
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 11, NOVEMBER 2021 4089

Proximity of Cellular and Physiological
Response Failures in Sepsis

Ali Jazayeri , Muge Capan , Julie Ivy, Ryan Arnold, and Christopher C. Yang

Abstract—Sepsis is a devastating multi-stage health con-
dition with a high mortality rate. Its complexity, prevalence,
and dependency of its outcomes on early detection have
attracted substantial attention from data science and ma-
chine learning communities. Previous studies rely on in-
dividual cellular and physiological responses representing
organ system failures to predict health outcomes or the
onset of different sepsis stages. However, it is known that
organ systems’ failures and dynamics are not independent
events. In this study, we identify the dependency patterns of
significant proximate sepsis-related failures of cellular and
physiological responses using data from 12,223 adult pa-
tients hospitalized between July 2013 and December 2015.
The results show that proximate failures of cellular and
physiological responses create better feature sets for out-
come prediction than individual responses. Our findings
reveal the few significant proximate failures that play the
major roles in predicting patients’ outcomes. This study’s
results can be simply translated into clinical practices and
inform the prediction and improvement of patients’ condi-
tions and outcomes.

Index Terms—Sepsis prediction, proximate failures,
sepsis feature selection.

I. INTRODUCTION

S EPSIS is defined as an organ dysfunction due to pathophys-
iological responses to infection [1], [2]. Previous studies

show that not only is it widespread, but it has a relatively high
mortality rate [3]. In the retrospective data of 2.9 million patients,
21% of adult patients have had clinical manifestations of sepsis,
and 6% of them died in the hospital or were discharged to
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hospice [4]. Despite its severity, studies have shown that early
diagnosis and appropriate therapeutic management of patients
with sepsis can significantly improve their outcome and reduce
the rate of irreversible organ dysfunction [5], [6]. However, early
detection of sepsis remains a complex problem due to the lack
of a universally accepted definition of sepsis symptoms and
misinterpreted clinical signs of sepsis due to shared features
with other health conditions. Therefore, identifying reliable
clinical indicators for early prediction of sepsis progression is
an emerging focus discussed in several recent studies [7]–[10].

With regards to analyzing reliable data-driven clinical indi-
cators, machine learning approaches leveraging big data have
shown advantages, such as improved prognosis of complex
medical conditions, increased diagnosis accuracy, and reduced
costs over the continuum of health care. These advantages are
attributed to the rapid emergence of electronic health records
collection and storage systems [11], [12].

Sepsis has attracted attention by health care analytics due to its
prevalence and complexity. For example, Gultepe et al. adopted a
set of machine learning techniques such as naïve Bayes, support
vector machines, and hidden Markov models to predict lactate
levels and in-hospital mortality of sepsis patients. The features
selected for the mortality prediction are lactate level, white blood
cells (WBC) counts, respiratory rate, temperature, and mean
arterial pressure (MAP) [13]. In another study, Tsoukalas et al.
adopted an inferential statistics approach to predict mortality and
length of stay (LOS) of sepsis patients. The features selected
for the mortality prediction are temperature, respiratory rate,
WBC, MAP, and lactate levels. For predicting the LOS, they
also used positive blood culture data and the number of drug
administrations during patients’ hospitalization in addition to
the five features used for mortality prediction [14]. Taylor et
al. compared multiple approaches, including logistic regression,
classification, and regression tree (CART) models and random
forest model, to predict in-hospital mortality of patients with
sepsis. The random forest model had a significantly higher area
under the curve (AUC) in their study than other models. The
most important features were identified as oxygen saturation,
respiratory rate, blood pressure, Blood Urea Nitrogen (BUN),
and Albumin [15].

Horng et al. developed four models; vital model (vital signs
and patient demographics), chief complaint model (vital signs,
patient demographics, and chief complaint), bag of words, and
topic model (both include vital signs, patient demographics,
chief complaint, and nursing assessment) with two different
text processing approaches for the chief complaint and nursing
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assessment data analysis. The demographic data included age
and gender, and vitals data include acuity, systolic blood pressure
(SBP), diastolic blood pressure, heart rate, pain scale, respira-
tory rate, oxygen saturation, and temperature. The outcome of
interest for prediction was infection and using different models,
the discriminatory value of each set of data (four models) were
quantified. They developed a support vector machine and com-
pared its performance with logistic regression, naïve Bayes, and
random forest for different models [16].

In [17], a randomized controlled clinical trial was conducted
to evaluate the average LOS and in-hospital mortality rate
when machine learning-based approaches are used for severe
sepsis prediction. The patients were randomly classified into
two groups. In the first group, a traditional approach was used
to monitor the conditions of patients. In the second group, a
machine learning-based classifier algorithm was used to gen-
erate a score. In cases where the score exceeded a pre-defined
threshold, the in-charge nurse was called. They showed that us-
ing the machine learning-based classifier significantly decreased
LOS and in-hospital mortality. The features used in their study
included systolic blood pressure, diastolic blood pressure, heart
rate, temperature, respiratory rate, peripheral capillary oxygen
saturation (SpO2), and age. They also used glucose, BUN, pH,
creatinine, lactate, fraction of inspired oxygen (FiO2), WBC,
International Normalized Ratio (INR), platelets, and bilirubin as
optional features. In another study [18], an artificial intelligence-
based expert system was developed to predict the onset of sepsis.
They showed that their system can predict ICU patients’ sepsis
onset between 4-12 hours sooner than traditional methods. Their
system uses 65 features, including six high-resolution dynamical
features calculated using five hours sliding windows, with five
hours overlap, such as standard deviation of respiratory rate
intervals and MAP, ten clinical features (such as heart rate and
SBP), 25 general laboratory features (such as WBC, creatinine,
and bilirubin), five Arterial Blood Gas laboratory features (such
as pH and partial pressure of carbon dioxide, pCO2), 19 demo-
graphics/history/context features (such as surgery in the past 12
hours, number of antibiotics in the past 12, 24, and 48 hours,
and age).

The typical approach in these studies is collecting data for a
set of features, pre-processing the collected data to transform the
features into appropriate input formats, and implementing the
analytical methods to the different subsets of data to ensure that
the derived insights are generalizable. However, these analytical
approaches treat individual cellular and physiological responses
as independent features, i.e., the failure of one response over
a predetermined time window is assumed to have no effect on
the failure of another response. This assumption is a significant
shortcoming of previously developed models considering organ
systems are not independent, and their failures contribute to
changes in other organ systems’ states. Furthermore, at the
individual cellular and physiological responses level, the relative
importance of responses for prediction of patient outcomes is
not identical [15]. Addressing these shortcomings, this paper
aims to verify whether there is a difference among proximate
elevation or depression of cellular and physiological responses
causing organ failures. If some of the proximities of cellular

and physiological responses occur more frequently in different
subpopulations of sepsis, we can determine if they can be used
more effectively than individual cellular and physiological re-
sponses to predict the patient’s outcome. More specifically, the
objectives of this paper are twofold: i) to explore the relation-
ship between proximate cellular and physiological responses
causing organ failure and in-hospital mortality of hospitalized
sepsis patients, and ii) to analyze the frequency of observed
physiological responses causing organ failure across different
patient subpopulations.

This paper is organized as follows. In the next section, the
study population is defined, sub-populations definition crite-
ria are explained, and the modeling approach and techniques
adopted to identify proximate cellular and physiological re-
sponses are discussed. Then, in the results section, the findings
of the analysis are presented, including the significant proximate
responses. Next, in the discussion section, the results’ clinical
relevance is discussed in more detail, and finally, the paper
concludes with key insights and directions for future work.

II. MATERIAL AND METHODS

A. Study Population

This study includes 12,223 adult sepsis patients (corre-
sponding to 16,327 hospital visits) admitted between July
2013 and December 2015. The data is sourced from two
hospitals with 1100 total in-hospital beds of a single ter-
tiary care health care system. The data set includes retro-
spectively collected Electronic Health Records (EHR) data
with the following inclusion criteria: age ≥18 at arrival,
arrival to the hospital between July 2013 and December
2015, and with visit types of inpatient, Emergency Depart-
ment only (outpatient), or observational visits. The study
was approved by the health system’s Institutional Review
Board.

B. Subpopulations Definition

The significance of proximate failures of cellular and phys-
iological responses is studied in a subpopulation of infected
patients who have experienced sepsis. Therefore, all the sepsis
patients have met infection criteria, defined as being adminis-
tered with anti-infective for at least four days or a positive viral
PCR (polymerase chain reaction) test for influenza. The sepsis
population is defined as infected patients who have experienced
organ dysfunction in the period of 24 hours before the first
anti-infective administration until the last administration. Dif-
ferent markers and physiological variables can represent organ
systems and dysfunctions. For example, in [19], it is shown that
some of these markers, such as systolic arterial pressure and
its variability as a cardiovascular marker, are associated with
mortality and can inform mortality risk stratification. The organ
systems and their associated responses adopted in this study are
shown in Table I. The criteria used to identify organ dysfunc-
tions are provided in Appendix I-A or the case of vasopressor
administration. These criteria were developed by synthesizing
established Sepsis-3 guidelines [20] and subject matter experts’

Authorized licensed use limited to: Drexel University. Downloaded on November 29,2021 at 16:22:39 UTC from IEEE Xplore.  Restrictions apply. 



JAZAYERI et al.: PROXIMITY OF CELLULAR AND PHYSIOLOGICAL RESPONSE FAILURES IN SEPSIS 4091

TABLE I
ORGAN SYSTEMS AND THEIR ASSOCIATED CELLULAR AND PHYSIOLOGICAL
RESPONSES AND INFLAMMATORY BIOMARKERS CONSIDERED IN THIS STUDY

*: Maximum SBP for each observation within 8-hour windows.
**: Initial creatinine value observed in each visit.

TABLE II
NUMBER OF VISITS AND PATIENTS IN EACH SUBPOPULATION

TABLE III
A SUMMARY OF PATIENTS CHARACTERISTICS IN EACH SUBPOPULATION

input. Death was defined as any in-hospital death or discharge
to hospice care. Based on these definitions, the sepsis patients
were categorized into two subpopulations; sepsis survivors and
sepsis non-survivors. If the patient is discharged to hospice
or died while receiving an anti-infective, but before four days
of anti-infective administration elapsed, the patient was also
considered a sepsis non-survivor [4]. If a patient died during
the study, just the last visit was considered in the non-survivor
subpopulation for patients with multiple visits. Previous visits
were categorized in the survivors subpopulation. The number of
visits and patients included in each subpopulation are shown in
Table II, and a summary of characteristics of the two subpopu-
lations are provided in Table III.

C. Significant Proximate Failures

We consider two types of proximate cellular and physio-
logical response failures, significant and non-significant. The
non-significant failures are common in both survivors and non-
survivors and cannot discriminate between the two subpopu-
lations. We created two networks to identify the significant
failures, one for each subpopulation. Each network is composed
of cellular and physiological responses as nodes (column “Re-
sponse” in Table I). Two nodes (ci and cj) are connected if their
failures are proximate; i.e., their co-failures are observed in some
pre-defined window in patients. To quantify the proximity of
each pair of cellular and physiological responses, we use the
following weight formulation:

wtij =
√

P (ci|cj)× P (cj |ci)

=

√√√√ c11ij
2

(c11ij + c10ij )× (c11ij + c01ij )

(1)

where, wtij represents the weight of the edge connecting nodes
ci and cj , P (ci|cj) is the probability of observing failure of
response ci given the failure of response cj , and cklij (with k, l ∈
{0, 1}, 0: no failure 1: failure) shows the frequency of nodes ci
and cj co-failure (k = l = 1) or failure of one without the other
failing (k �= l).

To quantify the proximity, we consider ten windows (aggrega-
tion times) from 30 to 300 minutes representing the predefined
window where failures co-occur. For each aggregation time, α,
we iterate over all the observations of each patient’s visit and
consider α minutes before and after each observation. In other
words, for each specific observation recorded at time Ot, all
the failures recorded in the window of [Ot − α,Ot + α] are
assumed to be proximate. For each response pairs, this weight is
separately computed in each subpopulation. For each response
pair (represented by ci and cj in the network) that appeared
simultaneously at least once in the patient’s data set, we add a
weighted edge between nodes ci and cj with the corresponding
weight of wtij . Based on the two subpopulations’ networks,
we derive a third network, the difference network, composed
of the same set of nodes and edges as the two previous net-
works. However, each edge’s weight in the difference network
is computed as the difference between the same edge weights
in the survivors and non-survivors networks. The edges in the
difference network are used for predicting in-hospital mortality.
We consider multiple thresholds to remove edges with weights
less than the threshold to identify the significant proximate fail-
ures of responses. To accomplish that, we adopt a classification
approach. In addition, because the limiting number of visits was
from non-survivors, we randomly sample the same number of
visits from the survivors subpopulation.

D. Model Development

To investigate the importance of proximate failures relative to
other feature sets used commonly in the literature, we consider
four sets of features; proximate failures of multiple cellular
and physiological responses, individual failures of cellular and
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Fig. 1. Model “0101” composed of features related to single failures
of cellular and physiological responses and age and gender to predict
patients’ outcome. The proximity of failures of cellular and physiological
responses (first place holder) and comorbidities (third place holder) of
patients are not included in this model and therefore are shown with a
“0” in the model abbreviation.

physiological responses, age and gender, and comorbidities of
patients. The comorbidities are defined as medical conditions
recorded in the medical history of patients. The list of comor-
bidities considered in this study is provided in Appendix I-B.

To be able to compare the predictive power of these four
feature sets in terms of patient in-hospital mortality, we devel-
oped 15 novel models, shown with a sequence of four binary
digits. Each digit corresponds to absence (“0”) or presence (“1”)
of each set of features. The individual failures of cellular and
physiological responses feature set is composed of 19 variables
(Table I). The maximum number of features represented by
proximate failures is

(
19
2

)
= 171 (the maximum number of edges

in the difference network). The age and gender are represented
by two variables, and 30 comorbidities are considered in this
study (Appendix I-B). Different combinations of these feature
sets are used for predictive modeling. For example, Fig. 1 shows
a model used to predict patients’ outcomes based on the single
failures of cellular and physiological responses and the age and
gender of patients.

E. Prediction of Patients’ Outcome

The outcome of interest in this study is the survival of patients.
We applied multiple machine learning algorithms to compare
the performance of models created based on different sets of
features, including random forests, logistic regression, C5.0, and
support vector machine (SVM). We used the caret implemen-
tation of these algorithms [21]. The random forests and SVM
had slightly higher accuracy among these four algorithms, and
we adopted the SVM for further analysis. For SVM, classifiers
with polynomial kernel [22], [23] are used. The input data is
composed of 70% of data for training purposes and a 30%
untouched subset for testing purposes. In addition, we adopted
10-fold cross-validation for training and internal validation.
The adopted algorithm was used to predict patients’ in-hospital
mortality based on the available information.

The four feature sets described in the previous section were
used to create 15 models (Fig. 2). Considering that adopting
different aggregation times and thresholds can impact the list
of proximate failures derived from difference network, we im-
plemented 407 different classifications. These classifications
include eight models composed of the proximate failures with or
without other feature sets; each is implemented for five support
values and ten aggregation times (in total, 400 models). The other
seven models do not depend on the aggregation times. These

Fig. 2. The 15 models considered in this study composed of different
combinations of feature sets. The seven models on the left do not
depend on support values and aggregation times. Models including
proximate failures of multiple cellular and physiological responses as
one of their feature sets are shown on the right.

models are composed of different combinations of individual
failures, age and gender, and patients’ comorbidities.

III. RESULTS

The results section provides information about the perfor-
mance of models created for different thresholds at different
aggregation times for varying levels of information (various
combinations of feature sets). In the following, the results of the
development, analysis, and classification models are described.

A. Network Development

To identify proximate failures, we created a weighted network
for each subpopulation using the individual cellular and physi-
ological responses as nodes and their co-occurrences as edges,
as described in Section II.C. In these networks, the edges are
weighted, representing the probability of observing proximate
failures of physiological and cellular responses. Statistical anal-
ysis of weights of survivors and non-survivors networks found
significant differences in the distributions of the weights of edges
in the two networks (with p− value < 0.001). The statistical
analysis included the Levene’s test for homogeneity of variances
of weights, Shapiro-Wild test for normality test of weights
distribution, and Kruskal-Wallis and Wilcoxon rank-sum tests
for evaluating whether weights are from an identical distribution.
From these two networks, a third weighted network was derived,
in which the weights are the difference between the weights of
the corresponding edges in the first two networks. We visualized
the networks’ densities over the weight range, [0,1], to show the
distribution of weights in these networks. In this context, the
weight threshold served as a cutoff point such that in a given
difference network, only the edges where the frequency of their
corresponding responses simultaneously exceeded the selected
threshold are recorded. The network’s density is computed as
the ratio of the number of edges in the network divided by the
total number of edges possible. Fig. 3 shows the network density
and boxplot of the weights of the three networks. For any given
weight threshold, the non-survivors’ network’s density is more
than the density of the survivors’ network. It means that for
any weight threshold, there are more edges in the non-survivors
than survivors network. In other words, it is more probable to
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Fig. 3. Density of survivors, non-survivors, and difference networks at
different weight thresholds.

Fig. 4. The results of four different machine learning algorithms, ran-
dom forests (RF), logistic regression, C5.0, and support vector machine
(SVM), implemented on the model created from all the features (model
“1111”) at different aggregation times. All the other aspects, such as
train-test split and cross-validation, are identical among different imple-
mentations. The SVM and RF produced the highest, and C5.0 produced
the lowest accuracy values.

observe proximate failures of responses in non-survivors than
survivors. Considering that the two original networks’ weights
are statistically different, we used the edges in the difference
network for predictive modeling.

B. Predictive Modeling

As discussed in Section II.E, the SVM algorithm was adopted
(Fig. 4) for comparing different sets of features represented by
different models. The 15 models make it possible to compare
the value of different patient information categories to predict
their outcome. Among the 15 models, there are seven models
that do not depend on the weight thresholds and aggregation
times “0001,” “0010,” “0100,” “0011,” “0110,” “0101,” and
“0111”. These models are composed of different combinations
of individual failures of cellular and physiological responses,
medical history of patients, and their age and gender. The results
of the predictive modeling for these seven networks are shown
in Table IV.

The other eight models are composed of the proximate failures
of cellular and physiological responses as one of their feature

TABLE IV
ACCURACY OF PATIENTS’ OUTCOME PREDICTION IN MODELS COMPOSED OF

DIFFERENT COMBINATIONS OF INDIVIDUAL FAILURES OF CELLULAR AND
PHYSIOLOGICAL RESPONSES, MEDICAL HISTORY OF PATIENTS, AND THEIR

AGE AND GENDER

Fig. 5. Difference network at different weight thresholds (for aggre-
gation time of 150 minutes) and different aggregation times (for weight
threshold of 0.10). (Sb (systolic blood pressure); Sd (Sb (systolic blood
pressure); Sd (Sb_max* - SBP); Mp (MAP); Cr (Creatinine); Cd ((Cre-
atinine - C_base**)/(C_base)); Wb (WBC); La (Lactate); Pl (Platelet);
Bu (BUN); Bi (Bilirubin); Fi (FiO2); Px (SpO2); Or (SpO2/FiO2); Os
(Oxygen Source); Gc (Glasgow Coma Score); Gv (Glasgow Best Verbal
Response); pc (Procalcitonin); cr (CRP); sr (Sedimentation Rate). *:
Maximum systolic blood pressure for each observation within 8-hour
windows. **: Initial creatinine value observed in each visit).

sets. In general, the probability of having proximate failures of
two responses increases with aggregation times. Two cellular
and physiological responses failing at two different time points
might be considered proximate if the aggregation window is
wide enough.

The edge weights in the difference network show the differ-
ence in the magnitude of failure proximities in the survivors and
non-survivors networks. These differences barely exceed 0.25
(Fig. 3). Although the maximum number of edges is 171, when
we increase the threshold, the number of edges with weights
more than the threshold decreases. The impacts of aggregation
times and changes in thresholds are shown in Fig. 5. In this figure,
the changes in the number of edges in the difference network are
shown for three aggregation times and three threshold values. In
this study, we performed predictive modeling for ten aggregation
times and five threshold values. We considered eight different
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Fig. 6. Prediction accuracy of eight models composed of proximate failures of cellular and physiological responses as one of their feature sets at
different aggregation times and weight thresholds. The heatmaps with grey header represent the prediction accuracies of eight models created with
varying thresholds of weight. The two dimensions of heatmaps with yellow header are aggregation time and weight threshold shown for two “1000”
and “1111” models.

combinations of feature sets by ten aggregation times by five
threshold values creating 400 models. We visualized the results
of prediction for these combinations of feature sets in Fig. 6.

IV. DISCUSSION

Seven of the 15 models considered in this study were com-
posed of different combinations of individual cellular and physi-
ological responses, age and gender, and patients’ co-morbidities.
These models did not consider the proximity of responses.
Table IV shows the prediction accuracy for these seven models
and the relative importance of each feature set’s information
value. The model “0001” has the lowest accuracy. In this model,
the age and gender of patients are used for predicting patient
outcomes. This model’s accuracy (60.1%) shows that we can
perform better than random guessing if the only information
we have from sepsis patients is their age and gender. The model
with only the history of comorbidities of patients (model “0010”)
performs better (with accuracy 67.0%) than the model composed
of age and gender. However, their combination does not change
the accuracy compared with when we only know the patients’
comorbidities. Using only cellular and physiological informa-
tion of patients,’ we could obtain higher prediction accuracy
(72.6%) than any combination of age and gender and comor-
bidities. Complementing patients’ current status with their age,
gender, and comorbidities (model “0111”) provides the highest
accuracy (77.6%) among these seven models. Therefore, we

conclude that patients’ medical histories and clinical status are
critical to achieving higher accuracy in predicting in-hospital
mortality.

The other eight models are created based on the concept
of the proximity of responses. We considered two response
failures proximate when the failures co-occur in a set of various
pre-defined time windows. The results of the implementation of
these eight models (with varying aggregation times and weight
thresholds) are shown in Fig. 6. In general, model “1000,” the
first row of the ten heatmaps with grey headers in Fig. 6, has
the lowest performance. We summarize this model’s accuracy
at different aggregation times and weight thresholds in one
heatmap (model “1000” with a yellow header in Fig. 6). The
maximum accuracy that we could obtain using only the infor-
mation provided by proximate failures of cellular and physio-
logical responses was 73.7%. This accuracy is slightly higher
than the accuracy we obtained using only individual cellular
and physiological response failures. The general trend observed
in these eight models shows that starting from a base model
(“1000” or “1100”), the addition of age and gender (“1001”
or “1101”) can improve the prediction accuracy slightly (by
about 1-3%). However, the same base model complemented with
patients’ comorbidities (in “1010” or “1110”) can improve the
base model’s accuracy by about 6%. Simultaneous consideration
of the age, gender and comorbidities feature sets results in the
highest prediction accuracy in models “1011” and “1111”. These
patterns are shown in Fig. 7 in which the mean and standard
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Fig. 7. Prediction accuracy of models composed of proximate failures
of cellular and physiological responses as one of their feature sets. Each
range includes mean ± standard deviation of prediction accuracies for
the same threshold over different aggregation times.

deviation of accuracies are computed for different aggregation
times of the same model and same weight threshold.

The impact of including proximate or individual failures in
the prediction process can be further examined by comparing
models “1011” and “0111”. The former has proximate failures
without individual failures, and the latter includes individual
failures without proximate failures. The accuracy obtained from
“0111” is about 3% lower than the best performance obtained
from “1011”.

Among all the models considered, the highest accuracy was
observed in the model “1111” for an aggregation time of
90 minutes and a weight threshold of 0.05. In our previous
work [24], we obtained 150 minutes as the best aggregation
time. This difference in aggregation times can be attributed to the
level of information available in each approach. In the current
study, the model “1111” includes information regarding age,
gender, comorbidities, and individual cellular and physiological
responses, which was not considered in our previous work. The
addition of this information reduces aggregation times. In other
words, having more information about patients, such as their
demographic or past medical histories, can reduce the period
for which the patterns of cellular and physiological responses
should be aggregated.

Using an appropriate machine learning technique that can
provide a prioritized list of features based on their contribution to
prediction, we could create a hierarchy of important failures and
organ dysfunctions and their co-occurrences. Fig. 8 is derived
from the first 20 most important features contributing to the
prediction performance. Except for age and gender, the other 19
features are either individual or proximate failures of cellular
and physiological responses. In Fig. 8, the important individual
responses are shown with red borders. Based on this figure,
the proximate failures of the responses associated with renal,
respiratory, and metabolic organ systems in 90-minute periods
are good predictors of patient outcomes. This representation of
results, conducting the analysis at more granular levels, and
reporting the derived insights at the aggregated levels, could
enhance the interpretation of results and facilitate the translation
of findings to the clinical practices.

In this paper, we used a threshold-based approach for selecting
proximate failures from the difference network. Instead, we can
adopt a weight-based approach where the edge weights of the

Fig. 8. Features with the highest relative importance in model “1111”
at aggregation time 90 minutes and threshold 0.05. The cellular and
physiological responses found to be individually important are shown
with a red border. The important proximate failures are edges connecting
the cellular and physiological response. (Cr (Creatinine); Cd ((Creatinine
- C_base)/(C_base)), C_base: Initial creatinine value observed in each
visit; Bu (BUN); La (Lactate); Os (Oxygen Source); Or (SpO2/FiO2); Fi
(FiO2); Px (SpO2)).

Fig. 9. Prediction accuracy of models comprises proximate failures
of cellular and physiological responses as one of their feature sets at
different aggregation times. In these models, instead of a subset of
features obtained using different thresholds, all the edges with their
associated weights are incorporated in the predictive modeling.

difference network are directly incorporated in the predictive
modeling. The results for weight-based predictive modeling for
different models and aggregation times are provided in Fig. 9.
The weight-based approach results are slightly better than the
threshold-based (about 1–2% for different models and about
1% for models with the highest accuracy). However, the same
patterns among different models observed in Fig. 6 and among
models with proximate failures of cellular and physiological
responses and baseline models (Table IV) was observed in the
weight-based approach.

V. LIMITATIONS AND FUTURE DIRECTIONS

One of the primary objectives of this study was to compare the
relative information value provided by different sets of features:
proximate and individual cellular and physiological responses,
age and gender, and comorbidities of patients. We adopted the
well-known SVM technique for predictive modeling to focus
on this objective and prevent technical complexities associated
with more advanced machine learning approaches. However,
using other more advanced machine learning techniques could
improve prediction accuracies. By adopting SVM, we were able
to prioritize features based on their relative importance. Con-
sequently, we could present the results at different granularity
levels and increased the interpretability of the findings.

Authorized licensed use limited to: Drexel University. Downloaded on November 29,2021 at 16:22:39 UTC from IEEE Xplore.  Restrictions apply. 



4096 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 11, NOVEMBER 2021

There are several promising future research directions that can
address the limitations of this study. In this study, we used the
data from a single healthcare system. However, to improve the
generalizability of the findings, this approach should be applied
to data from other health centers. Further, we used the sepsis
definition provided by [1] along with the organ dysfunction
thresholds provided by Sepsis-related Organ Failure Assess-
ment (SOFA) [25], PIRO (predisposition, insult, response, organ
dysfunction) [26] scores and clinical expertise. Comparing the
model results using different sepsis definitions is another pos-
sible future direction. We used edges to represent proximate
failures, and the edges in the difference network are composed
of pairs of failures. In our future studies, we plan to adopt an
association rule mining approach to mine frequent and signifi-
cant failures of more than two responses. Another approach is
to mine larger temporal and structural failures over time.

Furthermore, in this study, we focused on the simultaneous
failures of cellular and physiological responses and biomarkers.
The dynamics of these responses and biomarkers are affected by
the clinical and pharmacological interventions. The significance
of these types of interventions has been discussed in previous
studies [19]. An avenue for future research would be consid-
eration of these interventions and their stimulation roles in the
dynamics of responses and biomarkers and study their impacts
on the prediction performance.

APPENDIX I

A. Organ Systems’ Components

See Table V

TABLE V
CELLULAR AND PHYSIOLOGICAL RESPONSES AND BIOMARKERS RECORDED AS INDIVIDUAL FEATURES, AND THE CRITERIA RESULTING IN THE

CORRESPONDING ORGAN DYSFUNCTION

*: Maximum systolic blood pressure for each observation within 8-hour windows.
**: Initial creatinine value observed in each visit.

B. Co-Morbidities

TABLE VI
CO-MORBIDITIES CONSIDERED IN THE STUDY
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