
Predictive Power of Nearest Neighbors Algorithm under Random
Perturbation

Yue Xing Qifan Song Guang Cheng
Purdue University Purdue University Purdue University

Abstract

This work investigates the predictive perfor-
mance of the classical k Nearest Neighbors
(k-NN) algorithm when the testing data are
corrupted by random perturbation. The im-
pact of corruption level on the asymptotic re-
gret is carefully characterized and we reveal
a phase-transition phenomenon that, when
the corruption level of the random perturba-
tion ω is below a critical order (i.e., small-ω
regime), the asymptotic regret remains the
same; when it is beyond that order (i.e.,
large-ω regime), the asymptotic regret dete-
riorates polynomially. More importantly, the
regret of k-NN classifier heuristically matches
the rate of minimax regret for randomly per-
turbed testing data, thus implies the strong
robustness of k-NN against random perturba-
tion on testing data. We show that the classi-
cal k-NN can achieve no worse predictive per-
formance than the NN classifiers trained via
the popular noise-injection strategy. Our nu-
merical experiment also illustrates that com-
bining k-NN component with modern learn-
ing algorithms will inherit the strong robust-
ness of k-NN. As a technical by-product, we
prove that under different model assump-
tions, the pre-processed 1-NN proposed in
Xue and Kpotufe (2017) will achieve a sub-
optimal rate when the data dimension d > 4
even if k is chosen optimally in the pre-
processing step.

1 INTRODUCTION

While modern machine learning achieves a great deal
of success via over-parametrized neural network, much

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

of the success is in relatively restricted domains with
limited structural variation or few system constraints.
Those algorithms would be quite fragile in broader
real-world scenarios, especially when the testing data
are contaminated. For example, in image classifica-
tion, when the input data are slightly altered due to a
minor optical sensor system malfunction, a deep neu-
ral network may yield a different classification result
(Goodfellow et al., 2014). Besides efforts on generating
adversarial samples (Papernot et al., 2016a,b; Grosse
et al., 2017), or ensuring the adversarial robustness
of machine learning algorithms (Kurakin et al., 2016;
Sinha et al., 2018; Madry et al., 2017), another strand
of research focuses on theoretical investigation on how
the data corruption affects the algorithm performance
(Wang et al., 2017; Yang et al., 2019; Fawzi et al.,
2016, 2018).

This work revisits the traditional k Nearest Neighbors
(k-NN) algorithm and investigates the robustness of
k-NN from a theoretical perspective. In the litera-
ture, beyond the nonparametric convergence analysis
of k-NN and its variants (Samworth, 2012; Chaudhuri
and Dasgupta, 2014; Xue and Kpotufe, 2017; Cannings
et al., 2020; Sun et al., 2016; Mao et al., 2018; Duan
et al., 2020; Balsubramani et al., 2019; LeJeune et al.,
2019; Efremenko et al., 2020), recently there are abun-
dant results on the robustness of k-NN. For example,
Cannings et al. (2018); Reeve and Kaban (2019b,a)
considered the case where labels for training data are
contaminated, and studied the overall excess risk of
the trained classifier; Wang et al. (2018); Yang et al.
(2020b) considered the case where testing data are con-
taminated, and studied the local testing robustness,
i.e., when testing data belong to a certain subset of
support, rather than the whole support. In contrast
to these existing works, the presented paper aims to
address a different question: how the overall regret of
k-NN classifier, which is trained by uncontaminated
training data, is affected when the testing features are
corrupted by random perturbation?

Our main theoretical result (derived in the framework
of Samworth (2012)) characterizes the asymptotic re-

Yue Xing, Qifan Song, Guang Cheng

gret for randomly perturbed testing data (with an ex-
plicit form of multiplicative constant) of k-NN with
respect to the choice of k and the level of testing data
corruption. There are several interesting implications.
First, there exists a critical contamination level, (a)
below which the asymptotic order of regret is not af-
fected; (b) above which the asymptotic order of re-
gret deteriorates polynomially. Second, although the
regret of k-NN deteriorates polynomially with respect
to the corruption level, it achieves the best possible ac-
curacy for testing randomly perturbed data (under a
fine-tuned choice of k). Hence k-NN classifier is rate-
minimax for both clean data testing task (Audibert
and Tsybakov, 2007; Samworth, 2012; Cannings et al.,
2020) and randomly perturbed data testing task.

A popular strategy to robustify the learning algorithm
is to inject the same random noises into training data,
such that the training and testing data are homoge-
neous. However, our theoretical analysis reveals that
the vanilla k-NN achieves the same predictive perfor-
mance (i.e., the same asymptotic regret) of the k-NN
classifier trained via noise-injection method in the be-
ginning stage of the polynomial deterioration regime.

The above regret analysis results imply that k-NN
possesses native robustness against random perturbed
adversarial samples. It can serve as a useful compo-
nent for modern adversarial training algorithms and
thus deserves more attention from the modern learn-
ing community. For instance, we evaluate the robust-
ness of deep k-NN (Papernot and McDaniel, 2018) and
show that deep k-NN has similar robustness of k-NN
against random perturbation.

As a by-product, our developed theory may also be
used to evaluate the asymptotic performance of vari-
ants of k-NN algorithms. For example, Xue and
Kpotufe (2017) applied 1NN to pre-processed data
(which is relabelled by k-NN) to achieve the same ac-
curacy as k-NN. Interestingly, this algorithm can be
translated into the classical k-NN algorithm under a
type of perturbed samples to which our theory natu-
rally applies. In particular, we prove that the above al-
gorithm, under our model assumption framework, only
obtains a sub-optimal rate (worse than k-NN) of regret
when d > 4.

2 EFFECT OF RANDOM
PERTURBATION

In this section, we will introduce the model setup
and present our main theorems which characterize the
asymptotic regret for perturbed testing samples.

2.1 Model Setup

Denote P (Y = 1|X = x) as η(x), and its k-NN es-
timator as η̂k,n(x), an average of k nearest neighbors
among n training samples, i.e.

η̂k,n(x) =
1

k

∑
i∈Nn,k(x)

yi,

where {(xi, yi)}i=1,...,n are i.i.d. samples and Nn,k(x)
represents the index set of the k nearest neighbors of
x in the n samples. The corresponding Bayes classifier
and k-NN classifier is defined as g(x) = 1{η(x) > 1/2}
and ĝn,k(x) = 1{η̂k,n(x) > 1/2}, respectively.

Define ω as the level of perturbation. For any in-
tended testing data x, we only observe its randomly
perturbed version: x̃ ∼ Unif(∂B(x, ω)), that is, x̃ is
uniformly distributed over ∂B(x, ω), the boundary of
an Euclidean ball B(x, ω).

In this case, we define the “perturbed” regret as

Regret(k, n, ω) = P (Y 6= ĝn,k(X̃))− P (Y 6= g(X)),

and Regret(n, ω) = min
k=1,...,n

Regret(k, n, ω). Note that

the k-NN classifier ĝn,k is trained by uncontaminated
training samples. When ω = 0, the above definition
reduces to the traditional regret that is used in statis-
tical classification literature.

Regret analysis is common to evaluate the classifi-
cation performance as in Chaudhuri and Dasgupta
(2014); Samworth (2012); Sun et al. (2016); Belkin
et al. (2018). If η(x) 6= 0 or 1, the mis-classification
rate P (ĝ(X) 6= Y |X = x) is always bounded away
from zero for any estimator ĝ. Therefore, instead of
analyzing mis-classification rate, people use regret to
evaluate the performance gap between any estimator
ĝ and the optimal Bayes classifier.

The following assumptions are imposed on X and the
underlying η, to facilitate our theoretical analysis.

A.1 X is a random variable on a compact d-
dimensional manifold X with boundary ∂X . Den-
sity function of X is twice-continuously differen-
tiable, finite and bounded away from 0.

A.2 The set S = {x|η(x) = 1/2} is non-empty. There
exists an open subset U0 in Rd which contains S
such that, for an open set containing X (defined
as U), η is continuous on U\U0.

A.3 There exists some constant cx > 0 such that when
|η(x) − 1/2| ≤ cx, η has bounded fourth-order
derivative; when η(x) = 1/2, η̇(x) 6= 0, where η̇ is
the gradient of η in x. Also the derivative of η(x)
within restriction on the boundary of support is
non-zero.

Yue Xing, Qifan Song, Guang Cheng

Assumptions A.1 ensures that for any x ∈ X , all its k
nearest neighbors are close to x with high probability.
This is due to the fact that if the density at a point x
is positive and finite, its distance to its kth nearest will
be of Op((k/n)1/d) = op(1). Assumption A.2 ensures
the existence of x in {x ∈ X | η(x) = 1/2} and η(x)
is continuous in other regions of X . Assumption A.3
on η(x) is slightly stronger than that imposed in Sam-
worth (2012) due to the consideration of testing data
contamination. Specifically, the additional smoothness
on η(x) imposed in Assumption A.3 guarantees that
some higher-order terms in the Taylor expansion of
E{η̂k,n(x̃)− η(x)} are negligible.

2.2 Asymptotic Regret and Phase Transition
Phenomenon

We are now ready to conduct regret analysis for k-NN
in the presence of randomly perturbed testing samples.
For any x ∈ X , define tk,n(x) as

E
(
‖Xi − x‖22

∣∣Xi is in the k nearest neighbors of x
)
.

Therefore, t(x) represents the expected squared dis-
tance from x to any of its k nearest neighbors. Let’s
define t = maxx t(x), and denote f̄(x, y) and f̄(x) as
the joint density of (x, y) and marginal density of x re-
spectively. Let f1(x) := f̄(x, 0), f2(x) := f̄(x, 1), and
Ψ(x) := f1(x)− f2(x).

We first characterize the asymptotic perturbed regret.

Theorem 1. Define εk,n,ω = max(log k/
√
k, tk,n+ω).

Under [A.1] to [A.3] in Appendix A, if testing data is
randomly perturbed, then it follows that

Regret(k, n, ω)

=
1

2

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(b(x0)tk,n(x0))
2
dVold−1(x0)︸ ︷︷ ︸

Bias

+
1

2

∫
S

ω2

d
‖Ψ̇(x0)‖dVold−1(x0)︸ ︷︷ ︸
Corruption

+
1

2

∫
S

1

4k

‖Ψ̇(x0)‖
‖η̇(x0)‖2

dVold−1(x0)︸ ︷︷ ︸
V ariance

+Remainder,

(1)

where Remainder=O(ε3k,n,ω) as k, n → ∞. The term
b(·) relies on the true η(x) and the distribution of X,
and does not change with respect to k and n:

b(x) =
1

f̄(x)d


d∑
j=1

[η̇j(x) ˙̄fj(x) + η̈j,j(x)f̄(x)/2]

 .

Here η̇, η̈, and ˙̄f represent the gradient, Hessian of
η, and the gradient of f̄ respectively. The subscript j

denotes the j’th element of η̇ or ˙̄f , and the subscript
j, j denotes the (j, j)’th element of η̈.

Our result (1) decomposes the asymptotic regret into
squared bias term, data corruption effect term, vari-
ance term as well as a remainder term. The first three
terms are of order O((k/n)4/d), O(ω2) and O(1/k) re-
spectively, and the remainder term is technically de-
rived from high order Taylor expansion and Berry-
Essen theorem. When k is within a reasonable range,
the remainder term is negligible compared with the
rest three main terms. When ω = 0, (1) reduces to
the bias-variance decomposition observed in the non-
parametric regression literature (e.g., Kandasamy and
Yu, 2016).

Based on Theorem 1, through changing ω, we have the
following observations:

Phase Transition Phenomenon Theorem 1 re-
veals a phase transition phenomenon for the regret
w.r.t. the level of testing data contamination.

1. When ω2 4 (1/k ∧ t2k,n) 1, the asymptotic regret
is barely affected by the testing data corruption:
Regret(k, n, ω)/Regret(k, n, 0)→ 1;

2. When ω2 = Θ(1/k ∨ t2k,n), the regret is of the
same order as Regret(k, n, 0) but with a different
multiplicative constant depending on f̄ and η;

3. When ω2 < (1/k ∨ t2k,n), Regret(k, n, ω) = Θ(ω2)
and Regret(k, n, ω) < Regret(k, n, 0).

Impact on Regret(n, ω) and the choice of k The
value k plays an important role in the k-NN algo-
rithm. It is essential to understand how the inten-
sity level ω affects the optimal value of k and the cor-
responding optimal Regret(n, ω). Theorem 1 implies
that, if ω 4 n−2/(d+4), Regret(n, ω) = Θ(n−4/(d+4));
if ω < n−2/(d+4), Regret(n, ω) = Θ(ω2). In other
words, Regret(n, ω) = Θ(ω2 ∨ n−4/(d+4)). The above
rate can be achieved if we choose k = Θ(n4/(4+d))
when ω 4 n−4/3(4+d) and 1/ω2 4 k 4 nωd/2 when
ω < n−4/3(4+d).

Distribution of x̃ In Theorem 1, we assume x̃ ran-
domly distributed on a L2 sphere uniformly. As will be
shown in the sketch of proof, we only utilize the distri-
butional information of x̃ at the last step of derivation.
An illustration and example of relaxing the distribu-
tional condition of x̃ is postponed to the Appendix D.

1To prevent the conflict of definitions of ω, we use 4
and < to replace o(.) and ω(.) in O/Ω notation. Moreover,
for a(n) 4 b(n) 4 1, we mean that b(n)/1 < n−ε1 and
a(n)/b(n) < n−ε2 for some ε1, ε2 > 0 when n → ∞.

Yue Xing, Qifan Song, Guang Cheng

Effect of Metric of Noise Note that x̃ can be de-
fined on Lp ball / sphere for different p ≥ 1. As showed
by Theorem 1, the effect of ω (i.e., the corruption term
in (1)) is irrelevant to t and 1/k. As a result, Theo-
rem 1 generalizes to Lp perturbation by replacing ω2/d
in (1) with E(ε>p η̇(x0))2/‖η̇(x0)‖2 , where εp = x̃ − x
is the random variable uniformly distributed in a Lp
ball/ sphere.

Minimax Rate To assess the rate of perturbed re-
gret of k-NN, we conduct the following minimax study
to obtain the best worst-case performance among all
possible estimators.

Theorem 2 (Informal Statement for Minimax Rate).
If the distribution of (X,Y) satisfies

1. η is α-Holder smoothness for all x;
2. P (|η(X)− 1/2| < t) ≤ Btβ for some β > 0,

together with some other general assumptions, the
minimax rate of perturbed Regret is

Θ
(
ωα(β+1) ∨ n−α(β+1)/(2α+d)

)
.

Formal assumptions and results for Theorem 2 are
postponed in Section F in Appendix. From Theo-
rem 2, the rate of regret is dominated by the larger
one between the random perturbation effect (ωα(β+1))
and the minimax rate for clean data (n−α(β+1)/(2α+d)).
Similar as in Samworth (2012), our regret result
matches the minimax rate of Theorem 2 by taking
α = 2 and β = 1.

Remark 1 (Adversarial Data Corruption). So far,
we focus on the case of random perturbation. As a
by-product, we analyze the effect of some special non-
random data corruption. The detailed results and dis-
cussions are postponed to Section C in the appendix
due to the page limit. In general, k-NN is more robust
to random perturbed data corruption than adversarial
(defined formally in the appendix) corruption. How-
ever, our rigorous analysis shows that the regret under
adversarial data corruption is of the same order as in
the case of random perturbation but with a larger mul-
tiplicative constant when ω < n−2/(d+4). Some liter-
ature studied improving the adversarial robustness of
NN-type algorithms, e.g., Wang et al. (2018); Yang
et al. (2020b,a). However, there is no improvement in
the convergence rate of Regret.

2.3 Comparison with Noise-Injected k-NN

Iterative adversarial training algorithms (e.g., Sinha
et al., 2018) usually consist of (1) attacking the train-
ing data based on the current model and (2) updating
the model parameter based on attacked training data.
A similar idea to enhance the robustness of k-NN is

to inject random perturbation noise into the training
data so that training and testing data share the same
distribution, i.e., we train k-NN classifier using the
randomly perturbed training data set. Comparing the
traditional k-NN methods with this noise-injection k-
NN, we find no performance lost for the former even
when the corruption level is in the early stage of the
polynomial deterioration regime.

Denote g̃(x̃) := P (Y = 1|x̃ is observed) as the Bayes
estimator and ĝ′n as the estimator trained using ran-
domly perturbed training data. Let both estimators
ĝn and ĝ′n adopt their best choices of k respectively.
Then we have

Theorem 3. Under the same conditions as Theorem
1, when 0 < ω3 4 n−4/(d+4),

P (Y 6= ĝn(x̃))− P (Y 6= g̃(x̃))

P (Y 6= ĝ′n(x̃))− P (Y 6= g̃(x̃))
→ 1. (2)

Although it is intuitive to consider perturbing training
data such that they match the distribution of the cor-
rupted testing data, result (2) implies that the estima-
tors ĝn and ĝ′n asymptotically share the same predic-
tive performance for randomly perturbed testing data,
and the native robustness of k-NN is as strong as if it
were adversarially trained. Note that this result holds
when ω is small. Combined with our result in Theorem
1, within the range n−2/(d+4) 4 ω 4 n4/3(d+4), the re-
gret deteriorates polynomially due to the testing data
corruption and can not be improved by noise-injection
adversarial training at all. One heuristic explanation is
that such an injected perturbation may introduce ad-
ditional noise to the estimation procedure and change
some underlying properties (e.g., smoothness), and
consequently, this strategy of perturbing training data
does not necessarily help to achieve smaller regret, es-
pecially when ω is small.

2.4 Implications to other machine learning
algorithms

Section 2.2 and 2.3 imply that k-NN is a robust al-
gorithm against random perturbation in testing data,
and injecting noise in training data does not improve
the robustness when the corruption level is small. This
strength of k-NN reveals the potential of a better
robustness when combining k-NN with other mod-
ern fancy learning algorithms (e.g., Papernot and Mc-
Daniel, 2018; Plötz and Roth, 2018; Bahri et al., 2020).

An instance of a combination of k-NN and other algo-
rithms is deep k-NN (Papernot and McDaniel, 2018).
To implement a deep k-NN, one can first train a deep
neural network, then use the output of its layers as
features to determine the distance of the training sam-
ples to the testing sample. In Papernot and McDaniel

Yue Xing, Qifan Song, Guang Cheng

Algorithm 1 Data Pre-processing

Input: data (x1, y1),..., (xn, yn), number of neigh-
bors k.
for i = 1 to n do

Find the k nearest neighbors of xi in x1,...,xn,
excluding xi itself. Denote the index set of these
k neighbors as Ni.
Estimate a label for xi as

η̂(xi) =
1

k

∑
j∈Ni

yj ,

ŷi = 1{η̂(xi)>1/2}.

end for
Output: (x1, ŷ1),...,(xn, ŷn).

(2018), deep k-NN aims to improve the confidence and
robustness of deep neural networks, which coincides
with our idea that k-NN is robust. Our numerical ex-
periments will show that deep k-NN inherits the ro-
bustness of k-NN. More specifically, our simulation
shows that injecting noise does not improve predic-
tive performance, which indicates that deep k-NN is
already robust enough to resist small random pertur-
bations.

3 APPLICATION TO VARIANTS
OF NN ALGORITHM

Our theoretical analysis can be adapted to other
NN-type algorithms: pre-processed 1NN (Xue and
Kpotufe, 2017) and distributed-NN (Qiao et al., 2019).
We prove that the regret of the former is sub-optimal
for some class of distributions and explain why the re-
gret of the latter converges in the optimal rate, both
in the aspect of the random perturbation viewpoint.

3.1 Pre-processed 1NN

In some literature (Xue and Kpotufe, 2017; Wang
et al., 2017), the algorithms run 1NN to make pre-
diction using pre-processed data instead of running k-
NN using raw data. The pre-processing step (or called
de-noising step) is reviewed in Algorithm 1. Specif-
ically, we firstly run k-NN to predict labels for the
training data set, then replace the original labels with
the predict labels ŷi’s. In this way, applying 1NN
on data (x1, ŷ1),...,(xn, ŷn) can achieve good accuracy
while the computational cost is smaller than k-NN.

This in fact can be treated as an application of random
perturbation of testing data in k-NN, in the sense that
this classifier can be equivalently represented as k-NN

under corrupted testing sample:

ĝ1NN(x) = ĝn,k(x̃),

where ĝ1NN is the pre-processed 1NN classifier, and x̃
is the corrupted observation of x, which is the near-
est neighbor of x. Although x̃ is not exactly in-
duced by random perturbation, it can be viewed as
randomly perturbed x with level of contamination
ω = Θ(n−1/d), which is the order for the expected
length from x to its nearest neighbor.

From this point of view, Theorem 1 can be applied to
derive the regret of the pre-processed 1NN algorithm,
whose rate of convergence turns out to be slower than
the optimal rate Θ(n−4/(d+4)) of k-NN when the data
dimension d is relatively high, say d > 4.

Theorem 4. Under the same conditions as Theorem
1, the regret of pre-processed 1NN under un-corrupted
testing data is

Regret1NN(k, n) =
1

2

∫
S

‖Ψ̇(x0)‖
‖η̇(x0)‖2

(b(x0)t(x0))
2
dVold−1(x0)

+
1

2

∫
S

1

4k

‖Ψ̇(x0)‖
‖η̇(x0)‖2

dVold−1(x0)

+ Corruption + Remainder,

where

Corruption = Θ(n−2/d), Remainder = o(n−2/d)

when both 1/k and (k/n)4/d are of O(n−1/d), and k =
O(n6/d). As a result, pre-processed 1NN is sub-optimal
when d > 4 (compared with optimal rate n−4/(d+4)).

The result in Theorem 4 reveals a sub-optimal rate
for the pre-processed 1NN under our Assumption A.1-
A.3 (in Appendix A), in contrast to the optimal rate
claimed by Xue and Kpotufe (2017) under different
assumptions.

3.2 Distributed-NN

The computational complexity of k-NN is huge if n
is large, therefore we consider a distributed NN algo-
rithm: we randomly partition the original data into s
equal-size parts, then given x, for each machine, the
k/s nearest neighbors of x are selected and calculate
η̂j(x) for j = 1, ..., s, finally we average η̂1(x),...,η̂s(x)
to obtain η̂(x). The algorithm is shown in Algorithm
2 as in Qiao et al. (2019).

Distributed-NN is practically different from k-NN in
a single machine since the k selected neighbors aggre-
gated from s subsets of data are not necessarily the
same k nearest neighbors selected in a single machine.
Therefore, an additional assumption k/s → ∞ is im-
posed to ensure that the neighborhood set selected by

Yue Xing, Qifan Song, Guang Cheng

Algorithm 2 Distributed-NN

Input: data (x1, y1),..., (xn, yn), number of neigh-
bors k, number of slaves s, a point x for prediction.
Randomly divide the whole data set into s parts,
with index sets S1,...,Ss.
for i = 1 to s do

Find the k/s nearest neighbors of x in {xj | j ∈
Si}. Denote the index set of these k/s neighbors
as Ni.
Estimate η̂i(x) = 1

k/s

∑
j∈Ni

yj .

end for
Estimate the label of x as

η̂(x) =
1

s

s∑
i=1

η̂i(x),

ŷ = 1{η̂(x)>1/2}.

Output: (x, ŷ).

distributed NN behaves similarly to the neighborhood
set selected by single machine k-NN, in the sense that
E‖Xi − x‖2, where Xi belongs to the distributed NN
neighborhood set, is of the same order of t(x). There-
fore, based on Theorem 1, we obtain that the order of
regret of Distributed-NN is, in fact, of the same order
as k-NN. Formally, we have the following corollary:

Corollary 5. Under the same conditions as Theorem
1, when the multiplicative constants in (1) are not zero,
if the number of machines s 4 k, then

RegretDNN(k, n) = Θ(RegretkNN(k, n)).

where RegretDNN and RegretkNN denote the (clean test-
ing data) regret of distributed NN and k-NN algo-
rithms.

4 NUMERICAL EXPERIMENTS

In Section 4.1, we evaluate the empirical performance
of k-NN algorithm for randomly perturbed testing
data, where we compare the k-NN classifiers trained by
raw un-corrupted training data and trained by noise
injected training data (i.e., ĝn versus ĝ′n defined in Sec-
tion 2.3). In Section 4.2, we use deep k-NN as an exam-
ple to explore how k-NN helps to improve the robust-
ness of modern learning algorithms. In Section 4.3,
we conduct experiments to compare k-NN with pre-
processed 1NN for un-corrupted testing data. These
numerical experiments are intended to show: (i) k-NN
has a similar testing performance as if trained by noise
injected training data when ω is small, which validates
our Theorem 3; (ii) deep k-NN inherits the strong ro-
bustness of k-NN; and (iii) for un-corrupted testing
data, the regret of pre-processed 1NN is worse than
that of k-NN if d > 4, which validates Theorem 4.

For all figures in numerical experiments, we provide
the detailed mean and standard deviation information
in Appendix B.

4.1 Tackling Random Perturbation

4.1.1 Simulation

The random variable X is of 5 dimension, and each
dimension independently follows exponential distribu-
tion with mean 0.5. The conditional mean of Y is
defined as

η(x) =
ex

>w

ex>w + e−x>w
(3)

where wi = i − d/2 for i = 1, ..., d. For each pair of
(k, n), we use 26, ..., 211 training samples, 10000 testing
samples and repeated 50 times to calculate the average
regret. In each repetition, 5-fold cross validation was
used to obtain k̃. Then based on Samworth (2012), we

adjust the number of neighbors to k̂ = k̃(5/4)4/(4+d)

since k̃ is the best k value for 4n/5 samples instead of n
samples. The two classifiers, trained via un-corrupted
training data and corrupted training data respectively,
used to predict corrupted testing data. From Figure 1,

Figure 1: Comparison between k-NN trained by raw
training data (solid line) and k-NN trained by noise in-
jected training data (dashed line) in Simulation. When
ω ≤ 0.05, regret converges in the same speed.

as the number of training samples increases, the regret
for both k-NNs gets reduced for 0 < ω ≤ 0.05 in the
same speed. This verifies that these two k-NNs do not
differ a lot when ω is small, i.e., Theorem 3. Empiri-
cally, the regret of k-NN trained by corrupted training
data is worse than the one trained by un-corrupted
training data when ω ≤ 0.5. On the other hand, when
ω is large (such that required condition in Theorem 3
fails), the two k-NNs may perform significantly differ-
ently. For example, we tried ω = 3, when sample size
n = 64, log2(Regret) is -2.86 using uncontaminated
data, and is -3.11 using corrupted training data.

In addition, we compare how the dimension d affects
the regret under different corruption level ω. We tried
d = 5, 10, 15, 20, 20, 50, 100 and n = 128. The distribu-
tion of x is the same as the previous experiment, and

Yue Xing, Qifan Song, Guang Cheng

the true model only relates to the first five attributes
and follows (3). In this case, the multiplicative con-
stants for bias, variance, and corruption as in Theorem
1 are unchanged among d. The results are summarized
in Figure 6. When ω = 0, the regret for d = 5 is the
smallest. However, when ω increases, the regret for
d = 5 increases much faster than others. Note that in
Figure 2, considering it is unfair to use the same level of
corruption to different d’s, the x-axis represents ω/

√
d

instead of ω. For d = 100, its regret is the least sen-
sitive to ω. To explain this, as mentioned in Section
2.2, ω has little effect on regret when ω � n−2/(d+4),
and n−2/(d+4) in an increasing function in d.

Figure 2: Comparison among regrets using different d.
A smaller d indicates a lower regret when ω = 0. When
ω gets larger, regret with small d increases rapidly, and
can even exceed those associated with large d.

4.1.2 Real Data

We use two real data sets for the comparison of 2 k-
NNs: Abalone (Dua and Graff, 2017), HTRU2 (Lyon
et al., 2016). For the Abalone data set, the data set
contains 4177 samples, and all attributes except for
gender are used in this experiment. The classification
label is whether an abalone is older than 10.5 years.
For HTRU2 data set (Lyon et al., 2016), the data has
a size of 17,898 with 8 continuous attributes. For each
data set, 25% of the samples are contaminated by ran-
dom noise and are used as testing data.

As shown in Figure 3, when ω is small, for both data
sets, the error rate (misclassification rate) of the two
k-NNs do not differ a lot when ω is small. The value
of ω over maximum pairwise distance, when ω = 3, is
3/20 for HTRU2 and 1/9 for Abalone.

4.2 Robustness of Deep k-NN

Inspired by our observation that k-NN is robust to
random perturbations and injecting noise to training
samples is futile when ω is small, we evaluate the ro-
bustness of deep k-NN against random perturbations.

In this experiment, we use (i) a network with two con-
volution layers and one fully connected layer to predict
labels for MNIST, and (ii) a network with four convo-
lution layers and two fully connected layers to predict

Figure 3: k-NN trained by raw Training Data vs noise
injected Training Data. When ω is small, there is
no great difference between k-NN using un-corrupted
training data or corrupted training data.

labels for CIFAR-10 Krizhevsky et al. (2009), using the
implementation from Papernot and McDaniel (2018).
For each choice of ω, we train a deep k-NN using un-
corrupted training (deep k-NN clean) and train an-
other one using randomly perturbed training data with
corruption level ω (deep k-NN perturbed) to compare
their error rate under randomly perturbed testing data
(with level ω), and repeat 10 times to obtain the mean
and standard deviation. Some details of the CNN pa-
rameters, training configurations, and choice of k are
postponed to Appendix B. A short summary can be
found in Table 1 and 2. Similar to the results for k-
NN, deep k-NN is robust to random perturbation, and
there is no need to inject noise in training data when
ω is small.

ω Deep k-NN clean Deep k-NN perturbed
0.4 0.013(0.007) 0.019(0.013)
0.8 0.018(0.009) 0.012(0.011)
1 0.021(0.01) 0.02(0.012)

1.5 0.039(0.042) 0.042(0.026)
2 0.08(0.062) 0.06(0.016)

Table 1: Mean and Standard Deviation of Error Rate
of Perturbed Testing Data (MNIST). The error rates
have only slight changes when increasing ω. Further-
more, there is little difference between training using
clean data or training using perturbed data.

ω Deep k-NN clean Deep k-NN perturbed
0.1 0.44(0.036) 0.408(0.033)
0.2 0.43(0.054) 0.448(0.033)
0.3 0.434(0.035) 0.451(0.062)
0.4 0.461(0.03) 0.483(0.058)

Table 2: Mean and Standard Deviation of Error Rate
of Perturbed Testing Data (CIFAR-10).

Yue Xing, Qifan Song, Guang Cheng

4.3 1NN with Pre-processed Data

4.3.1 Simulation

To observe a clear difference, instead of wi in (3), we
use a model where each dimension of x follows uniform
[0, 1] distribution, with η in (3), and wi = i−d/2−0.5
for i = 1, ..., d. for different values of d to compare the
performance between k-NN and pre-processed 1NN. X
now follows d-dimensional uniform (0, 1). From Figure
4, we show that the order of regret of pre-processed
1NN is different from that of k-NN when d ≥ 4.

Figure 4: Simulation Comparison between k-
NN and pre-processed 1NN, the y axis de-
notes the log2(Regre of pre-processed 1NN) −
log2(Regre of kNN). When d ≥ 4, the regret for
pre-processed 1NN is much larger than that of k-NN.

4.3.2 Real Data

We use four data sets: MNIST, Abalone, HTRU2, and
Credit Yeh and Lien (2009). For MNIST, this data
set contains 70000 samples, and the data dimension is
784. We randomly pick 25% samples as testing data
and randomly pick 2i (i = 7, 8, ..., 12) samples to train
k-NN classifier and pre-processed 1NN classifier, where
the choices of k for both algorithms are determined by
5-folds cross-validation. We repeated this procedure
50 times to obtain the mean testing error.

As shown in Figure 5, through increasing the num-
ber of training samples, the error rate ratio between
pre-process 1NN classifier and k-NN classifier is stably
above 1 and is around 1.17.

Figure 5: MNIST, k-NN vs pre-processed 1NN. Pre-
processed 1NN always has larger error rate than k-NN.
The error rate ratio can be regarded as regret ratio for
MNIST, and the ratio is always larger than 1.12.

For Abalone data set, we conducted experiment in the
same way as MNIST, and observe that the error rate
using pre-processed 1NN is always greater than k-NN.
As is shown in Figure 6, while the error rate for both
pre-processed 1NN and k-NN are decreasing in n, their
difference changes little when n ≤ 211.

Figure 6: Comparison between kNN and Pre-
processed 1NN in Abalone Data Set. The error rate of
pre-processed 1NN is always greater than k-NN.

The results for Credit and HTRU2 are in appendix.

5 CONCLUSION AND
DISCUSSION

In this work, we conduct asymptotic regret analysis
of k-NN classification for randomly perturbed testing
data. In particular, a phase transition phenomenon is
observed: when the corruption level is below a thresh-
old order, it does not affect the asymptotic regret;
when the corruption level is beyond this threshold or-
der, the asymptotic regret grows polynomially. More-
over, k-NN is robust enough, such that when the level
of corruption is small, there is no need to perform noise
injected training approach. Besides verifying the ro-
bustness of k-NN itself, our result implies a potential
of combining k-NN with other machine learning algo-
rithms so as to improve their robustness.

Moreover, using the idea of random perturbation, we
can further explain why pre-processed 1NN converges
in a sub-optimal rate: it can be treated as k-NN with
perturbation in testing data while ω, the distance from
x to its nearest neighbor, is large when d > 4. Our
analysis can also be applied to Distributed-NN to ver-
ify the optimal rate obtained in Qiao et al. (2019) as
well.

An interesting observation from the numerical exper-
iment is that using traditional k-NN leads to an even
better performance than the k-NN trained via noise in-
jection method. This observation contradicts to com-
mon belief that injecting an attack into a training algo-
rithm to obtain an adversarially robust algorithm (e.g.,
optimization method in Sinha et al. (2018)). There-
fore, it deserves further theoretical investigation to un-
derstand how one can indeed benefit from the noise
injection strategy.

Yue Xing, Qifan Song, Guang Cheng

Acknowledgements

Dr. Songs research activities are partially supported
by National Science Foundation DMS-1811812.

References

Audibert, J.-Y. and Tsybakov, A. B. (2007), “Fast
learning rates for plug-in classifiers,” The Annals of
statistics, 35, 608–633.

Bahri, D., Jiang, H., and Gupta, M. (2020),
“Deep k-NN for Noisy Labels,” arXiv preprint
arXiv:2004.12289.

Balsubramani, A., Dasgupta, S., Moran, S., et al.
(2019), “An adaptive nearest neighbor rule for clas-
sification,” in Advances in Neural Information Pro-
cessing Systems, pp. 7579–7588.

Belkin, M., Hsu, D., and Mitra, P. (2018), “Overfit-
ting or perfect fitting? Risk bounds for classification
and regression rules that interpolate,” arXiv preprint
arXiv:1806.05161.

Cannings, T. I., Berrett, T. B., Samworth, R. J., et al.
(2020), “Local nearest neighbour classification with
applications to semi-supervised learning,” Annals of
Statistics, 48, 1789–1814.

Cannings, T. I., Fan, Y., and Samworth, R. J. (2018),
“Classification with imperfect training labels,” arXiv
preprint arXiv:1805.11505.

Chaudhuri, K. and Dasgupta, S. (2014), “Rates of
convergence for nearest neighbor classification,” in
Advances in Neural Information Processing Systems,
pp. 3437–3445.

Dua, D. and Graff, C. (2017), “UCI Machine learning
repository,” .

Duan, J., Qiao, X., and Cheng, G. (2020), “Statistical
Guarantees of Distributed Nearest Neighbor Classifi-
cation,” in Advances in Neural Information Process-
ing Systems.

Efremenko, K., Kontorovich, A., and Noivirt, M.
(2020), “Fast and Bayes-consistent nearest neigh-
bors,” in International Conference on Artificial In-
telligence and Statistics, pp. 1276–1286.

Fawzi, A., Fawzi, H., and Fawzi, O. (2018), “Ad-
versarial vulnerability for any classifier,” in Advances
in Neural Information Processing Systems, pp. 1178–
1187.

Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P.
(2016), “Robustness of classifiers: from adversarial
to random noise,” in Advances in Neural Information
Processing Systems, pp. 1632–1640.

Goodfellow, I., Shlens, J., and Szegedy, C. (2014),
“Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572.

Grosse, K., Papernot, N., Manoharan, P., Backes,
M., and McDaniel, P. (2017), “Adversarial examples
for malware detection,” in European Symposium on
Research in Computer Security, Springer, pp. 62–79.

Kandasamy, K. and Yu, Y. (2016), “Additive approx-
imations in high dimensional nonparametric regres-
sion via the SALSA,” in International conference on
machine learning, pp. 69–78.

Krizhevsky, A., Hinton, G., et al. (2009), “Learning
multiple layers of features from tiny images,” .

Kurakin, A., Goodfellow, I., and Bengio, S. (2016),
“Adversarial machine learning at scale,” arXiv
preprint arXiv:1611.01236.

LeJeune, D., Baraniuk, R. G., and Heckel, R. (2019),
“Adaptive estimation for approximate k-nearest-
neighbor computations,” in International Conference
on Artificial Intelligence and Statistics, pp. 3099–
3107.

Lyon, R. J., Stappers, B., Cooper, S., Brooke, J., and
Knowles, J. (2016), “Fifty years of pulsar candidate
selection: from simple filters to a new principled real-
time classification approach,” Monthly Notices of the
Royal Astronomical Society, 459, 1104–1123.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D.,
and Vladu, A. (2017), “Towards deep learning mod-
els resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083.

Mao, C., Hu, B., Chen, L., Moore, P., and Zhang,
X. (2018), “Local Distribution in Neighborhood for
Classification,” arXiv preprint arXiv:1812.02934.

Papernot, N. and McDaniel, P. (2018), “Deep
k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning,” arXiv preprint
arXiv:1803.04765.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M.,
Celik, Z. B., and Swami, A. (2016a), “The limitations
of deep learning in adversarial settings,” in Security
and Privacy (EuroS&P), 2016 IEEE European Sym-
posium on, IEEE, pp. 372–387.

Papernot, N., McDaniel, P., Swami, A., and Harang,
R. (2016b), “Crafting adversarial input sequences for
recurrent neural networks,” in Military Communica-
tions Conference, MILCOM 2016-2016 IEEE, IEEE,
pp. 49–54.

Yue Xing, Qifan Song, Guang Cheng

Plötz, T. and Roth, S. (2018), “Neural nearest neigh-
bors networks,” in Advances in Neural Information
Processing Systems, pp. 1087–1098.

Qiao, X., Duan, J., and Cheng, G. (2019), “Rates of
Convergence for Large-scale Nearest Neighbor Clas-
sification,” in Advances in Neural Information Pro-
cessing Systems, pp. 10769–10780.

Reeve, H. W. and Kaban, A. (2019a), “Classifi-
cation with unknown class conditional label noise
on non-compact feature spaces,” arXiv preprint
arXiv:1902.05627.

— (2019b), “Fast rates for a kNN classifier robust
to unknown asymmetric label noise,” arXiv preprint
arXiv:1906.04542.

Samworth, R. J. (2012), “Optimal weighted nearest
neighbour classifiers,” The Annals of Statistics, 40,
2733–2763.

Sinha, A., Namkoong, H., and Duchi, J. (2018), “Cer-
tifying some distributional robustness with principled
adversarial training,” .

Sun, W. W., Qiao, X., and Cheng, G. (2016), “Sta-
bilized nearest neighbor classifier and its statistical
properties,” Journal of the American Statistical As-
sociation, 111, 1254–1265.

Wang, Y., Jha, S., and Chaudhuri, K. (2017), “An-
alyzing the robustness of nearest neighbors to adver-
sarial examples,” arXiv preprint arXiv:1706.03922.

— (2018), “Analyzing the robustness of nearest
neighbors to adversarial examples,” in International
Conference on Machine Learning, pp. 5133–5142.

Xue, L. and Kpotufe, S. (2017), “Achieving the time
of 1-NN, but the accuracy of k-NN,” arXiv preprint
arXiv:1712.02369.

Yang, Y.-Y., Rashtchian, C., Wang, Y., and Chaud-
huri, K. (2019), “Adversarial examples for non-
parametric methods: attacks, defenses and large sam-
ple limits,” arXiv preprint arXiv:1906.03310.

— (2020a), “Robustness for non-parametric classi-
fication: A generic attack and defense,” in Inter-
national Conference on Artificial Intelligence and
Statistics, pp. 941–951.

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhut-
dinov, R., and Chaudhuri, K. (2020b), “Adversar-
ial Robustness Through Local Lipschitzness,” arXiv
preprint arXiv:2003.02460.

Yeh, I.-C. and Lien, C.-h. (2009), “The comparisons
of data mining techniques for the predictive accuracy
of probability of default of credit card clients,” Expert
Systems with Applications, 36, 2473–2480.

