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ABSTRACT

The challenges of food waste and insecurity arise in wealthy and
developing nations alike, impacting millions of livelihoods. The
ongoing pandemic only exacerbates the problem. A major force to
combat food waste and insecurity, food rescue (FR) organizations
match food donations to the non-profits that serve low-resource
communities. Since they rely on external volunteers to pick up and
deliver the food, some FRs use web-based mobile applications to
reach the right set of volunteers. In this paper, we propose the first
machine learning based model to improve volunteer engagement in
the food waste and security domain. We (1) develop a recommender
system to send push notifications to the most likely volunteers
for each given rescue, (2) leverage a mathematical programming
based approach to diversify our recommendations, and (3) propose
an online algorithm to dynamically select the volunteers to notify
without the knowledge of future rescues. Our recommendation
system improves the hit ratio from 44% achieved by the previous
method to 73%. A pilot study of our method is scheduled to take
place in the near future.
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1 INTRODUCTION

Recall the last time you saw several full shelves of bread with an
expiry date in two days at a grocery store, or the last time you saw a
homeless person downtown asking for a meal. It is not a coincidence
if both scenarios seem familiar to you. The simultaneous food waste
and food insecurity are a serious problem shared by many parts of
the world [11, 19]. Unfortunately, the ongoing COVID-19 pandemic
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is only making things worse [22]. Even after the pandemic hits
its peak, the increased struggle with basic food security will not
subside quickly on our long way back to normal. Thus, now more
than ever, there is an urgent call for action to address the food
security and food waste problem. In this paper, we leverage our AT
expertise to answer this call with our collaborators.

Food rescue organizations (FR) are a major non-profit force in
fighting food waste and insecurity. They match fresh, unexpired
food from donors to organizations serving low-resource communi-
ties, thereby facilitating food redistribution.! FRs rely on volunteers
to transport the food. To engage with the volunteers, FRs use a web-
based application on cell phones to post information of upcoming
rescues. Please refer to Section 3 for a detailed description of the
food rescue operation. This “crowdsourcing” paradigm has proved
to be successful in engaging with the general public to address food
waste and insecurity [41].

However, relying on external volunteers to deliver the food
comes with inherent uncertainty. What if no volunteer will claim
the rescue? This uncertainty is prevalent in FR operations and it
has serious consequences such as lost faith in the program from the
donor and recipient organizations. Since the primary way in which
FRs contact volunteers is through push notifications, to improve
the claim rate one would certainly want to send push notifications
to volunteers who are likely to claim the given rescue. Currently,
when a rescue is published, the mobile app sends notifications to
volunteers who are within a certain radius of the donor. Although
being close to the donor is clearly a positive factor, this is far from
a perfect solution as its hit ratio is only 44%, which means it misses
the “correct” volunteer more than half of the time. On the other
hand, we also want to avoid sending push notifications to every vol-
unteer all the time, because that would easily drive them away from
the platform or prompt them to disable notifications altogether [14].
A customized push notifications, with good justifications, would
better engage the user. Thus, it is crucial to send the push notifi-
cations to a selected set of volunteers who are likely to claim the
rescue.

In this paper, we propose the first machine learning based model
to select the right set of volunteers to notify in the food waste and
security domain. By treating each rescue trip as a “user” and each
volunteer as an “item”, we study this problem from a recommender
system perspective. Recommender systems have received a lot of
interest from the WWW community in the past years [12, 21, 26, 45].
Our task is relevant to this literature but also brings several new
challenges. We state these challenges and our approaches to address
them as follows.

'"We would like to emphasize that only fresh and unexpired food can be donated
through FRs.
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® First, since each rescue only happens once, we stay in the
“cold start” phase of the recommender system forever, ren-
dering collaborative filtering-based methods unsuitable. We
leverage a sophisticated set of contextual features, an adap-
tive under-sampling technique, and a neural architecture to
develop a content-based recommender system. We show that
our model outperforms a number of baselines, and improves
the hit ratio of recommending the correct volunteer to 73%.
This is a 66% improvement from the current practice which
has a 44% hit ratio.

e Second, not being able to recommend diverse items is a seri-
ous issue in the recommender systems literature. It is partic-
ularly concerning in our application because the “items” are
human volunteers who contribute their time to the cause.
We leverage a mathematical programming based approach
by imposing diversity constraints on the output of the rec-
ommender system. This ensures that each volunteer receives
only a limited number of push notifications every day.

® Third, most literature on recommender systems assumes
an offline environment that has a static dataset. However,
food donations arrive sequentially and thus the FR must
accordingly make decisions without the knowledge of future
rescues. We identify an important arrival pattern of the food
rescue trips based on our experience in the domain. Relying
on this insight, we develop an online planning algorithm
which sequentially selects the volunteers to notify, while
still satisfying the diversity constraint we imposed earlier.
We show that our online algorithm achieves a hit ratio that
is only 10% worse than the hypothetical offline mode where
we assume knowledge of all the rescues at the beginning of
the day.

Food rescue organizations have made their presence in most
major cities in the US and beyond. In the US alone, there are al-
ready over 50 cities where FRs are providing basic necessities to
the communities, affecting over a million people. We are working
with 412 Food Rescue (412FR), a large food rescue organization
in Pittsburgh. Z Since its incorporation in 2015, 412FR has served
over 1,000 nonprofit partners and has grown a network of over
15,000 volunteers in the Greater Pittsburgh Region. The models we
describe in this paper are in the process of being deployed at 412FR.
Furthermore, we believe that the problem we tackle is not limited
to this particular application: it can be adapted to many domains
with a crowdsourcing type of operation that relies on volunteers to
perform the task.

2 RELATED WORK

There is a growing literature on using AT or related tools to study
the food rescue operation. Some formulate a vehicle routing prob-
lem to match the donation with recipients [20, 31], while others
tackle the problem from a fair allocation and market design perspec-
tive [5, 27, 35]. Because the demand and supply or food are external
to the FR, some works are focused on forecasting the future food
supply [32, 34]. While all these works provide useful insights into
the FR operation, the existing literature largely misses the volunteer
side of the process. Among the few pieces of work that explicitly

Zhttps://412foodrescue.org/
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consider the volunteer crowdsourcing aspect of food rescue, Lee
et al. developed a participatory democracy framework to allow
volunteers and other stakeholders to decide on the matching of
donations and recipients, which is orthogonal to our work [24]. Shi
et al. developed a machine learning model to predict whether a res-
cue trip will be claimed and an optimization model to find the best
intervention scheme [38]. Our work complements theirs and both
can be used simultaneously by FRs. Yet we advance from them in
two aspects. First, compared to their predictive model as a decision
aid for downstream human interventions, our recommender system
directly improves the upstream notification process which can re-
duce the need for the costly human intervention. Second, compared
to their prescriptive model which sets system-level notification
parameters, our recommender system is rescue-specific, thereby
leveraging more information to make better decisions. Finally, Man-
shadi and Rodilitz design online volunteer notification algorithms
in a similar setting [28]. Compared to their work, we take a pure
data-centric approach and make few modeling assumptions about
the volunteer and rescue patterns, with the sole purpose of finding
the most likely volunteers in the real-world use case of this system.

The literature on recommender systems is vast and we will only
discuss two topics relevant to our work — cold start and diversity.
Cold start refers to the scenario where there is no previous label on
a new user or new item [37]. An active approach to deal with cold
start would be to interact with the user to request labels, which
is often framed as a bandit problem [10, 18, 25, 36, 39, 44]. This is
clearly not applicable to our setting, since each rescue is a one-shot
business and the stake is too high for real-world trials. Thus, we
turn to passive approaches which make do with the data we have.
Content-based approaches are a natural candidate for this challenge.
Collaborative filtering is not designed to perfectly handle cold start,
though there have been methods to enhance it with side information
towards addressing this problem [8, 9, 16]. In this paper, we propose
a content-based model for the following reasons. First, in our food
rescue setting, cold start is not just a short unpleasant period at
the beginning which might imply secondary concern. Instead, we
stay in the cold start phase forever because every rescue (user)
is new. Thus, handling it perfectly with content-based models is
of utmost consideration. Second, we have identified a good set of
interaction features based on our experience in the food rescue
operation. Third, there is no collaborative filtering-based system
currently in place that holds us back from using a content-based
approach. Recent advances in leveraging neural architecture in
recommender systems serve as a starting point for us to build our
model [21].

Qur problem is also related to the diversity of recommender
systems, which concerns both individual diversity and aggregate
diversity. Individual diversity refers to recommending diverse items
within the recommended list for each user [43, 45]. Aggregate di-
versity refers to recommending diverse items between the recom-
mended lists for different users [1, 7, 15, 30, 33]. In our problem,
we hope to avoid sending push notifications to a small subset of
volunteers (items) all the time. Thus, our problems concerns the
aggrepgate diversity. At the technical level, our method of diver-
sifying the recommendations can be considered as a variant of
the integer programming approach by Adomavicius and Kwon [1].
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However, our problem has an additional subtlety that makes it more
challenging, as we discuss below.

In food rescue, each rescue trip arrives sequentially and thus
we need to make the recommendation decision in an online fash-
ion. This brings additional challenge to our effort to diversify the
recommendations. This problem resembles the well-studied online
adwords matching problem [3, 17, 29], and could fit under the more
general online linear programming framework [4]. However, these
works typically only guarantee asymptotic results or require prior
knowledge of the number of rescues on any given day, which makes
them impractical in our setting. There is also a literature on budget
pacing in online advertisement [2, 23, 42]. Our application domain
and the central problem are different from online advertisement, but
our online planning for push notification budget can be considered
as a novel way of pacing.

3 ANATOMY OF FOOD RESCUE OPERATIONS

Food rescue organizations serve as an intermediary between the
food donors and recipient organizations. Donors, typically grocery
stores and restaurants, would call the FR when they have food items
that they want to donate. After receiving the call, the FR dispatcher
matches this donation with some recipient organization, typically
some non-profit organization that serves a low-resource community.
Once this matching is done, the dispatcher posts this matching on
the FR’s mobile app. Hereafter, the food rescue process becomes
visible to the volunteers. As shown in Figure 1, a volunteer, who
has the FR’s mobile app installed on the phone, will then receive
a push notification about the rescue. If they choose to claim it on
the app, the app would provide them with the detailed information
instructing them where to pick up the donation and where to deliver.
The volunteer then goes out to complete the rescue trip.

Of course, the workflow described above is an ideal scenario. In
reality, occasionally, some rescue trip stays unclaimed on the mobile
app for a long time. FR dispatchers want to prevent this situation as
much as possible, since each rescue comes with a deadline which
is bounded by the nature of the food and the operation hours of
the donor and recipient. Unclaimed rescues discourage the donors
and recipients from participating in the program in the future.
FRs have two ways to address this problem. First, it sends push
notifications to possible volunteers to advertise the rescue. Second,
the dispatchers might individually call some regular volunteers
to ask for help. In a previous work, Shi et al. focus on the latter
approach in order to help the dispatcher’s decision-making [38].
We focus on the former by directly finding the best set of volunteers
to send push notifications to.

4 DATA

To develop a recommender system, we need both positive and neg-
ative labeled examples. A positive example means that a particular
volunteer (item) claims a particular rescue (user); a negative exam-
ple means otherwise. In this section, we detail our data acquisition,
labeling, and feature engineering process.

4.1 Positive Labels

We obtained the rescue database from 412FR, covering the period
from March 2018 to March 2020. The database keeps the log of each
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rescue. For most rescues, the database logs its timestamps from
being drafted by the dispatcher, to being published on the mobile
app, to being claimed and completed by a volunteer. For these
rescues, we simply take the rescue plus the volunteer who claimed
it as a positive data point. However, the food rescue operation is not
always so neat. Occasionally, the dispatcher knows ahead of time
that some volunteer would do the job, so they directly assign the
volunteer for a particular rescue and bypass the app notification
stage. In this case, we take this direct assignment as a positive
example as well. Sometimes a volunteer might claim a rescue and
then drop it, causing some rescue to have multiple volunteers in the
log. In this case, we create our labels based on the last volunteer.

4.2 Negative Labels

A negative example means that a particular volunteer did not claim
a particular rescue. Since almost all rescues have only one volun-
teer who claimed the rescue, obviously most of our data points
will have negative labels. However, not all of these negative data
points are necessarily true, because perhaps a volunteer would have
claimed some rescue if someone else had not claimed it 10 minutes
in advance. Thus, we use the following ways to construct a selected
negative dataset. First, in the time period covered by our database,
412 Food Rescue used a mobile app push notification scheme which
notifies volunteers within 5 miles when the rescue is first available
and then notifies all volunteers 15 minutes later if the rescue has
not been claimed. Thus, if a rescue is claimed within 15 minutes,
we only treat the volunteers who were within 5 miles and did not
opt out of push notifications as negative examples.

We also incorporate another data source to strengthen our nega-
tive sampling. In addition to mobile app notifications, the dispatcher
at 412FR also manually call some regular volunteers to ask for help
with a specific rescue. This usually happens when some rescue
has been available for over an hour yet nobody has claimed it. We
obtained the call history from 412FR, from which we identify the
volunteers they reached out to within the time frame of each rescue.
If these volunteers did not claim the rescues in the end, we treat
them as negative examples. Compared to the negative examples
derived from push notifications, we have more confidence in this set
of negative examples, since declining on a phone call is a stronger
indicator than ignoring a push notification.

4.3 Feature Engineering

Based on our extended collaboration with 412FR, we carefully iden-
tify a selected set of useful features that are relevant in the food
rescue operation.

First, the experience of food rescue dispatcher indicates that if a
volunteer has completed a rescue at or near a donor or recipient,
they are more likely to do a rescue trip again in the neighborhood.
As shown in Figure 2, we divide the Greater Pittsburgh Region into
16 cells. We evenly divide a central rectangular region into a 3 X 5
grid, and label them grid cells 0 through 14. Then, we label the
entire map outside the rectangular region cell 15. The rationale is
that in the outer suburbs there are fewer donors, recipients, and
volunteers, and furthermore volunteers who in suburbs are more
willing to do long-distance, i.e. inter-cell, rescue than volunteers in
downtown. For each rescue trip and each volunteer, we calculate
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Figure 1: The workflow of a food rescue operation from the volunteer’s perspective.
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Figure 2: We divide the Pittsburgh area into 16 grid cells,
with cells 0-14 covering downtown Pittsburgh and its neigh-
borhoods, and cell 15 containing the rest of the region.

the number of rescues the volunteer has done in the rescue donor’s
cell, in the rescue recipient’s cell, and across all cells. These counts
are only up to the date of the given rescue, so that we could prevent
data leakage. We also tried to include as features the volunteer’s
historical rescues in each cell, not just the donor’s and recipient’s
cell. However, they did not contribute any predictive power and
thus we leave them out of the final model.

Closely related to this is the distance between the volunteer and
the donor. It is unlikely that a volunteer would drive 30 miles to pick
up a donation, as we show in Figure 3a. We measure the distance
using the straight line distance based on geographic coordinates.
Although the actual traveling distance might be a better indica-
tor, we observe that the straight line distance already serves our
purpose.

Aside from the geographical information, the length of time be-
tween volunteer’s registration on the platform and the rescue is
also an important factor, as suggested by our collaborators at 412FR.
We plot the histogram of this variable in Figure 3b. Immediately
after registration, the volunteer is eager to claim a rescue to get a
feel of the food rescue experience. If a volunteer has stuck with the
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program for an extended period and remains active, it is likely that
they are a regular and dependable one as well, which is substanti-
ated with the upward trend and plateau in Figure 3b around days
300-600. Thus, we include this feature in our prediction model.

Weather information is also an important factor in the prediction.
Presumably rainy and snowy days would see a lower volunteer ac-
tivity in general. However, the impact of inclement weather would
fall disproportionately on volunteers who do not have a car or live
in suburban areas. We use the Climate Data Online (CDO) service
provided by the National Oceanic and Atmospheric Administra-
tion to access the weather information.® The CDO dataset contains
weather information at the discretization level of days and weather
station. There are multiple weather stations in the Pittsburgh area
and for each rescue we select the data for the date of rescue and
the station that is closest to the donor organization. As shown in
Figure 3c, on wet days, relatively more volunteers who claim the
rescue reside in downtown Pittsburgh (cell 4 and 7). Whereas on
dry days, a lot more volunteers who live in the outer suburbs of
Pittsburgh (cell 15) are active. In fact, we also saw a significant
difference in the average distance between volunteer and donor
for dry days (5.94 miles) and rainy days (5.22 miles), with a t-test
p-value 3 x 1075,

We also explored a number of other features but did not incorpo-
rate them into our final model. These features include the rescue’s
time of day and day of week, the volunteer’s availability, whether
the volunteer uploaded an avatar to their profile or not, whether
the volunteer is located in the same grid as the donor or recipient,
and so on. Although these are intuitive factors, we did not find
them improve the predictive power of our model and hence left
them out.

5 RECOMMENDER SYSTEM

We build a neural network-based recommender system. We first
detail our network architecture, and then discuss our approaches
to address the unique challenges in the food rescue domain.

We show the neural network architecture in Table 1. The input
to the neural network is the feature vector of a rescue-volunteer
pair. The feature vector passes through four dense layers. Each
layer is followed by a ReLU activation function, except for the last
layer where we output a single number which is then converted

https://www.ncde.noaa.gov/cdo-web/
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Figure 3: Data analysis results.

Layer Operation Hidden Units
1 Dense (ReLU) 384
2 Dense (ReLU) 2048
3 Dense (ReLU) 512
4 Dense (Logistic) 16

Table 1: Neural network architecture

to a number between 0 and 1 by the logistic function. This output
represents the likelihood that this volunteer will claim this rescue
trip. We use the cross entropy loss to train the neural network. To
output a list of k volunteers to whom we send push notifications for
a particular rescue at prediction time, we pass the feature vectors
of the rescue-volunteer pairs for all volunteers on a fixed rescue

through the network and rank the output to take the top k of them.

5.1 Negative Sampling

As mentioned earlier, there is an extremely high label imbalance
in our dataset. From March 2018 to March 2020, there are 6757
rescues available for the training. Each rescue typically has only
one volunteer who claimed it, and there are 9212 registered active
volunteers in the Pittsburgh area. This means, theoretically, the ratio
between negative and positive examples is over 9000 : 1. Using
the method introduced in Section 4.2, we can obtain a selected
set of negative examples D, derived from push notifications and
another set of negative examples D, derived from dispatcher calls.
The set De is slightly smaller than the positive examples Dp, while
|Dn| : |Dp| = 700 : 1. When training the neural network, we always
use all the examples from Dy, and D.. However, we randomly sample
a subset of examples from D, at each episode of the training. By
doing this, we ensure that the negative examples from D, do not
dominate the training set, and at the same time the “more certain”
negative examples from D, gets emphasized more than Dy. This
whole procedure leads to an overall ratio between negative and
positive samples around 3 : 1 in each single batch.

5.2 Diversity and Online Planning

Recommender systems in general suffer from the diversity issue,
where “hot” items get recommended to all the users. In commercial
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applications, this might lead to the “rich gets richer” phenomenon
on superstar items and the missed revenue opportunity on the less
popular items. All these are valid. However, as we have emphasized
several times in this paper, the “items” on the other side of our rec-
ommender system are humans. The aforementioned consequences
of the lack of diversity is only going to be more problematic in our
case. If a popular volunteer received push notifications for every
single rescue throughout the day, they would possibly get annoyed
and mute the notifications. On the other hand, for volunteers who
are already not very active, if our system never sent them push
notifications, they would probably just forget about the platform
and would be unlikely to return. Therefore, it is crucial that we
properly handle the diversity issue.

We distinguish between two notions of diversity: individual di-
versity and aggregate diversity. The former means that each user
(rescue) gets recommended a diverse set of items (volunteers). The
latter means that the recommended items (volunteers) across dif-
ferent users (rescues) combined cover a large portion of the item
space. Our human-centric approach determines that we focus on
aggregate diversity here. In fact, we focus on a slightly different
metric: how many times each volunteer gets recommended for a
rescue every day. We wish to put a cap on this metric, which is
directly linked to the user experience of each volunteer.

To this end, we can formulate the following mathematical pro-
gram for a given day of food rescue operation.

I  max ZZPijxij

icR jeV
s.t. foj <k, VieR
jev
inj <b, VjeV
icR
xjj € {0,1}, VieRVjeV

Let V denote the set of volunteers. On a particular day, we have
a set of rescues R. The binary decision variable x;; is equal to one
if we decide to send push notification to volunteer j about rescue
i. The first constraint indicates that for each rescue we will notify
the top k volunteers, as introduced at the beginning of Section 5.
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Algorithm 1: ONLINE PLANNING FOR OPTIMIZING PUsH
NOTIFICATIONS

input:A trained neural network predictor
1 while a new rescue i arrives do

2 Flush X;
3 for dayToSample=1,2,...H do
1 Sample the set of rescues R on the dayToSample that
occured from the time of the current rescue i till
the end of the day.
5 Compute predicted claim probabilities p;; and py ;
forallie R forall je V.
6 Solve the following optimization problem:
(I;)  max J_EZ; (P:‘jx:‘j + j;zp:"jx:"j}
s.t. Z xpj <k, Vi’ e R
Jjev
Z xij <k
Jjev
xij + Z xij <bj, VjeV
i"ER
xjj € {0,1}, VieRVjeV
7 Keep in X; the optimal solution x; ; for the current
rescue only.
8 Sum X; over the sampled histories, find the top k
volunteers.
9 Send push notifications to them. Update the remaining
budget b;j for each volunteer j.

The second constraint is our diversity constraint, which makes sure
that each volunteer receives at most b push notifications a day. The
pij in the objective is the output from our trained neural network,
representing the predicted likelihood that volunteer j is going to
claim rescue i.

While this optimization problem II is a valid method to improve
diversity in generic recommender systems, it does not solve the
problem in our setting. The reason is that donations, and hence
food rescue trips, arrive in our system sequentially throughout the
day, and the dispatcher must also act in real-time. It is unacceptable
to wait till the end of the day, run the optimization problem above,
and then send the push notifications. Therefore, we need an online
algorithm.

An intuitive approach is to resort to the literature on online
linear programming [1]. Indeed, we could imaging solving w where
at each time step, a new rescue is revealed with a new column in the
x matrix and p matrix. However, we do not know how many rescues
there will be at the beginning of the day. This is a major obstacle
in applying the established algorithms with theoretical guarantees.
Instead, the daily rescue pattern is hardly adversarial in nature and
thus we propose a simple heuristic, as shown in Algorithm 1.

In Algorithm 1, when a food rescue arrives in the system, we sam-
ple the historical rescue data for trajectories. Typically, we would
sample the rescues on the same weekday a week ago, two weeks
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ago, and so on. The underlying idea is that the same weekdays
might have similar rescue patterns. This is because most dona-
tions that come to 412FR come from grocery stores or large compa-
nies/universities. Grocery stores often perform inventory counts
on a weekly basis. Companies and universities often hold weekly
events, with catered food. For each sampled day, we only take the
trajectory from the time of the current rescue to the end of the
day. Then, for each trajectory along with the current rescue, we
obtain the neural network’s predicted claim probabilities and solve
the optimization problem II;. IT; is similar to IT except that each
volunteer now has their own remaining budget of push notification.
Note that now everything in IT; is observed and known, whereas
in IT the future rescues are unknown at the decision-making time.
We keep only the part of the optimal solution that concerns the
current rescue and discard the rest. Later, on Line 8 in Algorithm 1,
for each volunteer, we sum over its value in the optimal solution
across all the sampled trajectories. We take the top k volunteers as
voted by these solutions, who become the ones we will send push
notifications to for this current rescue.

We note that the optimization problem IT and Algorithm 1 are
extremely flexible to account for many additional considerations.
For example, we could use personal budget b; in IT and add addi-
tional constraints to represent the volunteer’s push notification
preferences. We could also add weights to the objective function to
emphasize the importance of a particular rescue.

6 EXPERIMENTS

6.1 Recommender System

We use a training set containing rescues from March 2018 to October
2019, which is 80% of the entire dataset. We use the remaining 1373
rescues from November 2019 to March 2020 as the test set. We
conducted all of our experiments on an Intel i7-7700K 4.20GHz
CPU with 64GB RAM.

First, we only consider the prediction part of our algorithm. We
compare our neural network recommender system with several
competitive baselines that are commonly used, including random
forest (RF), gradient boosted decision trees (GBDT), and stacking
model (SM). To determine the hyper-parameters of the baseline
models and the neural network model, we separate a validation set
which consists of the last 1/8 of our training set and then run a
grid search according to the performance on the validation set. For
experiments on the baselines, we use the same negative sampling
method on D, and Dj, as described in Section 5.1. As for negative
examples from the app notifications Dy, since the baselines are not
gradient descent-based methods, we sample them in two schemes
such that the ratio between the positive and negative examples is
roughly 1 : 1and 1 : 20, respectively. We consider the latter because
that is roughly the number of negative examples that the neural
network approach has seen throughout the training, in order to
ensure a fair comparison.

We show the results of all these algorithms on the test set, aver-
aged over 5 runs, in Table 2. We consider the hit ratio at k (HR@k)
and the normalized discounted cumulative gain at k (NDCG@k) in
Table 2. However, we note that our main metric of interest is the
hit ratio, because when sending push notifications, we do not care
about the particular order in which each volunteer ranks on the
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Model HR@k (SD)  NDCG@k (SD)
NN 0.7269 (0.0310) 0.1898 (0.0147)
RF(1:1)  0.5989(0.0395)  0.1319 (0.0303)
RF(1:20)  0.6035 (0.0511)  0.127 (0.0053)
GBDT(1:1)  0.6235(0.0549)  0.1613 (0.0098)
GBDT(1:20)  0.5394 (0.0152)  0.1023 (0.0086)
SM(1:1)  0.4996 (0.0005)  0.1332 (0.0002)
SM(1:20)  0.5219 (0.0125)  0.0948 (0.0030)
Default 0.4392 (N/A) N/A (N/A)

Table 2: The performance of the neural network based rec-
ommender system and several baselines. All experiments
are repeated five times with the mean and standard devia-
tion shown in the table.

list. Also because of this, HR@k is our primary metric during the
grid search on hyper-parameters for all the predictive models. We
choose the value of k to be 964, since this is the average number
of push notifications sent per rescue under the current notification
scheme. The current distance-based notification scheme has a hit
ratio of 0.4392. All baselines show better performance than the
current method, with random forest and GBDT being better than
the stacking model. However, the neural network based prediction
model outperforms all the baselines.

The hit ratio of the neural network model is a 66% improvement
over that of the current distance-based method. This means that we
would be able to reach the would-be volunteer in approximately
900 more rescues every year. Each of these rescues has a donor
and a recipient organization that serves tens or hundreds of people
behind it. A smooth food rescue experience would not only provide
basic food necessities to these people, but also encourage these
organizations to keep up the engagement in a sustainable way.

6.2 Diversity and Online Planning

As mentioned in Section 5.2, recommender systems, in general, suf-
fer from the diversity issue. This problem also exists in our model.
In Figure 4, we plot the histogram of the number of push notifica-
tions received by each volunteer for the test set rescues. The neural
network based recommender system, shown in yellow in Figure 4,
exhibits an alarming bimodal distribution: most volunteers either
receive almost no push notifications, or receive push notifications
for almost every single rescue. We remark that although the num-
ber of volunteers in the rightmost bin (446 out of 9312) is much
smaller than that in the leftmost bin (7458 out of 9312), the former
is much more concerning. This is because they are typically the
most “active” volunteers who have contributed the most to the food
rescue program. In fact, these 446 volunteers contain 39 of the top
50 most frequent volunteers, and 51 of the top 100. If they left the
platform due to too many notifications, which is likely to happen
should the proposed recommender system get deployed, the loss to
412FR would be disproportionately high. On the other hand, the
default distance-based notification scheme does not suffer from
this issue, as shown in red in Figure 4. Although the majority of
the volunteers still receive few push notifications, the notification
frequency for each volunteer is capped at roughly once every two
rescues.
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Figure 4: Histograms of the number of push notifications
received by each volunteer over all the 1373 rescues in the
test set. The online planning algorithm has a budget of 6
notifications per day.

Figure 4 serves as a stern warning against the premature de-
ployment of machine learning algorithms in the real world. That
a certain model outperforms the current practice by 66% in some
important metric (here, the hit ratio) does not mean it would not
cause other problems.

We use our Algorithm 1 to improve the diversity of volunteer
recommendations. As a preliminary and straightforward compar-
ison, we ran our online planning Algorithm 1 with budget b = 6
push notifications per day using the rescues seven days ago as
the sampled history. We plot its notification histogram in yellow
in Figure 4. It is easy to see that the online planning algorithm
achieves a push notification distribution much more similar to the
default scheme, than the recommender system alone. It completely
avoids sending push notifications about every single rescue to any
particular volunteer.

Indeed, the effect of Algorithm 1 on recommendation diversity
depends on the budget parameter b. In Figure 5, we plot the notifi-
cation distributions for different choices of the budget value, and
compare them against those of the recommender system and the
default notification scheme. As the budget increases, the distribu-
tion of push notifications from Algorithm 1 approaches that of the
recommender system. We note that the position of the rightmost
peak of each histogram should not be interpreted as an indicator
of the total number of push notifications sent. In all of these ex-
periments, we limit the number of notifications for each rescue
at k = 964. Except for when the budget is extremely small, the
algorithm always notify exactly 964 volunteers for each rescue. The
diversity goal here is to make the histogram occupy as little space
as possible on the right side of the figure.

Much as we demonstrate the improvement of recommendation
diversity, we would also like to ensure that the recommendation
accuracy of our algorithm does not drop too much. The budget
parameter b captures the inherent trade-off between diversity and
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Figure 6: Hit ratio of the online planing algorithm. Price of
online planning, computed as 1 — gg:;‘]’“’ , is shown on the
right axis.

accuracy. As we show in Figure 6, the yellow curve represents
the hit ratio of Algorithm 1. Algorithm 1 outperforms the existing
notification scheme when the budget is more than four notifications
per day, which is a relatively trivial amount. When the budget rises
to 10 notifications per day or more, the hit ratio is very close to the
bare bone recommender system.

In order to further evaluate the quality of online planning in
Algorithm 1, we also solve an offline version of the problem, where
we solve the mathematical program IT separately for each day, as-
suming full information about the rescues on that day. We show the
hit ratio of the recommendation decision from this offline version
in blue in Figure 6. Since having full information is always better,
the blue curve always lies above the yellow curve representing the
online planning. However, the difference is not big. We term the
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difference as the “price of online planning”, which is computed as
1- % In fact, Figure 6 shows that the price of online plan-
ning is de&easing as the budget grows, and is consistently smaller
than 0.1 when the algorithm is of potential deployment interest
(performing better than the current practice). This validates our
earlier claim in Section 5.2 that the rescues on the same weekday
of the previous week are a reasonably good indicator of the rescues
on the present day.

7 CONCLUSION AND FUTURE DIRECTIONS

A critical goal in the food rescue operation is to be able to reach
the “right” volunteers in time. Working with 412 Food Rescue, we
developed a machine learning model to recommend the most prob-
able volunteers to send push notifications to for each given rescue.
Our machine learning model improved the hit ratio of the current
notification scheme by 66%. The food rescue operation features
two main challenges: the recommendation diversity is of utmost
importance to ensure volunteer experience, and the recommen-
dation must be made in an online fashion. We proposed a novel
algorithm to dynamically recommend volunteers for rescues in real
time, while diversifying the recommendations and still managing
to keep the hit ratio well above the current practice.

The problem of low hit ratio is a real problem that needs to be
addressed. This is also a problem natural for a data-driven approach,
and we do have the relevant data available. There is an existing
approach to this problem (distance-based notification), so our tech-
nological intervention does not introduce new initiatives. Instead,
we amplify the existing initiative. Lots of previous endeavors have
shown that this amplification approach is more likely to achieve
deployment and sustainable impact [40]. In fact, our technological
intervention does not replace, reduce, or attempt to dictate any
human employee’s job at the FR.

There are two immediate future directions that are useful in the
food rescue operation. First, our Algorithm 1 features a classical
predict-then-optimize framework where the learning objective and
the optimization objective are not perfectly aligned. It would be
interesting to consider the recent literature on data-driven opti-
mization [6, 13] to further improve the results shown in Figure 6.
Of course, the online nature of our problem brings an additional in-
teresting challenge that has never been addressed in that literature.
Second, recommendation is necessarily limited by the counterfac-
tuals. In Section 4.2, we proposed several approaches to select the
most credible negative examples. It would be interesting to iden-
tify credible positive examples beyond the explicitly labeled ones,
which are rather scarce in the dataset.

A pilot study of the model and algorithm described in this paper
is scheduled to take place in the near future.
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