, texting

Cell phone, browsing

Cell phone, dialing, hand-held

Cell phone, dialing, hand-held using quick
keys

Cell phone, dialing, hand-held using voice-
activated software

Cell phone, locating/reaching/answering
Cell phone, other

Table device, locating/reaching

Tablet device, operating

Tablet device, viewing

Tablet device, other

Personal hygiene Reaching for personal body-related item
Combing/brushing/fixing hair
Applying make-up

Shaving

Brushing/flossing teeth
Biting nails/cuticles
Removing/adjusting clothing
Removing/adjusting jewelry
Removing/inserting/adjusting
lenses or glasses

Other personal hygiene

contact

Smoking e Reaching for cigar/cigarette
o Lighting cigar/cigarette
o Extinguishing cigar/cigarette
Other secondary tasks o Other nonspecific internal eye glance

e Other secondary task
e Unknown type (secondary task present)

Reduction Data (Virginia Tech Transportation Institute, 2015). For
example, all secondary tasks involving a cell phone or a tablet were
grouped into “mobile device.” Next, the distraction types were

47

Journal of Safety Research 79 (2021) 45-50

converted into dummy variables. Finally, because up to three sec-
ondary tasks were annotated, the three corresponding distraction
types were combined for each trip. If a trip involved two secondary
tasks belonging to the same distraction category, the category was
labeled as 1 denoting the presence of one or more secondary tasks
in the same distraction category. For example, a driver can be
annotated as both dialing and subsequently talking on the phone
during the video epoch. This treatment is due to the consideration
that secondary tasks within the same category tend to involve a
series of related tasks, whereas having two secondary tasks in dif-
ferent categories suggests a higher level of distraction that is non-
trivial.

The control variables were treated as categorical with the least
demanding driving scenario as the reference group for regression.
For example, ‘no adverse weather condition’ was coded 0 and all
other adverse weather conditions were coded 1. The analysis was
performed in R using library Ime4 (Bates et al., 2015; R Core
Team, 2020).

3. Results
3.1. Distribution of distraction types

Distraction occurs frequently, in fact, the majority (55.8%) of the
selected trips involved one or more distraction types (Table 3).
Interaction with a passenger (14.5%), external distraction (11.0%),
and mobile device use (10.1%) were among the most common dis-
traction, while smoking (1.1%), food & beverage consumption
(3.1%), and adjusting the in-vehicle information system (IVIS)
(3.9%) were the least common. Next, we will examine the risk level
associated with individual distraction types.

3.2. Risk estimate

Overall speaking, the presence of distraction, regardless of type,
doubled the odds of SCEs (OR = 2.1), and the difference between at-
fault and all-cause SCEs was minimal (Table 4). Delving into the
specific categories, 6 of 10 distraction types significantly increased
the risk of at-fault and all-cause SCEs to varying degrees after
adjusting for environmental factors (Fig. 1). While entertainment,
personal hygiene, IVIS, external distraction and mobile device use, in
ascending order of ORs, increased the odds of at-fault SCEs by
20-140%, the odds of at-fault SCEs was raised by 1330% related
to in-cabin objects. Among the individual secondary tasks grouped
under in-cabin objects, “moving object in vehicle” (e.g., an object
fell off the seat when the driver stopped hard at a traffic light)
and “reaching for object, other” not only had the most occurrences
but also disproportionately associated with at-fault events
(p <0.001) (Table 5).

Comparing the estimated ORs of at-fault to all-cause SCEs, the
lower bounds of the at-fault ORs associated with external distrac-

Table 3

Proportion of distraction types (N = 27,960).
Distraction Type n (%)
Entertainment 2,453 (8.8)
External 3,072 (11.0)
Food & Beverage 853 (3.1)
VIS 1,082 (3.9)
In-Cabin Objects 2,101 (7.5)
Interaction 4,062 (14.5)
Mobile Device 2,812 (10.1)
Personal Hygiene 1,149 (4.1)
Smoking 305 (1.1)
Other 1,015 (3.6)
None 12,651 (45.2)
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Table 4
0dds ratios of safety critical events associated with distraction types.
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At-fault SCEs

All-cause SCEs

Odds Ratio p-value Odds Ratio p-value
(95% CI) (95% CI)
Distraction, regardless of type 2.1 (2.0-2.3) <0.001 *** 2.1(1.9-2.2) <0.001 ***
Entertainment 1.2 (1.0-1.3) 0.024 * 1.1 (1.0-1.2) 0.067
External 1.8 (1.6-2.0) <0.001 *** 1.3 (1.2-1.4) <0.001 ***
Food & Beverage 0.8 (0.6-1.0) 0.031 * 0.7 (0.6-0.9) 0.001 **
In-cabin Objects 14.3 (12.4-16.5) <0.001 *** 12.3 (10.8-13.9) <0.001 ***
Interaction 0.9 (0.8-1.1) 0.260 0.9 (0.8-0.9) 0.001 **
VIS 1.7 (1.4-2.1) <0.001 *** 14 (1.2-1.7) <0.001 ***
Mobile Device 24 (2.2-2.7) <0.001 *** 1.8 (1.6-2.0) <0.001 ***
Personal Hygiene 1.6 (1.4-2.0) <0.001 *** 1.4 (1.2-1.6) <0.001 ***
Smoking 1.2 (0.8-1.8) 0.355 1.1 (0.8-1.5) 0.653
Other 0.9 (0.7-1.1) 0.155 0.8 (0.6-0.9) 0.004 **
Significance codes: <0.001 “**** 0.001-0.01 “*** 0.01-0.05 **.
e
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Fig. 1. Odds ratio comparison of at-fault and all-cause SCEs by distraction type.

tion and mobile device use were higher than the upper bounds of
the ORs of all-cause SCEs without overlap (Fig. 1), suggesting that
these distraction types significantly increased the risks of faulty
driving that led to an SCE.

On the other hand, food and beverage consumption in driving sig-
nificantly decreased the odds of at-fault and all-cause SCEs by 20-
30%. Interacting with a passenger and other secondary tasks in the
vehicle did not modify the risk of at-fault SCEs but slightly reduce

Table 5
Distribution of secondary tasks related to “in-cabin objects” distraction.

Secondary Task Subject vehicle driver at fault?

Yes No or NA
Moving object in vehicle 772 447
Reaching for object, other 321 208
Object in vehicle, other 248 434
Pet in vehicle 21 47
Object dropped by driver 2 2
Insect in vehicle 1 0
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the chance of all-cause SCEs. In other words, although not signifi-
cantly, having these two distractions still raised the chance of at-
fault SCEs compared to all-cause SCEs. Smoking was not signifi-
cantly associated with either at-fault or all-cause SCEs.

4. Discussion
4.1. Principal findings

In this study, we quantified the at-fault SCE risks associated
with common distraction types using a mixed-effect model that
allows for driver variation. The most hazardous source of distrac-
tion is in-cabin objects (OR = 14.3) followed by mobile device use
(OR=2.4) and external distraction (OR = 1.8), with the latter two
also showing an elevated risk of at-fault SCEs beyond that of all-
cause SCEs. Not only were mobile device use and external distrac-
tion the most dangerous among distraction types, but they were
also among the most commonly occurring (10.1% and 11.0%,
respectively).
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The study findings are consistent with previous research about
the detrimental effect of mobile device use on driver performance,
and also highlighted another type of activities, namely, in-cabin
objects, that has an even greater impact. The distraction of in-
cabin objects results in manual activities that require the coordi-
nated control of the eye movement with hand movement and
the processing of visual input to guide reaching or grasping. Con-
sidering the commonality between the manipulation of in-cabin
objects and mobile device use, it seems the most dangerous dis-
traction types involve transient inattention from both eyes-off-
the-road and hand-off-the-wheel. Compared to in-cabin objects,
external distraction implies eyes-off-the road but does not require
hands-off-wheel, or more importantly, eye-hand coordination.

On the flip side, we also examined what variables are not signif-
icantly associated with at-fault SCEs. When drivers have food and
beverages or interaction with passengers, their overall risk of SCEs
was slightly reduced, suggesting a small protective effect. This may
be explained by lower traveling speed or less challenging traveling
conditions when the driver carries out such tasks and it is worth
investigating as a next step. Interaction with passengers is more
of a cognitive distraction than visual, therefore, our finding is con-
sistent with previous research that visual distraction has much
stronger effects on driving performance and accident hazard
(Peissner et al., 2011). Still, the odds ratios of at-fault SCEs were
slightly raised by these two distractions. In addition, smoking is
the only annotated distraction that is not significantly associated
with at-fault or all-cause SCEs. Considering these three distraction
types altogether, none of them direct the driver’s visual attention
off the roadway ahead in a substantial way, which might be the
reason why they are relatively harmless compared to others.

4.2. Limitations and future research

The study findings should be interpreted with limitations. First,
the grouping of distraction types is manual and based on the
semantic meanings of the descriptions of the secondary task, not
characterized by quantifiable measures of the extent of visual/cog-
nitive distraction it causes. The result is distraction types under-
stood by common sense and meaningful sample sizes of
subgroups that reduce biases related to small samples in regres-
sion. A future research direction is to study how the secondary
tasks can be clustered based on how they affect the kinematic mea-
sures of the vehicle. Second, the reasons that certain distraction
types are more (or less) hazardous were not examined in this
study. For example, we speculated that food and beverage con-
sumption may be associated with lower vehicle speed, thus, reduc-
ing the risk of all-cause SCEs. However, the theory requires further
investigation. Research on how drivers adapt their driving behav-
iors while engaging in secondary tasks is needed (Oviedo-
Trespalacios et al., 2016). Third, driver characteristics were not
included as control variables in the study. This was a deliberate
decision to be compatible with the mixed-effect model that
already factors in a random effect on individual drivers. Including
driver characteristics (e.g., gender and age) would make interpreta-
tion of the coefficients counterintuitive - we would be suggesting
“for the same driver, their at-fault risk may be modified if they
change gender/age.” Although not explicitly controlling for tangi-
ble driver characteristics, the mixed-effect model does account
for driver heterogeneity.

4.3. Practical applications

The high risk of at-fault SCEs associated with in-cabin objects
serves as empirical evidence that in-cabin activities that require
eye-hand coordination present grave danger to drivers’ ability to
maintain fault-free maneuver of the vehicle. Most straightfor-
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wardly, this should motivate the design of the vehicle interior that
securely stores owner items while allowing for easy access.
Although in this study IVIS (OR = 1.7) has a much lower risk than
in-cabin objects, the study finding is cautionary for the design of
future IVIS, given the rising popularity of touchscreen control pan-
els that require much more visual attention and manual effort
compared to physical knobs. In our wild but realistic imagination,
we envision that future connected wearable technology can detect
driver states such as drowsiness and perspiration to automatically
inform in-cabin climate control and adjust to driver comfort with-
out manual input. In addition, our findings provide hazardous dis-
traction types that computer vision based in-cabin sensing
technologies (Kaliouby et al., 2020) can learn to recognize.

5. Conclusions

Focusing on at-fault events improves our understanding of the
effect of distraction in potentially avoidable automobile accidents.
Adjusting for environment and driver variation, 6 out of 10 com-
mon distraction types significantly increase the risk of at-fault SCEs
by 20-1330%. The three most hazardous sources of distraction
were handling in-cabin objects (OR=14.3), mobile device use
(OR=2.4), and external distraction (OR = 1.8), with the latter two
also among the most commonly occurring (10.1% and 11.0%,
respectively). The study findings provide evidence that in-cabin
distraction that require eye-hand coordination presents grave dan-
ger to drivers’ ability to maintain fault-free, safe driving.
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