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Abstract
Although security games have attracted intensive
research attention over the past years, few existing
works consider how information from local com-
munities would affect the game. In this paper, we
introduce a new player – a strategic informant, who
can observe and report upcoming attacks – to the
defender-attacker security game setting. Charac-
terized by a private type, the informant has his
utility structure that leads to his strategic behav-
iors. We model the game as a 3-player extensive-
form game and propose a novel solution concept of
Strong Stackelberg-perfect Bayesian equilibrium.
To compute the optimal defender strategy, we first
show that although the informant can have in-
finitely many types in general, the optimal defense
plan can only include a finite (exponential) num-
ber of different patrol strategies. We then prove
that there exists a defense plan with only a linear
number of patrol strategies that achieves the opti-
mal defender’s utility, which significantly reduces
the computational burden and allows us to solve
the game in polynomial time using linear program-
ming. Finally, we conduct extensive experiments
to show the effect of the strategic informant and
demonstrate the effectiveness of our algorithm.

1 Introduction
Protecting wildlife and other natural resources from illegal
activities, such as poaching, has been one of the world’s com-
mon pressing challenges. However, due to insufficient fund-
ing and other supportive resources, the current low number
in defensive units makes the protection even harder. Such
a sharp contrast between protection need and available re-
sources has led to intensive research efforts in applying game-
theoretic approaches (especially Stackelberg Security Game
(SSG)) to fighting these illegal activities.

Community engagement is one of the important factors
that has largely been ignored in the existing literature. With
proper design of patrol strategies, the local communities
could serve as a surveillance and intelligence network with a
much wider range. Information from local communities has
been listed as one of the six pillars towards zero-poaching

[WWF, 2015] and also plays an important role in other do-
mains such as fighting urban crimes.

However, the local communities may have their own utility
structures and can be unwilling to cooperate. For example,
if some poaching activities are observed around a farm, the
farmer may not give out such information, or even provide
false information, if the farm is suffering loss from the wild-
human conflict. Such strategic behavior poses additional
challenges in designing better strategies for the defender.

To capture these strategic behaviors, we introduce a new
player – a strategic informant – to the standard security game
and aim to understand how this new player would affect the
original game between the defender and the attacker. We first
model the game as an extensive-form game and view the in-
formant as an extra layer between the defender and the at-
tacker: after the attacker sets a target but before he actually
attacks, the informant strategically chooses whether to report
and what message to report to the defender. When making a
defense plan, the defender needs to take the strategic reason-
ing of both the attacker and the informant into consideration.

To better understand the structure of the 3-player game,
we propose a new solution concept called strong Stackelberg-
perfect Bayesian equilibrium (SS-PBE). Essentially, such a
solution concept is motivated by viewing the game from two
different levels. At a lower level, we choose the perfect
Bayesian equilibrium as the solution to the subgame between
the attacker and the informant. At a higher level, we view the
game as a Stackelberg game between the defender and the
other two players. We show that the defender can actually
enforce the best perfect Bayesian equilibrium of the subgame
by introducing a slight perturbation to the defense plan.

The informant may report different messages under differ-
ent situations. At first glance, this problem may seem in-
tractable as the number of possible messages the defender
needs to design depends on the number of different infor-
mant types, leading to a heavy computational burden. We
borrow tools from the mechanism design domain and show
that a variant of the revelation principle holds in our setting.
Based on that, we further reduce the number of messages to
n+ 1 (n is the number of targets), which does not depend on
the number of informant types.

Following the convention of solving Stackelberg games,
we formulate the problem of finding the optimal defense plan
as solving multiple linear programs. To show the effect of
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strategic informants, we conduct experiments to evaluate the
defender’s utility and the number of defensive resources need,
by changing the informant type distribution and show the im-
pact if the defender fails to take into account the strategic
behaviors. Our results provide a useful guideline to law en-
forcement agencies when facing strategic informants.

1.1 Related Works
The most relevant topic is the Stackelberg games [Basilico et
al., 2016; Conitzer and Sandholm, 2006]. Stackelberg Se-
curity Game [Tambe, 2011] has been applied to a variety
of security problems [Rosenfeld and Kraus, 2017; Fang et
al., 2017; Schlenker et al., 2018; Pita et al., 2008]. Previ-
ous work on green security games with community engage-
ment [Huang et al., 2020] has considered the presence of non-
strategic informants, whereas we consider informants with
his own utility structures. Security games with the presence
of alarm systems, drones and cameras that can provide real
time information have also been studied [Basilico et al., 2017;
Ma et al., 2018; Guo et al., 2017]. [Gan et al., 2019] stud-
ies security game with deceptive attackers. [Xu et al., 2018;
Bondi et al., 2020] study a variant of security game that con-
siders sensors with detection and signaling capability. Our
work also makes use of the revelation principle [Myerson,
1981] in mechanism design and is closely related to finding
equilibria in extensive form games [Černỳ et al., 2018].

In criminology, [Smith and Humphreys, 2015; Moreto,
2015; Duffy et al., 2015] investigate the role of community
engagement in wildlife conservation. Based on the network
of reliable informants, [Linkie et al., 2015; Gill et al., 2014]
show the positive effects of community-oriented strategies.

In evolutionary game theory, [Short et al., 2010] shows the
effect of the presence of informants and [Short et al., 2013]
solves for the optimal informant recruitment strategy.

2 Preliminaries
We consider a game with 3 players: the defender, the at-
tacker and the informant. We study the setting where all the
3 players are strategic. Let T = {1, 2, . . . , n} be the set
of targets and assume that the defender has r defensive re-
sources. When a target t is attacked, and if it is covered by
the defender, the attacker gets penalty P at while the defender
gets reward Rdt ; Otherwise, the attacker gets reward Rat and
the defender gets penalty P dt . We assume Rdt > P dt and
Rat > P at for all t.

Suppose that when the attacker plans to attack, the attack
plan (i.e., the target t) may be observed by an informant with
probability pw. The informant’s type θ is randomly drawn
from a set Θ of all possible informant types according to a
publicly known probability distribution p(θ). The informant
gets utility U ct (θ) (Uut (θ)) if the attacked target t is covered
(uncovered), and we assume U ct (θ) 6= Uut (θ).

The defender’s defense plan is a tuple d = (M,x, x0) con-
taining a routine patrol strategy x0 (when no messages are
reported), a set of possible messages M and a patrol strategy
x : M 7→ Rn that maps the reported message to a cover-
age probability. Here we assume that the message set M is
also designed by the defender. We also assume that both the
attacker and the informant have access to the defense plan d.

Figure 1: Game tree of the security game with strategic informants,
where we omitted the step of Nature choosing the informant type.

After observing the attack plan, the informant can choose
to send a certain message m to the defender. The defender
then uses the tip-guided patrol strategy x(m) against the at-
tacker. Denote by xt(m) the coverage probability of target
t. We consider the case where the informant is strategic, i.e.,
given both the defender’s defense plan and the attacker’s at-
tack plan, the informant strategically chooses a message that
maximizes his expected utility.

We assume that the attacker is rational (utility-maximizing)
and aware of the existence of the strategic informant when
deciding the attack strategy s ∈ ∆(T ), and that the type of
the informant is private information, i.e., only known to the
informant himself. The goal of the defender is to design a
defense plan (M,x, x0) to maximize her expected utility.

Formally, we consider the security game with strategic
community engagement defined below:

Definition 1. The security game with strategic community en-
gagement (Figure 1) proceeds as follows:

1. The defender announces a defense plan d = (M,x, x0);

2. Observing the defense plan, the attacker decides an at-
tack strategy s, and chooses a target t according to s;

3. If the informant observes t, he can remain silent or send
a message m to the defender (e.g., “Target t will be at-
tacked” or “The attacker will go south”);

4. According to the message m, the defender adopts the
patrol strategy defined by the announced defense plan.

3 Solution Concept
To establish our solution concept for the above game, we first
focus on the subgame between the attacker and the infor-
mant. We call the subgame the “attacker-informant” game.
In this game, the attacker moves first, and then the informant
chooses a message according to his type. We consider perfect
Bayesian equilibrium for this game.

Definition 2 (Perfect Bayesian Equilibrium (PBE)). A per-
fect Bayesian equilibrium is a solution to an extensive form
game if the following two conditions are satisfied:

1. Sequential rationality: each player’s strategy should be
optimal given the player’s belief;

2. Belief consistency: each player’s belief should be up-
dated according to the Bayes’ rule.
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For any target t ∈ T , informant type θ ∈ Θ, and any re-
ported message m ∈M , the expected utilities of the attacker,
the defender and the informant can be written as:

Ua(t,m) =(1− pw)[x0tP
a
t + (1− x0t )Rat ]+

pw[xt(m)P at + (1− xt(m))Rat ], (1)

Ud(t,m) =(1− pw)[x0tR
d
t + (1− x0t )P dt ]+

pw[xt(m)Rdt + (1− xt(m))P dt ], (2)

Ui(t,m; θ) =(1− pw)[x0tU
c
t (θ) + (1− x0t )Uut (θ)]+

pw[xt(m)U ct (θ) + (1− xt(m))Uut (θ)]. (3)

Lemma 1. Letm = m(t; θ) be any strategy of the informant.
There exists an attacker strategy s, such that (s,m) is a per-
fect Bayesian equilibrium of the attacker-informant game, if
and only if m satisfies1:

Ui(t,m; θ) = max
m′
{Ui(t,m′; θ)}, ∀t, θ. (4)

Moreover, for any perfect Bayesian equilibrium (s,m), the
utilities for all three players in the original game only de-
pends on the attacker strategy s.

Proof. Necessity. The informant knows his own type and
only the attacker has a belief about the informant’s type. And
since the attacker moves first and only moves once in the
game, his belief will remain as the prior type distribution p(θ)
during the two-step game. The informant has access to the
attacker’s actual action. As (s,m) is a perfect Bayesian equi-
librium, by definition, we have ∀t, θ:

m(t; θ) ∈ arg max
m

{Ui(t,m; θ)}

=

{
arg maxm xt(m) if U ct (θ) > Uut (θ)

arg minm xt(m) if U ct (θ) < Uut (θ)
. (5)

Sufficiency. Since the above equation does not contain the
attacker’s strategy s, any informant strategy satisfying Equa-
tion (4) is actually a weakly dominant strategy. The above
equation also implies that, for any t and θ, any such strat-
egy m(t; θ) results in the same coverage probability xt(m)
for target t. On the other hand, when the attacker moves, his
strategy should optimize his expected utility:

E
θ,t

[Ua(t,m)]

=
∑
θ

p(θ)
∑
t

s(t)
{

(1− pw)[x0tP
a
t + (1− x0t )Rat ] +

pw[xt(m)P at + (1− xt(m))Rat ]}

=
∑
t

s(t)

{
(1− pw)[x0tP

a
t + (1− x0t )Rat ]+

pw

[
P at
∑
θ

p(θ)xt(m) +Rat
∑
θ

p(θ)(1− xt(m))

]}
.

Thus the attacker’s expected utility only depends on the cov-
erage probability xt(m) for each t and θ. To best respond,

1Throughout the paper, we assume maxm′{Ui(t,m
′; θ)} always

exists even if |M | = ∞. Otherwise, there can be no equilibrium.

the attacker only needs to choose any distribution s over the
set arg maxtEθ,t[Ua(t,m)].

The above analysis shows that switching to any other strat-
egy satisfying Equation (4) does not change the utilities for
both the attacker and the informant. Thus in any PBE (s,m)
the expected utilities for both of them only depend on s. To
show that the expected utility for the defender also only de-
pends on s, simply notice that the defender’s expected utility
also only depends on the actual coverage probability of each
target (Equation (2)).

Corollary 1. It is without loss of generality to only consider
a pure strategy for the informant.

Proof. Immediate from Lemma 1.

According to Lemma 1, in the original game, the de-
fender’s expected utility may depend on how the attacker
break ties. In the same spirit of the strong Stackelberg equi-
librium, we consider the following solution concept:

Definition 3 (Strong Stackelberg-perfect Bayesian equilib-
rium (SS-PBE)). A strategy profile (d, s,m) is a Strong
Stackelberg-perfect Bayesian equilibrium if:

1. (s,m) is a perfect Bayesian equilibrium;

2. the attacker breaks ties in favor of the defender;

3. based on the above two conditions, d maximizes the de-
fender’s expected utility.

Lemma 2. It is without loss of generality to assume that
the informant always reports a message in M after ob-
serving any attack plan, i.e., minm∈M xt(m) ≤ x0t ≤
maxm∈M xt(m), ∀t.

Proof. Let (d, s,m) be any SS-PBE that does not satisfy
the inequalities. Without loss of generality, assume x0t <
minm∈M for some t. Then we can modify d by adding a
new message m′ to M with minm∈M xt′(m) ≤ xt′(m

′) ≤
maxm∈M xt′(m), ∀t′ 6= t and xt(m

′) = x0t . Clearly,
(d, s,m) is still an SS-PBE. And according to Equation (5)
and Lemma 1, it would still be an SS-PBE if we slightly mod-
ify m so that the informant always break ties to favor report-
ing a message in M . For example, we can set mt(θ) = m′

for all θ with U ct (θ) < Uut (θ). We can repeat the above pro-
cess until the inequalities in the lemma are satisfied. In the
final SS-PBE, all the three players’ utilities are the same, and
the informant always reports a message in M after observing
any attack plan.

4 Problem Analysis
Once the attacker has chosen a target t to attack, the expected
utilities for both the attacker and the defender only depend
on the defender’s actual coverage probability xt of target t,
which, in turn, depends on the informant’s reported message
m. In general, the concrete meaning of the message is irrele-
vant as long as both the informant and the defender interpret it
as the same patrol strategy x(m). However, to help later anal-
ysis, we start with the case where M̄ = T × Θ and consider
the following direct defense plan, analogous to the direct or
revelation mechanism in the mechanism design literature.
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m(t; θ)
Original
Defense

Plan
x(m(t; θ))

Type θ

Target t
New Defense Plan

Figure 2: Framework of the revelation principle

Definition 4 (Direct Defense Plan). A direct defense plan is
a tuple (M̄, x̄, x̄0) where M̄ = T × Θ. A direct defense
plan is truthful, if the informant’s best strategy is to report
the actual target of the attacker and his true type, i.e., (t, θ) =
m̄(t; θ), ∀t ∈ T, ∀θ ∈ Θ.

Now we consider a variant of the well-known revelation
principle [Myerson, 1981] that fits in our setting and also pro-
vide a brief proof for completeness.

Theorem 1 (Revelation Principle [Myerson, 1981]). For any
defense plan (M,x, x0), there exists a truthful direct defense
plan (M̄, x̄, x̄0), such that for any target t chosen by the at-
tacker, and any informant type θ, all the 3 players obtain the
same expected utilities as in the original defense plan.

The intuition behind the revelation principle is to let the
mechanism “lie” for the informant (See Figure 2).

Proof. Let m = m(t; θ) be the informant’s strategy in the
original defense plan. Then the defender uses the patrol
strategy x(m(t; θ)). Let x̄0 = x0 and define x̄(t, θ) =
x(m(t; θ)), ∀t, ∀θ. It is easy to see that the direct plan
(M̄, x̄, x̄0) is truthful. Otherwise, assume that reporting a dif-
ferent (t′, θ′) leads to a strictly higher informant’s utility, i.e.,

c(t) + pw[x̄t(t
′, θ′)U ct (θ) + (1− x̄t(t′, θ′))Uut (θ)]

> c(t) + pw[x̄t(t, θ)U
c
t (θ) + (1− x̄t(t, θ))Uut (θ)],

where c(t) = (1−pw)[x0tU
c
t +(1−x0t )Uut ]. This means that

in the original defense plan, we have:

c(t)+pw{xt(m(t′; θ′))U ct (θ)+ [1−xt(m(t′; θ′))]Uut (θ)}
> c(t)+pw{xt(m(t; θ))U ct (θ)+[1−xt(m(t; θ))]Uut (θ)},

which implies that m(t′, θ′) is a better strategy for the infor-
mant, contradicting Equation (4).

Now we show that all the three players have the same ex-
pected utility under the new direct defense plan. Once the
defense plan is given, according to Equation (1), (2) and (3),
for any target t and informant type θ, all three players’ util-
ities in the game only depend on the actual coverage prob-
ability xt(m) for the target. For any t and θ, the informant
will reportm(t; θ) and (t, θ) in both the two plan, resulting in
coverage probabilities xt(m(t; θ)) and x̄t(t, θ). And we have
x̄(t, θ) = x(m(t; θ)) by definition.

According to Theorem 1, it is without loss of generality to
focus on truthful direct plans. We remark that this is only for
ease of analysis, while in actual deployment, it may be more
appropriate to still use the original format of defense plans.

Although focusing on truthful direct defense plans simpli-
fies our analysis, it is still challenging to compute the optimal

plan for the defender. For each message m, we need to spec-
ify a patrol strategy, which contains n = |T | variables. And
we have n|Θ| possible messages, which means we need to de-
termine n2|Θ| different variables. This could lead to a heavy
computational burden if |Θ| is very large.

However, we claim that it is possible to achieve the optimal
defender’s utility with only n+1 messages (no longer a direct
defense plan of course), even though the number of different
informant types cannot be controlled by the defender.

We view the game from the defender’s perspective and de-
fine the partial outcome of the game to be the parameterized
mapping y : T × Θ 7→ [0, 1], that maps a target to its cov-
erage probability, parameterized by the informant’s type θ, or
equivalently y(t, θ) = xt(m(t; θ)).

The following lemma is useful for proving the above claim.

Lemma 3. Given any message setM and any defender strat-
egy x(m), there are at most 2n different outcomes, or equiva-
lently, we only need to consider at most 2n different informant
types, since the outcome is parameterized by it.

Proof sketch. For each t and each θ, the partial outcome
y(t, θ) = xt(m) depends on the message m(t; θ), which in
turn only depends on whether U ct (θ) is greater than Uut (θ) or
not. So for each target t, there are at most 2 different xt’s.
And there can be at most 2n different partial outcomes.

Now we are ready to show that |M | = n + 1 is sufficient
to achieve the optimal defender’s utility.

Theorem 2. There exists a defender strategy d = (M,x, x0),
with |M | = n+1, that achieves the optimal defender’s utility.

Proof. Let d̂ = (M̂, x̂, x̂0) be an optimal truthful direct de-
fense plan. We will construct a new defense plan based on d̂.
To ensure truthfulness, x̂ must satisfy:

x̂t(t, θ) ≥ x̂t(t, θ′), ∀θ′, ∀θ with U ct (θ) > Uut (θ),

x̂t(t, θ) ≤ x̂t(t, θ′), ∀θ′, ∀θ with U ct (θ) < Uut (θ).

Therefore, if two different types θ and θ′ both satisfyU ct (θ) >
Uut (θ) and U ct (θ′) > Uut (θ′), then we must have x̂t(t, θ) =
x̂t(t, θ

′). The coverage probabilities of other targets are irrel-
evant as long as they guarantee truthfulness.

We construct the new defense plan (M,x, x0) as follows:
first set x0 = x̂0. Then for each t, let θ+(t) be any infor-
mant type with U ct (θ+(t)) > Uut (θ+(t)). We add a message
m+(t) = (t, θ+(t)) for each t to M , and set x(m+(t)) =
x̂(t, θ+(t)). In the end, we add another m− to M , and set
xt(m

−) = minm∈M̂ x̂t(m), ∀t.
With the above construction, we have |M | = n + 1. It

is easy to check that
∑
t xt(m) ≤ r, ∀m ∈ M . Now we

show that this new defense plan has the same expected util-
ity for the defender as in d̂. For any target t, and any in-
formant type θ, the informant will either choose to report
m+(t) or m−. For example, if θ satisfies U ct (θ) > Uut (θ),
then xt(m

+(t)) = x̂t(t, θ
+(t)) = maxθ′{x̂t(t, θ′)} ≥

maxm′{xt(m′)}. If U ct (θ) > Uut (θ), it is clear that
xt(m

−) = minm∈M̂ x̂t(m) = minm∈M xt(m). This means
that in defense plan d, no matter which target t the attacker
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chooses to attack, the informant will always choose a mes-
sage that gives exactly the same expected defender (and also
attacker and informant) utility as in d̂. Taking expectation
over t completes the proof.

Definition 5 (Defender-Aligned and Attacker-Aligned Infor-
mant Types). An informant type θ is said to be defender-
aligned if U ct (θ) > Uut (θ), ∀t, and attacker-aligned if
U ct (θ) < U

(
t θ), ∀t.

Lemma 4. If all informant types are attacker-aligned, There
exists an optimal defense plan where the defender always uses
the routine patrol strategy x0, i.e., sets M = ∅.

Proof. For any defense plan d = (M,x, x0), the expected
defender’s utility is:

Ud =
∑
θ

p(θ)
∑
t

s(t)
{

(1− pw)
[
x0tR

d
t + (1− x0t )P dt

]
+

pw
[
xt(m(t; θ))Rdt + (1− xt(m(t; θ)))P dt

] }
.

Since all informant types are attacker-aligned, we have
U ct (θ) < Uut (θ), ∀t, θ, which means:

xt(m(t; θ)) = min
m′

xt(m
′) ≤ x0t , ∀t, θ,

where the inequality is by Lemma 2. Thus,

Ud =
∑
θ

p(θ)
∑
t

s(t)
{

(1− pw)
[
x0tR

d
t + (1− x0t )P dt

]
+

pw
[
xt(m(t; θ))(Rdt − P dt ) + P dt

] }
≤
∑
θ

p(θ)
∑
t

s(t)
{

(1− pw)
[
x0t (R

d
t − P dt ) + P dt

]
+

pw
[
x0t (R

d
t − P dt ) + P dt

] }
=
∑
t

s(t)[x0tU
c
t + (1− x0t )Uut ],

where the inequality is because Rdt > P dt , and the last term is
the defender’s expected utility of always using x0t . Since the
above analysis is true for any defense plan, it also holds for
any optimal defense plan d̂ = (M̂, x̂, x̂0). Thus always using
x̂0 gives a weakly better utility, which implies that x̂0 alone
is also optimal.

Example 1 (Effect of different informants). Suppose there
are two targets and the defender has r = 1 resource. Con-
sider the following symmetric, zero-sum instance:

1 2

1 d,−d −d, d

2 −d, d d,−d

The defender and the attacker are the row player and the
column player, respectively. Clearly, when there is no infor-
mant, the defender will just use a strategy (0.5, 0.5), which

gives both the defender and the attacker a utility of 0. If
there is a defender-aligned informant with pw = 1, then in
the optimal defense plan, the defender will always listen to
the informant and allocate the 1 unit of defensive resource
accordingly, which gives a utility of d. And if there is an
attacker-aligned informant, according to Lemma 4, the opti-
mal defense strategy is still to use (0.5, 0.5), leading to a 0
utility. However, if the defender does not know that the in-
formant is attacker-aligned but still listens to him, then the
defender will end up with −d utility.

We now consider how to compute the optimal defense plan.
When deciding the attack strategy to optimize Equation (1),
the attacker cannot observe the informant’s type. Thus sim-
ilar to the standard Stackelberg setting, the optimal attacker
strategy can be achieved with a pure strategy, i.e., attacking a
certain target with probability 1. We break ties in favor of the
defender when attacking multiple targets gives the attacker
the same expected utility.

With Theorem 2, we can index the n+1 messages such that
mt = m+(t), andmn+1 = m−. To ensure that the informant
always chooses mt and mn+1 when t is the target, we need
to guarantee that xt(mt) ≤ xt(m′) ≤ xt(mn+1), ∀m′ ∈M .

To compute the optimal defense plan, we follow [Conitzer
and Sandholm, 2006] and solve a linear program for each tar-
get t, and then choose the best defense plan.

maximize:∑
θ

p(θ)
{

(1− pw)
[
x0tR

d
t + (1− x0t )P dt

]
+

pw
[
xt(m(t; θ))Rdt + (1− xt(m(t; θ)))P dt

] }
subject to:∑

θ

p(θ)
{

(1− pw)
[
x0tP

a
t + (1− x0t )Rat

]
+

pw [xt(m(t; θ))P at + (1− xt(m(t; θ)))Rat ]
}

≥
∑
θ

p(θ)
{

(1− pw)
[
x0t′P

a
t′ + (1− x0t′)Rat′

]
+

pw [xt′(m(t′; θ))P at′ + (1− xt′(m(t′; θ)))Rat′ ]
}

∀t′ ∈ T
xt′(mn+1) ≤ xt′(m′) ∀m′ ∈M, t′ ∈ T
xt′(mn+1) ≤ x0t′ ∀t′ ∈ T
xt′(mt′) ≥ xt′(m′) ∀m′ ∈M, t′ ∈ T
xt′(mt′) ≥ x0t′ ∀t′ ∈ T∑
t′

x0t′ ≤ r

0 ≤ x0t′ ≤ 1 ∀t′ ∈ T∑
t′

xt′(m) ≤ r ∀m ∈M

0 ≤ xt′(m) ≤ 1 ∀m ∈M, t′ ∈ T

In the above linear program, the first constraint ensures
that choosing target t is the best strategy for the attacker, and
m(t; θ) is either mt or mn+1, which only depends on the in-
formant type θ given any target, and can be pre-computed
based on U ct (θ) and Uut (θ).
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(a) Defender’s utility (b) Attacker’s utility

Figure 3: Utility heatmaps

Figure 4: Left: defensive resources needed with a strategic infor-
mant. Right: defender’s utility gain from rewarding the informant.

5 Experiments
All our results shown in this section are averaged over 50
randomly generated game instances. In each instance, there
is a defender with r = 5, an attacker, and an informant with
pw = 0.3. The rewards and penalties for both the defender
and the attacker are drawn from U [0, 1] and U [−1, 0]. There
are 3 different informant types: a defender-aligned type (θ1),
an attacker-aligned type (θ2) and a random type (θ3). All the
informant utilities are randomly drawn from U [0, 0.2]. In our
experiments, we change probabilities for θ1 and θ2 to sim-
ulate the process of changing from mostly attacker-aligned
informants to mostly defender-aligned informants. We im-
plemented our linear program with Python using Gurobi 9.0
[Gurobi Optimization, 2020] as the solver2. The running time
of our algorithm is listed in Table 1.

5.1 Utility vs. Informant Type
We enumerate all possible type distributions satisfying
p(θ) ∈ {0.1, 0.2, . . . , 1.0}, ∀θ. We compute the correspond-
ing utilities for both the defender and the attacker to analyze
the effect of having different types of informants. As shown
in Figure 3, the defender gets higher utilities and the attacker

2The code can be found at https://github.com/
AIandSocialGoodLab/securitygamewithinformants

# targets 10 30 100 200 300 400 500

time/s 0.2 3.4 133.2 1.1k 3.7k 9.6k 18.1k

Table 1: The running time of our algorithm.

Figure 5: The defender’s utilities of different defenders meeting dif-
ferent informants, where “strategic+def align” means strategic de-
fender and defender-aligned informant.

gets lower utilities as the informant goes from fully attacker-
aligned to fully defender-aligned, which shows that the exis-
tence of the informant could significantly affect the game.

5.2 Number of Resources vs. Informant Type
We explore how the informant could influence the game in
another dimension. We set p(θ3) = 0, and only change p(θ1)
and p(θ2). The points on the same curve in the left figure of
Figure 4 correspond to the same defender’s utility. For exam-
ple, when there are 5 targets, in order to achieve the same util-
ity of having r = 1 with a fully defender-aligned informant,
a defender needs to have about 2 resources when faced with
a fully attacker-aligned informant. And this number goes
up quickly when the number of targets increases. This im-
plies that when there is a large number of targets, a defender-
aligned informant is worth many defensive resources.

5.3 Effect of Rewarding the Informant
In this experiment, we analyze the effect of incentivizing the
informant by giving away rewards. Assume that the defender
give a reward γ to the informant, if the defender successfully
defends the attack following the informant’s message. In this
case, the informant will report m+(t) if U ct (θ) + γ ≥ Uut (θ).
We consider a setting with p(θ3) = 1. We show in the right
figure of Figure 4 that the expected reward given to the in-
formant grows almost linearly with respect to γ. But the de-
fender’s utility gain grows quickly in the beginning, and then
stops as the informant is already fully defender-aligned.

5.4 Effect of Misclassfying the Informant
Figure 5 shows the results when different defenders meet dif-
ferent informants in . When the defender knows the informant
types (“strategic”), the defender’s utility goes down when the
number of targets increases, and the more defender-aligned
the informant is, the more utility the defender gets. However,
when the informant is not fully defender-aligned (the “rand”
and “att align”), the defender can suffer a huge loss by blindly
following the informant’s messages (“naive”). Again, this ex-
periment shows that the strategic behaviors of the informant
can have a huge impact on the defender’s utility.
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