
DeepFP for Finding Nash Equilibrium
in Continuous Action Spaces

Nitin Kamra1(B) , Umang Gupta1, Kai Wang1, Fei Fang2, Yan Liu1,
and Milind Tambe3

1 University of Southern California, Los Angeles, CA 90089, USA
{nkamra,umanggup,wang319,yanliu.cs}@usc.edu

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
feifang@cmu.edu

3 Harvard University, Cambridge, MA 02138, USA
milind.tambe11@gmail.com

Abstract. Finding Nash equilibrium in continuous action spaces is a
challenging problem and has applications in domains such as protect-
ing geographic areas from potential attackers. We present DeepFP, an
approximate extension of fictitious play in continuous action spaces.
DeepFP represents players’ approximate best responses via generative
neural networks which are highly expressive implicit density approxima-
tors. It additionally uses a game-model network which approximates the
players’ expected payoffs given their actions, and trains the networks
end-to-end in a model-based learning regime. Further, DeepFP allows
using domain-specific oracles if available and can hence exploit tech-
niques such as mathematical programming to compute best responses
for structured games. We demonstrate stable convergence to Nash equi-
librium on several classic games and also apply DeepFP to a large forest
security domain with a novel defender best response oracle. We show that
DeepFP learns strategies robust to adversarial exploitation and scales
well with growing number of players’ resources.

Keywords: Security games · Nash equilibrium · Fictitious Play

1 Introduction

Computing equilibrium strategies is a major computational challenge in game
theory and finds numerous applications in economics, planning, security domains
etc. We are motivated by security domains which are often modeled as Stack-
elberg Security Games (SSGs) [5,13,24]. Since Stackelberg Equilibrium, a com-
monly used solution concept in SSGs, coincides with Nash Equilibrium (NE) in
zero-sum security games and in some structured general-sum games [17], we focus
on the general problem of finding mixed strategy Nash Equilibrium. Security
domains often involve protecting geographic areas thereby leading to continu-
ous action spaces [3,26]. Most previous approaches discretize players’ continuous
c© Springer Nature Switzerland AG 2019
T. Alpcan et al. (Eds.): GameSec 2019, LNCS 11836, pp. 238–258, 2019.
https://doi.org/10.1007/978-3-030-32430-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32430-8_15&domain=pdf
http://orcid.org/0000-0002-5205-6220
https://doi.org/10.1007/978-3-030-32430-8_15

Deep Fictitious Play 239

actions [9,11,27] to find equilibrium strategies using linear programming (LP) or
mixed-integer programming (MIP). However, a coarse discretization suffers from
low solution quality and a fine discretization makes it intractable to compute
the optimal strategy using mathematical programming techniques, especially in
high-dimensional action spaces. Some approaches exploit spatio-temporal struc-
tural regularities [4,6,28] or numerically solve differential equations in special
cases [13], but these do not extend to general settings.

We focus on algorithms more amenable to tractable approximation in contin-
uous action spaces. Fictitious Play (FP) is a classic algorithm studied in game
theory and involves players repeatedly playing the game and best responding to
each other’s history of play. FP converges to a NE for specific classes of discrete
action games [18] and its variants like Stochastic Fictitious Play and Generalized
Weakened Fictitious Play converge under more diverse settings [20,23,25] under
reasonable regularity assumptions over underlying domains. While FP applies
to discrete action games with exact best responses, it does not trivially extend
to continuous action games with arbitrarily complex best responses.

In this work, we present DeepFP, an approximate fictitious play algorithm for
two-player games with continuous action spaces. The key novelties of DeepFP
are: (a) It represents players’ approximate best responses via state-of-the-art
generative neural networks which are highly expressive implicit density approx-
imators with no shape assumptions on players’ action spaces, (b) Since implicit
density models cannot be trained directly, it also uses a game-model network
which is a differentiable approximation of the players’ payoffs given their actions,
and trains these networks end-to-end in a model-based learning regime, and (c)
DeepFP allows replacing these networks with domain-specific oracles if avail-
able. This allows working in the absence of gradients for player/(s) and exploit
techniques from research areas like mathematical programming to compute best
responses. We also apply DeepFP to a forest security problem with a novel
defender best response oracle designed for this domain. The proposed oracle is
another novel contribution of this work and may also be of interest in its own
right for the forest protection domain.

Related Work: Previous approaches to find equilibria in continuous action
spaces have employed variants of cournot adjustment strategy [1] but suffer from
convergence issues [14]. Variants of FP either require explicit maximization of
value functions over the action set as in Fictitious Self-Play [12] or maintaining
complex hierarchies of players’ past joint strategies as in PSRO [19], which is
only feasible with finite and discrete action sets (e.g. poker) and does not gener-
alize to continuous action spaces. Since it is challenging to maintain distributions
over continuous action spaces, recent works in multiagent reinforcement learn-
ing (RL) [21] often assume explicit families of distributions for players’ strategies
which may not span the space of strategies to which NE distributions belong.
More recently update rules which modify gradient descent using second-order
dynamics of multi-agent games have been proposed [2]. The closest method to
our approach is OptGradFP [15] which assumes a multivariate logit-normal dis-
tribution for players’ strategies. We show that due to explicit shape assumptions,

240 N. Kamra et al.

it suffers from lack of representational power and is prone to diverging since
logit-normal distributions concentrate in some parts of the action space often
yielding −∞ log-probabilities in other parts. DeepFP addresses the lack of rep-
resentational power by using flexible implicit density approximators. Further,
our model-based training proceeds without any likelihood estimates and hence
does not yield −∞ log-likelihoods in any parts of the action space, thereby con-
verging stably. Moreover, unlike OptGradFP, DeepFP is an off-policy algorithm
and trains significantly faster by directly estimating expected rewards using the
game model network instead of replaying previously stored games.

2 Game Model

We consider a two-player game with continuous action sets for players 1 and 2.
We will often use the index p ∈ {1, 2} for one of the players and −p for the
other player. Up denotes the compact, convex action set of player p. We denote
the probability density for the mixed strategy of player p at action up ∈ Up

as σp(up) ≥ 0 s.t.
∫

Up
σp(up)dup = 1. We denote player p sampling an action

up ∈ Up from his mixed strategy density σp as up ∼ σp. We denote joint actions,
joint action sets and joint densities without any player subscript i.e. as u =
(u1, u2), U = U1 × U2 and σ = (σ1, σ2) respectively.

Each player has a bounded and Lipschitz continuous reward function rp :
U → R. For zero-sum games, rp(u) + r−p(u) = 0 ∀u ∈ U . With players’ mixed
strategy densities σp and σ−p, the expected reward of player p is:

Eu∼σ[rp] =
∫

Up

∫

U−p

rp(u)σp(up)σ−p(u−p)dupdu−p.

The best response of player p against player −p’s current strategy σ−p is defined
as the set of strategies which maximizes his expected reward:

BRp(σ−p) := arg max
σp

{
Eu∼(σp,σ−p)[rp]

}
.

A pair of strategies σ∗ = (σ∗
1 , σ

∗
2) is said to be a Nash equilibrium if neither

player can increase his expected reward by changing his strategy while the other
player sticks to his current strategy. In such a case both these strategies belong
to the best response sets to each other:

σ∗
1 ∈ BR1(σ∗

2) and σ∗
2 ∈ BR2(σ∗

1).

3 Deep Fictitious Play

To compute NE for a game, we introduce an approximate realization of fictitious
play in high-dimensional continuous action spaces, which we call Deep Fictitious

Deep Fictitious Play 241

Play (DeepFP). Let the density function corresponding to the empirical distri-
bution of player p’s previous actions (a.k.a. belief density) be σ̄p. Then fictitious
play involves player p best responding to his opponent’s belief density σ̄−p:

BRp(σ̄−p) := arg max
σp

{
Eu∼(σp,σ̄−p)[rp]

}
.

Repeating this procedure for both players is guaranteed to converge to the Nash
equilibrium densities for both players for certain classes of games [18]. Hence
extending Fictitious Play to continuous action spaces requires approximations
for two essential ingredients: (a) belief densities over players’ actions, and (b)
best responses for each player.

(a) Sampling actions from the
best response network (b) Learning game model network parame-

ters φ

(c) Learning best response network parameters θp

Fig. 1. Neural network models for DeepFP; blue color denotes player p, red denotes
his opponent −p, green shows the game model network and violet shows loss functions
and gradients. (Color figure online)

242 N. Kamra et al.

3.1 Approximating Belief Densities

Representing belief densities compactly is challenging in continuous action
spaces. However with an appropriate approximation to Fictitious Play, one can
get away with a representation which only requires sampling from the belief
density but never explicitly calculating the density at any point in the action
space. Our DeepFP is one such approximation and hence we maintain the belief
density σ̄p of each player p via a non-parameterized population based estimate
i.e. via a simple memory of all actions played by p so far. Directly sampling up

from the memory gives an unbiased sample from σ̄p.

3.2 Approximating Best Responses

Computing exact best responses is intractable for most games. But when the
expected reward for a player p is differentiable w.r.t. the player’s action up and
admits continuous and smooth derivatives, approximate best responses are feasi-
ble. One way is to use the gradient of reward to update the action up iteratively
using gradient ascent till it converges to a best response. Since the best response
needs to be computed per iteration of FP, employing inner iterations of gradient
descent can be expensive. However since the history of play for players doesn’t
change too much between iterations of FP, we expect the same of best responses.
Consequently we approximate best responses with function approximators (e.g.,
neural networks) and keep them updated with a single gradient ascent step (also
done by [8]). We propose a best response network for each player p which maps an
easy to sample dp-dimensional random variable Zp ∈ R

dp (e.g. Zp ∼ N (0, Idp
)) to

the player’s action up. By learning an appropriate mapping BRp(zp; θp) param-
eterized by weights θp, it can approximate any density in the action space Up

(Fig. 1a). Note that this is an implicit density model i.e. one can draw sam-
ples of up by sampling zp ∼ PZp

(·) and then computing BRp(zp; θp), but no
estimate of the density is explicitly available. Further, best response networks
maintain stochastic best responses since they lead to smoother objectives for
gradient-based optimization. Using them is common practice in policy-gradient
and actor-critic based RL since deterministic best responses often render the
algorithm unstable and brittle to hyperparameter settings (also shown by [10]).

To learn θp we need to approximate the expected payoff of player p given by
E(up∼BRp(·;θp),u−p∼σ̄−p)[rp] as a differentiable function of θp. However a differ-
entiable game model is generally not available a priori, hence we also maintain
a game model network which takes all players’ actions i.e. {up, u−p} as inputs
and predicts rewards {r̂p, r̂−p} for each player. This can either be pre-trained or
learnt simultaneously with the best response networks directly from gameplay
data (Fig. 1b). Coupled with a shared game model network, the best response
networks of players can be trained to approximate best responses to their oppo-
nent’s belief densities (σ̄−p) (Fig. 1c). The training procedure is discussed in
detail in Sect. 3.3.

When the expected reward is not differentiable w.r.t. players’ actions or the
derivatives are zero in large parts of the action space, DeepFP can also employ

Deep Fictitious Play 243

approximate best response oracle (BROp) for player p. The oracle can be a non-
differentiable approximation algorithm employing Linear Programming (LP) or
Mixed Integer Programming (MIP) and since it will not be trained, it can also
be deterministic. In many security games, Mixed-integer programming based
algorithms are proposed to compute best responses and our algorithm provides
a novel way to incorporate them as subroutines in a deep learning framework,
as opposed to most existing works which require end-to-end differentiable policy
networks and cannot utilize non-differentiable solutions even when available.

3.3 DeepFP

Algorithm 1 shows the DeepFP pseudocode. DeepFP randomly initializes any
best response networks and game model network (if needed) and declares an
empty memory (mem) to store players’ actions and rewards [lines 1–2].

Algorithm 1. DeepFP
Data: max games, batch sizes (m1, m2, mG), memory size E, game simulator

and oracle BROp for players with no gradient
Result: Final belief densities σ̄∗

p in mem ∀ players p
1 Initialize all network parameters (θ1, θ2, φ) randomly;
2 Create empty memory mem of size E;
3 for game ∈ {1, . . . , max games} do

/* Obtain best responses */

4 for each player p do
5 if grad avlbl(p) then
6 Sample zp ∼ N (0, I);
7 Approx. best response up = BRp(zp; θp);

8 else
9 up = BROp(σ̄−p) with σ̄−p from mem;

/* Play game and update memory */

10 Play with u = {u1, u2} to get r = {r1, r2};
11 Store sample {u, r} in mem;

/* Train shared game model net */

12 if grad avlbl(p) for any p ∈ {1, 2} then
13 Draw samples {ui, ri}i=1:mG from mem;

14 φ := Adam.min(LMSE , φ, {ui, ri}i=1:mG);

/* Train best response nets */

15 for each player p with grad avlbl(p) do
16 Draw samples {ui}i=1:mp from mem;

17 θp := Adam.min(Lrp , θp, {ui
−p}i=1:mp);

Then it iteratively makes both players best respond to the belief density of
their opponent. This best response can be computed per player p via a forward

244 N. Kamra et al.

pass of the best response network BRp or via a provided oracle BROp or if
gradients are not available [lines 4–9]. The best response moves and the rewards
obtained by playing them are stored in mem [lines 10–11]. Samples from exact
belief density σ̄ of both players are available from mem.

The game model network is also trained simultaneously to learn a differen-
tiable reward model of the game [lines 12–14]. It takes all players’ actions u as
input and predicts the game rewards r̂(u;φ) for all players. Its parameters φ can
be learnt by minimizing the mean square error loss over a minibatch of samples
{ui}i=1:mG

from mem, using any optimizer (we use Adam [16]):

LMSE(φ) =
1

2mG

∑

p∈{1,2}

mG∑

i=1

(r̂p(ui;φ) − ri
p)

2.

The advantage of estimating this differentiable reward model independent of
playing strategies is that it can be trained from the data in replay memory
without requiring importance sampling, hence it can be used as a proxy for the
game simulator to train the best response networks. An alternative could be to
replay past actions of players using the game simulator as done by [15], but it is
much slower (see Sect. 4.2).

Finally each player updates their best response network to keep it a reason-
able approximation to the best response to his opponent’s belief density [lines
15–17]. For this, each player p maximizes his expected predicted reward r̂p (or
minimizes expected −r̂p) against the opponent’s belief density σ̄−p (see Fig. 1c)
using any optimizer (we use Adam):

Lrp
(θp) = −E(zp∼N (0,I),u−p∼σ̄−p)[r̂p(BRp(zp; θp), u−p;φ)].

The expectation is approximated using a minibatch of samples {ui
−p}i=1:mp

drawn from mem and {zi
p}i=1:mp

independently sampled from a standard nor-
mal distribution. In this optimization, φ is held constant and the gradient is
only evaluated w.r.t. θp and the updates applied to the best response network.
In this sense, the game model network acts like a critic to evaluate the best
responses of player p (actor) against his opponent’s belief density σ̄−p similar
to actor-critic methods [22]. However, unlike actor-critic methods we train the
best response and the game model networks in separate decoupled steps which
potentially allows replacing them with pre-trained models or approximate ora-
cles, while skipping their respective learning steps.

3.4 Connections to Boltzmann Actor-Critic and Convergence of
DeepFP

DeepFP is closely related to the Boltzmann actor-critic process proposed by
Generalized Weakened Fictitious Play (GWFP) [20], which converges to the
NE under certain assumptions. But it differs in two crucial aspects: (i) GWFP
requires assuming explicit probability densities and involves weakened ε-best

Deep Fictitious Play 245

responses which are updated via a Boltzmann actor-critic process. Since we
store the empirical belief densities and best responses as implicit densities, a
Boltzmann-style strategy update is infeasible, (ii) GWFP also requires the ε-
best responses to eventually become exact (i.e. when limn→∞ εn → 0). Since we
are approximating stochastic best responses via generative neural networks (or
with approximate oracles), this assumption may not always hold exactly. Nev-
ertheless, with our approximate best responses and with the one-step gradient
updates best response networks, we empirically observed that DeepFP converges
for multiple games with continuous reward functions wherever GWFP converges.
At convergence, the belief density σ̄∗ in mem is a non-parametric approximation
to a NE density for both players.

4 Experimental Evaluation

4.1 Simple Games

We first evaluate DeepFP on two simple games where traditional fictitious play
is known to converge, as potential sanity checks and to demonstrate convergence
to nash equilibrium.

Concave-Convex Game: Two players 1 and 2 with scalar actions x, y ∈ [−2, 2]
respectively play to maximize their rewards: r1(x, y) = −2x2 + 4xy + y2 − 2x −
3y+1 and r2(x, y) = −r1(x, y). The game is concave w.r.t. x and convex w.r.t. y
and admits a pure strategy NE which can be computed using standard calculus.
The NE strategies are x = 1/3, y = 5/6, the expected equilibrium rewards are
r∗
1 = −r∗

2 = −7/12 and the best responses of players to each others’ average
strategies are BR1(ȳ) = ȳ − 1/2 and BR2(x̄) = 3/2 − 2x̄.

Cournot Game: It is a classic game [7] with two competing firms (1 and 2)
producing a quantity (q1 ≥ 0 and q2 ≥ 0 resp.) of a product. The price of the
product is p(q1, q2) = a − q1 − q2 and the cost of manufacturing quantity q is
C(q) = cq, where c, a > 0 are constants. Reward for a firm p is Rp(q1, q2) =
(a − q1 − q2)qp − cqp, p ∈ {1, 2} and the best response against the competing
firm’s choice can be analytically computed as q−p is BRp(q−p) = a−c−q−p

2 . The
NE strategy can be computed as q∗

1 = q∗
2 = a−c

3 . We use a = 2 and c = 1 for our
experiment so that q∗

1 = q∗
2 = 1/3.

Figure 2 shows the results of DeepFP to these games and its convergence to
the NE for all variants i.e. when both, exactly one, or no player uses the best
response oracle. Note that both players using the best response oracle (bottom
case in all subfigures) is the same as exact fictitious play and converges very fast
as opposed to other cases (top and mid in all subfigures) since the latter variants
require estimating the best responses from repeated gameplay.

4.2 Forest Protection Game

For a large application of DeepFP, we choose the forest protection game as pro-
posed by [15] with a Defender (D) and an Adversary (A). Consider a circular

246 N. Kamra et al.

(a) Concave-convex game (b) Cournot game

(c) Concave-convex game (d) Cournot game

Fig. 2. DeepFP on simple games under three settings: when both players learn BR nets
(top), player 1 uses BR oracle (mid), and when both players use BR oracle (bottom); (a)
and (b) expected reward of player 1 converges to the true equilibrium value (shown by
dashed line) for both games; (c) and (d) final empirical density for player 1 approaches
NE strategy for both games (shown by blue triangle on horizontal axis).

Deep Fictitious Play 247

(a) (b)

Fig. 3. Forest game with trees (green dots), guards (blue dots), guard radii Rg (blue
circles), lumberjacks (red dots), lumberjack chopping radii Rl (red circles), lumberjacks’
paths (red lines) and black polygons (top weighted capture-sets for guards): (a) with
m = n = 3, (b) best response oracle for 3 guards and 15 lumberjacks. (Color figure
online)

forest with an arbitrary tree distribution. The adversary has n lumberjacks who
cross the boundary and move straight towards the forest center. They can stop
at any point on their path, chop trees in a radius Rl around the stopping point
and exit back from their starting location. The adversary’s action is then all the
stopping points for lumberjacks (which fully specifies their trajectories). The
defender has m guards whose locations in the forest can be chosen to ambush
the lumberjacks. A lumberjack whose trajectory comes within Rg distance from
any guard’s location is considered ambushed and loses all his chopped trees and
bears a penalty rpen. The final reward for adversary (rA ∈ R) is the number of
trees jointly stolen by the lumberjacks plus the total negative penalty incurred.
The defender’s reward is rD = −rA. A full game is shown in Fig. 3a. In our experi-
ments we use the following settings for the game: rpen = 4.0, Rg = 0.1, Rl = 0.04.

Approximate Best Response Oracle: Note that if guards’ locations do not
overlap significantly with those of lumberjacks then changing them by a small
amount does not affect the rewards for either player since no extra lumberjacks
are ambushed. Hence, the gradient of reward w.r.t. defender’s parameters (∇θD

r)
≈ 0 over most of the action space. But the gradients for the adversary are
continuous and non-zero because of the dense tree distribution. Hence we apply
DeepFP to this game with a best response network for the adversary and an
approximate domain-specific best response oracle for the defender. Devising a
defender’s best response to the adversary’s belief distribution is non-trivial for
this game, and we propose a greedy approximation for it1. Briefly, the oracle
algorithm involves creating capture-sets for lumberjack locations l encountered
so far in mem and intersecting these capture-sets to find those which cover multiple
lumberjacks. Then it greedily allocates guards to the top m such capture-sets one

1 The full oracle algorithm and the involved approximations are detailed in the
appendix to keep the main text concise and continuous.

248 N. Kamra et al.

at a time, while updating the remaining capture-sets simultaneously to account
for the lumberjacks ambushed by the current guard allocation. We illustrate an
oracle best response in Fig. 3b.

Baselines: Since the forest protection game involves arbitrary tree density pat-
terns, the ground truth equilibria are intractable. So we evaluate DeepFP by
comparing it with OptGradFP [15] and to another approximate discrete linear
programming method (henceforth called DLP).

DLP Baseline: We propose DLP which discretizes the action space of players
and solves a linear programming problem to solve the game approximately (but
only for small m and n). The DLP method discretizes the action space in cylin-
drical coordinates with 20 radial bins and 72 angular bins, which gives a joint
action space of size (72 × 20)m+n. For even a single guard and lumberjack, this
implies about 2 million pure strategies. Hence, though DLP gives the approxi-
mate ground truth for m = n = 1 due to our fine discretization, going beyond m
or n > 1 is infeasible with DLP. The DLP baseline proceeds in two steps:

1. We generate 72 × 20 = 1440 cylindrically discretized bins and compute a
matrix R ∈ R

1440×1440 where Rij characterizes the defender’s reward with a
guard in the i-th bin and a lumberjack in the j-th bin. Each entry Rij is com-
puted by averaging the game simulator’s reward over 20 random placements
of the guard and lumberjack inside the bins.

2. Next we solve the following optimization problem for the defender:

σ∗, χ∗ = arg max
σ≥0,χ

χ

s.t. σT R:j ≥ χ∀j

1440∑

i=1

σi = 1

Note that χ represents the defender’s reward, σi is the i-th element of σ ∈
[0, 1]1440 i.e. the probability of placing the guard in the i-th bin and R:j is
the j-th column of R corresponding to the adversary taking action j. The
above problem maximizes the defender’s reward subject to the constraints
that σ has all non-negative elements summing to 1 (since it’s a distribution
over all bins) and the defender’s reward χ is least exploitable regardless of the
adversary’s placement in any bin j. Solving it gives us the optimal defender
distribution σ∗ over all bins to place the guard and the equilibrium reward
for the defender χ∗ when m = n = 1.

Fixed Hyperparameters: We set max games = E = 40000 to provide enough
iterations to DeepFP and OptGradFP for convergence. The batch sizes for
DeepFP are set to mD = 3 (kept small to have a fast oracle), mA = 64,mG = 128
(large for accurate gradient estimation). For full neural network architectures
used, please refer to the appendix.

Deep Fictitious Play 249

Table 1. Results on four representative forests for m = n = 1. Green dots: trees, blue
dots: guard locations sampled from defender’s strategy, red dots: lumberjack locations
sampled from adversary’s strategy. The exploitability metric shows that DLP which
is approximately the ground truth NE strategy is the least exploitable followed by
DeepFP, while OptGradFP’s inflexible explicit strategies make it heavily exploitable.

Exploitability Analysis: Since direct computation of the ground truth equi-
librium is infeasible for a forest, we compare all methods by evaluating
the exploitability of the defender’s final strategy as NE strategies are least
exploitable. For this, we designed an evolutionary algorithm to compute the
adversary’s best response to the defender’s final strategy. It maintains a pop-
ulation (size 50) of adversary’s actions and iteratively improves it by selecting

250 N. Kamra et al.

the best 10 actions, duplicating them four-fold, perturbing the duplicate copies
with gaussian noise (whose variance decays over iterations) and re-evaluating the
population against the defender’s final strategy. This evolutionary procedure is
independent of any discretization or neural network and outputs the adversary
action which exploits the defender’s final strategy most heavily. We denote the
reward achieved by the top action in the population as the exploitability ε and
report the exploitability of the defender’s strategy averaged across 5 distinct
runs of each method (differing only in the initial seed). Since rewards can differ
across forests due to the number of trees in the forest and their distribution, the
exploitability of each forest can differ considerably. Also, since the evolutionary
algorithm requires 150K–300K game plays per run, it is quite costly and only
feasible for a single accurate post-hoc analysis rather than using it to compute
best responses within DeepFP.

Single Resource Case: Table 1 shows results on four representative forests
when m = n = 1. We observe that both DLP and DeepFP find strategies which
intuitively cover dense regions of the forest (central forest patch for F1, nearly
the whole forest for uniform forest F2, dense arch of trees for F3 and ring for
the forest F4 with a tree-less sector). On the uniform forest F2, the expected NE
strategy is a ring at a suitable radius from the center, as outputted by DeepFP.
However, DLP has a fine discretization and is able to sense minute deviations
from uniform tree structure induced due to the sampling of trees from a uniform
distribution, hence it forms a circular ring broken and placed at different radii. A
similar trend is observed on F4. On F3, DeepFP finds a strategy strongly covering
the dense arch of trees, similar to that of DLP. Note that sometimes DeepFP even
finds less exploitable strategies than DLP (e.g. on F1), since DLP while being
close to the ground truth still involves an approximation due to discretization.
Overall, as expected DLP is in general the least exploitable method and is the
closest to the NE, followed by DeepFP. OptGradFP is more exploitable than
DeepFP for nearly uniform tree densities (F2 and F4) and heavily exploitable

Table 2. Results on forest F3 for m = n = {2, 3}. Green dots: trees, blue dots: guard
locations sampled from defender’s strategy, red dots: lumberjack locations sampled
from adversary’s strategy. DeepFP is always less exploitable than OptGradFP.

DeepFP (m=n=2) DeepFP (m=n=3) OptGradFP (m=n=2) OptGradFP (m=n=3)

ε = 135.49± 15.24 ε = 137.53± 8.63 ε = 186.58± 23.71 ε = 190.00± 23.63

Deep Fictitious Play 251

(a)

(b)

Fig. 4. (a) Adversary’s average reward with memory size E as a fraction of total games
played. Even for a 1% fraction of memory size i.e. γ = 0.01, the average rewards are
close to γ = 1 case. (b) Time per iteration vs. players’ resources. DeepFP is orders of
magnitude faster than OptGradFP (y-axis has log scale).

252 N. Kamra et al.

for forests with concentrated tree densities (F1 and F3), since unlike DeepFP, it
is unable to approximate arbitrary strategy shapes.

Multiple Resource Case: Since DLP cannot scale for m or n > 1, we compute
the strategies and exploitability for m = n = {2, 3} on F3 in table 2 for DeepFP
and OptGradFP only (more forests in appendix). We consistently observe that
DeepFP accurately covers the dense forest arch of F3 and OptGradFP spreads
both players out more uniformly (due to explicit strategies). For m = n = 3 case,
DeepFP also allots a guard to the central patch of F3. Overall, DeepFP is sub-
stantially less exploitable than OptGradFP.

Effect of Memory Size: In Algorithm 1, we stored and best responded to
all games in the replay memory. Figure 4a shows the expected reward (E[rA])
achieved by the adversary’s final strategy against the defender’s final strategy,
when the replay memory size E is varied as a fraction γ of max games. Only the
most recent γ fraction of max games are stored and best responded to, and the
previous ones are deleted from mem. We observe that DeepFP is fairly robust
to memory size and even permits significantly small replay memories (upto 0.01
times max games) without significant deterioration in average rewards.

Running Time Analysis: Given the same total number of iterations, we plot
the time per iteration for DeepFP and OptGradFP in Fig. 4b with increasing m
and n (y-axis has log scale). OptGradFP’s training time increases very fast with
increasing m and n due to high game replay time. With our approximate best-
response oracle and estimation of payoffs using the game model network, DeepFP
is orders of magnitude faster. For a total 40K iterations, training DeepFP takes
about 0.64±0.34 h (averaged over values of m and n) as opposed to 22.98±8.39 h
for OptGradFP.

5 Conclusion

We have presented DeepFP, an approximate fictitious play algorithm for games
with continuous action spaces. DeepFP implicitly represents players’ best
responses via generative neural networks without prior shape assumptions and
optimizes them using a learnt game-model network with gradient-based train-
ing. It can also utilize approximate best response oracles whenever available,
thereby harnessing prowess in approximation algorithms from discrete planning
and operations research. DeepFP provides significant speedup in training time
and scales well with growing number of resources.

DeepFP can be easily extended to multi-player applications, with each player
best responding to the joint belief density over all other players using an oracle
or a best response network. Like most gradient-based optimization algorithms,
DeepFP and OptGradFP can sometimes get stuck in local nash equilibria (see
appendix for experiments). While DeepFP gets stuck less often than OptGradFP,
principled strategies to mitigate local optima for gradient-based equilibrium find-
ing methods remains an interesting direction for future work.

Deep Fictitious Play 253

Acknowledgments. This research was supported in part by NSF Research Grant
IIS-1254206, NSF Research Grant IIS-1850477 and MURI Grant W911NF-11-1-0332.

A Appendix

A.1 Approximate Best Response Oracle for Forest Protection
Game

Algorithm 2. Approximate best response oracle
Data: mem, batch size mD, game simulator, m, n
Result: Guard assignments approximating BROD(σ̄A)

1 Draw batch of adversary actions {ui
A}i=1:mD from σ̄A (stored in mem);

2 Extract all mD × n lumberjack locations l ∈ {ui
A}i=1:mD ;

/* Capture-set for each lumberjack */

3 Initialize empty capture-set list S;

4 for l ∈ {ui
A}i=1:mD do

5 Create a capture-set s(l) (approximated by a convex polygon) i.e. as the set
of all guard locations which are within radius Rg from any point on the
trajectory of the lumberjack stopping at l;

6 Query reward w(l) of ambushing at l (using simulator);
7 Append (s, w, l) to S.

/* Output max reward capture-sets */

8 Find all possible intersections of sets s ∈ S while assigning a reward w′ =
∑

j wj

and lumberjacks l′ = ∩j lj to s′ = ∩jsj and append all new (s′, w′, l′) triplets to
S;

9 Pop the top m maximum reward sets in S one at a time and assign a single
guard to each, while updating all remaining sets’ weights to remove lumberjacks
covered by the guard allotment;

10 Output the guard assignments.

Devising a defender’s best response to the adversary’s belief distribution
is non-trivial for this game. So we propose a greedy approximation to the best
response. (see Algorithm 2). We define a capture-set for a lumberjack location l as
the set of all guard locations within a radius Rg from any point on the trajectory
of the lumberjack. The algorithm involves creating capture-sets for lumberjack
locations l encountered so far in mem and intersecting these capture-sets to find
those which cover multiple lumberjacks. Then it greedily allocates guards to the
top m such capture-sets one at a time, while updating the remaining capture-sets
simultaneously to account for the lumberjacks ambushed by the current guard
allocation. Our algorithm involves the following approximations:

1. Mini-batch approximation: Since it is computationally infeasible to compute
the best response to the full set of actions in mem, we best-respond to a small
mini-batch of actions sampled randomly from mem to reduce computation (line
1).

254 N. Kamra et al.

2. Approximate capture-sets: Initial capture-sets can have arbitrary arc-shaped
boundaries which can be hard to store and process. Instead, we approximate
them using convex polygons for simplicity (line 5). Doing this ensures that
all subsequent intersections also result in convex polygons.

3. Bounded number of intersections: Finding all possible intersections of capture-
sets can be reduced to finding all cliques in a graph with capture-sets as ver-
tices and pairwise intersections as edges. Hence it is an NP-hard problem with
complexity growing exponentially with the number of polygons. We compute
intersections in a pairwise fashion while adding the newly intersected poly-
gons to the list. This way the kth round of intersection produces uptil all
k + 1-polygon intersections and we stop after k = 4 rounds of intersection to
maintain polynomial time complexity (implemented for line 8, but not shown
explicitly in Algorithm 2).

4. Greedy selection: After forming capture-set intersections, we greedily select
the top m sets with the highest rewards (line 9).

A.2 Supplementary Experiments with m, n> 1

Table 3. More results on forests F1 and F4 for m = n = 2.

F1 DeepFP (m=n=2) OptGradFP (m=n=2)
ε = 153.21± 50.87 ε = 212.92± 27.95

F4 DeepFP (m=n=2) OptGradFP (m=n=2)
ε = 53.70± 3.85 ε = 49.00± 3.68

Table 3 shows more experiments for DeepFP and OptGradFP with m,n>1.
We see that DeepFP is able to cover regions of importance with the players’
resources but OptGradFP suffers from the zero defender gradients issue due to
logit-normal strategy assumptions which often lead to sub-optimal results and
higher exploitability.

Deep Fictitious Play 255

Table 4. Demonstrating getting stuck in locally optimal strategies.

F5 C1: DLP C2: OptGradFP C3: OptGradFP
(m=n=1) (m=n=1) (m=n=1)

C4: DeepFP C5: DeepFP C6: OptGradFP C7: DeepFP
(m=n=1) (m=n=1) (m=n=3) (m=n=3)

A.3 Locally Optimal Strategies

To further study the issue of getting stuck in locally optimal strategies we show
experiments with another forest F5 in Table 4. F5 has three dense tree patches
and very sparse and mostly empty other parts. The optimal defender’s strat-
egy computed by DLP for m = n = 1 is shown in C1. In such a case, due to
the tree density being broken into patches, gradients for both players would be
zero at many locations and hence both algorithms are expected to get stuck in
locally optimal strategies depending upon their initialization. This is confirmed
by configurations C2, C3, C4 and C5 which show strategies for OptGradFP and
DeepFP with m = n = 1 covering only a single forest patch. Once the defender
gets stuck on a forest patch, the probability of coming out of it is small since the
tree density surrounding the patches is negligible. However, with more resources
for the defender and the adversary m = n = 3, DeepFP is mostly able to break
out of the stagnation and both players eventually cover more than a single for-
est patch (see C7), whereas OptGradFP is only able to cover additional ground
due to random initialization of the 3 player resources but otherwise remains
stuck around a single forest patch (see C6). DeepFP is partially able to break
out because the defender’s best response does not rely on gradients but rather
come from a non-differentiable oracle. This shows how DeepFP can break out
of local optima even in the absence of gradients if a best response oracle is pro-
vided, however OptGradFP relies purely on gradients and cannot overcome such
situations.

256 N. Kamra et al.

A.4 Neural Network Architectures

All our models were trained using TensorFlow v1.5 on a Ubuntu 16.04 machine
with 32 CPU cores and a Nvidia Tesla K40c GPU.

Cournot Game and Concave-Convex Game. Best response networks for
the Cournot game and the Concave-convex game consist of single fully con-
nected layer with a sigmoid activation, directly mapping the 2-D input noise
z ∼ N ([0, 0], I2) to a scalar output qp for player p. Best response networks are
trained with Adam optimizer [16] and learning rate of 0.05. To estimate payoffs,
we use exact reward models for the game model networks. Maximum games were
limited to 30,000 for Cournot game and 50,000 for Concave-convex game.

Forest Protection Game. The action up of player p contains the cylindri-
cal coordinates (radii and angles) for all resources of that player. So, the best
response network for the Forest protection game maps ZA ∈ R

64 to the adver-
sary action uA ∈ R

n×2. It has 3 fully connected hidden layers with {128, 64, 64}
units and ReLU activations. The final output comes from two parallel fully con-
nected layers with n (number of lumberjacks) units each: (a) first with sigmoid
activations outputting n radii ∈ [0, 1], and (b) second with linear activations out-
putting n angles ∈ [−∞,∞], which are modulo-ed to be in [0, 2π] everywhere.
All layers are L2-regularized with coefficient 10−2:

xA = relu(FC64(relu(FC64(relu(FC128(ZA))))))
uA,rad = σ(FCn(xA)); uA,ang = FCn(xA)

The game model takes all players’ actions as inputs (i.e. matrices uD, uA of
shapes (m, 2) and (n, 2)) respectively) and produces two scalar rewards rD and
rA. It internally converts the angles in the second columns of these inputs to
the range [0, 2π]. Since the rewards should be invariant to the permutations
of the defender’s and adversary’s resources (guards and lumberjacks resp.), we
first pass the input matrices through non-linear embeddings to interpret their
rows as sets rather than ordered vectors (see Deep Sets [29] for details). These
non-linear embeddings are shared between the rows of the input matrix and
are themselves deep neural networks with three fully connected hidden layers
containing {60, 60, 120} units and ReLU activations. They map each row of the
matrices into a 120-dimensional vector and then add all these vectors. This effec-
tively projects the action of each player into a 120-dimensional action embedding
representation invariant to the ordering of the resources. The players’ embedding
networks are trained jointly as a part of the game model network. The players’
action embeddings are further passed through 3 hidden fully connected layers
with {1024, 512, 128} units and ReLU activations. The final output rewards are
produced by a last fully connected layer with 2 hidden units and linear activa-
tion. All layers are L2-regularized with coefficient 3 × 10−4:

Deep Fictitious Play 257

embp =
∑

dim=row

(DeepSet60,60,120(up)) ∀p ∈ {D,A}

r̂D, r̂A = FC2(relu(FC128(relu(FC512(relu(FC1024(embD, embA))))))

The models are trained with Adam optimizer [16]. Note that the permutation
invariant embeddings are not central to the game model network and only help
to incorporate an inductive bias for this game. We also tested the game model
network without the embedding networks and achieved similar performance with
about 2x increase in the number of iterations since the game model would need
to infer permutation invariance from data.

References

1. Amin, K., Singh, S., Wellman, M.P.: Gradient methods for stackelberg security
games. In: UAI, pp. 2–11 (2016)

2. Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., Graepel, T.:
The mechanics of n-player differentiable games. In: International Conference on
Machine Learning (2018)

3. Basilico, N., Celli, A., De Nittis, G., Gatti, N.: Coordinating multiple defensive
resources in patrolling games with alarm systems. In: Proceedings of the 16th
Conference on Autonomous Agents and Multiagent Systems, pp. 678–686 (2017)

4. Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Seddighin, S.: Spatio-temporal
games beyond one dimension. In: Proceedings of the 2018 ACM Conference on
Economics and Computation, pp. 411–428 (2018)

5. Cermák, J., Bošanský, B., Durkota, K., Lisý, V., Kiekintveld, C.: Using correlated
strategies for computing stackelberg equilibria in extensive-form games. In: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016,
pp. 439–445 (2016)

6. Fang, F., Jiang, A.X., Tambe, M.: Optimal patrol strategy for protecting moving
targets with multiple mobile resources. In: AAMAS, pp. 957–964 (2013)

7. Ferguson, T.S.: Game Theory, vol. 2 (2014). https://www.math.ucla.edu/∼tom/
Game Theory/Contents.html

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 (2017)

9. Gan, J., An, B., Vorobeychik, Y., Gauch, B.: Security games on a plane. In: AAAI,
pp. 530–536 (2017)

10. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290 (2018)

11. Haskell, W., Kar, D., Fang, F., Tambe, M., Cheung, S., Denicola, E.: Robust
protection of fisheries with compass. In: IAAI (2014)

12. Heinrich, J., Lanctot, M., Silver, D.: Fictitious self-play in extensive-form games.
In: International Conference on Machine Learning, pp. 805–813 (2015)

13. Johnson, M.P., Fang, F., Tambe, M.: Patrol strategies to maximize pristine forest
area. In: AAAI (2012)

14. Kamra, N., Fang, F., Kar, D., Liu, Y., Tambe, M.: Handling continuous space
security games with neural networks. In: IWAISe: First International Workshop
on Artificial Intelligence in Security (2017)

https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1801.01290

258 N. Kamra et al.

15. Kamra, N., Gupta, U., Fang, F., Liu, Y., Tambe, M.: Policy learning for continuous
space security games using neural networks. In: AAAI (2018)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs.
Nash in security games: an extended investigation of interchangeability, equiva-
lence, and uniqueness. JAIR 41, 297–327 (2011)

18. Krishna, V., Sjöström, T.: On the convergence of fictitious play. Math. Oper. Res.
23(2), 479–511 (1998)

19. Lanctot, M., et al.: A unified game-theoretic approach to multiagent reinforcement
learning. In: Advances in Neural Information Processing Systems, pp. 4190–4203
(2017)

20. Leslie, D.S., Collins, E.J.: Generalised weakened fictitious play. Games Econ.
Behav. 56(2), 285–298 (2006)

21. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems, pp. 6379–6390 (2017)

22. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

23. Perkins, S., Leslie, D.: Stochastic fictitious play with continuous action sets. J.
Econ. Theory 152, 179–213 (2014)

24. Rosenfeld, A., Kraus, S.: When security games hit traffic: optimal traffic enforce-
ment under one sided uncertainty. In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-2017, pp. 3814–3822 (2017)

25. Shamma, J.S., Arslan, G.: Unified convergence proofs of continuous-time fictitious
play. IEEE Trans. Autom. Control 49(7), 1137–1141 (2004)

26. Wang, B., Zhang, Y., Zhong, S.: On repeated stackelberg security game with the
cooperative human behavior model for wildlife protection. In: Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
pp. 1751–1753 (2017)

27. Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for
wildlife protection against illegal poachers. In: AAMAS (2014)

28. Yin, Y., An, B., Jain, M.: Game-theoretic resource allocation for protecting large
public events. In: AAAI, pp. 826–833 (2014)

29. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems, pp. 3394–
3404 (2017)

http://arxiv.org/abs/1412.6980

	DeepFP for Finding Nash Equilibrium in Continuous Action Spaces
	1 Introduction
	2 Game Model
	3 Deep Fictitious Play
	3.1 Approximating Belief Densities
	3.2 Approximating Best Responses
	3.3 DeepFP
	3.4 Connections to Boltzmann Actor-Critic and Convergence of DeepFP

	4 Experimental Evaluation
	4.1 Simple Games
	4.2 Forest Protection Game

	5 Conclusion
	A Appendix
	A.1 Approximate Best Response Oracle for Forest Protection Game
	A.2 Supplementary Experiments with m, n>1
	A.3 Locally Optimal Strategies
	A.4 Neural Network Architectures

	References

