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Abstract. In this paper, we develop a sparse grid stochastic collocation
method to improve the computational efficiency in handling the steady Stokes-
Darcy model with random hydraulic conductivity. To represent the random hy-
draulic conductivity, the truncated Karhunen-Loève expansion is used. For the
discrete form in probability space, we adopt the stochastic collocation method

and then use the Smolyak sparse grid method to improve the efficiency. For the
uncoupled deterministic subproblems at collocation nodes, we apply the gen-

eral coupled finite element method. Numerical experiment results are presented
to illustrate the features of this method, such as the sample size, convergence,
and randomness transmission through the interface.

1. Introduction. The Stokes-Darcy (SD) model is a fundamental model used in
many areas of science and engineering, for example, groundwater systems in karst
aquifers [25, 49, 60, 61], interaction between surface and subsurface flows [28, 36,
38, 66, 75], oil reservoir in vuggy porous medium [1, 3, 41, 84, 120], and industrial
filtrations [44,62]. The Stokes-Darcy model describes the free flow of a liquid by the
Stokes equation and the confined flow in a porous media by the Darcy equation, the
two flows are coupled through interface conditions. Due to the fact that the resulting
coupled Stokes-Darcy model has higher fidelity than either the Darcy or Stokes
systems on their own, it is not surprising that a great deal of effort has been devoted
to developing numerical methods for solving the model, such as the coupled finite
element methods [21,72,85,99], domain decomposition methods [19,24,31,37,39,40,
57, 79, 108], Lagrange multiplier methods [6, 50, 76], multi-grid methods [2, 20, 88],
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discontinuous Galerkin methods [33,54,71,78,96], mortar discretization [17,48,55],
and many others [5, 10, 18,22,32,43,63,68,70,77,83,89,100,110,111,119].

All of the above existing work focused on the deterministic SD model, in which
the model parameters, such as the model coefficients, the forcing terms, the domain
geometry, the boundary conditions, the initial conditions, etc., are assumed to be
perfectly known. Rather surprisingly, there are only limited number of literature
studies about the stochastic SD model [74]. In reality, there is a huge amount of
uncertainty involved in determining these real-life data due to measurement noise
and simplifications. Hence many applications are affected by a relatively large
amount of uncertainty in the input data, which cannot be accurately modeled by
deterministic partial differential equations. On the other hand, modern engineering
relies more and more on computational simulations, and the accuracy requirement
in the computational results is growing significantly.

There are many sources that could generate uncertainties in SD model, which
may come from either our difficulty in characterizing the investigated complex sys-
tem or an intrinsic variability of physical quantities. For instance, when we study
subsurface flows, the subsurface properties, such as porosity and permeability, are
usually extrapolated from measurements taken in a limited number of sampling lo-
cations. When enough information is provided for the statistical characterization of
the physical system, the input data can be modeled as random fields with a given
correlation structure in associated PDEs, see e.g, the Karhunen-Loève [80, 81] and
polynomial chaos expansions [116, 117]. Then instead of determining a single solu-
tion, we are concerned with the statistical moments of the solutions, such as their
mean value, variance, covariance, i.e., the derived statistical quantities of interests.

A number of efficient numerical methods have been developed to solve stochastic
PDEs, such as polynomial chaos [69,116,117], stochastic Galerkin method [8,35,86,
98], stochastic collocation method [7,59], sparse grid methods [11,87,90,91], multi-
level Monte Carlo method [14, 29, 42, 52, 73, 97, 104], and many others [9, 12, 27, 82,
103, 107, 109, 112, 114, 115, 118, 121, 122]. These methods have also been applied to
solve the stochastic optimization and control problems [4, 13, 34,58,105].

Similar to the Monte Carlo method [46], the stochastic collocation method [7]
is characterized by requiring only the solution of uncoupled deterministic problems
over the set of collocation points, even in the presence of a hydraulic conductivity
which depends nonlinearly on the random variables. That is, the stochastic col-
location method is naturally parallel with minimum communication and capable
of fully making use of existing packages as black boxes for the corresponding de-
terministic problems. However, the stochastic collocation method with full tensor
product spaces still suffers from the so-called curse of dimensionality(COD) when
high-dimensional random variables are needed to describe the input data.

Meanwhile, the sparse grid method [15,51,102] is an efficient technique to avoid
the dilemma caused by COD due to its selection of quadrature points based on their
estimated contributions to the numerical quadrature’s overall accuracy. When the
dimension is moderately large and when the integrand depends smoothly on the
underlying random variables, the advantage of sparse grid becomes more clear as
the increase of the number of dimensions.

In this article, we will follow the idea in [90,91] to develop a sparse grid stochastic
collocation method for a Stokes-Darcy model with random hydraulic conductivity,
which is described by a finite-dimensional random vector. As pointed out in [90,91],
this is often called finite-dimensional noise assumption and may hold either because
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the problem itself can be described by a finite number of random variables or because
the input coefficients are modeled as truncated random fields.

The rest of paper is organized as follows. In section 2, we introduce the Stokes-
Darcy system with random hydraulic conductivity. In section 3, we treat the random
hydraulic conductivity by using Karhunen-Loève expansion to obtain the truncated
stochastic Stokes-Darcy model. In section 4, a Smolyak based sparse grid method is
proposed to solve the truncated stochastic Stokes-Darcy model. Finally, in section
6, we present some numerical results that illustrate the features of the proposed
method.

2. Steady Stokes-Darcy model with random hydraulic conductivity. We
consider the coupled Stokes-Darcy system on a bounded domain Ω = ΩD ∪ ΩS ⊂
R
d, (d = 2, 3); see Figure 1. Assume (ΩP ,F ,P) is a complete probability space.

ΩD

ΩS

Γ

Figure 1. A sketch of the porous media domain ΩD, the free-flow
domain ΩS , and the interface Γ.

Here ΩP is the set of outcomes, F is the σ-algebra of events, and P : F → [0, 1] is
a probability measure. In the porous media region ΩD, the flow is governed by the
Darcy system

~uD(ω, x) = −K(ω, x)∇φD(ω, x), (1)

∇ · ~uD(ω, x) = fD. (2)

where ω ∈ ΩP , x ∈ ΩD. Here, ~uD is the fluid discharge rate in the porous media,K is
the random hydraulic conductivity, fD is a sink/source term, and φD is the hydraulic

head defined as φD = z +
pD
ρg

. Here pD denotes the dynamic pressure, z denotes

the height, ρ denotes the density, and g denotes the gravitational acceleration. In
this article we will consider the the second-order form of the Darcy system

−∇ · (K(ω, x)∇φD(ω, x)) = fD. (3)

In the fluid region ΩS , the fluid flow is assumed to satisfy the Stokes system

−∇ · T(~uS , pS) = ~fS , (4)

∇ · ~uS = 0, (5)

where ~uS is the fluid velocity, pS is the kinematic pressure, ~fS = (~fS1, ~fS2) is the
external body force, ν is the kinematic viscosity of the fluid, T(~uS , pS) = 2νD(~uS)−
pSI is the stress tensor, and D(~uS) = 1/2(∇~uS +∇>~uS) is the deformation tensor.
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Let Γ = ΩD∩ΩS denote the interface between the fluid and porous media regions.
On Γ, we consider the following three interface conditions which are also affected
by the randomness of the hydraulic conductivity K:

~uS · ~nS = −~uD · ~nD, (6)

−~nS · (T(~uS , pS) · ~nS) = g(φD − z), (7)

−τ j · (T(~uS , pS) · ~nS) =
αν

√
d

√

trace(
∏

)
τ j · (~uS − ~uD), (8)

where ~nS and ~nD denote the unit outer normal to the fluid and the porous media
regions at the interface Γ, respectively; τ j (j = 1, . . . , d − 1) denote mutually

orthogonal unit tangential vectors to the interface Γ, and
∏

(ω, x) = K(ω,x)ν
g . The

third condition (8) is referred as the Beavers-Joseph (BJ) interface condition [16,
23, 25, 26, 45, 64, 67, 95, 101]. Compared with the Beavers-Joseph-Saffman-Jones
(BJSJ) interface boundary condition [76], the Beavers-Joseph interface condition
considers the contribution of the flow in the porous media to the tangential interface
condition. More theoretical support for the BJ condition can be found in [30], which
demonstrated that the BJ condition is more accurate than the BJSJ condition or
its further simplifications.

We also assume that the hydraulic head φD and the fluid velocity ~uS sat-
isfy homogeneous Dirichlet boundary condition except on Γ, i.e., φD = 0 on the
boundary ∂ΩD\Γ and ~uS = 0 on the boundary ∂ΩS\Γ. We also assume that
K(ω, ·) is uniformly bounded below, i.e., there exists a constant K0 > 0 such that
P
(

ω ∈ ΩP : K(ω, x) > K0, x ∈ ΩD

)

= 1.

3. Karhunen-Loève expansion and truncated stochastic Stokes-Darcy

model. In this section, we will recall the Karhunen-Loève (KL) expansion [80, 81]
for a positive random field r(ω, x), with continuous covariance function Covr(x, x

′) :
ΩD×ΩD → R, and then utilize the truncated KL expansion to obtain the truncated
stochastic Stokes-Darcy model.

We first consider the following eigenvalue problem:

∫

ΩD

Covr(x, x
′)v(x′)dx′ = λv(x). (9)

Due to the symmetry of Covr(·, ·) and the positivity of r(ω, x), the eigenvalues
{λn}∞n=1 are real and nonnegative, and the eigenspace span{v1, v2, · · · , vn, · · · } cor-
responding to distinct eigenvalues is mutually orthogonal, i.e.,

∫

ΩD

vm(x)vn(x)dx = δmn, ∀ m,n ∈ N
+. (10)

Since the eigenvalues are nonnegative, we may order the eigenvalues {λn}∞n=1 as
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0. Let µr(x) denote the expected value of r(ω, x). Define

Yn(ω) =
1√
λn

∫

ΩD

[r(ω, x)− µr(x)] vn(x)dx. (11)
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Here {Yn(ω)}∞n=1 are mutually uncorrelated real random variables with zero mean
and unit variance, i.e., E(Yn(ω)) = 0, E(Ym(ω)Yn(ω)) = δmn. Then the KL expan-
sion is defined by

r(ω, x) = µr(x) +

∞
∑

n=1

√

λnvn(x)Yn(ω). (12)

The validity of the KL expansion results from the fact that the eigenvalues
{λn}∞n=1 decay as n increases. The decay rate depends on the smoothness of the
covariance function Covr(x, x

′) and the correlation length, see [47, 106] and refer-
ences therein. Based on the desired accuracy, we may retain only the first N terms
to obtain the following truncated KL expansion

rN (ω, x) = µr(x) +

N
∑

n=1

√

λnvn(x)Yn(ω), ∀ N ∈ N
+. (13)

Using a KL representation of random fields, we consider the following problem
instead of (3).

−∇ · (KN (ω, x)∇φN (ω, x)) = fD. (14)

One important issue is the elliptic coercivity of KN (ω, x). One often performs a
truncated Karhunen-Loève expansion for log(K −Kmin) instead of K to obtain

log(KN −Kmin)(ω, x) = µ(x) +

N
∑

n=1

√

λnvn(x)Yn(ω), ∀ N ∈ N
+. (15)

Here K(ω, x) ≥ Kmin, ∀ x ∈ ΩD. Then we have

KN (ω, x) = Kmin + eµ(x)+
∑

N

n=1

√
λnvn(x)Yn(ω), ∀ N ∈ N

+. (16)

In this article, we assume Yn(ω) to be bounded, denote the image of Yn by

In = Yn(ΩP ), and define IN =
∏N

n=1 In. Also, we assume that the random variables
{Yn}Nn=1 have a joint probability density function ρ

Y
: IN → R

+ such that ρ
Y

∈
L∞(IN ). Hence in the rest of this article, we consider the following problem

−∇ · (KN (ω, x)∇φN (ω, x)) = fD, (17)

−∇ · T(~uN (ω, x), pN (ω, x)) = ~fS , (18)

∇ · ~uN (ω, x) = 0, (19)

~uN (ω, x) · ~nS = KN (ω, x)∇φN (ω, x) · ~nD, (20)

−~nS · (T(~uN (ω, x), pN (ω, x)) · ~nS) = g(φN (ω, x)− z), (21)

−τ j · (T(~uN (ω, x), pN (ω, x)) · ~nS) =
αν

√
d

√

trace(
∏

N )
τ j · (~uN (ω, x)

+ KN (ω, x)∇φN (ω, x)) , (22)

where
∏

N (ω, x) = KN (ω,x)ν
g .
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4. Sparse grid stochastic collocation method for the Stokes-Darcy model.

In this section, we present the sparse grid stochastic collocation method for the
Stokes-Darcy model (17) -(21) with Beavers-Joseph (BJ) interface condition (22),
where the random hydraulic conductivity K(ω, x) is represented by the truncated
Karhunen-Loève expansion (16).

We first apply the stochastic collocation method to construct the discrete form
in probability, and then use the sparse grid method to reduce the computational
cost. To solve the deterministic Stokes-Darcy model at each collocation node (i.e.,
for each sample), we adopt the regular coupled finite element method (FEM).

4.1. Stochastic collocation method. Define a multi-index ~p = (p1, p2, · · · , pN ),

|~p| =
N
∑

n=1
pn,

Ppn
(In) = span{ykn, k = 0, · · · , pn}, n = 1, · · · , N, (23)

P~p(I
N ) =

N
⊗

n=1

Ppn
(In) ⊂ L2

ρ
Y

(IN ). (24)

For stochastic PDEs, one is often interested in determining statistical information
about the quantities of interest, given statistical information about the inputs. For
the stochastic Stokes-Darcy model, we design a numerical method to calculate the
moments for determining statistical information about the quantities of interests.
To construct the discrete form in the probability space, we choose a set of collocation

points {~yi}Mi=1 ⊂ IN and a set of polynomials {l~pk(~y)}Mi=1 ⊂ P~p(I
N ) correspondingly,

such as Lagrange polynomials. Then the discrete solutions in the probability space
are

φN,~p(~y, x) =

M
∑

i=1

φN (~yi, x)l
~p
k(~y), (25)

~uN,~p(~yi, x) =
M
∑

i=1

~uN (~yi, x)l
~p
k(~y), (26)

pN,~p(~yi, x) =

M
∑

i=1

pN (~yi, x)l
~p
k(~y). (27)

For the discretization in the physical space, the finite element method (FEM) is uti-
lized. In other words, for each ~yi(i = 1, · · · ,M), φN (~yi, x), ~uN (~yi, x) and pN (~yi, x)
can be approximated numerically by φN,h(~yi, x), ~uN,h(~yi, x) and pN,h(~yi, x) by us-
ing a deterministic discretization method in Ω. Then the final discrete solutions
are

φN,h,~p(~y, x) =
M
∑

i=1

φN,h(~yi, x)l
~p
k(~y), (28)

~uN,h,~p(~yi, x) =

M
∑

i=1

~uN,h(~yi, x)l
~p
k(~y), (29)
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pN,h,~p(~yi, x) =

M
∑

i=1

pN,h(~yi, x)l
~p
k(~y). (30)

Let wk = E(l~pk). Then the expected value of functions γ(φN ), γ(~uN ), and γ(pN )
can be obtained as follows.

E(γ(φN )) ≈ E(γ(φN,h,~p)) ≈
M
∑

i=1

wiγ(φN,h(~yi, x)), (31)

E(γ(~uN )) ≈ E(γ(~uN,h,~p)) ≈
M
∑

i=1

wiγ(~uN,h(~yi, x)), (32)

E(γ(pN )) ≈ E(γ(pN,h,~p)) ≈
M
∑

i=1

wiγ(pN,h(~yi, x)). (33)

Here wi(i = 1, · · · ,M) and ~yi(i = 1, · · · ,M) are the weights and nodes of some
numerical quadratures, such as Gauss quadratures. One regular method for choos-
ing ~yi(i = 1, · · · ,M) is the full tensor-product interpolation. Let xjnn , w

jn
n , jn =

1, 2, · · · ,mn be the quadrature nodes and weights over the interval In, n = 1, 2, · · · ,
N . Here mn ∈ N is the number of quadrature nodes over the one dimensional
interval In, n = 1, 2, · · · , N . Then the full tensor-product interpolation to calculate
the expected value of function γ(φN ) is given as

E(γ(φN )) ≈
m1
∑

j1=1

· · ·
mN
∑

jN=1

(

N
∏

`=1

wj`
`

)

γ(φN,h(x
j1
1 , · · · , xjNN , x)). (34)

The set of collocation nodes is given as {~yi}Mi=1 = X1 × · · · × XN ⊂ IN with
Xn = {x1n, x2n, · · · , xmn

n }, n = 1, 2, · · · , N , and the total number of quadrature

nodes is M =
∏N

n=1mn. When the dimension N of the truncated stochastic space
becomes larger, the number M of quadrature nodes of full tensor product inter-
polation increases significantly. For each collocation node ~yi, we need to solve the
corresponding deterministic Stokes-Darcy model one time to obtain the FEM ap-
proximations φN,h(~yi, x), ~uN,h(~yi, x), pN,h(~yi, x). Therefore the computational cost
increases quickly when the dimension N of the truncated stochastic space becomes
larger. This leads to a great need in an efficient numerical method using small num-
ber of collocation nodes to reduce the computational cost. One efficient technique
to dramatically reduce this curse of dimensionality is sparse grid [15,51,102], which
will be discussed in the next subsection.

4.2. Algorithm of sparse grid stochastic collocation method. Let win
j , x

in
j ,

j = 1, 2, · · · ,mi ∈ N be the weights and nodes of numerical quadrature with the
accuracy level i over the one dimensional interval In, n = 1, 2, · · · , N so that the
order of polynomial exactness increases with in. For the numerical integral Qin

with different accuracy level in of the function f over the one dimensional interval
In, the quadrature formulas are given as

Qin(f) =

min
∑

j=1

f(xinj )win
j , n = 1, 2, · · · , N. (35)
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For the multivariate case N > 1, we define the quadrature formula by the full tensor
product interpolation as

(Qi1 ⊗ · · · ⊗QiN )(f) =

mi1
∑

j1=1

· · ·
miN
∑

jN=1

(

N
∏

`=1

wj`
`

)

f(xi1j1 , · · · , x
iN
jN

). (36)

The full tensor product interpolation (36) has the accuracy level in each dimension
is in, n = 1, 2, · · · , N .

For the multi-index ~i = (i1, i2, · · · , iN ), we define |~i| =
∑N

n=1 in. For the numer-
ical integral Qi, we denote

Q0 = 0, ∆i = Qi −Qi−1, i ∈ N. (37)

Then the quadrature formula in the multivariate case N > 1 by the algorithm of
Smolyak [15, 65, 90, 91, 102] with accuracy level s ∈ N to construct the sparse grid
is given by

Q(s,N) =

s−1
∑

`=0

∑

|~i|=N+`

(

∆i1 ⊗ · · · ⊗∆iN
)

. (38)

Equivalently, the analogous formula [65,113] is

Q(s,N) =

s−1
∑

`=s−N

(−1)s−1−`

(

N − 1
s− 1− `

)

∑

|~i|=N+`

(

Qi1 ⊗ · · · ⊗QiN
)

. (39)

LetXi = {xi1, xi2, · · · , ximi
} be the set of quadrature nodes for the numerical integral

Qi. Based on formula (36), the set of quadrature nodes for the full tensor numerical
integral (Qi1 ⊗· · ·⊗QiN ) is Xi1 ×· · ·XiN . And the set of quadrature nodes for the
algorithm of Smolyak to construct the sparse grid in the formula (38) or (39) is

H(s,N) =

s−1
⋃

`=s−N

⋃

|~i|=N+`

(

Xi1 × · · · ×XiN
)

. (40)

There are many numerical integral methods to determine the quadrature weights
and nodes over the one dimensional interval In for the formula (35). In this pa-
per, we adopt the Gauss-Legendre abscissas (GQU) [15, 65, 90, 91] and Kronrod-
Patterson abscissas (KPU) [65, 92–94] to generate the quadrature nodes set Xi =
{xi1, xi2, · · · , ximi

}. The quadrature nodes of the Gauss-Legendre abscissas are the
roots of Legendre polynomials with the Gauss-Legendre quadrature rule. The
quadrature nodes of Kronrod-Patterson abscissas are generated by the Kronrod-
Patterson quadrature formula, which is a variant of Gaussian quadrature formula
to derive the nested quadrature nodes. For either the Kronrod-Patterson abscissas
or Gauss-Legendre abscissas, the number of the quadrature nodes in sparse grid
(40) is much smaller than the number of the quadrature nodes in the full tensor
product interpolation (36), since the sparse grid method is capable of attaining a

high accuracy when only choosing lower level~i. Hence the computational expense is
reduced significantly by the sparse grid method. We now apply the sparse grid using
the Gauss-Legendre abscissas (GQU) and Kronrod-Patterson abscissas (KPU) to
solve the Stokes-Darcy model (17) -(22). The details of using sparse grid method
to solve the Stokes-Darcy model are given in the following Algorithm 1.
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Algorithm 1 SG-SC algorithm

Input: The interpolation abscissas and the sparse grid accuracy level s.

1: Obtain the collocation points {~yi}Mi=1 and numerical quadrature weights {wi}Mi=1

from the Smolyak sparse grid of GQU and KPU.
2: For i = 1, · · · ,M , independently solve the Stokes-Darcy model (17)-(22) on each

collocation point ~yi. More precisely, the finite element solutions φN,h(~yi, x),
~uN,h(~yi, x) and pN,h(~yi, x) are obtained to approximate the solutions of the
model

−∇ · (KN (~yi, x)∇φN (~yi, x)) = fD, (41)

−∇ · T(~uN (~yi, x), pN (~yi, x)) = ~fS , (42)

∇ · ~uN (~yi, x) = 0, (43)

~uN (~yi, x) · ~nS = KN (~yi, x)∇φN (~yi, x) · ~nD, (44)

−~nS · (T(~uN (~yi, x), pN (~yi, x)) · ~nS) = g(φN (~yi, x)− z), (45)

−τ j · (T(~uN (~yi, x), pN (~yi, x)) · ~nS) − τ j · (T(~uN (~yi, x), pN (~yi, x)) · ~nS)

=
αν

√
d

√

trace(
∏

N )
τ j · (~uN (~yi, x)+KN (~yi, x)∇φN (~yi, x)). (46)

3: Return: Calculate the expected value:

E[φN ](x) =

M
∑

i=1

wiφN (~yi, x), (47)

E[~uN ](x) =

M
∑

i=1

wi~uN (~yi, x), (48)

E[pN ](x) =

M
∑

i=1

wipN (~yi, x). (49)

4.3. Numerical algorithm for deterministic Stokes-Darcy model. In order
to obtain the finite element solutions φN,h(~yi, x), ~uN,h(~yi, x) and pN,h(~yi, x) at the
second step in Algorithm 1, we recall the finite element method to solve the deter-
ministic Stokes-Darcy model at each collocation node (i.e., for each sample):

−∇ · (K∇φD) = fD, in ΩD, (50)

−∇ · T(~uS , pS) = ~fS , in ΩS , (51)

∇ · ~uS = 0, in ΩS , (52)

~uS · ~nS = −~uD · ~nD, on Γ, (53)

−~nS · (T(~uS , pS) · ~nS) = g(φD − z), on Γ, (54)

−τ j · (T(~uS , pS) · ~nS) =
αν

√
d

√

trace(
∏

)
τ j · (~uS − ~uD), on Γ. (55)

From the assumptions in Section 2, the hydraulic head φD and the fluid velocity
~uS satisfy homogeneous Dirichlet boundary condition except on Γ , i.e., φD = 0 on
the boundary ∂ΩD\Γ and ~uS = 0 on the boundary ∂ΩS\Γ.
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The spaces that we utilize are

XS = {~v ∈ [H1(ΩS)]
d | ~v = 0 on ∂ΩS\Γ},

QS = L2(ΩS),

XD = {ψ ∈ H1(ΩD) | ψ = 0 on ∂ΩD\Γ}.

For the domain D (D = ΩS or ΩD), (·, ·)D denotes the L2 inner product on the
domain D, and 〈·, ·〉 denotes the L2 inner product on the interface Γ or the duality

pairing between (H
1/2
00 (Γ))′ and H

1/2
00 (Γ). Let Pτ denote the projection onto the

tangent space on Γ, i.e.,

Pτ~u =
d−1
∑

j=1

(~u · τ j)τ j .

Define the following bilinear terms.

aD(φD, ψ) = (K∇φD,∇ψ)ΩD
,

aS(~uS , ~v) = 2ν(D(~uS),D(~v))ΩS
,

bS(~v, q) = −(∇ · ~v, q)ΩS
.

We assume that we have in hand regular subdivisions of ΩD and ΩS into finite
elements. Then one can define finite element spaces XDh ⊂ XD, XSh ⊂ XS , and
QSh ⊂ QS . We assume that XSh and QSh satisfy the inf-sup condition [53,56]

inf
0 6=q∈Qsh

sup
0 6=~v∈XSh

bS(~v, q)

‖~v‖1 ‖q‖0
> γ, (56)

where γ > 0 is a constant independent of h; this condition is needed to ensure that
the spatial discretizations of the Stokes system used here are stable, see [53,56] for
details and many examples of pairs of finite element spaces XDh, XSh, and QSh

that satisfy (56). One typical example is the Taylor-Hood element pair that we use
in the numerical experiments; for that pair, XDh and XSh consist of continuous
piecewise quadratic polynomials and QSh consists of continuous piecewise linear
polynomials.

Then we recall the finite element formulation of the Stokes-Darcy problem as
follows: [25, 26]: find (~uh, ph) ∈ XSh ×QSh and φh ∈ XSh such that

aS(~uh, ~vh) + bS(~vh, ph) + aD(φh, ψh) + 〈gφh, ~vh · ~nS〉

−〈~uh · ~nS , ψh〉+
αν

√
d

√

trace(
∏

)
〈Pτ (~uh +K∇φh), Pτ~vh〉 (57)

= (fD, ψh)ΩD
+ (~f,~vh)ΩS

+ 〈gz,~vh · ~nS〉, ∀ ~vh ∈ XSh, ψh ∈ XDh,

bS(~uh, qh) = 0, ∀ qh ∈ QSh. (58)

5. Computational examples. We consider the model problem (3)-(8) on Ω =
[0, 1] × [−0.25, 0.75], where ΩD = [0, 1] × [0, 0.75] and ΩS = [0, 1] × [−0.25, 0]. For

the physical parameters, we choose αν
√
d

√

trace(
∏

)
= 1, ν = 1, g = 1, and z = 0.
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The boundary condition data functions and the source terms are

fD = −π3 sin(πx)(−y + cos(π(1− y)))− (2− π sin(πx))(−π2 cos(π(1− y))),

~fS1 = −2νx2 − 2νy2 − νe−y + π2 cos(πx) cos(2πy),

~fS2 = 4νxy − νπ3 sin(πx) + 2π(2− π sin(πx)) sin(2πy),

φD = (2− π sin(πx))(−y + cos(π(1− y))), on ∂ΩD\Γ,
~uS = (x2y2 + e−y,−2xy3/3 + 2− π sin(πx)), on ∂ΩS\Γ.
For the discrete form in physical space by the finite element method, we use a

uniform grid with grid size h = 1/32. The Taylor-Hood element pair is used for the
Stokes system and the quadratic finite element is used for the primary formulation
of the Darcy system.

By the truncated KL expansion, the random hydraulic conductivity K(ω, x) is
given as [91]

ln(K(ω, x)− 0.5) = 1 + Z1(ω)

(√
πL

2

)1/2

+
N
∑

n=2

ζnφn(x)Zn(ω), (59)

where

ζn =
(√
πL
)1/2

exp

(−(bn/2cπL)2
8

)

, n > 1, (60)

and

φn(x) =















sin

(bn/2cπx
Lp

)

, if n is even,

cos

(bn/2cπx
Lp

)

, if n is odd.
(61)

Here b·c is the floor function giving as output the greatest integer less than or equal
to the input. In this example, the random variables {Zn(ω)}Nn=1 are independent,
and have zero mean and unit variance, i.e., E[Zn] = 0 and E[ZnZm] = δnm for
n,m ∈ N+. We assume that the random variables {Zn(ω)}Nn=1 are uniformly

distributed in the interval [−
√
3,
√
3]. Let Lc be a desired physical correlation

length for the coefficient K. Then the parameter Lp is Lp = max{1, 2Lc} and the
parameter L is L = Lc/Lp. The decay rate of the eigenvalues λn depends on the
correlation length Lc.

For evaluating the accuracy of numerical solutions with different accuracy level
s in the sparse grid method, we generate the reference solutions with the mesh
size h = 1/32 and s = 7, when we choose N = 5 in the truncated Karhunen-Loève
expansion. And the reference solutions are constructed with the mesh size h = 1/32
and s = 6 when we choose N = 10. In the Table 1 and Table 2, the number of
sparse grid nodes with different accuracy level s are listed for N = 5 and N = 10,
respectively. It is obvious that significant computational cost can be saved if the
cases with smaller s can still provide accurate enough solutions.

Table 1. Number of sparse grid nodes with different accuracy level
s when N = 5

s 2 3 4 5 6 7
KPU 11 51 151 391 903 1743
GQU 11 61 241 781 2203 5593
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Table 2. Number of sparse grid nodes with different accuracy level
s when N = 10

s 2 3 4 5 6
KPU 21 201 1201 5281 19105
GQU 21 221 1581 8761 40405

We exhibit the convergence of the numerical errors in L2 norm of the mean value
and the variance of the velocity in Figure 2 and Figure 3 with Lc = 1/64. It is
observed that errors in L2 norm decrease fast as the parameter s increases. Based
on this convergence performance to the reference case (s = 7 for N = 5 or s = 6 for
N = 10), it is accurate enough to choose smaller s in the sparse grid algorithm to
calculate the numerical solutions with much less computational cost.
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Figure 2. The convergence in L2 norm for the expected value
(left) and the variance (right) of velocity with N = 5 and Lc =
1/64.
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Figure 3. The convergence in L2 norm for the expected value
(left) and the variance (right) of velocity with N = 10 and Lc =
1/64.

To investigate the influence of correlation length Lc, we show the convergence of
the numerical errors in L2 norm of the mean value and the variance of the velocity
with different correlation lengths Lc in Figure 4 for N = 5 and GQU sparse grid
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nodes. As expected, the larger correlation lengths Lc slow down the convergence.
But it is still accurate enough to choose smaller s in the sparse grid algorithm to
calculate the numerical solutions with much less computational cost.

In Figure 5, we show the convergence of the numerical errors in L2 norm of the
mean value and the variance of the velocity with different correlation lengths Lc for
N = 10 and GQU sparse grid nodes. Similar to the case of N = 5, numerical errors
in L2 norm decrease when s becomes larger.
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Figure 4. The convergence in L2 norm for the expected value
(left) and the variance (right) of velocity withN = 5, GQUmethod,
and different correlation length Lc.
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Figure 5. The convergence in L2 norm for the expected value
(left) and the variance (right) of velocity with N = 10, GQU
method, and different correlation length Lc.

In Figure 6, we pick three samples to illustrate the influence of the random
hydraulic conductivityK on the flow field. Even though all the set-up inside the free
flow subdomain ΩS is deterministic, it is expected to observe that the randomness
is passed from the porous media subdomain ΩD to the free flow subdomain ΩS

through the interface conditions which are affected by the randomness in ΩD. To
further illustrate the randomness in porous media subdomain ΩD and free flow
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subdomain ΩS , we show the variance of the speed in total domain in Figure 7. One
can see that the variance of speed in porous media subdomain ΩD is much larger
than the variance of speed in free flow subdomain ΩS .

Figure 6. Numerical solutions of three samples of GQU with N =
10 and s = 6. The color represents the speed of flow and the
streamlines show the direction of the flow.

Figure 7. Variance of the speed of samples of GQU with N = 10
and s = 6 in total domain. The color represents the variance of the
speed.

6. Conclusions. In this paper we propose a sparse grid stochastic collocation
method for a stochastic Stokes-Darcy model with Beavers-Joseph interface con-
dition. Truncated Karhunen-Loève expansion is used to approximate the random
field of the hydraulic conductivity. Gauss-Legendre abscissas (GQU) and Kronrod-
Patterson abscissas (KPU) are used in the construction of the Smolyak sparse grid
formula. The numerical results show that this method is convergent and a small
number of sparse grid nodes can be used to calculate the numerical solutions with
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enough accuracy and much less computational cost. The influence of the interface
conditions on the randomness transmission is also illustrated.
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[7] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial

differential equations with random input data, SIAM Rev., 52 (2010), 317–355.
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