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Chen∗,†

University of Connecticut† and Columbia University‡

The neonatal intensive care unit (NICU) experience is known to
be one of the most crucial factors that drive preterm infant’s neu-
rodevelopmental and health outcome. It is hypothesized that stress-
ful early life experience of very preterm neonate is imprinting gut
microbiome by the regulation of the so-called brain-gut axis, and
consequently, certain microbiome markers are predictive of later in-
fant neurodevelopment. To investigate, a preterm infant study was
conducted; infant fecal samples were collected during the infants’ first
month of postnatal age, resulting in functional compositional micro-
biome data, and neurobehavioral outcomes were measured when in-
fants reached 36–38 weeks of post-menstrual age. To identify potential
microbiome markers and estimate how the trajectories of gut micro-
biome compositions during early postnatal stage impact later neu-
robehavioral outcomes of the preterm infants, we innovate a sparse
log-contrast regression with functional compositional predictors. The
functional simplex structure is strictly preserved, and the functional
compositional predictors are allowed to have sparse, smoothly vary-
ing, and accumulating effects on the outcome through time. Through
a pragmatic basis expansion step, the problem boils down to a lin-
early constrained sparse group regression, for which we develop an
efficient algorithm and obtain theoretical performance guarantees.
Our approach yields insightful results in the preterm infant study.
The identified microbiome markers and the estimated time dynam-
ics of their impact on the neurobehavioral outcome shed lights on
the linkage between stress accumulation in early postnatal stage and
neurodevelpomental process of infants.

1. Introduction. Over the past decade, advances in neonatal care have
contributed to a dramatic increase in survival among very preterm birth in-
fants (born before 32 weeks’ gestation) from 15% to over 90% (Fanaroff, Hack
and MC, 2003; Stoll, Hansen and Bell, 2010). With this cheerful gain in sur-
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vival, recent research has shifted focus to the investigation of the increase in
neurological morbidity and long-term adverse outcomes related to immature
neuro-immune systems and stressful early life experience (Mwaniki et al.,
2012). In particular, the neonatal intensive care unit (NICU) experience is
found to be one of the most crucial factors that drive preterm infant neu-
rodevelopmental and health outcomes. Accumulated infant stress at NICU
arises from numerous causes, such as repeated painful procedures, daily
clustered care, maternal separation, among others. Mwaniki et al. (2012)
showed that these neonatal insults were associated with a much escalated
risk of long-term neurological morbidity, e.g., 39.4% of NICU survivors had
at least one neurodevelopmental deficit. However, the onset of the altered
neuro-immune progress induced by infant stress/pain is often insidious, and
the mechanism of this association, which holds the key for reducing costly
health consequences of prematurity, remain largely unclear. Expanding re-
search evidence supports that a functional communication exists between
the central nervous system and gastrointestinal tract, the brain-gut axis, in
which the gut microbiome plays a key role in early programming and later
responsivity of the stress system (Dinan and Cryan, 2012).

As such, a central hypothesis is that the stressful early life experience of
very preterm neonates is imprinting gut microbiome by the regulation of the
brain-gut axis, and consequently, certain microbiome markers are predictive
of later infant neurodevelopment. To investigate, a study was conducted in
a NICU in the northeast of the U.S., where stable preterm infants were
recruited. Infant fecal samples were collected daily when available, during
the infant’s first month of postnatal age. Bacterial DNA were isolated and
extracted from each stool sample, and through sequencing and processing,
resulted in gut microbiome data. Gender, delivery type, birth weight, feeding
type, among others, were also recorded for each infant. Infant neurobehav-
ioral outcomes were measured when the infant reached 36–38 weeks of post-
menstrual age, using the NICU Network Neurobehavioral Scale (NNNS).
More details on the study and the data are provided in Section 2. The above
scientific hypothesis can then be approached through a statistical analysis,
by examining how the microbiome compositions collected over the early
postnatal period predict or impact on the later NNNS score, after adjusting
for the effects of relevant infant characteristics.

The gut microbiome data were processed and operationalized as compo-
sitions, as commonly done in the microbiome literature (Bomar et al., 2011;
Cong et al., 2017). Compositional data analysis is not an unfamiliar terri-
tory to statisticians. Data consisting of percentages or proportions of certain
composition are commonly encountered in various scientific fields including
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ecology, biology and geology. One unique attribute of compositional data
is the unit-sum constraint, i.e., the components of a composition are non-
negative and always sum up to one; this entails that the data live in a simplex
and thus renders many statistical methods that comply with Euclidean ge-
ometry inapplicable. Much foundational work on the statistical treatment of
compositional data was done by John Aitchison (Aitchison, 1982; Aitchison
and Bacon-Shone, 1984); see Aitchison (2003) for a thorough survey on the
subject. Of particular interest to us is regression with compositional predic-
tors, for which the log-contrast models (Aitchison and Bacon-Shone, 1984)
have been very popular. A prominent feature of the model is that it enables
the regression analysis to obey the so-called principle of subcompositional
coherence, i.e., the compositional data should be analyzed in a way that the
same results can be obtained regardless of whether we analyze the entire
composition or only a subcomposition (Aitchison and J. Egozcue, 2005).
Recently, Lin et al. (2014) studied a sparse linear regression model with
compositional covariates, extending the log-contrast model to high dimen-
sions. The problem was nicely formulated as a constrained lasso regression
(Tibshirani, 1996), with a zero-sum linear constraint on the regression co-
efficients. Shi, Zhang and Li (2016) further extended the sparse regression
model to the case of multiple linear constraints for the analysis of micro-
biome subcompositions, and a de-biased procedure was adopted to obtain
an asymptotically unbiased estimator of the regression coefficients and its
asymptotic distribution. See Li (2015) for a recent comprehensive review
on microbiome compositional data analysis. However, to our knowledge, re-
gression method on handling high-dimensional compositional trajectories or
series is still lacking.

Motivated by the needs in identifying potential microbiome markers and
estimating how the trajectories of microbiome compositions along early post-
natal stage impact later neurobehavioral outcome, we propose a sparse
log-contrast regression model with functional compositional predictors. In
our approach detailed in Section 3, longitudinal microbial compositions are
treated as functional compositional predictors, with time-varying effects on
the outcome. We build a scalar-on-function regression model for the log-
transformed predictors, which naturally connects to the log-contrast regres-
sion. We particularly focus on the identification of important microbes using
a sparsity-inducing regularization method. Section 4 concerns the compu-
tational issues. Some theoretical properties of the proposed estimator that
are of practical concern are discussed in Section 5. In Section 6, simulation
studies showcase the superior performance of the proposed approach over
several competing methods. The data analysis of the preterm infant study
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is presented in Section 7. The identified microbiome markers are justifiable
based on existing literature, and the estimated dynamic trajectories of their
impact on the outcome shed new lights on the functional linkage between the
accumulation of prenatal stress and neurodevelpoment of infants. Some con-
cluding remarks are given in Section 8. We have implemented the proposed
methods and relevant tools in a user-friendly R package called Compack (Sun
and Chen, 2020), which has been released to The Comprehensive R Archive
Network (R Core Team, 2020) and can be downloaded at https://cran.r-
project.org/web/packages/Compack/.

2. Preterm Infant Study and Problem Setup. Data were collected
at a Level IV NICU in the northeast region of the U.S. (Level IV NICUs pro-
vide the highest level, the most acute care.) Fecal samples of preterm infants
were collected daily when available, mainly during the infant’s postnatal age
(PNA) of 5 to 28 days (t ∈ [5, 28]). Bacterial DNA were isolated and ex-
tracted from each stool sample (Bomar et al., 2011; Cong et al., 2017); the
V4 regions of the 16S rRNA gene were sequenced using the Illumina plat-
form and clustered and analyzed using QIIME (Cong et al., 2017), resulting
in microbiome count data. Since the number of sequencing reads varied a
lot across samples, we further normalize the data by calculating the ratio of
each microbe in each sample. As a result, we obtain a compositional data
matrix. To conduct log transformation in our model, following the conven-
tion in the literature, we replace zeros by the maximum rounding error (i.e.,
0.5) to avoid singularity (Aitchison, 2003; Lin et al., 2014). Due to the lim-
ited sample size, we mainly focus on p = 22 categories at the order level of
the taxonomic ranks as a proof of concept. (We also perform a confirmative
analysis at the genus level which has more than 60 categories.) Taxonomic
rank is the relative level of a group of organisms in a taxonomic hierarchy
in biological classification; the major ranks are species, genus, family, or-
der, class, phylum, kingdom, and domain. More details on the microbiome
data are provided in Section 3 of Supplemental Materials (Sun et al., 2020).
In this study, infants with less than 5 fecal samples were excluded, which
resulted in n = 34 infants. There were totally 414 fecal samples, so the
average number of daily fecal samples collected for each infant was 12.2.
Figure 1(a) shows the histogram of the number of samples collected from
each infant, and Figure 1(b)–(d) show examples of the observed profile of
the time-varying compositions along the postnatal age for three different
infants.

Infant neurobehavioral outcomes were measured when the infant reached
36–38 weeks of post-menstrual age or prior to hospital discharge, using

https://cran.r-project.org/web/packages/Compack/
https://cran.r-project.org/web/packages/Compack/
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Fig 1: (a) Histogram of the number of samples collected from each infant. (b)–(d) Example
profiles of time-varying compositional data along postnatal age from three infants.

the NICU Network Neurobehavioral Scale (NNNS). The NNNS is a stan-
dardized assessment of neonatal neurobehavioral outcomes that provides
an appraisal of neurological integrity and behavioral function of the nor-
mal and at-risk/preterm infant. In particular, the Stress/Abstinence sub-
scale (NSTRESS) measures signs of stress and includes 50 items. Each
sign of stress/abstinence is scored as present or absent, and the compos-
ite NSTRESS score ranges between 0 and 1. A higher NSTRESS score
demonstrates a more stressful behavioral performance. Cong et al. (2017)
showed that the composite NSTRESS score is positively associated with
painful/stressful experience in preterm infants. Other variables about birth
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and characteristics of infant included gender, delivery type, premature rup-
ture of membranes (PROM), score for Neonatal Acute Physiology–Perinatal
Extension-II (SNAPPE-II), birth weight, and percentage of feeding with
mother’s breast milk (%MBM).

To formulate the statistical problem, let y = [y1, . . . , yn]T ∈ Rn be con-
sisting of the observed neurobehavioral outcomes of the preterm infants,
i.e., their NNNS scores. Let xi(t) = [xi1(t), . . . , xip(t)]

T ∈ Sp−1 be the gut
microbiome compositions from the ith infant at time t. Here we let Sp−1 =
{[x1, . . . , xp]

T ∈ Rp;xj > 0,
∑p

j=1 xj = 1.}, to denote the (p−1)-dimensional

positive simplex lying in Rp. Let X(t) = [x1(t), . . . ,xn(t)]T ∈ Rn×p be the
matrix of the functional predictors at time t. The observed gut microbiome
compositions during the early postnatal period can then be viewed as dis-
crete observations from X(t). Also define Zc ∈ Rn×pc , formed by data from
the aforementioned time-invariant infant characteristics, e.g., gender, deliv-
ery type, among others.

As the main objective is to identify the microbiome markers that are
predictive of later infant neurodevelopment, we need to perform a regres-
sion analysis to examine how the outcome y, the NNNS score, is associated
with X(t), the gut micorbiome trajectories, while controlling for the infant
characteristics collected in Zc. The fact that X(t) is both functional and
compositional makes the problem very challenging.

3. Regression with Functional Compositional Predictors.

3.1. Linear Log-Contrast Model. We first briefly review the existing re-
gression approaches for dealing with a single set of compositional predic-
tors. Suppose we observed n independent observations of a response vari-
able yi ∈ R and a compositional predictor xi = [xi1, . . . , xip]

T such that
xi ∈ Sp−1. Denote y = [y1, . . . , yn]T ∈ Rn as the response vector and
X = [x1, . . . ,xn]T ∈ Rn×p as the design matrix.

Ignoring the simplex structure of X would lead to parameter identifi-
ablity issue in the linear regression of y on X. One naive “remedy” is to
exclude an arbitrary component of the compositional vector in the regres-
sion, which, however, leads to a method that is not invariant to the choice of
the removed component since it affects both of prediction and selection and
consequently makes proper model interpretation and inference difficult. Ever
since the pioneer work by John Aitchison (Aitchison, 1982; Aitchison and
Bacon-Shone, 1984; Aitchison, 2003) on the statistical treatments of com-
positional data, the so-called log-contrast model has gained much popularity
in a variety of regression problems with compositional predictors. The main
idea is to perform a log-ratio transformation of the compositional data, such
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that the transformed data admit the familiar Euclidean geometry in Rp−1.
Specifically, for each i = 1, . . . , n, let z̃ij = log(xij/xir), where r ∈ {1, . . . , p}
is a chosen reference level, and j = 1, . . . , r − 1, r + 1, . . . , p, resulting in
Z̃r̄ = [z̃ij ] ∈ Rn×(p−1). Also define zij = log(xij) and Z = [zij ] ∈ Rn×p. The
linear log-contrast regression model is expressed as

y = β∗01n + Z̃r̄β
∗
r̄ + e,(1)

where β∗0 is the intercept, β∗r̄ ∈ Rp−1 is the regression coefficient vector, and
e ∈ Rn is the random error vector with zero mean. Interestingly, although it
appears that the model in (1) depends on the choice of the reference level,
it in fact admits a symmetric form. By simple algebra, model (1) can be
equivalently expressed as

y = β∗01n + Zβ∗ + e, s.t.

p∑
j=1

β∗j = 0,(2)

where β∗ is the regression coefficient vector for design matrix Z, and e and
β∗0 are the same as in model (1). It can be showed that β∗r̄ ∈ Rp−1 is a
subvector of a regression coefficient vector β∗ ∈ Rp by removing its rth
component β∗r .

Consequently, in classical regression setups, the least squares estimation
under model (1) is equivalent to the constrained least squares estimation
under model (2). However, in high dimensional scenarios, i.e., when p is
much larger than n, the two model formulations could lead to discrepancies
in regularized estimation. For example, the two corresponding lasso criteria
(Tibshirani, 1996) are no longer equivalent:

min
β0,βr̄

{
1

2n
‖y − β01n − Z̃r̄βr̄‖2 + λ‖βr̄‖1

}
,(3)

min
β0,β

{
1

2n
‖y − β01n − Zβ‖2 + λ‖β‖1

}
, s.t.

p∑
j=1

βj = 0,(4)

where ‖ · ‖, ‖ · ‖1 denote the `2, `1 norms, respectively, and λ is a tuning
parameter controlling the amount of regularization. Although (3) is simpler
to compute, clearly its solution and hence its variable selection depend on
the choice of the reference component. In contrast, (4) remains to be sym-
metric in all the p components. Lin et al. (2014) proposed and studied (4)
and showed that the estimator admits many desirable properties (Aitchison,
2003).
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3.2. Sparse Functional Log-Contrast Regression. In the preterm infant
study, the compositional predictors are observed over a continuous domain,
i.e., time, and thus they should be treated as functional compositional data.
Recall from Section 2 that y ∈ Rn is the response vector, X(t) ∈ Rn×p the
matrix of the functional and compositional predictors at t, and Zc ∈ Rn×pc
the matrix of time-invariant control variables. Here to focus on the main idea,
we assume X(t) is completely observed for t ∈ T, and the discussion about
handling discrete time data is deferred to Section 4.2. Similar as in Section
3.1, we define Z̃r̄(t) ∈ Rn×(p−1), for r = 1, . . . , p, and Z(t) = log(X(t)) ∈
Rn×p.

Motivated by model (2), we propose a functional log-contrast regression
model,

(5) y = β∗01n + Zcβ
∗
c +

∫
t∈T

Z(t)β∗(t)dt+ e, s.t. 1T
p β
∗(t) = 0, ∀t ∈ T,

where β∗0 is the intercept, β∗c ∈ Rpc is the regression coefficient vector cor-
responding to the control variables, β∗(t) = [β∗1(t), . . . , β∗p(t)]T ∈ Rp is the
functional regression coefficient vector as a function of t, and the remaining
terms are defined the same as in model (2). The proposed model allows the
compositional predictors to have potentially different effects on the response
through β∗(t), and their aggregated effects on the response is then given by
the integral of Z(t) weighted by β∗(t) over time. Following Lin et al. (2014),
here we adopt the symmetric form of the log-contrast model, in which the
zero-sum constraints preserve the simplex structure over time while all the
compositional components are treated equally.

To address the problems in the preterm infant study, we consider both
sparsity and smoothness of β∗(t). First, as it is believed that only a few
compositional components are relevant to the prediction of the outcome, we
assume the true coefficient curves are sparse, i.e., s∗ = |S| � p, where S is
the index set of the non-zero coefficient curves

S = {j;β∗j (t) 6= 0 for some t ∈ T, j = 1, . . . , p.}.

This sparsity assumption is the basis of component selection and is widely
applicable, especially when p, the number of compositional components, is
large. Second, since the effects of gut microbiome compositions on preterm
infant’s neurodevelopment evolves gradually over the postnatal period, we
assume the coefficient curves are smooth over t, and adopt a truncated
basis expansion approach (Ramsay and Silverman, 2005) to bring the infinite
dimensional problem to finite dimensions. Specifically, we assume

β∗(t) = B∗Φ(t),(6)
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where B∗ = [β∗1, . . . ,β
∗
p]

T ∈ Rp×k is a coefficient matrix, and Φ(t) =

[φ1(t), . . . , φk(t)]
T ∈ Rk consists of basis with Jφφ =

∫
t∈T Φ(t)ΦT(t)dt being

a positive definite (p.d.) matrix. Here for simplicity the same set of basis
functions is used in the expansion of each βj(t), j = 1, . . . , p, which usu-
ally suffices in practice, and the extension to use different basis for different
βj(t) is straightforward. There are many choices of the basis functions, e.g.,
Fourier basis, wavelet basis, and spline basis; see Ramsay and Silverman
(2005) for a detailed account on the truncated basis expansion approaches
in functional regression.

Some discussions on the number of basis functions are in order. In classical
least squares types of estimation, the choice of k usually boils down to a bias-
and-variance tradeoff. That is, while larger values of k can lead to a better
in-sample estimation at the risk of potential overfitting, smaller values of
k result in simpler estimators at the expense of missing interesting local
oscillations. The issue can be resolved by echoing regularization, i.e., taking
a sufficiently large k to ensure the flexibility of the model and performing
regularized estimation to avoid overfitting. From a theoretical perspective,
we allow k to grow with the sample size n, that is, the complexity of the
functional curves that the method can potentially capture may increase
when more data become available; see Section 5 for details. We also remark
that for a non-parametric treatment, one can assume β∗(t) satisfies the
Hölder condition (Tsybakov, 2008) to control the approximate error induced
by the basis truncation.

The functional sparsity in β∗(t) now amounts to the row-sparsity of the co-
efficient matrix B∗ in (6). The zero-sum constraint on β∗(t), i.e., 1T

p β
∗(t) = 0

for all t ∈ T, is now equivalent to B∗T1p = 0. To see this, note that
1T
p β
∗(t) = 0 leads to

∫
t∈T 1T

p B∗Φ(t)Φ(t)T(1T
p B∗)Tdt = 1T

p B∗Jφφ(1T
p B∗)T =

0; it follows that B∗T1p = 0 as Jφφ is p.d.. (The other direction holds triv-
ially.) Further, the integral part in the model becomes∫

t∈T
Z(t)β∗(t)dt =

∫
t∈T

Z(t)B∗Φ(t)dt

=

{∫
t∈T

Z(t)(Ip ⊗Φ(t)T)dt

}
vec(B∗T) = Zβ∗,

where, with some abuse of notations, we redefine β∗ = [β∗T1 , . . . ,β∗Tp ]T =

vec(B∗T) ∈ Rpk and

Z =

∫
t∈T

Z(t)(Ip ⊗Φ(t)T)dt = [Z1, . . . ,Zp] ∈ Rn×(pk).(7)
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Each β∗j ∈ Rk and Zj ∈ Rn×k correspond to the coefficient vector and
the covariate matrix for the jth compositional component, respectively. We
remark that Z is usually not exactly computed since Z(t) may not be fully
observed; we defer the discussion to Section 4.2.

The functional model in (5) then becomes a constrained sparse linear
regression model

(8) y = β∗01n + Zcβ
∗
c + Zβ∗ + e, s.t.

p∑
j=1

β∗j = 0,

where β∗ is expected to be sparse accordingly to the row-sparsity of B∗. To
enable the selection of the compositional components, we therefore propose
to conduct model estimation by minimizing a linearly constrained group
lasso criterion (Yuan and Lin, 2006),

min
β0,βc,β

 1

2n
‖y − β01n − Zcβc − Zβ‖2 + λ

p∑
j=1

‖βj‖

 , s.t.

p∑
j=1

βj = 0,

(9)

where λ is a tuning parameter controlling the amount of regularization. We
remark that the group lasso penalty is imposed on the coefficients for each
microbiome category to encourage microbe selection.

The proposed estimator possesses several desirable invariance properties
(Aitchison, 2003; Lin et al., 2014):

(I) Scale invariance: the estimator is invariant to the transformation X(t)→
SX(t) where S = diag(s) is a diagonal matrix with diagonal elements s =
[s1, . . . , sn]T and all si > 0. That is, it does not matter whether the data vec-
tors are scaled to have a unit sum; the method only cares about the relative
proportions. This is simply because Z(t)β(t) = {log(X(t))+log(s)1T

p }β(t) =
log(X(t))β(t), due to the zero-sum constraints. In fact, this scale invariance
continues to hold when the scaling factor s changes in time.

(II) Permutation invariance: results of the analysis do not depend on the
sequence by which the components are given or labeled.

(III) Subcomposition coherence: if we know in advance that some βj(t)
curves are zero, the analysis is unchanged if we apply the procedure to
the subcompositions formed by the components of X(t) corresponding to
the other βj(t) curves. To see this, suppose βj(t) ≡ 0 for j ∈ Sc, where Sc
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is the complement of a set S on {1, . . . , p}. Let s(t) = {XS(t)1|S|}−1 ∈ Rn
be a scaling factor in which the inversion is entrywisely applied, so that
diag(s(t))XS(t) gives the subcompositions formed by the components in S.
Then we have

log(X(t))β(t) ={log(XS(t)) + log(s(t))1T
|S|}βS(t)

= log(diag(s(t))XS(t))βS(t).

In particular, when there are only two non-zero components, e.g., β1(t) 6= 0,
β2(t) 6= 0 and βj(t) = 0 for j = 3, . . . , p, it is necessarily true that β1(t) =
−β2(t) due to the zero-sum constraint. This is neither an unpleasant artifact
nor a limitation of the proposed method. This special case can be understood
from the above property of subcomposition coherence: the analysis becomes
the same as using the subcompositions formed from the first two components
of X(t); consequently, the two possible log-ratios are exactly opposite to each
other, so do their corresponding coefficient curves. Therefore, this feature
is consistent with the data structure, as in two-part componsitional data,
either part carries exactly the same information.

4. Computation.

4.1. Solving and Tuning Constrained Group Lasso. The problem in (9) is
convex, and we solve it by an augmented Lagrangian algorithm (Boyd et al.,
2011). To save space, details are provided in Section 1 of Supplementary
Materials (Sun et al., 2020).

A general way to select the tuning parameters, i.e., the basis dimension k
and the group penalty level λ, is the K-fold cross validation (Stone, 1974),
which is based on the predictive performance of the models. However, it is
well known that the best model for prediction may not coincide with that for
variable selection, and in fact, the former often leads to overselection. This
phenomenon under our model is revealed in Section 5, where it is shown
that consistent component selection shall be based on the zero pattern of a
thresholded estimator. Following Fan and Tang (2013) and Lin et al. (2014),
we thus also experiment with minimizing a generalized information criterion
(GIC) for model selection which favors more sparse models,

GIC(λ, k) = log
(
σ̂2(λ, k)

)
+
(
s(λ, k)−1

)
k log

(
max{pk+1+pc, n}

) log(log n)

n
,

where σ̂2(λ, k) is the mean squared error define as ‖y−β̂0(λ, k)1n−Zcβ̂c(λ, k)−
Zβ̂(λ, k)‖2/n with β̂0(λ, k), β̂c(λ, k) and β̂(λ, k) being the regularized esti-
mators of regression coefficients, and s(λ, k) is the number of nonzero coef-
ficient groups in β̂(λ, k).
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4.2. On Discrete Time Observations. So far we have treated the inte-
grated design matrix Z defined in (7) as given. In practical situations, how-
ever, the functional compositional predictors are most often not observed
continuously but at discrete points, so Z can not be computed exactly. It
is preferable that the induced uncertainty is considered in statistical model-
ing. In functional regression with a scalar response, Ramsay and Silverman
(2005) discussed using truncated basis expansions for both the functional
predictor and the functional coefficient curve to convert the infinite dimen-
sional problem to finite dimensional, where truncation can be viewed as a
type of regularization. Integrals were approximated by finite Riemann sums
with discrete observations. The subsequent methodological development in
functional regression has mainly followed along this general strategy, with
various choices of basis functions and associated regularization approaches
(Morris, 2015). For example, a functional predictor could be expanded by its
eigenbasis via a functional principal component analysis, and the coefficient
function could be expanded either by the same eigenbasis or by other basis
such as wavelet or spline.

Due to the nature of the compositional data, ideally the functional compo-
sitions shall be expanded by a multivariate basis that preserves the simplex
structure under truncation or other types of regularization, which however,
to the best of our knowledge, is not yet available. In essence, a multivariate
functional principal component analysis for compositional data, or a joint
modeling approach of both the functional compositions and the regression,
is needed, which is beyond the scope of the current work.

For the preterm infant study, we take a pragmatic way of lifting the
discrete-time data to continuous time. In this study, stool sample of each
baby was collected daily whenever available; this resulted in a good coverage
rate, with on average 12.2 daily samples for each infant over a 24-day study
period. Also, biologists believe that the gut microbiome compositions change
continuously over time. As such, we simply apply linear interpolation to
obtain continuous time compositional curves. It can be readily seen that the
linear interpolation approach amounts to compute Z defined in (7) using
the trapezoid rule.

Specifically, suppose for each i = 1, · · · , n, we observe xi(t) = [xi1(t), · · · ,
xip(t)]

T at discrete time points ti,v ∈ T = [T1, T2], for v = 1, · · · ,mi. That
is, different subjects may be observed at different sets of time points in T.
Correspondingly, we have

zi(t) = [zi1(t), · · · , zip(t)]T, t = ti,1, · · · , ti,mi , i = 1, · · · , n.

Recall that Z =
∫
t∈T Z(t)(Ip ⊗Φ(t)T)dt ∈ Rn×(pk). Let Z = [Z1, · · · ,Zp] ∈
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Rn×(pk) with Zj = [zijl]n×k ∈ Rn×k for j = 1, · · · , p. Adopting linear inter-
polation, the entries of Z are computed using the trapezoid rule as follows,

zijl =

mi∑
v=2

(
φl(ti,v−1)zij(ti,v−1) + φl(ti,v)zij(ti,v)

) ti,v − ti,v−1

2

+ φl(ti,1)zij(ti,1)(ti,1 − T0) + φl(ti,mi)zij(ti,mi)(T1 − ti,mi),(10)

for l = 1, · · · , k. In what follows, unless otherwise noted, the integrals in the
case of discrete data are computed using the above trapezoid rule.

5. Theoretical Perspectives. Here we attempt to provide some the-
oretical perspectives of two questions of practical concerns: (1) whether it is
indeed beneficial to use the linearly constrained formulation rather than a
naive baseline formulation, which chooses an arbitrary reference component
to perform the log-ratio transformation of the compositional predictors and
then proceeds with an unconstrained group lasso regression, and (2) whether
the proposed method can accurately identify the relevant compositional pre-
dictors.

We first describe the setup. Our analysis is under the setting when the
basis expansion in (6) holds and the integrated design matrix Z is avail-
able. The results are non-asymptotic, where both the number of functional
predictors p and the degrees of freedom of the basis functions k are al-
lowed to grow with the sample size n. For any β = [βT

1 , . . . ,β
T
p ]T ∈ Rpk,

define βr̄ ∈ R(p−1)k as a subvector of β by removing its rth component
βr, for each r = 1, . . . , p. Let J ⊂ {1, . . . , p} be an index set, and de-
note βJ be a subvector of β consisting of βj , j ∈ J . Denote J c as the

complement of J . Recall that X(t) = [x1(t), . . . ,xn(t)]T ∈ Rn×p, Z(t) =
[zij(t)] ∈ Rn×p with zij(t) = log(xij(t)), and Z̃r̄(t) = [z̃ij(t)] ∈ Rn×(p−1)

with z̃ij(t) = log(xij(t)/xir(t)) for each r = 1, . . . , p. Moreover, due to (6),

we define Z̃r̄ =
∫
t∈T Z̃r̄(t)(Ip⊗Φ(t)T)dt ∈ Rn×(p−1)k and Z =

∫
t∈T Z(t)(Ip⊗

Φ(t)T)dt ∈ Rn×(pk) as in (7). Write Z̃r̄ = [Z̃r̄,1, . . . , Z̃r̄,r−1, Z̃r̄,r+1, . . . , Z̃r̄,p]

with each Z̃r̄,j ∈ Rn×k. Write Z = [Z1, . . . ,Zp] with each Zj ∈ Rn×k. Let

Ψr̄,j = Z̃T
r̄,jZ̃r̄,j/n, for r = 1, . . . , p, j = 1, . . . , p and j 6= r. It boils down

to analyze the constrained linear model with grouped predictors in (8). For
simplicity, we omit the intercept and the control variables, and write the
model as

y = Zβ∗ + e, s.t.

p∑
j=1

β∗j = 0,
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where β∗ = [β∗T1 , . . . ,β∗Tp ]T ∈ Rpk. Recall that S = {j;β∗j (t) 6= 0, j =
1, . . . , p.} = {j;β∗j 6= 0, j = 1, . . . , p.}, and s∗ = |S| � p.

The proposed constrained group lasso estimator is,

β̂ = arg min
β

 1

2n
‖y − Zβ‖2 + λ

p∑
j=1

‖βj‖

 , s.t.

p∑
j=1

βj = 0.(11)

This estimator satisfies that β̂r = −
∑p

j 6=r β̂j . Therefore, it holds true that
for any r = 1, . . . , p,

β̂r̄ = arg min
βr̄

 1

2n
‖y − Z̃r̄βr̄‖2 + λ

p∑
j 6=r
‖βj‖+ λ‖

p∑
j 6=r

βj‖

 .

On the other hand, as to the baseline method, when the rth component is
choosing as the reference level, the estimator is given by

β̃r̄ = arg min
βr̄

 1

2n
‖y − Z̃r̄βr̄‖2 + λ

p∑
j 6=r
‖βj‖

 .(12)

Our analysis follows and extends the work by Lounici et al. (2011) on
group lasso to the case of constrained group lasso in (11) arising from func-
tional compositional data analysis. All the proofs are provided in Section 2
of Supplementary Materials (Sun et al., 2020).

Assumption 1. The error terms e1, . . . , en are independently and iden-
tically distributed as N(0, 1) random variables.

Assumption 2 (Restricted Eigenvalue Condition (RE)). There exists
κ > 0, such that

min

{
‖Z∆‖√
n‖∆J ‖

: |J | ≤ s∗,∆ ∈ Rpk 6= 0,

p∑
j=1

∆j = 0,

∑
j∈J c

‖∆j‖+ min
j
‖∆j‖ ≤ 3

∑
j∈J
‖∆j‖.

 ≥ κ.
Theorem 1 (Error Bounds). Suppose Assumptions 1–2 hold. Choose

λ ≥ min
r

max
j 6=r

2σ√
n

√
tr(Ψr̄,j) + 2σmax(Ψr̄,j)(2q log(p− 1) +

√
kq log(p− 1)).
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Then, with probability at least 1 − 2(p − 1)1−q, the constrained group lasso
estimator β̂ in (11) satisfies that

1

n
‖Z(β̂ − β∗)‖2 ≤ 16λ2s∗

κ2
,

p∑
j=1

‖β̂j − β∗j‖+ min
j
‖β̂j − β∗j‖ ≤

16λs∗

κ2
.

It is interesting to compare with the baseline approach in (12), for which
once a baseline r is chosen, its theoretical property mimics that of the regular
group lasso model with p−1 groups (Lounici et al., 2011). Due to the linear
constraints, the restricted set of ∆ in Assumption 2 for which the minimum
is taken is smaller than that of the regular group lasso estimator. As such,
the condition for the constrained model becomes weaker in general. Also, in
Theorem 1, the choice of λ, which directly impacts the final estimation error
rate, is taken as a minimal value over r, the choice of the baseline. Therefore,
in view of the RE condition and the choice of λ, our results reveal that the
proposed method is capable of achieving the best possible performance of
the baseline method under a possibly weaker condition.

Assumption 3 (β-min Condition). Choose the same λ as in Theorem
1. Assume that

min
j∈S
‖β∗j‖ >

16λs∗

κ2
.

Corollary 2 (Selection Consistency). Suppose Assumptions 1–3 hold.
Let

Ŝ = {j : ‖β̂j‖ >
8λs∗

κ2
}.

Then, with probability at least 1− 2(p− 1)1−q, we have that Ŝ = S.

Corollary 2 reveals the “overselection” phenomenon due to convex pe-
nalization; see, e.g., Wei and Huang (2010). That is, the proposed con-
strained group lasso estimator in general does not miss important variable
groups/components, albeit overselecting some irrelevant ones. As such, a
thresholding operation is preferred in order to recovery the correct sparsity
pattern exactly. However, the theoretical threshold is not available in prac-
tice, as it involves unknown quantities such as σ2 and κ. Nevertheless, the
results provide guarantee that using the original estimator can avoid false
negatives at the expense of some false positives, which is acceptable in many
applications.
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6. Simulation. We conduct simulation studies to compare the perfor-
mance of our proposed sparse functional log-contrast regression via con-
strained group lasso (CGL) in (9), the baseline approach in the form of (12)
via group lasso (BGL) in which the reference level is chosen randomly, and
the naive approach of group lasso (GL) in which the zero-sum constraints
are ignored in (9), and cross sectional method (I) of taking average of obser-
vations along time (Average), and cross sectional method (II) of considering
the snapshot of the most significant time point (Snapshot).

The compositional data are generated as follows. We first generate M
time points within the interval [0, 1], i.e., 0 = t1 < · · · < tM = 1. For
inducing dependence between time points, we consider an autoregressive

correlation structure, ΣT = [ρ
|µ−ν|
T ]M×M , where 1 ≤ µ, ν ≤ M ; for in-

ducing dependence between compositions, we consider a compound sym-

metry correlation structure, ΣX = [ρ
I(j=j′)
X ]p×p, where 1 ≤ j, j′ ≤ p and

I(·) is the indicator function. The “non-normalized” data for each sub-
ject i, i = 1, . . . , n, are then generated from multivariate normal distri-
bution as wi = [wi(t1)T, · · · ,wi(tM )T]T ∼ N(0, σ2

X(ΣT ⊗ΣX)), where each
wi(tν) ∈ Rp for ν = 1, . . . ,M . Finally, the compositional data are obtained
as xij(tν) = exp(wij(tν))/

∑p
j=1 exp(wij(tν)), for i = 1, . . . , n, j = 1, . . . , p

and ν = 1, . . . ,M . The regression curves β∗(t) are generated as B∗Φ(t),
where Ψ(t) is from a set of cubic spline basis computed using the bs function
in the R package splines with t ∈ {t1, . . . , tM} and degrees of freedom set
to 5. The first three rows of B∗ are set as [1, 0, 1, 0,−0.5], [0, 0,−1, 0, 1] and
[−1, 0, 0, 0,−0.5], respectively, and the rest are set to zero. The intercept is
set to be β∗0 = 1 and for simplicity we do not consider additional control. The
error terms are generated as independent N(0, σ2) random variables where
σ2 is set to control the signal to noise ratio (SNR). Finally, the response y
is generated by model (5), where the integral is computed as in (10). We
have experimented with (n, p) ∈ {(50, 30), (100, 30), (100, 100), (100, 200)}
and parameter settings M = 20, σ2

X = 9, ρT ∈ {0, 0.6}, ρX = {0, 0.6} and
SNR = {2, 4}. The simulation is repeated 100 times under each setting.

The prediction error (Pred) is measured by ‖yte −Zteβ̂‖2/nte, computed
from an independently generated test sample (yte; Xte(t), t ∈ {t1, . . . , tM})
of size nte = 500. The estimation error (Est) is measured by

∑p
j=1(

∫
[0,1] |β̂j(t)−

β∗j (t)|2 dt)1/2/p. For variable selection of the compositional components, we
report the false positive rate (FPR) and the false negative rate (FNR), based
on the sparsity patterns of β̂(t) and β∗(t). We have experimented with both
10-fold cross validation (CV) and GIC to select from a grid of (k, λ) values.
As shown in Corollary 2, a thresholding of the estimator is preferred for the
purpose of variable selection, although the ideal threshold is not available
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in practice. Here with the same spirit and based on empirical evidence, we
define the selected index set Ŝ based on the relative magnitudes of the p
estimated coefficient curves:

Ŝ = {j;
( ∫

[0,1]
β̂2
j (t) dt

)1/2
/{

p∑
j=1

( ∫
[0,1]

β̂2
j (t) dt

)1/2} ≥ 1/p, j = 1, · · · , p}.

That is, we only count the components whose relative “energy” exceeds the
average 1/p as selected.

The simulation results for (n, p) = (50, 30) and (n, p) = (100, 200) with
SNR = 4 are reported in Tables 1 – 2. The two naive methods, Average
and Snapshot perform much worse in prediction than other methods; they
tend to miss important variables as seen from their high FNR values. To
save space, we do not show the results of Average and Snapshot with GIC
tuning, and we omit the results on the estimation errors as they deliver very
similar message as the prediction errors. In general, CGL shows better pre-
dictive and selection performance than both GL and BGL, and in some cases
the improvement can even be substantial; We have also tried the unpenal-
ized least squares estimator, which fails miserably in prediction and hence
is omitted. The BGL method performs the worst among the three. The two
tuning methods, CV and GIC, show quite different behaviors: the former
generally yields larger false positive rates and much smaller false negative
rates than the latter. Indeed, this is consistent with the theoretical results
in Section 5 that the proposed convex regularized estimation approach has a
screening property when tuned based on optimizing predictive performance,
i.e., with high probability the method does not miss any important vari-
ables but consequently it has a tendency of over-selection. Nevertheless, the
CV-tuned estimators rarely miss important components and performs much
better in prediction comparing to their GIC-tuned counterparts. Therefore,
CV may be preferable in practice when one cares more about prediction and
can afford some false alarms for the capture of all the relevant signals.

Figure 2 shows boxplots of prediction errors from CV tuning for various
simulation settings. We do note include Average and Snapshot methods as
they perform much worse; more detailed results of SNR = 2 is reported in
Section 4 of Supplementary Materials (Sun et al., 2020). The performance
of all methods deteriorates when the SNR becomes smaller, the between-
component correlation becomes smaller, or the between-time correlation be-
comes stronger. Small between-component correlation causes the presence
of a few dominating compositional components due to the unit-sum con-
straints, while large between-time correlation makes the functional compo-
sitions smooth over time and consequently makes it hard to distinguish the
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Table 1
Simulation results for (n, p) = (50, 30) and SNR = 4. Reported are the average values

over 100 simulation runs, with the standard deviations in parentheses. For better
presentation, the values of Pred are multiplied by 10.

(ρX , ρT ) Criterion Method Pred FPR (%) FNR (%)

(0, 0) CV BGL 0.39 (0.01) 28.85 (1.28) 0.00 (0.00)
GL 0.39 (0.01) 27.48 (1.35) 0.00 (0.00)
CGL 0.34 (0.01) 29.22 (1.43) 0.00 (0.00)
Average 2.03 (0.03) 12.00 (1.37) 66.00 (3.45)
Snapshot 2.11 (0.05) 16.74 (1.77) 53.00 (3.45)

GIC BGL 1.46 (0.06) 4.04 (0.19) 48.00 (3.33)
GL 1.44 (0.05) 0.19 (0.08) 52.67 (2.69)
CGL 1.24 (0.05) 1.63 (0.24) 20.00 (2.37)

(0, 0.6) CV BGL 1.27 (0.04) 30.70 (1.48) 0.33 (0.33)
GL 1.21 (0.03) 29.04 (1.40) 0.00 (0.00)
CGL 1.13 (0.03) 29.67 (1.43) 0.00 (0.00)
Average 5.58 (0.14) 19.67 (1.96) 34.00 (3.45)
Snapshot 5.31 (0.10) 23.44 (1.60) 22.67 (1.83)

GIC BGL 4.61 (0.16) 3.74 (0.16) 52.67 (2.60)
GL 3.93 (0.12) 0.11 (0.06) 51.67 (2.39)
CGL 3.91 (0.17) 1.52 (0.24) 23.67 (2.19)

(0.6, 0) CV BGL 0.15 (0.01) 29.26 (1.35) 0.00 (0.00)
GL 0.16 (0.00) 29.93 (1.42) 0.00 (0.00)
CGL 0.14 (0.00) 29.07 (1.22) 0.00 (0.00)
Average 0.80 (0.01) 14.63 (1.70) 57.33 (3.52)
Snapshot 0.85 (0.02) 16.70 (1.73) 57.00 (3.29)

GIC BGL 0.65 (0.02) 3.81 (0.19) 56.33 (2.67)
GL 0.62 (0.02) 0.19 (0.08) 59.33 (2.25)
CGL 0.54 (0.02) 1.63 (0.22) 22.67 (2.22)

(0.6, 0.6) CV BGL 0.53 (0.02) 33.52 (1.38) 0.33 (0.33)
GL 0.49 (0.02) 30.22 (1.31) 0.00 (0.00)
CGL 0.45 (0.01) 30.37 (1.44) 0.00 (0.00)
Average 2.02 (0.04) 22.81 (1.89) 26.33 (2.81)
Snapshot 2.10 (0.03) 22.85 (1.60) 25.67 (1.76)

GIC BGL 1.85 (0.06) 3.81 (0.15) 53.67 (2.59)
GL 1.69 (0.05) 0.11 (0.06) 57.67 (2.00)
CGL 1.52 (0.06) 1.74 (0.23) 25.00 (2.24)
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Table 2
Simulation results for (n, p) = (100, 200) and SNR = 4. The layout is the same as in

Table 1.

(ρX , ρT ) Criterion Method Pred FPR (%) FNR (%)

(0, 0) CV BGL 0.31 (0.01) 15.28 (0.48) 0.00 (0.00)
GL 0.31 (0.01) 15.27 (0.48) 0.00 (0.00)
CGL 0.29 (0.00) 15.57 (0.51) 0.00 (0.00)
Average 1.98 (0.03) 3.04 (0.41) 73.33 (3.11)
Snapshot 1.99 (0.03) 4.82 (0.64) 59.33 (3.20)

GIC BGL 1.45 (0.05) 0.51 (0.01) 44.00 (3.07)
GL 1.33 (0.05) 0.01 (0.01) 46.33 (2.88)
CGL 1.13 (0.05) 0.19 (0.03) 11.67 (1.73)

(0, 0.6) CV BGL 1.02 (0.02) 16.26 (0.51) 0.00 (0.00)
GL 0.97 (0.02) 15.62 (0.52) 0.00 (0.00)
CGL 0.94 (0.02) 16.32 (0.50) 0.00 (0.00)
Average 5.41 (0.10) 7.17 (0.70) 27.00 (2.71)
Snapshot 5.14 (0.10) 6.57 (0.56) 27.67 (1.26)

GIC BGL 4.15 (0.16) 0.51 (0.01) 43.00 (3.01)
GL 3.44 (0.12) 0.01 (0.01) 42.67 (2.92)
CGL 3.57 (0.15) 0.10 (0.02) 16.00 (1.92)

(0.6, 0) CV BGL 0.12 (0.00) 14.78 (0.49) 0.00 (0.00)
GL 0.12 (0.00) 15.44 (0.61) 0.00 (0.00)
CGL 0.12 (0.00) 15.07 (0.55) 0.00 (0.00)
Average 0.80 (0.01) 5.14 (0.68) 58.33 (3.80)
Snapshot 0.81 (0.01) 4.30 (0.49) 61.67 (2.82)

GIC BGL 0.55 (0.02) 0.53 (0.01) 39.00 (3.39)
GL 0.47 (0.02) 0.02 (0.01) 36.33 (3.22)
CGL 0.41 (0.02) 0.15 (0.03) 9.67 (1.79)

(0.6, 0.6) CV BGL 0.41 (0.01) 16.21 (0.50) 0.00 (0.00)
GL 0.40 (0.01) 15.30 (0.55) 0.00 (0.00)
CGL 0.39 (0.01) 15.59 (0.50) 0.00 (0.00)
Average 2.03 (0.03) 7.35 (0.63) 16.67 (2.25)
Snapshot 2.09 (0.04) 7.62 (0.67) 27.33 (1.29)

GIC BGL 1.76 (0.06) 0.52 (0.01) 48.33 (2.93)
GL 1.46 (0.05) 0.01 (0.01) 47.33 (2.73)
CGL 1.40 (0.06) 0.15 (0.03) 17.00 (1.98)
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relevant components from the others.
As suggested by a referee, we also perform a simulation example to better

mimic the real data from the preterm infant study, in which the observed
compositional data matrix from the preterm infant study is directly used as
the design matrix to generate data, the sample size is the same as the real
data (n = 34, p = 22), and the SNR is set as comparable to the real data
(SNR = 1.5). The nonzero coefficients of the taxa are either set the same as
those used in the other simulation examples, or those estimated from CGL
on the real data. The simulation is repeated 100 times. The average scaled
prediction error is 3.10 (0.03), 3.10 (0.03), and 2.99 (0.02) in the first setting,
and 1.88 (0.02), 1.37 (0.01), and 1.33 (0.01) in the second setting, for BGL,
GL, and CGL tuned by CV, respectively. This result further confirms that
CGL can lead to slightly improved model performance while maintaining
the simplex geometry for ease of model interpretation.

7. Linking Microbiome Trajectories to Neurobehavioral Out-
comes. Recall that our main objective is to identify the microbiome mark-
ers that are predictive of later infant neurodevelopment as measured by
NNNS. This predictive association, if proven true, can provide supporting
evidence to the claim that the stressful early life experience of preterm in-
fants is imprinting gut microbiome by the regulation of the brain-gut axis.
We tackle the problem with the functional log-contrast regression model in
(5), in which the composite NSTRESS score serves as the response variable,
the gut microbiome observed during the early postnatal period serves as
the functional compositional predictors, and the infant characteristics listed
in Table 3 below serve as the time-invariate control variables. We apply the
proposed CGL approach for model estimation and compositional component
selection. The cubic spline basis is used, and the tuning of the degrees of
freedom k as well as the sparsity parameter λ is done using cross validation.

Our approach is able to identify four bacteria categories at the order
level that are associated with the neurobehavioral outcome of infant, after
controlling for the effects of several infant characteristics. (GIC tuning se-
lects exactly the same four taxa.) Before we discuss the selected microbiome
markers, let’s first focus on the effects of the control variables. Table 3 shows
the estimated coefficients of the control variables along with some descrip-
tive statistics. It is seen that the neurobehavioral outcome is better (i.e.,
NSTRESS is small) for infants with larger birth weight, smaller SNAPE-II
score and more mother’s breast milk for feeding. Regarding the delivery of
infant, vaginal delivery and the absence of premature rupture of membranes
are associated with better neurobehavioral development. These interesting
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(d) n = 100, p = 200, SNR = 4

Fig 2: Boxplots of prediction errors for various simulation settings. The dark grey, light
grey and white colors correspond to three different estimation methods BGL, GL and
CGL, respectively.
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and intuitive results are consistent with existing literature (Neu and Rush-
ing, 2011; Feldman and Eidelman, 2003). The analysis also shows that female
infants tend to perform slightly better than male, after accounting for other
effects.

Table 3
Descriptive statistics of infant characteristics and their estimated coefficients from fitting
the sparse functional log-contrast regression. Values of estimated coefficient are multiplied

by 100.

Numerical variable Mean (sd) Estimated coefficient

Birth weight (in gram) 1451.7 (479.3) −0.003
SNAPE-II 9.3 (10.6) 0.107
%MBM 61.8 (29.9) −9.272

Binary variable Mean

Gender (female = 1) 50.0% −0.064
PROM (yes = 1) 44.1% 2.761
Delivery type (vaginal =1) 35.3% −5.105

The estimated functional effects of the four selected bacteria categories
are shown in the four panels of Figure 4, respectively. In each panel, the
lower part shows the estimated functional effects of a category over time
(between 5 and 28 days of postnatal age), and the upper part attempts
to show directly from raw data how this category changes over time for
infants with high, medium, or low “adjusted” NSTRESS score, obtained
by subtracting the estimated effects of the control variables and other se-
lected bacteria categories from the observed NSTRESS scores. Specifically,
we construct smoothed curves of log-compositions of each selected category
for three clusters of infants (using locally weighted scatterplot smoothing).
For each category, the clusters are based on the percentiles of its “adjusted”
NSTRESS score. The curve with its 90% confidence band is shown in red
for the high group, i.e., infants with the upper one third of the adjusted
scores, in blue for the medium group, i.e., infants with the middle one third
of the adjusted scores, and in green for the low group, i.e., infants with the
lower one third of the adjusted scores. As an example, for category 1, the red
curve increases in the beginning to be above the other two curves and then
becomes mostly below them in the later stage. This suggests that the time-
varying effect of category 1 on the NSTRESS score is first positive and then
negative, which is clearly reflected by the estimated functional effects. Sim-
ilarly for the other three selected categories, the patterns of the estimated
effects agree well with those of the observed data. This verifies visually that
our proposed model and the estimation approach yield sensible results.



FUNCTIONAL LOG-CONTRAST REGRESSION 23

-1
0

-7
.5

-5
-0

.0
2

-0
.0

1
0
.0

0
0
.0

1
0
.0

2

5 10 15 20 25 28

PNA

L
o
g
 c

o
m

p
o
si

tio
n

E
st

im
a
te

 e
ff
e
ct

(a) Category 1
-7

.5
-5

-2
.5

0
-0

.0
0
8

-0
.0

0
4

0
.0

0
0

0
.0

0
4

0
.0

0
8

5 10 15 20 25 28

PNA
L
o
g
 c

o
m

p
o
si

tio
n

E
st

im
a
te

 e
ff
e
ct

(b) Category 9

-6
-4

-2
0

-0
.0

6
-0

.0
3

0
.0

0
0
.0

3
0
.0

6

5 10 15 20 25 28

PNA

L
o
g
 c

o
m

p
o
si

tio
n

E
st

im
a
te

 e
ff
e
ct

(c) Category 10
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(d) Category 19

Fig 3: Estimated effects of the four selected bacteria categories at the order level over
infant’s postnatal age (PNA) of 5 to 28 days. In each sub-graph, the upper panel shows
how this category changes over time for three clusters of infants. For each category, the
clusters are based on the percentiles of its partial residuals, obtained by subtracting the
estimated effects of the control variables and other selected bacteria categories from the
observed NSTRESS scores. The curve with its 90% confidence band is shown in red for
the high group, in blue for the medium group, and in green for the low group.
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To access the stability of the results, we have generated 100 bootstrap
samples and used the same cross validation procedure to select the best
models. The results are show in Figure 5. The signs of the coefficients of
the control variables are quite stable, except for the gender and SNAPE-II
variables; this shows that these two variables may not have much effect on
the outcome when conditioning on other terms in the model. For each con-
trol variable, the sign with the higher proportion among its 100 bootstrap
estimates agrees with that of the estimate from fitting the original data,
except for the gender. Furthermore, the top four categories with the highest
proportions of being selected in bootstrap coincide with the categories se-
lected from fitting the original data. Categories 10 and 19 are selected about
90% of the times, while 9 and 1 are selected more than 70% and 60% of the
times, respectively.
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Fig 4: Selection results from 100 bootstrap samples. (a) Proportions of the signs of the
estimated coefficients of the control variables. Proportions of positive signs are shown as
black blocks to the right, and those of negative signs are shown as light gray blocks to the
left. (b) Proportions of selecting the 22 bacteria categories at the order level. The bars of
the four selected categories from fitting the original data are colored in black.

Category 10 consists of Clostridiales, which are an order of bacteria be-
longing to the phylum Firmicutes. Studies showed that infants fed with
mother’s milk had significantly higher abundance in Clostridiales (Cong
et al., 2016). Clostridiales are generally regarded as hallmarks of a healthy
gut; it can be a sign of infection when their subtypes such as Eubacteria die
off in the large intestine. Our results show that controlling for other effects
in the model, the effect of Clostridiales on the stress score switches from neg-
ative to positive during the postnatal days from 5 to 28. Category 9 consists
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of Lactobacillales, or lactic acid bacteria (LAB), another order of bacteria
belonging to the phylum Firmicutes. These bacteria are usually found in
decomposing plants and milk products; they are considered beneficial and
produce organic acids such as lactic acid from carbohydrates. Our analysis
shows that controlling for the other effects in the model, higher LAB propor-
tions are associated with higher stress scores for a period of time during the
early postnatal days. Both Clostridiales and LAB belong to phylum Firmi-
cutes, which make up the largest portion of the human gut microbiome, and
the abundance of Firmicutes has been shown to be associated with inflam-
mation and obesity Clarke et al. (2012); Boulangé et al. (2016). Category
19 consists of Enterobacteriales, an order of gram-negative bacteria. They
are responsible for various infections such as bacteremia, lower respiratory
tract infections, skin infections, etc. Category 1 consists of other unclassi-
fied bacteria. The functional regression analysis presented here may lead to
a better understanding of how the trajectories of gut microbiome during
early postnatal stage impact neurobehavioral outcomes of infants through
the gut-brain axis.

We also repeat the analysis on a lower level taxon, i.e., the genus level.
Five out of p = 62 genera are selected, and their estimated functional ef-
fects are shown in the five panels of Figure 6. The tendency of the estimated
effects adequately reflects those of the observed data and the results are con-
sistent with previous study on the order level. In particular, the five selected
genera all belong to the four selected order categories; see Table 4. Genus 38
comprises genus Veillonella, belonging to the order Clostridiales. Veillonella
have been implicated as pathogens; they are often associated with oral, cen-
tral nervous system and various soft tissue infections. Our results show that
controlling for the other effect in the model, the effect of Veillonella on the
stress score works similarly to that of Clostridiales, switching from negative
to positive. Genus 20 consists of Enterococcus, which is an large genus of
bacteria belonging to the order LAB. In humans, E. faecalis and E. fae-
cium are the most abundant species of this genus found in fecal content,
comprising up to 1% of the adult intestinal microbiota. Although utilization
of Enterococci as probiotics has been under controversial discussion, ente-
rococcal strains such as E. faecium SF68 and E. faecalis Symbio-flor have
been marketed as probiotics for decades without incidence and with very
few reported adverse events (Franz et al., 2011). On the other aspect, En-
terococci is also important nosocomial pathogens that cause bacteraemia,
endocarditis and other infections. Same as LAB, controlling for the other
effect in the model, our results show that higher Enterococcus proportions
are associated with higher stress scores for a period of time during the early
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(c) Genus 38
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(d) Genus 48
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(e) Genus 55

Fig 5: Estimated effects of the five selected bacteria categories at the genus level over
infant’s postnatal age (PNA) of 5 to 28 days. The layout is the same as in Figure 4.
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Table 4
Comparison of selection of microbiome markers between order level and genus level.

Order level Genus level

1: Others 1: Others

9: Lactobacillales
Produce organic acids such as lactic acid from
carbohydrates.

20: Enterococcus
It’s used as probiotics in humans;
It’s considered as pathogens that cause bacteraemia,
endocarditis and other infections.

10: Clostridiales
It’s generally regarded as hallmarks of a healthy gut;
It’s a sign of infection when their subtypes such as
Eubacteria die off in the large intestine.

38: Veillonella
It’s implicated as pathogens;
It’s associated with oral infections and various soft
tissue infections.

19: Enterobacteriales
It’s responsible for various infections such as
bacteremia, lower respiratory tract infections, skin
infections, etc.

55: Shigella
It’s considered as pathogen causing shigellosis;
Shigellosis is exceedingly uncommon for infants
during the first month of life
48: Others

postnatal days. Genus 55 is Shigella, belonging to the order Enterobacteri-
ales. Shigella is considered as pathogen causing shigellosis. The main sign
of shigella infection is diarrhea, which often is bloody. However, shigellosis
rarely affects infants during the first month of life. Even in highly endemic
areas neonatal shigellosis is exceedingly uncommon (Haltalin, 1967). Our
analysis shows that controlling for the other effects in the model, the effect
of Shigella changes from positive to negative during early postnatal days.
Genus 48 consists of other unclassified genera of bacteria that belongs to
the order Enterobacteriales. Genus 1 consists of other unclassified bacteria.

Lastly, we compare the three functional estimation methods BGL, GL
and CGL in this real data analysis. Recall that using full data, CGL selected
orders 1, 9, 10, and 19. In contrast, GL selected orders 9, 10, and 19 but
missed order 1. The selected taxa using BGL varied drastically with different
choices of the baseline taxon; for example, it selected order 10 when order
1 was used as the baseline, it selected 9, 10, 14, 15, and 17 when order 12
was used as the baseline, and it failed to select any taxon when order 2 was
used as the baseline. To objectively compare the three methods, we have
also performed an out-of-sample random splitting procedure. Specifically,
we randomly divide the data into a training sample of 90% subjects to fit
the models and a testing sample of 10% patients to evaluate the out-of-
sample performance of the models. This procedure is repeated 100 times
and the results are averaged. For the order level analysis, the average scaled
prediction errors are 0.213 (0.478), 0.136 (0.123), and 0.127 (0.095), for
BGL, GL, and CGL, respectively. The results confirm that CGL is preferred
in practice due to its improved predictive performance and its validity in
maintaining the log-contrast model interpretation and avoiding arbitrary
selection of the baseline. Indeed, here the baseline method, BGL, performs
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much worse than the other two methods and exhibits a much larger variation
in selection.

8. Discussion. We have attempted a functional log-contrast regression
approach to identify trajectories of gut microbiome components during early
postnatal stage that are associated with later neurobehavioral outcomes of
pre-term infants. There are several directions for future research to address
the limitations of the current work.

Our results on order and genus levels give a general idea of how the
microbial communities effect health outcomes; to fully decipher their roles
further analysis on species level or even operational taxonomic unit (OTU)
is needed. However, the problem of choosing microbiome resolution (or taxo-
nomic rank) in data analysis is both biologicial and statistical. In this work,
our choices are made based on both the interest of the biologists and by
taking into consideration of the limited sample size of n = 34; while we
focus on the order level with p = 22, the additional analysis on the genus
level, which has a much larger number of predictors, provides a sanity check.
We suggest the practitioners to do the same. For the compositional data on
microbiomes, there is clearly a trade-off between data quality and data res-
olution: the lower the rank, the higher the data resolution (there are more
taxa), but the sparser the data (there are more zeros and each composition
is converted from a smaller count). More generally, as microbiomes admit a
taxonomic hierarchy, a fundamental statistical problem is how to search for
the taxonomic rank or ranks that best predicts an outcome of interest.

The data analysis can benefit from extending the model to consider po-
tential interactions between the control variables and the gut microbiome,
as it is possible, for example, that the effects of certain microbiome markers
differ for male and female infants. Our method is based on constrained and
regularized estimation, with which it is not straightforward to produce valid
confidence intervals. It is thus pressing to tackle this post-selection infer-
ence problem (Taylor and Tibshirani, 2015; Shi, Zhang and Li, 2016) in the
context of functional regression. Extensions to binary outcome or mixture
model setup are interesting and could be widely applicable; indeed, it is of
interest to see whether there exists a subgroup structure among the preterm
infants. To take into account the uncertainty due to discrete observations,
it is urgent to develop smoothing or dimension reduction methods such as
multivariate functional principal component analysis for compositional data
observed discretely over time. A joint modeling approach of both the regres-
sion and the functional compositions themselves may also be fruitful.
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SUPPLEMENTARY MATERIAL

Supplement to “Log-Contrast Regression with Functional Com-
positional Predictors: Linking Preterm Infant’s Gut Microbiome
Trajectories to Neurobehavioral Outcome”
(http://www.e-publications.org/ims/support/dowload/XXX). We provide de-
tails of the computational algorithm in Section 4, proofs of Theorem 1 and
Corollary 2, more details on the microbiome data in the preterm infant
study, and additional simulation results.
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